




COUNTERFACTUALS AND CAUSAL INFERE NCE

Second Edition

In this completely revised and expanded second edition of Counterfactuals and Causal
Inference, the essential features of the counterfactual approach to observational data analy-
sis are presented with examples from the social, demographic, and health sciences. Alternative
estimation techniques are first introduced using both the potential outcome model and causal
graphs; after which conditioning techniques, such as matching and regression, are presented
from a potential outcomes perspective. For research scenarios in which important determi-
nants of causal exposure are unobserved, alternative techniques, such as instrumental variable
estimators, longitudinal methods, and estimation via causal mechanisms, are then presented.
The importance of causal effect heterogeneity is stressed throughout the book, and the need
for deep causal explanation via mechanisms is discussed.

Stephen L. Morgan is the Bloomberg Distinguished Professor of Sociology and Education at
Johns Hopkins University. He was previously the Jan Rock Zubrow ’77 Professor in the Social
Sciences and the director of the Center for the Study of Inequality at Cornell University. His
current areas of interest include social stratification, the sociology of education, and quanti-
tative methodology. He has published On the Edge of Commitment: Educational Attainment
and Race in the United States (2005) and, as editor, the Handbook of Causal Analysis for Social
Research (2013).

Christopher Winship is the Diker-Tishman Professor of Sociology and a member of the senior
faculty of Harvard’s Kennedy School of Government. Prior to coming to Harvard in 1992, he
was Professor of Sociology and Statistics and by courtesy Economics at Northwestern Univer-
sity. His research focuses on statistical models for causal inference, most recently mechanisms
and endogenous selection; how black clergy in Boston have worked with police to reduce
youth violence; the effects of education on mental ability; pragmatism as the basis for a theory
of action; the implications of advances in cognitive psychology for sociology; and sociological
approaches to how individuals understand justice. Since 1995 he has been editor of Sociological
Methods and Research.





Analytical Methods for Social Research

Analytical Methods for Social Research presents texts on empirical and formal methods for the
social sciences. Volumes in the series address both the theoretical underpinnings of analyti-
cal techniques as well as their application in social research. Some series volumes are broad in
scope, cutting across a number of disciplines. Others focus mainly on methodological applica-
tions within specific fields such as political science, sociology, demography, and public health.
The series serves a mix of students and researchers in the social sciences and statistics.

Series Editors:

R. Michael Alvarez, California Institute of Technology
Nathaniel L. Beck, New York University
Lawrence L. Wu, New York University

Other Titles in the Series:

Time Series Analysis for the Social Sciences, by Janet M. Box-Steffensmeier, John R. Freeman,
Matthew Perry Hitt, and Jon C. W. Pevehouse

Event History Modeling: A Guide for Social Scientists, by Janet M. Box-Steffensmeier and
Bradford S. Jones

Ecological Inference: New Methodological Strategies, edited by Gary King, Ori Rosen, and
Martin A. Tanner

Spatial Models of Parliamentary Voting, by Keith T. Poole

Essential Mathematics for Political and Social Research, by Jeff Gill

Political Game Theory: An Introduction, by Nolan McCarty and Adam Meirowitz

Data Analysis Using Regression and Multilevel/Hierarchical Models, by Andrew Gelman and
Jennifer Hill





Counterfactuals and Causal Inference

Methods and Principles for Social Research

Second Edition

STEPHEN L. MORGAN

Johns Hopkins University

CHRISTOPHER WINSHIP

Harvard University



32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107065079

c© Stephen L. Morgan and Christopher Winship 2007, 2015

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2007
Second edition 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data
Morgan, Stephen L. (Stephen Lawrence), 1971–

Counterfactuals and causal inference : methods and principles for social research /
Stephen L. Morgan, Christopher Winship.

pages cm. – (Analytical methods for social research)
Revised edition of the authors’ Counterfactuals and causal inference, published in 2007.

Includes bibliographical references and index.
ISBN 978-1-107-06507-9 (hardback) – ISBN 978-1-107-69416-3 (paperback)

1. Social sciences–Research. 2. Social sciences–Methodology.
3. Causation. I. Winship, Christopher. II. Title.

H62.M646 2015
300.72–dc23 2014033205

ISBN 978-1-107-06507-9 Hardback
ISBN 978-1-107-69416-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Web sites referred to in this publication

and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781107065079


To my wife, Sydney, my son, Vinny, and my daughter, Beatrix
– Steve Morgan

To my wife, Nancy, and my sons, David and Michael
– Chris Winship





Contents

List of Figures page xiii

List of Tables xvii

Acknowledgments for First Edition xxi

Acknowledgments for Second Edition xxiii

I Causality and Empirical Research in the Social Sciences

1 Introduction 3
1.1 The Potential Outcome Model of Causal Inference 4
1.2 Causal Analysis and Observational Social Science 6
1.3 Examples Used Throughout the Book 14
1.4 Observational Data and Random-Sample Surveys 27
1.5 Causal Graphs as an Introduction to the Remainder of the Book 29

II Counterfactuals, Potential Outcomes, and Causal Graphs

2 Counterfactuals and the Potential Outcome Model 37
2.1 Defining the Causal States 37
2.2 Potential Outcomes and Individual-Level Treatment Effects 43
2.3 Treatment Groups and Observed Outcomes 44
2.4 The Average Treatment Effect 46
2.5 The Stable Unit Treatment Value Assumption 48
2.6 Treatment Assignment and Observational Studies 53
2.7 Average Causal Effects and Naive Estimation 54
2.8 Over-Time Potential Outcomes and Causal Effects 62
2.9 The Potential Outcome Model for Many-Valued Treatments 70
2.10 Conclusions 73
2.11 Appendix to Chapter 2: Population and Data Generation Models 74

3 Causal Graphs 77
3.1 Identification 78
3.2 Basic Elements of Causal Graphs 79
3.3 Graphs and Structural Equations 84
3.4 Causal Graphs and the Potential Outcome Model 90

ix



x Contents

3.5 Conclusions 94
3.6 Appendix to Chapter 3: Graphs, Interventions, and Potential Outcomes 95

III Estimating Causal Effects by Conditioning on Observed Variables to Block
Back-Door Paths

4 Models of Causal Exposure and Identification Criteria
for Conditioning Estimators 105
4.1 Conditioning and Directed Graphs 105
4.2 The Back-Door Criterion 109
4.3 Models of Causal Exposure and Point Identification Based on the Potential

Outcome Model 118
4.4 Conditioning to Balance and Conditioning to Adjust 128
4.5 Conclusions 130
4.6 Appendix to Chapter 4: The Back-Door and Adjustment Criteria,

Descendants, and Colliders Under Magnification 130

5 Matching Estimators of Causal Effects 140
5.1 Origins of and Motivations for Matching 141
5.2 Matching as Conditioning via Stratification 143
5.3 Matching as Weighting 150
5.4 Matching as a Data Analysis Algorithm 158
5.5 Remaining Practical Issues in Matching Analysis 181
5.6 Conclusions 187

6 Regression Estimators of Causal Effects 188
6.1 Regression as a Descriptive Tool 188
6.2 Regression Adjustment as a Strategy to Estimate Causal Effects 194
6.3 Regression as Conditional-Variance-Weighted Matching 206
6.4 Regression as an Implementation of a Perfect Stratification 214
6.5 Regression as Supplemental Adjustment When Matching 215
6.6 Extensions and Other Perspectives 217
6.7 Conclusions 224

7 Weighted Regression Estimators of Causal Effects 226
7.1 Weighted Regression Estimators of the ATE 227
7.2 Weighted Regression Estimators of the ATT and the ATC 231
7.3 Doubly Robust Weighted Regression Estimators 234
7.4 Remaining Practical Issues in Weighted Regression Analysis 238
7.5 An Extended Example 243
7.6 Conclusions 262

IV Estimating Causal Effects When Back-Door Conditioning Is Ineffective

8 Self-Selection, Heterogeneity, and Causal Graphs 267
8.1 Nonignorability and Selection on the Unobservables Revisited 268
8.2 Selection on the Unobservables and the Utility of Additional

Posttreatment Measures of the Outcome 269



Contents xi

8.3 Causal Graphs for Complex Patterns of Self-Selection
and Heterogeneity 278

8.4 Conclusions 290

9 Instrumental Variable Estimators of Causal Effects 291
9.1 Causal Effect Estimation with a Binary IV 291
9.2 Traditional IV Estimators 296
9.3 Instrumental Variable Estimators in the Presence of Individual-Level

Heterogeneity 305
9.4 Conclusions 324

10 Mechanisms and Causal Explanation 325
10.1 The Dangers of Insufficiently Deep Explanations 326
10.2 The Front-Door Criterion and Identification of Causal Effects by

Mechanisms 330
10.3 The Appeal for Generative Mechanisms 338
10.4 The Pursuit of Explanation with Mechanisms That Bottom Out 346
10.5 Conclusions 352

11 Repeated Observations and the Estimation of Causal Effects 354
11.1 Interrupted Time Series Models 355
11.2 Regression Discontinuity Designs 360
11.3 Panel Data 363
11.4 Conclusions 392
11.5 Appendix to Chapter 11: Time-Varying Treatment Regimes 392

V Estimation When Causal Effects Are Not Point-Identified by Observables

12 Distributional Assumptions, Set Identification, and Sensitivity Analysis 419
12.1 Distributional Assumptions and Latent Variable Selection-Bias Models 420
12.2 Set Identification with Minimal Assumptions 422
12.3 Sensitivity Analysis for Provisional Causal Effect Estimates 429
12.4 Conclusions 434

VI Conclusions

13 Counterfactuals and the Future of Empirical Research in Observational
Social Science 437
13.1 Objections to Adoption of the Counterfactual Approach 438
13.2 Modes of Causal Inquiry in the Social Sciences 446

References 451

Index 497





Figures

1.1 A causal graph in which back-door paths from D to Y can be blocked by
observable variables and in which C is an instrumental variable for D page 30

1.2 A causal graph in which C is no longer an instrumental variable for D 32
1.3 A causal diagram in which M and N represent an isolated and exhaustive

mechanism for the causal effect of D on Y 32
2.1 Crude birth rates in Japan, 1951–1980 65
3.1 A directed graph that includes a cycle 80
3.2 Two representations of the joint dependence of A and B on unobserved

common causes 81
3.3 Basic patterns of causal relationships for three variables 82
3.4 Two graphs in which the causal effect of D on Y is confounded by C 83
3.5 A causal graph in which the effect of education (E) on earnings (Y ) is

confounded by observed variables (C) and by unobserved ability (A) 84
3.6 A traditional linear additive path diagram for the effects of parental

background (P ), charter schools (D), and neighborhoods (N ) on test scores (Y ) 86
3.7 Equivalent directed graph representations of the effects of parental background

(P ), charter schools (D), and neighborhoods (N ) on test scores (Y ) 88
3.8 Two alternative representations of assumed interventions in causal graphs

where the effect of D on Y is confounded by C 96
3.9 Alternative graphs for the joint dependence of a two-valued causal variable for

education (E) and potential outcomes for earnings (Y 0 and Y 1) on observed
confounders (C) and on an unobserved confounder for ability (A) 101

4.1 A graph in which the causal effect of D on Y is confounded by the back-door
path D ← C → O → Y 106

4.2 Simulation of conditional dependence within values of a collider variable 108
4.3 A causal diagram in which Yt−1 is a collider along a back-door path 111
4.4 A causal diagram in which A is a collider on a back-door path 112
4.5 A causal diagram in which Yt−2 is a collider on a back-door path and Yt−1 is

its descendant 114
4.6 A confounded causal effect expressed as an indirect effect and a net direct effect 114
4.7 A graph where the effect of D on Y is not identified by conditioning on O and

B because O is a descendant of D 115
4.8 Causal diagrams in which treatment assignment is (a) nonignorable and

(b) ignorable 121

xiii



xiv Figures

4.9 Causal diagrams for the terminology from econometric modeling of treatment
selection 125

4.10 A causal diagram in which sufficient conditioning can be performed with
respect to S or X 129

4.11 A causal graph with a confounded causal effect and where the variables along
the back-door path are viewed under magnification 131

4.12 A diagram where the causal effect of D on Y is not confounded and where the
observed variable O on the back-door path is a descendant of both
D and Y 133

4.13 A graph where the effect of D on Y is not identified by conditioning on O and
B because O is a descendant of D 135

4.14 A directed graph that reveals the differences between the back-door criterion
and the adjustment criterion 137

5.1 The propensity score specification for Matching Demonstration 3 154
5.2 The directed graph implied by the underlying data generation model for

Matching Demonstration 4 174
6.1 Graphs for a regression equation of the causal effect of D on Y 196
6.2 A causal graph for a regression equation in which the causal effect of D on Y is

identified by conditioning on X 201
7.1 Kernel density estimates of the estimated propensity score, calculated

separately for public school students (black solid line) and Catholic school
students (gray dashed line) 249

8.1 Coleman’s strategy for the identification of the causal effect of Catholic
schooling on achievement 269

8.2 Criticism of Coleman’s estimates of the effect of Catholic schooling on learning 272
8.3 Separate causal graphs for two groups of individuals (G = 1 and G = 2)

where the effects of parental background (P ) and charter schools (D) on test
scores (Y ) may differ for the two groups 279

8.4 A graph where groups are represented by an unobserved latent class variable
(G) in a single graph 281

8.5 Two graphs where selection into charter schools (D) is determined by group
(G) and where selection renders the effect of D on Y unidentified as long as G
remains unobserved 282

8.6 Two graphs where selection on the unobservables is given an explicit
representation as self-selection on subjective expectations of variation in the
causal effect of D on Y. For panel (b), these expectations are determined by
information (I) that is differentially available to families with particular
parental backgrounds (P ) 283

8.7 A graph where self-selection on the causal effect of charter schooling also
triggers self-selection into consequential and interactive neighborhood
contexts (N ) 285

9.1 Two graphs in which Z is a potential instrumental variable 292
9.2 Two graphs in which Z is a valid IV 298
9.3 A graph with an unblocked back-door path and a valid IV 302
9.4 Instrumental variable identification of the causal effect of charter schools (D)

on test scores (Y ), where Z is the instrument 318



Figures xv

9.5 Instrumental variable identification of the causal effect of charter schools (D)
on test scores (Y ), where separate graphs are drawn for compliers and
noncompliers 320

9.6 A combined graph for Figures 9.5(a)–(b), where Z is the instrument and
compliance is represented as an unobserved latent class variable (C) 321

9.7 Identification of the LATE using an instrument (Z) for the charter school
graph presented earlier in Figure 8.7. The unobserved variable V is a
composite for the causal chain that generates self-selection in Figure 8.7
through information access and selection on the subjective evaluation of the
individual-level causal effect 322

10.1 A directed graph for compliers with quarter of birth as an IV for
years of schooling 327

10.2 A directed graph for compliers with the Vietnam draft lottery as
an IV for military service 328

10.3 A directed graph in which M and N represent an exhaustive and isolated
identifying mechanism for the causal effect of D on Y 332

10.4 A directed graph in which M is not an isolated mechanism for the causal effect
of D on Y 335

10.5 Directed graphs in which one pathway in an exhaustive and isolated
mechanism is unobserved 336

11.1 Trajectories of the observed outcome as well as the true and assumed
counterfactual outcomes for a faulty ITS model 357

11.2 Monthly youth homicide rates in Boston, 1991–1999 358
11.3 Foreseeability of a layoff as an example of an RD design 361
11.4 An example of a fuzzy RD design 362
11.5 A directed graph for the effect of Catholic schooling on tenth grade

achievement when a measure of eighth grade achievement is also available 367
11.6 Examples of possible trajectories for E[Y 0

it ] for the treatment group (the upper
line of each pair) and the control group (the lower line of each pair) where the
correct adjustment favor, α, varies 377

11.7 Depictions of possible trajectories, as specified by the models in Table 11.3, for
E[Y 0

it |D∗
i = 1] (the upper line of each pair, corresponding to the treatment

group) and E[Y 0
it |D∗

i = 0] (the lower line of each pair, corresponding to the
control group) 382

11.8 A model of endogenous treatment assignment in which selection is on the
pretreatment outcome, Yt−1 383

11.9 A model of endogenous treatment assignment in which selection is on a fixed
effect that also determines the outcome 384

11.10 The Catholic school effect in the tenth and twelfth grades as a dynamic
treatment regime 395

11.11 An illustrative directed graph for G-computation 408
11.12 A directed graph for a pseudo-population produced using inverse probability

of treatment weighting 412
12.1 A graph in which the causal effect of D on Y is confounded by an observed

variable C and an unobserved variable U 431





Tables

2.1 The Fundamental Problem of Causal Inference page 46
2.2 A Hypothetical Example in Which SUTVA Is Violated 49
2.3 An Example of Inconsistency and Bias of the Naive Estimator When the ATE Is

the Causal Effect of Interest 60
2.4 The Fundamental Problem of Causal Inference for Many-Valued Treatments 71
2.5 The Observability Table for Estimating How Education Increases

Earnings 72
5.1 The Joint Probability Distribution and Conditional Population Expectations

for Matching Demonstration 1 146
5.2 Estimated Conditional Expectations and Probabilities for Matching

Demonstration 1 146
5.3 The Joint Probability Distribution and Conditional Population Expectations

for Matching Demonstration 2 149
5.4 Estimated Conditional Expectations and Probabilities for Matching

Demonstration 2 149
5.5 Monte Carlo Means and Standard Deviations of True and Estimated Treatment

Effects for Matching Demonstration 3 155
5.6 Matching Estimates of the ATT, Catholic Schooling on Achievement for One

Simulated Dataset 176
5.7 Bias for Matching Estimates of the ATT, Catholic Schooling on Achievement

Across 10 Simulated Datasets 178
6.1 The Joint Probability Distribution and Conditional Population Expectations

for Regression Demonstration 1 190
6.2 Examples of the Two Basic Forms of Bias for Least Squares Regression 198
6.3 Two-Person Examples in Which Least Squares Regression Estimates Are

Unbiased 200
6.4 Two Six-Person Examples in Which Regression Adjustment Is

Differentially Effective 203
6.5 A Rearrangement of the Example in Table 6.4 That Shows How Regression

Adjustment Is Differentially Effective 204
6.6 The Joint Probability Distribution for Two Variants of the Stratifying and

Treatment Variables in Prior Regression Demonstration 1 210
6.7 The Joint Probability Distribution and Conditional Population Expectations

for Regression Demonstration 3 213

xvii



xviii Tables

6.8 Average Bias Comparisons for Selected Matching Estimates of the ATT from
Matching Demonstration 4, With and Without Supplemental Regression
Adjustment for the Assumed Determinants of Treatment Assignment 216

7.1 Weighted Regression Estimates of the ATE, Using and Extending the Data
Setup for Matching Demonstration 3 230

7.2 Weighted Regression Estimates of the ATT and ATC, Using and Extending the
Data Setup for Matching Demonstration 3 233

7.3 Bias for Weighted Regression Estimates of the ATT, Catholic Schooling on
Achievement Across 10 Simulated Datasets Utilized for Matching
Demonstration 4 and Regression Demonstration 4 237

7.4 Means and Standard Deviations of the Primary Variables Used in the
Demonstration 245

7.5 Catholic School Coefficients from Baseline Regression Models Predicting
Tenth Grade Math Test Scores, Twelfth Grade Math Test Scores, and Math
Test Gains 246

7.6 Means and Standard Deviations of Primary Variables, Weighted by the ATT
Weight from the Final Estimation of the Treatment Assignment Model 250

7.7 Means and Standard Deviations of Primary Variables, Weighted by the ATC
Weight from the Final Estimation of the Treatment Assignment Model 251

7.8 Catholic School Coefficients from ATT-Weighted and ATC-Weighted
Regression Models Predicting Tenth Grade Math Test Scores, Twelfth Grade
Math Test Scores, and Math Test Gains 253

7.9 Catholic School Coefficients from Weighted Regression Models Restricted to
the Region of Overlap in the Estimated Propensity Scores 254

7.10 Catholic School Coefficients from Doubly Robust Weighted Regression
Models 255

7.11 Catholic School Coefficients from Weighted Regression Models, Including
Additional Covariates 257

8.1 Simulated Results for the Identification Approach Adopted by Coleman and
Colleagues 276

9.1 The Distribution of Voucher Winners by School Sector for
IV Demonstration 1 295

9.2 The Joint Probability Distribution and Conditional Expectations of the Test
Score for Voucher Winner by School Sector for IV Demonstrations 1 and 2 310

9.3 The Distribution of Never Takers, Compliers, and Always Takers for IV
Demonstration 2 311

11.1 Change Score and Analysis of Covariance Estimates of the Catholic School
Effect in the Tenth Grade 370

11.2 Estimated Average Treatment Effects for Different Combinations of Correct
and Assumed Adjustment Factors, Where the True Effect Is Equal to 1 379

11.3 Alternative Trajectories of the Outcome Under the Control State for Different
Assumptions About Its Dynamic Structure 381

11.4 Specification Tests from the Analysis of Heckman and Hotz (1989) of the Effect
of the National Supported Work Program on the Earnings of High School
Dropouts 391



Tables xix

11.5 Expected Values for the Endogenous Variables in the Directed Graph in
Figure 11.10 399

11.6 Identification Status of the Total Causal Effects in Figure 11.10 400
11.7 Pseudo-Population Proportions for the Directed Graph in Figure 11.12 414
12.1 A Hypothetical Example of the Calculation of Bounds for the ATE 423





Acknowledgments for First Edition

Without yet knowing it, we began to write this book in 1997 when collaborating on a paper
for the 1999 volume of the Annual Review of Sociology, titled “The Estimation of Causal Effects
from Observational Data.” We benefited from many helpful comments in the preparation of
that manuscript, and we were pleased that many of our colleagues found it to be a useful intro-
duction to a literature that we were, at the time, still working to understand ourselves. Since
then, considerable progress in the potential outcomes and counterfactual modeling literature
has been achieved, which led us into long discussions of the utility of writing a more compre-
hensive introduction. In the end, our motivation to learn even more of the literature was the
decisive factor.

We thank Richard Berk, Felix Elwert, George Farkas, Glenn Firebaugh, Jeremy Freese,
Andrew Gelman, Gary King, Trond Petersen, David Weakliem, and Kim Weeden for read-
ing some or all of the penultimate draft of the book. We also thank the anonymous reviewer
recruited by Cambridge University Press. The insightful comments of all of these readers
helped tremendously. We also thank our students at Cornell and Harvard, from whom we
have learned much in the course of learning and then presenting this material to them. Their
comments and questions were more valuable than they are probably aware.

Finally, we thank Kelly Andronicos and Jenny Todd at Cornell University for assistance
with the preparation of the manuscript, as well as Larry Wu and Ed Parsons at Cambridge
University Press, Project Manager Peter Katsirubas at Aptara, Inc., and Victoria Danahy at In
Other Words.

xxi





Acknowledgments for Second Edition

We thank all of the students in our classes at Cornell and at Harvard, as well as those who have
attended presentations of the new material in this second edition at other universities. Your
excellent questions over the years have shaped this book more than you may realize.

For their generosity and willingness to read and comment on substantial portions of this
second edition, we thank Weihua An, Neal Beck, Richard Berk, David Bills, Ken Bollen (and
his students), Andy Cherlin, Tom DiPrete, Felix Elwert, Markus Gangl, Guanglei Hong, Mike
Hout, Tim Liao, Scott Lynch, Isaac Reed, Matt Salganik, Jasjeet Sekhon, Peter Steiner, Jessica
Su, Steve Vaisey, Tyler VanderWeele, David Weakliem, and Hui Zheng. In addition, we thank
John Cawley and Dan Lichter for pointing us to relevant literature in health economics and
demography.

We also thank Cornell University and Harvard University for the sabbatical support that
allowed us to begin the writing of this second edition. Morgan thanks Collegio Carlo Alberto
for providing a restful and stimulating environment for work from January through June 2013.

xxiii





Part I: Causality and
Empirical Research in the

Social Sciences





Chapter 1

Introduction

Do charter schools increase the test scores of elementary school students? If so, how
large are the gains in comparison to those that could be realized by implementing alter-
native educational reforms? Does obtaining a college degree increase an individual’s
labor market earnings? If so, is this particular effect large relative to the earnings gains
that could be achieved only through on-the-job training? Did the use of a butterfly
ballot in some Florida counties in the 2000 presidential election cost Al Gore votes?
If so, was the number of miscast votes sufficiently large to have altered the election
outcome?

At their core, these types of questions are simple cause-and-effect questions of the
form, Does X cause Y ? If X causes Y , how large is the effect of X on Y ? Is the size
of this effect large relative to the effects of other causes of Y ?

Simple cause-and-effect questions are the motivation for much research in the
social, demographic, and health sciences, even though definitive answers to cause-
and-effect questions may not always be possible to formulate given the constraints
that researchers face in collecting data and evaluating alternative explanations. Even
so, there is reason for optimism about our current and future abilities to effectively
address cause-and-effect questions. Over the past four decades, a counterfactual model
of causality has been developed and refined, and as a result a unified framework for the
prosecution of causal questions is now available. With this book, we aim to convince
more social scientists to apply this model to the core empirical questions of the social
sciences and to applied research questions of public importance.

In this introductory chapter, we provide a skeletal précis of the main features of
the potential outcome model, which is a core piece of the more general counterfactual
approach to observational data analysis that we present in this book. We then offer
a brief and selective history of causal analysis in quantitatively oriented observational
social science. We develop some background on the examples that we will draw on
throughout the book, and we conclude with an introduction to directed graphs for
systems of causal relationships.

3



4 Chapter 1. Introduction

1.1 The Potential Outcome Model of Causal

Inference

With its origins in early work on experimental design by Neyman (1990[1923], 1935),
Fisher (1935), Cochran and Cox (1950), Kempthorne (1952), and Cox (1958), the
potential outcome model of causal inference was formalized in a series of papers by
the statistician Donald Rubin (1974, 1977, 1978, 1980a, 1981, 1986, 1990). The name
“potential outcome” is a reference to the potential yields from Neyman’s work in
agricultural statistics (see Gelman and Meng 2004; Rubin 2005). The model also has
roots in the economics literature (Roy 1951; Quandt 1972), with important subsequent
work by James Heckman (see Heckman 1974, 1978, 1979, 1989, 1992), Charles Manski
(1995), and others. The model is now dominant in both statistics and economics, and it
is being used with increasing frequency across the basic and applied social and health
sciences.

The core of the potential outcome model is simple. Suppose that each individual in
a population of interest can be exposed to two alternative states of a cause. Each state
is characterized by a distinct set of conditions, exposure to which potentially affects
an outcome of interest, such as labor market earnings or scores on a standardized
mathematics test. If the outcome is earnings, the population of interest could be adults
between the ages of 30 and 50, and the two states could be whether or not an individual
has obtained a college degree. Alternatively, if the outcome is a mathematics test score,
the population of interest could be high school seniors, and the two states could be
whether or not a student has taken a course in trigonometry. For the potential outcome
model, these alternative causal states are referred to as alternative treatments. When
only two treatments are considered, they are referred to as treatment and control.
Throughout this book, we will conform to this convention.

The key assumption of the model is that each individual in the population of inter-
est has a potential outcome under each treatment state, even though each individual
can be observed in only one treatment state at any point in time. For example, for
the causal effect of having a college degree rather than only a high school diploma
on subsequent earnings, adults who have completed only high school diplomas have
theoretical what-if earnings under the state “have a college degree,” and adults who
have completed college degrees have theoretical what-if earnings under the state “have
only a high school diploma.” These what-if potential outcomes are counterfactual in
the sense that they exist in theory but are not observed.

Formalizing this conceptualization for a two-state treatment, the potential out-
comes of each individual are defined as the true values of the outcome of interest that
would result from exposure to the alternative causal states. The potential outcomes of
each individual i are y1i and y0i , where the superscript 1 signifies the treatment state
and the superscript 0 signifies the control state. Because both y1i and y0i exist in theory
for each individual, an individual-level causal effect can be defined as some contrast
between y1i and y0i , usually the simple difference y1i − y0i . Because it is impossible to
observe both y1i and y0i for any individual, causal effects cannot be observed or directly
calculated at the individual level.1

1The only generally effective strategy for estimating individual-level causal effects is a crossover
design, in which individuals are exposed to two alternative treatments in succession and with enough
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By necessity, a researcher must analyze an observed outcome variable Y that takes
on values yi for each individual i that are equal to y1i for those in the treatment state
and y0i for those in the control state. We usually refer to those in the treatment state as
the treatment group and those in the control state as the control group.2 Accordingly,
y0i is an unobservable counterfactual outcome for each individual i in the treatment
group, and y1i is an unobservable counterfactual outcome for each individual i in the
control group.

In the potential outcome modeling tradition, attention is focused on estimating
various average causal effects, by analysis of the values yi, for groups of individuals
defined by specific characteristics. To do so effectively, the process by which individ-
uals of different types are exposed to the cause of interest must be modeled. Doing
so involves introducing defendable assumptions that allow for the estimation of the
average unobservable counterfactual values for specific groups of individuals. If the
assumptions are defendable, and a suitable method for constructing an average con-
trast from the data is chosen, then the resulting average difference in the values of yi
can be given a causal interpretation.

The potential outcome model is one core piece of the more general counterfactual
approach to causal analysis that we will present in this book. Another core piece, which
we will introduce at the end of this chapter, is the directed graph approach to causal
analysis, most closely associated with the work of the computer scientist Judea Pearl.
We will use Pearl’s work extensively in our presentation, drawing on his 2000 book,
Causality: Models, Reasoning, and Inference (2nd edition, 2009), as well as related
literature.

A counterfactual account of causation also exists in philosophy, which began with
the seminal 1973 article by David Lewis, titled “Causation.” It is related to the coun-
terfactual model of causal analysis that we will present in this book, but the philo-
sophical version, as implied by the title of Lewis’ original article, aims to be a general
model of causation.3 As noted by the philosopher James Woodward in his 2003 book,

time elapsed in between exposures such that the effects of the cause have had time to dissipate
(see Rothman, Greenland, and Lash 2008). Obviously, such a design can be attempted only when
a researcher has control over the allocation of the treatments and only when the treatment effects
are sufficiently ephemeral. These conditions rarely exist for the causal questions that interest social
scientists.

2We assume that, for observational data analysis, an underlying causal exposure mechanism exists
in the population, and thus the distribution of individuals across the treatment and control states
exists separately from the observation and sampling process. Accordingly, the treatment and control
groups exist in the population, even though we typically observe only samples of them in the observed
data. We will not require that the labels “treatment group” and “control group” refer only to the
observed treatment and control groups.

3In this tradition, causation is defined with reference to counterfactual dependence (or, as is
sometimes written, the “ancestral” to counterfactual dependence). Accordingly, and at the risk of
a great deal of oversimplification, the counterfactual account in philosophy maintains that (in most
cases) it is proper to declare that, for events c and e, c causes e if (1) c and e both occur and (2) if c had
not occurred and all else remained the same, then e would not have occurred. The primary challenge
of the approach is to define the counterfactual scenario in which c does not occur (which Lewis
did by imagining a limited “divergence miracle” that prevents c from occurring in a closest possible
hypothetical world where all else is the same except that c does not occur). The approach differs
substantially from the regularity-based theories of causality that dominated metaphysics through
the 1960s, based on relations of entailment from covering law models. For a collection of essays in
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Making Things Happen: A Theory of Causal Explanation, the counterfactual account
of causation championed by Lewis and his students has not been influenced to any
substantial degree by the potential outcomes version of counterfactual modeling used
by statisticians, social scientists, and other empirical researchers. However, Woodward
and other philosophers have engaged the directed graph approach to causality with
considerable energy in the past decade. We will discuss the broader philosophical lit-
erature in Chapters 2, 10, and 13, as it does have some implications for social science
practice and the pursuit of explanation more generally.

1.2 Causal Analysis and Observational Social
Science

The challenges of using observational data to justify causal claims are considerable. In
this section, we present a selective history of the literature on these challenges, focusing
on the varied usage of experimental language in observational social science. We will
also consider the growth of survey research and the shift toward outcome-equation-
based motivations of causal analysis that led to the widespread usage of regression
estimators. Many useful discussions of these developments exist, and our presentation
here is not meant to be complete.4 We review only the literature that is relevant for
explaining the connections between the counterfactual approach and other traditions
of quantitatively oriented analysis that are of interest to us here.

1.2.1 Experimental Language in Observational Social Science

Although the common definition of the word experiment is broad, in the social sciences
it is most closely associated with randomized experimental designs, such as the double-
blind clinical trials that have revolutionized the biomedical sciences and the routine
small-scale experiments that psychology professors perform on their own students.5

philosophy on counterfactuals and causation, see Collins, Hall, and Paul (2004). For a penetrating
examination of the counterfactual model in philosophy and its rivals, see Paul and Hall (2013). The
counterfactual model that we consider in this book is close to what Paul and Hall label the “causal
model” approach to causation, which they consider one of four variants of counterfactual modeling.

4To gain a more complete appreciation of the expansive literature on causality in the social sciences,
see, for sociology, Barringer, Leahey, and Eliason (2013), Berk (1988, 2004, 2008), Blossfeld (2009),
Bollen (1989), Bollen and Pearl (2013), Firebaugh (2008), Fox (2008), Gangl (2010), Goldthorpe
(2007), Harding and Seefeldt (2013), Lieberson (1985), Marini and Singer (1988), Morgan (2013),
Rohwer (2010), Singer and Marini (1987), Smith (1990, 2003, 2013), Sobel (1995, 1996, 2000), and
Treiman (2009). For economics, see Angrist and Krueger (1999), Angrist and Pischke (2009, 2010),
Heckman (2000, 2005, 2008b, 2010), Imbens and Wooldridge (2009), Keane (2010), Lee (2005), Manski
(1994, 1995, 2003), Moffitt (2003), Pratt and Schlaifer (1984), and Rosenzweig and Wolpin (2000).
For political science, see Brady and Collier (2010), Druckman, Kuklinski, and Lupia (2011), Dunning
(2012), Gerber and Green (2012), Gerring (2007), Goertz and Mahoney (2012), King, Keohane, and
Verba (1994), Morton and Williams (2010), and Sekhon (2009). For applied evaluation and policy
analysis, see Shadish, Cook, and Campbell (2001), and especially for education research, see Murnane
and Willett (2011)

5The Oxford English Dictionary provides the scientific definition of experiment: “An action or
operation undertaken in order to discover something unknown, to test a hypothesis, or establish or
illustrate some known truth” and also provides source references from as early as 1362.
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Randomized experiments have their origins in the work of statistician Ronald A. Fisher
during the 1920s, which then diffused throughout various research communities via his
widely read 1935 book, The Design of Experiments.

Statisticians David Cox and Nancy Reid (2000) offer a definition of an experi-
ment that focuses on the investigator’s deliberate control and that allows for a clear
juxtaposition with an observational study:

The word experiment is used in a quite precise sense to mean an investiga-
tion where the system under study is under the control of the investigator.
This means that the individuals or material investigated, the nature of
the treatments or manipulations under study and the measurement pro-
cedures used are all selected, in their important features at least, by the
investigator.

By contrast in an observational study some of these features, and in
particular the allocation of individuals to treatment groups, are outside
the investigator’s control. (Cox and Reid 2000:1)

We will maintain this basic distinction throughout this book. We will argue in this
section that the potential outcome model of causality that we introduced in the last sec-
tion is valuable precisely because it helps researchers to stipulate assumptions, evaluate
alternative data analysis techniques, and think carefully about the process of causal
exposure. Its success is a direct result of the language of potential outcomes, which
permits the analyst to conceptualize observational studies as if they were experimental
designs controlled by someone other than the researcher – quite often, the subjects of
the research. In this section, we offer a brief discussion of other important attempts
to use experimental language in observational social science and that succeeded to
varying degrees.

Samuel A. Stouffer, the sociologist and pioneering public opinion survey analyst,
argued that “the progress of social science depends on the development of limited
theories – of considerable but still limited generality – from which prediction can be
made to new concrete instances” (Stouffer 1962[1948]:5). Stouffer argued that, when
testing alternative ideas, “it is essential that we always keep in mind the model of a
controlled experiment, even if in practice we may have to deviate from an ideal model”
(Stouffer 1950:356). He followed this practice over his career, from his 1930 dissertation
that compared experimental with case study methods of investigating attitudes, to his
leadership of the team that produced The American Soldier during World War II (see
Stouffer 1949), and in his 1955 classic Communism, Conformity, and Civil Liberties.

On his death, and in celebration of a posthumous collection of his essays, Stouffer
was praised for his career of survey research and attendant explanatory success. The
demographer Philip Hauser noted that Stouffer “had a hand in major developments in
virtually every aspect of the sample survey – sampling procedures, problem definition,
questionnaire design, field and operating procedures, and analytic methods” (Hauser
1962:333). Arnold Rose (1962:720) declared, “Probably no sociologist was so ingenious
in manipulating data statistically to determine whether one hypothesis or another
could be considered as verified.” And Herbert Hyman portrayed Stouffer’s method of
tabular analysis in charming detail:
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While the vitality with which he attacked a table had to be observed in
action, the characteristic strategy he employed was so calculating that
one can sense it from reading the many printed examples. . . .Multivariate
analysis for him was almost a way of life. Starting with a simple cross-
tabulation, the relationship observed was elaborated by the introduction
of a third variable or test factor, leading to a clarification of the original
relationship. . . .But there was a special flavor to the way Sam handled it.
With him, the love of a table was undying. Three variables weren’t enough.
Four, five, six, even seven variables were introduced, until that simple thing
of beauty, that original little table, became one of those monstrous crea-
tures at the first sight of which a timid student would fall out of love with
our profession forever. (Hyman 1962:324–25)

Stouffer’s method was to conceive of the experiment that he wished he could have
conducted and then to work backwards by stratifying a sample of the population
of interest into subgroups until he felt comfortable that the remaining differences in
the outcome could no longer be easily attributed to systematic differences within the
subgroups. He never lost sight of the population of interest, and he appears to have
always regarded his straightforward conclusions as the best among plausible answers.
Thus, as he said, “Though we cannot always design neat experiments when we want to,
we can at least keep the experimental model in front of our eyes and behave cautiously”
(Stouffer 1950:359).

Not all attempts to incorporate experimental language into observational social
science were as well received. Most notably in sociology, F. Stuart Chapin had earlier
argued explicitly for an experimental orientation to nearly all of sociological research,
but while turning the definition of an experiment in a direction that agitated others.
For Chapin, a valid experiment did not require that the researcher obtain control over
the treatment to be evaluated, only that observation of a causal process be conducted
in controlled conditions (see Chapin 1932, 1947). He thus considered what he called
“ex post facto experiments” to be the solution to the inferential problems of the social
sciences, and he advocated matching designs to select subsets of seemingly equivalent
individuals from those who were and were not exposed to the treatment of interest.
In so doing, however, he proposed to ignore the incomparable, unmatched individuals,
thereby losing sight of the population that Stouffer, the survey analyst, always kept
in the foreground.

Chapin thereby ran afoul of emergent techniques of statistical inference, and he
suffered attacks from his natural allies in quantitative analysis. The statistician Oscar
Kempthorne, whose 1952 book The Design and Analysis of Experiments would later
become a classic, dismissed Chapin’s work completely. In a review of Chapin’s 1947
book, Experimental Designs in Sociological Research, Kempthorne wrote:

The usage of the word “experimental design” is well established by now
to mean a plan for performing a comparative experiment. This implies
that various treatments are actually applied by the investigator and are
not just treatments that happened to have been applied to particular units
for some reason, known or unknown, before the “experiment” was planned.
This condition rules out practically all of the experiments and experimental
designs discussed by the author. (Kempthorne 1948:491)



1.2. Causal Analysis and Observational Social Science 9

Chapin’s colleagues in sociology and demography were often just as unforgiving. Nathan
Keyfitz (1948:260), for example, chastised Chapin for ignoring the population of inter-
est and accused him of using terms such as “experimental design” merely to “lend the
support of their prestige.”

In spite of the backlash against Chapin, in the end he has a recognizable legacy in
observational data analysis. The matching techniques he advocated will be discussed in
Chapter 5. They have been reborn in the new literature, in part because the population
of interest has been brought back to the foreground. But there is an even more direct
legacy. Many of Chapin’s so-called experiments were soon taken up, elaborated, and
analyzed by the psychologist Donald T. Campbell and his colleagues under the milder
and more general name of “quasi-experiments.”6

The first widely read presentation of Campbell’s perspective emerged in 1963 (see
Campbell and Stanley 1966[1963]), in which quasi-experiments were discussed along-
side randomized and fully controlled experimental trials, with an evaluation of their
relative strengths and weaknesses in alternative settings. In the subsequent decade,
Campbell’s work with his colleagues moved closer toward observational research, cul-
minating in the volume by Cook and Campbell (1979), Quasi-Experimentation: Design
& Analysis Issues for Field Settings, wherein a whole menu of quasi-experiments was
described and analyzed: from the sort of ex post case-control matching studies advo-
cated by Chapin (but relabeled more generally as nonequivalent group designs) to novel
proposals for regression discontinuity and interrupted time series designs (which we
will discuss in Chapter 11). For Cook and Campbell, the term quasi-experiment refers
to “experiments that have treatments, outcome measures, and experimental units,
but do not use random assignment to create the comparisons from which treatment-
caused change is inferred” (Cook and Campbell 1979:6).7 And, rather than advocate
for a reorientation of a whole discipline as Chapin had, they pitched the approach as
a guide for field studies, especially program evaluation studies of controlled interven-
tions. Nonetheless, the ideas were widely influential throughout the social sciences, as
they succeeded in bringing a tamed experimental language to the foreground in a way
that permitted broad assessments of the strengths and weaknesses of alternative study
designs and data analysis techniques.

1.2.2 “The Age of Regression”

Even though the quasi-experiment tradition swept through the program evaluation
community and gained many readers elsewhere, it lost out in the core social science
disciplines to regression-equation-based motivations of observational data analysis,

6In his first publication on quasi-experiments, Campbell (1957) aligned himself with Stouffer’s
perspective on the utility of experimental language, and in particular Stouffer (1950). Chapin is
treated roughly by Campbell and Stanley (1966[1963]:70), even though his ex post facto design is
identified as “one of the most extended efforts toward quasi-experimental design.”

7Notice that Cook and Campbell’s definition of quasi-experiments here is, in fact, consistent with
the definition of an experiment laid out by Cox and Reid, which we cited earlier in this section.
For that definition of an experiment, control is essential but randomization is not. The text of Cook
and Campbell (1979) equivocates somewhat on these issues, but it is clear that their intent was
to discuss controlled experiments for which randomization is infeasible and which they then label
quasi-experiments.
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under the influence at first of researchers who promoted regression modeling from
a path-modeling orientation. In sociology, Hubert Blalock and Otis Dudley Duncan
are usually credited with introducing the techniques, first via Blalock’s 1964[1961]
book Causal Inferences in Nonexperimental Research and then later via Duncan’s
1966 article, “Path Analysis: Sociological Examples,” which was published as the lead
article in that year’s American Journal of Sociology.8 In both presentations, caution
was stressed. Blalock discussed carefully the differences between randomized experi-
ments and observational survey research. Duncan stated explicitly in his abstract that
“path analysis focuses on the problem of interpretation and does not purport to be
a method for discovering causes,” and he concluded his article with a long quotation
from Sewall Wright attesting to the same point.

A confluence of developments then pushed path models toward widespread usage
and then basic regression modeling toward near complete dominance of observational
research in some areas of social science.9 In sociology, the most important impetus
was the immediate substantive payoff to the techniques. The American Occupational
Structure, which Duncan cowrote with Peter Blau and published in 1967, offered new
decompositions of the putative causal effects of parental background and individuals’
own characteristics on later educational and occupational attainment. By pushing
social stratification research into new terrain, their book transformed a core subfield of
the discipline of sociology, leading to major theoretical and methodological redirections
of many existing lines of scholarship.10

Researchers seemed to then ignore many of the cautionary statements of Blalock,
Duncan, and others. In their defense, it should be noted that Blalock’s guidance was
confusing at times. When introducing regression equations in his 1961 book, specified
as Yi = a+ bXi+ ei, where X is the causal variable of interest and Y is the outcome
variable of interest, Blalock stated the matter correctly and clearly:

What if there existed a major determinant of Y, not explicitly contained
in the regression equation, which was in fact correlated with some of the

8Goldberger (1972) and Heckman (2000) offer a history of usage in economics, which begins before
the history we offer for sociology. The biologist Sewall Wright (1925, 1934) deserves credit for the
earliest developments (see Bollen and Pearl 2013; Pearl 2009).

9Regression estimation of systems of linear causal models with observed variables should be
regarded as a restricted form of the more general structural equation modeling approach that Blalock,
Duncan, and others introduced into sociology (see Bollen and Pearl 2013 for an explanation, especially
their debunking of the myth “SEM and Regression Are Essentially Equivalent”). In these early and
very influential pieces, Blalock and Duncan considered only linear causal models with observed vari-
ables. Duncan (1966:7) clarified: “As a statistical technique, therefore, neither path analysis nor the
Blalock-Simon procedure adds anything to conventional regression analysis as applied recursively to
generate a system of equations. As a pattern of interpretation, however, path analysis is invaluable in
making explicit the rationale for a set of regression calculations.” The literature moved quickly from
the late 1960s to consider overidentified models (see Duncan, Haller, and Portes 1968; Hauser and
Goldberger 1971), after which a general latent variable structural equation model was developed (see
Bollen 1989). Nonetheless, the pattern of practice that elevated regression to its dominant position,
we maintain, was shaped by these early pieces, as well as later work on interpreting the regression
coefficients estimated for basic linear path models with observed variables (e.g., Alwin and Hauser
1975).

10For example, compare the methods (and substantive motivations) in Sewell (1964), with its non-
parametric table standardization techniques, to Sewell, Haller, and Portes (1969), with its path model
of the entire stratification process.
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independent variables Xi? Clearly, it would be contributing to the error
term in a manner so as to make the errors systematically related to these
particular Xi. If we were in a position to bring this unknown variable into
the regression equation, we would find that at least some of the regression
coefficients (slopes) would be changed. This is obviously an unsatisfactory
state of affairs, making it nearly impossible to state accurate scientific
generalizations. (Blalock 1964[1961]:47)

At other points in his book, however, Blalock characterized the same issue in ways
that encouraged more permissive practice. He wrote at several points that the goal of
causal inference should not be too easily sacrificed:

Since it will always be possible that some unknown forces may be operating
to disturb a given causal relationship, or to lead us to believe a causal rela-
tionship exists when in fact it does not, the only way we can make causal
inferences at all is to make simplifying assumptions about such disturbing
influences. (Blalock 1964[1961]:13)

We shall assume that error terms are uncorrelated with each other and
with any of the independent variables in a given equation. . . . In non-
experimental studies involving nonisolated systems, this kind of assump-
tion is likely to be unrealistic. This means that disturbing influences must
be explicitly brought into the model. But at some point one must stop
and make the simplifying assumption that variables left out do not pro-
duce confounding influences. Otherwise, causal inferences cannot be made.
(Blalock 1964[1961]:176)

And, even though Blalock was clear that regression coefficients are estimated quantities
(and more fundamentally that the causal models that give regression equations their
specifications are subject to simplifying assumptions that may be unrealistic), he still
wrote about the resulting coefficients and equations in ways that would surely have
excited readers interested in powerful new ways to gain insight from observational
data:

It is the regression coefficients which give us the laws of science. (Blalock
1964[1961]:51)

In causal analyses our aim is to focus on causal laws as represented by
regression equations and their coefficients. (Blalock 1964[1961]:177)11

Finally, in the concluding section of his book, he suggested,

The method for making causal inferences may be applied to models based
on a priori reasoning, or it may be used in exploratory fashion to arrive at
models which give closer and closer approximations to the data. (Blalock
1964[1961]:179)

11When using this language of causal laws, Blalock was arguing for the comparative value of metric
regression coefficients, in contrast to standardized regression coefficients, and probably using this
causal law language with implicit reference to the covering law model of explanation that was dominant
in philosophy of science at the time. He was not claiming that regression is a method for the discovery
of causal laws. We maintain, nonetheless, that this sort of language had the potential to mislead
readers.



12 Chapter 1. Introduction

Given this type of guidance, it is not hard to imagine practitioners offering up
exploration-enhanced causal models, enabled by unrealistic simplifying assumptions,
and then writing about their regression coefficients as if causal laws had been uncov-
ered.

Duncan never failed to mention that assumptions about causal relationships must
be grounded in theory and cannot be revealed by data. Yet, as Abbott (2001[1998]:115)
notes, “Duncan was explicit in [The American Occupational Structure] . . . about the
extreme assumptions necessary for the analysis, but repeatedly urged the reader to
bear with him while he tried something out to see what could be learned.” What
Duncan learned transformed the field, and it was thus hard to ignore the potential
power of the techniques to move the literature.

Duncan’s 1975 methodological text, Introduction to Structural Equation Models,
is appropriately restrained, with many fine discussions that echo the caution in the
abstract of his 1966 article. Yet he also encouraged widespread application of regres-
sion techniques to estimate causal effects, and at times he gave the impression that
researchers should just get on with it, as he did in The American Occupational Struc-
ture. For example, in his chapter 8, titled “Specification Error,” Duncan noted that
“it would require no elaborate sophistry to show that we will never have the ‘right’
model in any absolute sense” (Duncan 1975:101). But he then continued:

As the term will be used here, analysis of specification error relates to a
rhetorical strategy in which we suggest a model as the “true” one for sake
of argument, determine how our working model [the model that has been
estimated] differs from it and what the consequences of the difference(s)
are, and thereby get some sense of how important the mistakes we will
inevitably make may be. Sometimes it is possible to secure genuine comfort
by this route. (Duncan 1975:101–2)

As is widely known, Duncan later criticized the widespread usage of regression analysis,
both in his 1984 book Notes on Social Measurement: Historical and Critical and in
private communication, in which he reminded many inside and outside of sociology of
his long-standing cautionary perspective (see Xie 2007).

Finally, the emergent ease with which regression models could be estimated with
new computing power was important as well. No longer would Stouffer have needed to
concentrate on a seven-way cross-tabulation. Researchers could instead estimate and
then interpret only a few estimated regression slopes, rather than attempt to make
sense of the hundred or so cells that Stouffer often generated by subdivision of the
sample. Aage Sørensen has given the most memorable indictment of the consequences
of this revolution in computing power:

With the advent of the high-speed computer, we certainly could study the
relationships among many more variables than before. More importantly,
we could compute precise quantitative measures of the strength of these
relationships. The revolution in quantitative sociology was a revolution in
statistical productivity. Social scientists could now calculate almost every-
thing with little manual labor and in very short periods of time. Unfor-
tunately, the sociological workers involved in this revolution lost control
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of their ability to see the relationship between theory and evidence. Soci-
ologists became alienated from their sociological species being. (Sørensen
1998:241)

As this quotation intimates, enthusiasm for regression approaches to causal inference
had declined dramatically by the mid-1990s. Naive usage of regression modeling was
blamed for nearly all the ills of sociology, everything from stripping temporality and
context from the mainstream (see Abbott 2001 for a collections of essays), the sup-
pression of attention to explanatory mechanisms (see Goldthorpe 2001 and Hedstrm
2005), the denial of causal complexity (see Ragin 1987, 2008), and the destruction of
mathematical sociology (Sørensen 1998).

It is unfair to lay so much at the feet of least squares formulas, and we will argue
later that regression can be put to work quite sensibly in the pursuit of causal questions.
However, the critique of regression-based practice was largely on target. For causal
analysis, the rise of regression led to a focus on estimated equations for outcomes,
rather than careful thinking about how the data in hand differ from what would
have been generated by the ideal experiments one might wish to have conducted.
This sacrifice of attention to experimental thinking might have been reasonable if the
outcome-equation tradition had led researchers to specify and then carefully investigate
the plausibility of alternative explanatory mechanisms that generate the outcomes of
the equations. But, instead, it seems that researchers all too often chose not to develop
fully articulated mechanisms that generate outcomes and chose to simply act as if
estimated regression equations somehow mimic appreciably well (by a process not
amenable to much analysis) the experiments that researchers might otherwise have
wished to undertake.

Largely independent of these critiques, the potential outcome model for observa-
tional data analysis has achieved success in the past two decades in the social sciences
because it brings experimental language back into observational data analysis. But it
does so in the way that Stouffer used it: as a framework in which to ask carefully con-
structed what-if questions that lay bare the limitations of observational data and the
need to clearly articulate assumptions that are believable because they are grounded
in theory that is defendable.

Consider the motivating questions in the opening paragraph of this book, which
we posed to draw in readers who are not yet utilizing the counterfactual model. These
questions are stated in the traditional style of

Does X cause Y ?

If X causes Y , how large is the effect of X on Y ?

The counterfactual model encourages the formulation of more precise causal questions
with clear counterfactual contrasts, such as

If individuals with X = x′ had instead had X = x′′, how much would their
value for Y have changed?

For example, rather than ask the question “Does obtaining a college degree increase an
individual’s labor market earnings?,” the counterfactual model encourages researchers
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to ask two questions:

1. If high school graduates had instead obtained college degrees, how much
would their labor market earnings have changed?

2. If college graduates had only obtained high school diplomas, how much
would their labor market earnings have changed?

For these two particular questions, the empirical literature suggests that the answers
differ in magnitude, suggesting that important heterogeneity exists in the individual-
level causal effects that underlie them. Such differences are of theoretical interest to
researchers and of practical value to policymakers, and they are obscured by gen-
eral cause-and-effect questions without clear and specific counterfactual states. This
book is grounded on the position that social scientists ought to use a conceptual and
methodological framework that encourages the asking and answering of rigorously
posed questions such as these.

1.3 Examples Used Throughout the Book

In this section, we offer background on the main substantive examples that we will
draw on throughout the book when discussing the methods and approach abstractly
and then when demonstrating particular empirical analysis strategies. We first present
five broad foundational examples that have guided empirical research in the social,
demographic, and health sciences for decades. We then present eight narrower examples
that are at the frontier of current research, all of which can be addressed using the
counterfactual model.

1.3.1 Broad Examples from the Social, Demographic,
and Health Sciences

We first outline three prominent classic examples that, in spite of their distinct disci-
plinary origins, are related to each other: (1) the causal effects of family background and
mental ability on educational attainment, (2) the causal effects of educational attain-
ment and mental ability on earnings, and (3) the causal effects of family background,
educational attainment, and earnings on political participation. These examples are
classic and wide-ranging, having been developed, respectively, in the formative years
of observational data analysis in sociology, economics, and political science. We then
present two broad examples from the interdisciplinary social, demographic, and health
sciences: (4) the causal effects of family background and life course events on fertility
patterns and (5) the causal effects of socioeconomic status on health and mortality.

The Causal Effects of Family Background and Intelligence on
Educational Attainment

In the status attainment tradition in sociology, as pioneered by Blau and Duncan
(1967), family background and mental ability are considered to be ultimate causes of
educational attainment. This claim is grounded on the purported existence of a specific
causal mechanism that relates individuals’ expectations and aspirations for the future



1.3. Examples Used Throughout the Book 15

to the social contexts that generate them. This particular explanation is most often
identified with the Wisconsin model of status attainment, which was based on early
analyses of the Wisconsin Longitudinal Survey (see Sewell, Haller, and Portes 1969;
Sewell, Haller, and Ohlendorf 1970).

According to the original Wisconsin model, the joint effects of high school stu-
dents’ family backgrounds and mental abilities on their eventual educational attain-
ments can be completely explained by the expectations that others hold of them. In
particular, significant others – parents, teachers, and peers – define expectations based
on students’ family background and observable academic performance. Students then
internalize the expectations crafted by their significant others. In the process, the
expectations become individuals’ own aspirations, which then compel achievement
motivation.

The implicit theory of the Wisconsin model maintains that students are com-
pelled to follow their own aspirations. Accordingly, the model is powerfully simple,
as it implies that significant others can increase high school students’ future educa-
tional attainments merely by increasing their own expectations of them.12 Critics of
this status attainment perspective argued that structural constraints embedded in the
opportunity structure of society should be at the center of all models of educational
attainment, and hence that concepts such as aspirations and expectations offer little
or no explanatory power. Pierre Bourdieu (1973) dismissed all work that asserts that
associations between aspirations and attainments are causal. Rather, for Bourdieu,
the unequal opportunity structures of society “determine aspirations by determining
the extent to which they can be satisfied” (Bourdieu 1973:83). And, as such, aspi-
rations have no autonomous explanatory power because they are nothing other than
alternative indicators of structural opportunities and resulting attainment.

Research on the relationships between family background and educational attain-
ment is now vast, especially in economics and sociology (see Ehrenberg 2004; Morgan
2005; Stevens, Armstrong, and Arum 2008). Scholars disagree on the effects of the
resource constraints imposed by disadvantaged family backgrounds, the role of indi-
vidual choices in response to incentives, the importance of beliefs about the oppor-
tunity structure, and features of the institutions that must be navigated (see Breen
and Johnson 2005; Heckman 2008a; Holmlund, Lindahl, and Plug 2011; Hoxby 2004;
Jackson 2013; Morgan, Leenman, Todd, and Weeden 2013).

The Causal Effects of Educational Attainment and Mental Ability on
Earnings

The economic theory of human capital maintains that education has a causal effect
on the subsequent labor market earnings of individuals. The theory presupposes that
educational training provides skills that increase the potential productivity of workers.
Because productivity is prized in the labor market, firms are willing to pay educated
workers more.

These claims are largely accepted within economics, but considerable debate remains
over the size of the causal effect of education. In reflecting on the first edition of his

12See Hauser, Warren, Huang, and Carter (2000) for the latest update of the original model and
Sewell, Hauser, Warren, and Hauser (2004) for a review of the entire research tradition.
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book Human Capital, which was published in 1964, Gary Becker wrote nearly 30 years
later:

Education and training are the most important investments in human cap-
ital. My book showed, and so have many other studies since then, that high
school and college education in the United States greatly raise a person’s
income, even after netting out direct and indirect costs of schooling, and
after adjusting for the better family backgrounds and greater abilities of
more educated people. Similar evidence is now available for many points in
time from over one hundred countries with different cultures and economic
systems. (Becker 1993[1964]:17)

The complication, hinted at in this quotation, is that economists also accept that
mental ability enhances productivity. Thus, because those with relatively high ability
are assumed to be more likely to obtain higher educational degrees, the highly educated
are presumed to have higher innate ability and higher natural rates of productivity.
As a result, some portion of the purported causal effect of education on earnings may
instead reflect innate ability rather than any productivity-enhancing skills provided
by educational institutions (see Willis and Rosen 1979).

The degree of “ability bias” in standard estimates of the causal effect of education
on earnings has remained one of the largest causal controversies in the social sciences
since the 1970s (see Card 1999). Scholars continue to disagree on the magnitude of
biases in traditional estimates, and debate has also developed on the variability of
returns that may be related to underlying cognitive ability and other individual char-
acteristics (see Cunha and Heckman 2007; Brand and Xie 2010; Carneiro, Heckman,
and Vytlacil 2011; Hout 2012).

The Causal Effects of Family Background, Educational Attainment, and
Earnings on Political Participation

The socioeconomic status model of political participation asserts that education, occu-
pational attainment, and income predict strongly most measures of political partici-
pation (see Verba and Nie 1972). Critics of this model maintain instead that political
interests and engagement determine political participation, and these are merely cor-
related with the main dimensions of socioeconomic status.13 In other words, those who
have a predilection to participate in politics are likely to show commitment to other
institutions, such as the educational system.

Verba, Schlozman, and Brady (1995) later elaborated the socioeconomic status
model, focusing on the contingent causal processes that they argue generate patterns
of participation through the resources conferred by socioeconomic position. They claim
that

interest, information, efficacy, and partisan intensity provide the desire,
knowledge, and self-assurance that impel people to be engaged by poli-
tics. But time, money, and skills provide the wherewithal without which

13This interest model of participation has an equally long lineage. Lazarsfeld, Berelson, and Gaudet
(1955[1948]:157) write that, in their local sample, “the difference in deliberate non-voting between
people with more or less education can be completely accounted for by the notion of interest.”
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engagement is meaningless. It is not sufficient to know and care about poli-
tics. If wishes were resources, then beggars would participate. (Verba et al.
1995:355–56)

They reach this conclusion through a series of regression models that predict political
participation. They use temporal order to specify causal order, and they then claim
to eliminate alternative theories that emphasize political interests and engagement by
showing that these variables have relatively weak predictive power in their models.

Moreover, they identify education as the single strongest cause of political par-
ticipation. Beyond generating the crucial resources of time, money, and civic skills,
education shapes preadult experiences and transmits differences in family background
(see Verba et al. 1995, figure 15.1). Education emerges as the most powerful cause
of engagement because it has the largest net association with measures of political
participation.

Nie, Junn, and Stehlik-Barry (1996) then built on the models of Verba and his
colleagues, specifying in detail the causal pathways linking education to political par-
ticipation. For this work, the effects of education, family income, and occupational
prominence (again, the three basic dimensions of socioeconomic status) on voting
frequency are mediated by verbal proficiency, organizational membership, and social
network centrality. Nie et al. (1996:76) note that these variables “almost fully explain
the original bivariate relationship between education and frequency of voting.”

Current research continues to investigate these relationships, especially the effect of
education on participation. Some studies have focused attention on relative education
(e.g., Tenn 2005), while others have questioned whether the effect is genuine at all
(Berinsky and Lenz 2011; Highton 2009; Kam and Palmer 2008, 2011). As often hap-
pens in causal controversies, the latter research prompted additional effort to restore
the original claim (Henderson and Chatfield 2011; Mayer 2011; Sondheimer and Green
2010).14

The Causal Effects of Family Background and Life Course Events on
Fertility Patterns

Through the analysis of population trends in the nineteenth and early twentieth cen-
turies, demographers developed the concept of a “demographic transition,” during
which countries move in comparatively short periods of time from population regimes
of high fertility and high mortality toward those of low fertility and low mortality (see
Davis 1945; Thompson 1949; Notestein 1950). Ronald Lee characterizes the worldwide
march of country-specific transitions as “Three Centuries of Fundamental Change”:

Before the start of the demographic transition, life was short, births were
many, growth was slow and the population was young. During the transi-
tion, first mortality and then fertility declined, causing population growth

14Perhaps the most widely known recent political participation studies are those that do not focus on
the effects of stable background characteristics of individuals. Research on “Get Out the Vote” oper-
ations shows, for example, that social pressure is surprisingly effective (Gerber, Green, and Larimer
2008; Davenport, Gerber, Green et al. 2010), while attack advertisements broadcast on television are
less effective than many have assumed (Krasno and Green 2008).
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rates first to accelerate and then to slow again, moving toward low fertil-
ity, long life and an old population. The transition began around 1800 with
declining mortality in Europe. It has now spread to all parts of the world
and is projected to be completed by 2100. (Lee 2003:167)

Although these trends have inspired many strands of literature in demography, we will
use as our broad example the interconnected causes that are typically examined for
differences in fertility rates, both over time and across groups, focusing mostly on the
literature on fertility in the first group of industrializing countries to experience the
demographic transition.15

Early studies document differences in fertility rates by immigrant status, geo-
graphic region, urban–rural location, and social class (see Dinkel 1952; Karpinos 1938;
Notestein 1933; Rose 1942; Thompson 1948; Whelpton 1932), often using causal lan-
guage, for example, “the birth rate for married couples not separating during the
migration was higher after they came to the United States than it would have been
had they remained in Italy” (Rose 1942:621). Most of this literature is concerned with
how fertility differences vary with family background, typically across social classes as
measured by the occupations of husbands. Analyzing trends during a time when the
eugenics movement had not yet fully receded, Notestein (1933:22) concludes:

At present the white collar classes are not reproducing rapidly enough to
maintain equal permanent replacement, but the unskilled laborer class and
the agricultural population appear to be reproducing more rapidly than is
required to maintain their numbers. (Notestein 1933:33)

Notestein offers empirical models to support the position that some of these differences
can be attributed to the effects of age at marriage, but he also notes the possibility
that “in the young marriages of the professional class fertility was purposefully and
effectively controlled even prior to 1910” (Notestein 1933:25).

Although this early literature considers the timing of marriage and the possibility
of differential patterns of overt birth control, it does not consider the full range of
gender-related mechanisms that with hindsight were obviously at play. After correc-
tives were offered in subsequent literature, newly available individual-level data have
allowed demographers to model the consequences of changing rates of female labor
force participation (see Brewster and Rindfuss 2000 for a review), changes in birth
control practices (Westoff and Bumpass 1973; Goldin and Katz 2002), and some of the
deeper contingencies of related life course events, such as how age and marital status
at first birth structure later fertility (Bumpass, Rindfuss, and Janosik 1978; see also
Morgan and Rindfuss 1999).

Studies that examine family background differences in fertility, as indexed by social
class, are less common in current research, having been supplanted by the study of
the relationship between educational attainment and fertility, as conditioned by family

15Although there is considerable debate on the role of causal analysis in demographic research
(see Duncan 2008; Engelhardt, Kohler, and Prskawetz 2009; Moffitt 2005; Nı́ Bhrolcháin and Dyson
2007; Smith 1989, 2009, 2013; Xie 2011), we do not see demography as inherently different than the
other domains of observational research considered in this book. However, it may be the case that
demography has a special additional burden of documenting social and demographic patterns that
do not depend on any particular causal assumptions.
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background of origin (see Brand and Davis 2011; Musick, England, Edgington, and
Kangas 2009). This more contemporary literature also takes full account of the dis-
tinct patterns of marital and nonmarital fertility (see Musick 2002; Musick, England,
Edgington, and Kangas 2009; Seltzer, Bachrach, Bianchi et al. 2005; Wu 1996, 2008;
Wu and Wolfe 2001).

The Causal Effects of Socioeconomic Status on Health and Mortality

In reaction to the traditional focus of epidemiology on the proximate direct causes of
disease and mortality, a group of social epidemiologists has advanced the case that
socioeconomic status should be considered a fundamental cause of health disparities
across the life course, generating robust and recurrent associations between socioeco-
nomic status and both health and mortality (Link and Phelan 1995; Phelan, Link,
Diez-Roux et al. 2004; Phelan, Link, and Tehranifar 2010). Here, the three traditional
dimensions of socioeconomic status – education, income, and occupation – are all con-
sidered to be active (see Adler and Newman 2002). Lutfey and Freese characterize the
nature of the posited causal relationship:

If an explanatory variable is a fundamental cause of an outcome, then
the association cannot be successfully reduced to a set of more proximate,
intervening causes because the association persists even while the relative
influence of various proximate mechanisms changes. (Lutfey and Freese
2005:1328)

Socioeconomic status is therefore a fundamental cause, according to this perspective,
because it is a paramount distal determinant of health that activates alternative and
replaceable causal pathways, such as those that arise through differential access to
quality health care, knowledge about health innovations, and propensity to engage
in risky health behaviors (see Cawley and Ruhm 2012; Fiscella, Franks, Gold, and
Clancy 2000; Pampel, Krueger, and Denney 2010). Thus, while health may improve
on average for all, socioeconomic disparities may persist, or even grow, because those
who are disadvantaged by low education, low income, or lack of employment are less
able to take advantage of improvements in health care.

Each of these five broad examples, as noted earlier, is concerned with relationships
that unfold over the life course of the majority of individuals in most industrialized
societies. As such, these examples encompass some of the most important early sub-
stantive scholarship in sociology, economics, and political science as well as the latest
frontiers of research at the interdisciplinary nexus of social, demographic, and health
science. At the same time, however, these examples pose some fundamental challenges
for causal analysis: measurement complications and potential nonmanipulability of the
causes of interest. Each of these deserves some comment before the narrower and less
complicated examples that follow are introduced.

First, the purported causal and outcome variables in these models are sometimes
highly abstract and internally differentiated. Consider the political science example.
Political participation takes many forms, from volunteer work to financial giving and
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voting. Each of these, in turn, is itself heterogeneous, given that individuals can con-
tribute episodically and vote in only some elections. Furthermore, family background
and socioeconomic status include at least three underlying dimensions: family income,
parental education, and occupational position. But other dimensions of advantage,
such as wealth and family structure, must also be considered, as these are thought to
be determinants of both an individual’s educational attainment and also the resources
that supposedly enable political participation.16

Scholars who pursue analysis of these causal effects must therefore devote sub-
stantial energy to the development of measurement scales. Although very important
to consider, in this book we will not discuss measurement issues so that we can focus
closely on causal effect estimation strategies. But, of course, it should always be remem-
bered that, in the absence of agreement on issues of how to measure causes and their
outcomes, few causal controversies can be resolved, no matter what estimation strategy
seems best to adopt.

Second, most of these examples examine causal effects for individual characteristics
that are not easily manipulable through external intervention. Or, more to the point,
even when they are manipulable, any such induced variation may differ fundamentally
from the naturally occurring (or socially determined) variation with which the models
are most directly concerned. For example, family background could be manipulated by
somehow convincing a sample of middle-class and working-class parents to exchange
their children at particular well-chosen ages, but the subsequent outcomes of this
induced variation may not correspond to the family background differences that the
original models attempt to use as explanatory differences.

As we will discuss later, whether nonmanipulability of a cause presents a challenge
to an observational data analyst is a topic of continuing debate in the methodological
and philosophical literature. We will discuss this complication at several points in this
book, including a section in the concluding Chapter 13 (see pages 439–441), where we
argue that critics have overemphasized this concern. But, given that the measurement
and manipulability concerns of these broad examples present challenges at some level,
we also draw on more narrow examples throughout the book, as we discuss in the next
section. For these examples, measurement is generally less controversial and potential
manipulability is more plausible (and in some cases is completely straightforward).

1.3.2 Narrow and Specific Examples

In this section, we present additional examples that we will use at multiple points
throughout the book: the causal effects of neighborhood of residence and father absence
on child development, educational performance, and deviance in adolescence; the
causal effects of Catholic schooling, school vouchers, and charter schools on learn-
ing; the causal effect of worker training on earnings; the causal effects of risky health
behaviors and peer relationships on obesity and mortality; and the causal effects of
alternative voting technology on valid voting and election outcomes. These additional

16Moreover, education as a cause is somewhat ungainly as well. For economists who wish to study
the effects of learned skills on labor market earnings, simple variables measuring years of education
obtained are oversimplified representations of human capital.
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examples are more specific, and often more recent, versions of the five broad examples
presented in the last section.

The Causal Effects of Neighborhood of Residence on Educational
Performance, Deviance, and Youth Development

Working within the broad tradition of research on educational attainment and the
transition to adulthood, social scientists have investigated the effects of neighborhood
of residence since at least the 1980s (see Jencks and Mayer 1990 for a review of the
early research). Reflecting on his four decades of research on neighborhoods, William
Julius Wilson writes of one such possible effect:

[O]ne of the significant arguments in When Work Disappears is that a
neighborhood in which people are poor and working is significantly dif-
ferent from a neighborhood in which people are poor and jobless. Jobless
neighborhoods create special problems, exacerbating conditions that rein-
force racial stereotypes and prejudices. High rates of joblessness trigger
other problems in the neighborhood ranging from crime, gang violence,
and drug trafficking to family breakups and other disruptions in the orga-
nization of family life. (Wilson 2011:10)

The effects of neighborhoods have proven persistently difficult to estimate. Individuals
make systematic but constrained residential choices, and analysts rarely have suffi-
cient information to model their choices effectively. Furthermore, neighborhoods have
many characteristics, and individuals living within them can be influenced to varying
degrees by circumstances only partly under their own control. For young residents of
neighborhoods, these effects may be even more complex:

Neighborhoods are not static features of a child’s life; instead, neighbor-
hoods change over time as children move through different periods of devel-
opment, providing unique risks and opportunities at each stage. It follows
that neighborhoods have the potential to alter developmental trajectories,
and that their influence may be lagged or cumulative. (Sampson, Sharkey,
and Raudenbush 2008:851–52)

Researchers have considered the effects of neighborhoods on a range of outcomes for
children and adolescents (see Harding, Gennetian, Winship et al. 2011 for a review).
The ensuing debates have not been settled by first-rate observational data analysis
(e.g., Harding 2003; Sharkey and Elwert 2011; Sampson 2012) or by large-scale social
experimentation (see Gennetian, Sanbonmatsu, Katz et al. 2012; Kling, Liebman, Katz
2007; Kling, Ludwig, and Katz 2005; Sampson 2008).

The Causal Effects of Father Absence on Child and Adolescent
Development

Bridging work on family background effects with work in family demography, social
scientists have considered the consequences of family structure for child and adolescent
development (see McLanahan 2004, 2009; McLanahan and Percheski 2008; Wu and
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Wolfe 2001). The most prominent strand of this research began as an effort to assess
the effect of growing up as the child of a single parent (McLanahan and Sandefur
1994), during a period when single parenthood was on the rise and the subject of
intense political debate.

Recently, the literature has come to focus more specifically on father absence. In a
review of the latest research, McLanahan and her colleagues conclude:

We find strong evidence that father absence negatively affects children’s
social-emotional development, particularly by increasing externalizing
behavior. These effects may be more pronounced if father absence occurs
during early childhood than middle childhood, and they may be more pro-
nounced for boys than for girls. There is weaker evidence of an effect of
father absence on children’s cognitive ability.

Effects on social-emotional development persist into adolescence, for
which we find strong evidence that father absence increases adolescents’
risky behavior, such as smoking or early childbearing. The evidence of
an effect on adolescent cognitive ability continues to be weaker, but we
do find strong and consistent negative effects of father absence on high
school graduation. The latter finding suggests that the effects on educa-
tional attainment operate by increasing problem behaviors rather than by
impairing cognitive ability. (McLanahan, Tach, and Schneider 2013:422)

A rich array of models has been used to generate estimates of these effects, and yet
some controversy remains over how substantial these effects are and whether they
should instead be attributed to unmeasured environmental characteristics of families,
schools, and neighborhoods, including the complexity of events that often co-occur
with father absence.

The Causal Effect of Catholic Schooling on Learning

James S. Coleman and his colleagues presented evidence that Catholic schools are
more effective than public schools in teaching mathematics and reading to equivalent
high school students (see Coleman and Hoffer 1987; Coleman, Hoffer, and Kilgore
1982; Hoffer, Greeley, and Coleman 1985). Their findings were challenged vigorously
by other researchers, who argued that public school students and Catholic school
students are insufficiently comparable, even after adjustments for family background
and measured motivation to learn (see Alexander and Pallas 1983, 1985; Murnane,
Newstead, and Olsen 1985; Noell 1982; Willms 1985; see Bryk, Lee, and Holland 1993
for a summary of the debate). Although the challenges were wide ranging, the most
compelling argument raised (and that was foreseen by Coleman and his colleagues) was
that students who are most likely to benefit from Catholic schooling are more likely
to enroll in Catholic schools net of all observable characteristics. Thus, self-selection
on the causal effect itself may generate a mistakenly large apparent Catholic school
effect. If students instead were assigned randomly to Catholic and public schools, both
types of schools would be shown to be equally effective on average.

To address the possibility that self-selection dynamics create an illusory Catholic
school effect, a later wave of studies then assessed whether or not naturally occurring
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experiments were available that could be used to more effectively estimate the Catholic
school effect. Using a variety of variables that predict Catholic school attendance
(e.g., share of the local population that is Catholic) and putting forth arguments for
why these variables do not directly determine achievement, Evans and Schwab (1995),
Hoxby (1996), and Neal (1997) generated support for Coleman’s original conclusions.17

More recent research has considered whether the Catholic school effect still exists
in the twenty-first century, generating similar results with alternative and more recent
data sources (see Carbonaro and Covay 2010; Morgan and Todd 2008; West and
Woessmann 2010). Similar recent research demonstrates that the case for a Catholic
school effect at the primary and middle school levels is considerably weaker (Hallinan
and Kubitschek 2012; Jepsen 2003; Reardon, Cheadle, and Robinson 2009).

The Causal Effect of School Vouchers on Learning

In response to a perceived crisis in public education in the United States, policymakers
have introduced publicly funded school choice programs into some metropolitan areas
in an effort to increase competition among schools on the assumption that competition
will improve school performance and resulting student achievement (see Chubb and
Moe 1990; see also Fuller and Elmore 1996). Although these school choice programs
differ by school district, the prototypical design is the following. A set number of $3,000
tuition vouchers redeemable at private schools are made available to students resident
in the public school district, and all parents are encouraged to apply for one of these
vouchers. The vouchers are then randomly assigned among those who apply. Students
who receive a voucher remain eligible to enroll in the public school to which their
residence status entitles them. But they can choose to enroll in a private school. If
they choose to do so, they hand over their $3,000 voucher but may then be required
to pay top-up tuition and fees.

The causal effects of interest resulting from these programs are numerous. Typically,
evaluators are interested in the achievement differences between those who attend
private schools using vouchers and other suitable comparison groups. Most commonly,
the comparison group is the group of voucher applicants who lost out in the lottery and
ended up in public schools (see Howell and Peterson 2002; Hoxby 2003; Ladd 2002; Neal
2002). And, even though these sorts of comparisons may seem entirely straightforward,
the published literature shows that considerable controversy surrounds how best to
estimate these effects, especially given the real-world complexity that confronts the
implementation of randomization schemes (see Jin, Barnard, and Rubin 2010; Krueger
and Zhu 2004; Peterson and Howell 2004).

For this example, other effects are of interest as well. A researcher might wish to
know how the achievement of students who applied for vouchers but did not receive
them changed in comparison with those who never applied for vouchers in the first
place (as this would be crucial for understanding how the self-selecting group of voucher
applicants may differ from other public school students). More broadly, a researcher
might wish to know the expected achievement gain that would be observed for a public

17See Cohen-Zada and Elder (2009) for a similar instrumental variable approach that is less sup-
portive of Coleman and colleagues’ results for test scores. See also Altonji, Elder, and Taber (2005a,
2005b).
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school student who was randomly assigned a voucher irrespective of the application
process. This goal would necessitate altering the voucher assignment mechanism, and
thus it has not been an object of research. Finally, the market competition justification
for creating these school choice policies implies that the achievement differences of pri-
mary interest are those among public school students who attend voucher-threatened
public schools (i.e., public schools that feel as if they are in competition with private
schools but that did not feel as if they were in competition with private schools before
the voucher program was introduced).

The Causal Effect of Charter Schools on Learning

Complementing the school voucher example, we will also consider as an additional
example the contentious research on charter schooling in the United States. In an
excellent book on recent academic and public debates on the effectiveness of charter
schools, Henig (2008:2) introduces and defines charter schools in the following way:

Just a little more than fifteen years since the first charter school opened in
Minnesota, there are now nearly 4,000 nationwide, serving an estimated 1.1
million students. . . .The laws governing charter schools differ – sometimes
substantially – from state to state, of course, but some general characteris-
tics have emerged. Charter schools receive public funding on a per-student
basis, are often responsible for achieving educational outcomes defined by
their government chartering entity, and are subject to at least nominal
public oversight. They typically are barred from charging tuition on top
of the public per-pupil allocation, but are free to pursue other forms of
supplementary support from donors, foundations, or corporate sponsors.
Although they must observe certain baseline regulations, such as prohibi-
tions on discrimination and the provision of safe environments, they are
exempt from many of the rules and regulations that bind regular pub-
lic schools to specific standards and procedures. This hybrid status . . . has
made charter schools a special focus of attention and helped draw them
into ideological whirlpools that raise the stakes surrounding the research
into their actual form and consequences.

At their core, the central research questions in the charter school debate are simple to
state (and identical in structure to those of the other two schooling examples presented
above): Do students who attend charter schools perform better on standardized tests
than they would have performed if they had instead attended regular public schools?
Would students who attend regular public schools perform better on standardized tests
if they had instead attended charter schools?

The contentious research that has addressed these questions is distinguished in
many respects (see Abdulkadiroglu, Angrist, Dynarski et al. 2011; Angrist, Dynarski,
Kane et al. 2010; Center for Research on Educational Outcomes 2009; Hoxby, Murarka,
and Kang 2009; Tuttle, Gill, Gleason et al. 2013). Not only are some of its combat-
ants leading researchers at the nation’s top universities, many of them are unusually
ideological (as Henig shows brilliantly in his book). Their scholarly energy and policy
advocacy is amplified by the public attention that has been paid to charter schools by
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the national press, which is related to the support that charter schools have received
from celebrity donors and from recent presidential aspirants. At the same time, the
research that informs the debate is cutting-edge in the best sense. Careful attention is
paid to details of measurement, and the research designs that have been adopted are a
healthy mixture of basic comparisons of achievement levels as well as daring attempts
to leverage quasi-experimental variation from the ways in which charter school pro-
grams are administered (e.g., using lotteried-out students for comparison groups, when
such groups exist).

What makes estimating the effects of charter schools complex, perhaps even more
so than for the Catholic school effect and the school vouchers effect, is the underlying
heterogeneity of the real world. The process by which some students become enrolled in
charter schools is only partly observed. At the same time, charter schools differ greatly
from each other, such that the effect of charter schooling must surely vary because of
quality differences, as well as the match between each student and the unique features
of each charter school.

The Causal Effect of Worker Training on Earnings

The United States federal government has supported worker training programs for
economically disadvantaged citizens for decades (see LaLonde 1995). Through a series
of legislative renewals, these programs have evolved substantially, and program evalu-
ations have become an important area of applied work in labor and public economics.
The services provided to trainees differ and include classroom-based vocational edu-
cation, remedial high school instruction leading to a general equivalency degree, and
on-the-job training (or retraining) for those program participants who have substan-
tial prior work experience. The types of individuals served by these programs are
heterogeneous, including ex-felons, welfare recipients, and workers displaced from jobs
by foreign competition. Accordingly, the causal effects of interest are heterogeneous,
varying with individual characteristics and the particular form of training provided.

Even so, some common challenges have emerged across most program evaluations.
Ashenfelter (1978) discovered what has become known as “Ashenfelter’s dip,” con-
cluding after his analysis of training-program data that

all of the trainee groups suffered unpredicted earnings declines in the year
prior to training. . . .This suggests that simple before and after compar-
isons of trainee earnings may be seriously misleading evidence. (Ashenfelter
1978:55)

Because trainees tend to have experienced a downward spiral in earnings just before
receiving training, the wages of trainees would rise to some degree even in the absence
of any training. Ashenfelter and Card (1985) then pursued models of these “mean rever-
sion” dynamics, demonstrating that the size of treatment effect estimates is a function
of alternative assumptions about pre-training earnings trajectories. They called for the
construction of randomized field trials to improve program evaluation.

LaLonde (1986) then used results from program outcomes for the National Sup-
ported Work (NSW) Demonstration, a program from the mid-1970s that randomly
assigned subjects to alternative treatment conditions. LaLonde argued that most of
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the econometric techniques used for similar program evaluations failed to match the
experimental estimates generated by the NSW data. Since LaLonde’s 1986 paper,
economists and statisticians have continued to refine procedures for evaluating both
experimental and nonexperimental data from training programs, focusing in detail on
how to model the training selection mechanism (see Frumento, Mealli, Pacini, and
Rubin 2012; Heckman, LaLonde, and Smith 1999; Heckman and Vytlacil 2005, 2007;
Smith and Todd 2005; Zhang, Rubin, and Mealli 2008, 2009).

The Causal Effects of Risky Health Behaviors and Peer Relationships
on Obesity and Mortality

Health scientists are increasingly concerned with the worldwide increase in obesity
rates (see Swinburn, Sacks, Hall et al. 2011). In the United States, social scientists
have devoted considerable energy to understanding the interrelationships between risky
health behaviors that are sometimes referred to as modifiable risk factors for mortality
(see Cawley and Ruhm 2012; Pampel, Krueger, and Denney 2010). Although declines
in most risky behaviors are evident since the 1970s, especially in rates of smoking, the
gains to health from these trends have been mitigated by a concomitant increase in
obesity over the same time period (see Stewart, Cutler, and Rosen 2009).

Many causal controversies exist in efforts to assess the causes and consequences
of obesity (see Cawley 2011), but the most vigorously debated has been the claim
that obesity is contagious. In a large study of a networked community over 32 years,
Christakis and Fowler conclude:

Our study suggests that obesity may spread in social networks in a quan-
tifiable and discernable pattern that depends on the nature of social ties.
Moreover, social distance appears to be more important than geographic
distance within these networks. Although connected persons might share
an exposure to common environmental factors, the experience of simulta-
neous events, or other common features (e.g., genes) that cause them to
gain or lose weight simultaneously, our observations suggest an important
role for a process involving the induction and person-to-person spread of
obesity. . . .Obesity in alters might influence obesity in egos by diverse psy-
chosocial means, such as changing the ego’s norms about the acceptability
of being overweight, more directly influencing the ego’s behaviors (e.g.,
affecting food consumption), or both. Other mechanisms are also possible.
(Christakis and Fowler 2007:377)

Many other scholars have objected to these claims (e.g., Shalizi and Thomas 2011),
and their objections have been addressed by counterarguments and additional analyses
(e.g., Christakis and Fowler 2013; VanderWeele 2011b).

The Causal Effect of Voting Technology on Valid Voting and Election
Outcomes

For specific causal effects embedded in the larger political participation debates, we
could focus on particular decision points – the effect of education on campaign con-
tributions, net of income, and so on. However, the politics literature is appealing in
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another respect: outcomes in the form of actual votes cast and subsequent election
victories. These generate finely articulated counterfactual scenarios.

Although recent research has considered a broad range of voting technology effects
(see Card and Moretti 2007; Hanmer, Park, Traugott et al. 2010), the most famous
example remains the contested 2000 presidential election in the United States, where
considerable attention was focused on the effect of voting technology on the election
outcome in Florida. Wand, Shotts, Sekhon et al. (2001) published a refined version
of their analysis that spread like wildfire on the Internet in the week following the
presidential election. They asserted that

the butterfly ballot used in Palm Beach County, Florida, in the 2000 pres-
idential election caused more than 2,000 Democratic voters to vote by
mistake for Reform candidate Pat Buchanan, a number larger than George
W. Bush’s certified margin of victory in Florida. (Wand et al. 2001:793)

Reflecting on efforts to recount votes undertaken by various media outlets, Wand and
his colleagues identify the crucial contribution of their analysis:

Our analysis answers a counterfactual question about voter intentions that
such investigations [by media outlets of votes cast] cannot resolve. The
inspections may clarify the number of voters who marked their ballot in
support of the various candidates, but the inspections cannot tell us how
many voters marked their ballot for a candidate they did not intend to
choose. (Wand et al. 2001:804)

Herron and Sekhon (2003) then examined invalid votes that resulted from overvotes
(i.e., voting for more than one candidate), arguing that such overvotes further hurt
Gore’s vote tally in two crucial Florida counties. Finally, Mebane (2004) then consid-
ered statewide voting patterns, arguing that if voters’ intentions had not been thwarted
by technology, Gore would have won the Florida presidential election by 30,000 votes.
One particularly interesting feature of this example is that the precise causal effect
of voting technology on votes is not of interest, only the extent to which such causal
effects aggregate to produce an election outcome inconsistent with the preferences of
those who voted (see also Yamamoto 2012 for a related point).

1.4 Observational Data and Random-Sample
Surveys

When we discuss methods and examples throughout this book, we will usually assume
that the data have been generated by a relatively large random-sample survey of a well-
defined population. We will also assume that the proportion and pattern of individuals
who are exposed to the cause are fixed in the population by whatever process generates
causal exposure.

We rely on the random-sample perspective because we feel it is the most natural
framing of these methods for the typical social scientist, even though many of the
classic applications and early methodological pieces in this literature do not reference
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random-sample surveys. For the examples just summarized, the first three have been
examined primarily with random-sample survey data, but many of the others have
not. Some, such as the worker training example, depart substantially from this sort
of setup, as the study subjects for the treatment in that example are a heterogeneous
collection of welfare recipients, displaced workers, and others.18

Pinning down the exact consequences of the data generation and sampling scheme
of each application is important for developing estimates of the expected variability
of a causal effect estimate. We will therefore sometimes modify the random-sampling
background when discussing what is known about the expected variability of the alter-
native estimators we will present. Nonetheless, our primary focus in this book is on
strategies to estimate parameters that can be interpreted as warranted causal effects,
and accordingly we will give far less attention to procedures for estimating the standard
errors of these parameter estimates. In fact, as the reader will notice in subsequent
chapters, we will often assume that the sample is infinite. This preposterous assump-
tion is useful for presentation purposes because it simplifies matters greatly; we can
then assume that sampling error is zero and assert, for example, that the sample mean
of an observed variable is equal to the population expectation of that variable. But this
assumption also signals a critical note of caution: It is meant to appear preposterous
and unreasonable in order to reinforce the point that the consequences of sampling
error must always be considered in any empirical analysis.19 Our assumption is that
our readers know how to estimate and utilize standard errors for many analysis situa-
tions, and so we will discuss these issues only when additional guidance is needed for
the particular estimators presented in this book.

Moreover, we will also assume for our presentation that the variables in the data
are measured without error. This perfect measurement assumption is, of course, also
entirely unreasonable. But it is commonly invoked in discussions of causality and in
many, if not most, other methodological pieces. We will indicate in various places
throughout the book when random measurement error is especially problematic for
the methods that we present. We leave it as self-evident that nonrandom measurement
error can be debilitating for all methods.

18Partly for this reason, some of the literature (e.g., Imbens 2004) has made careful distinctions
between the sample average treatment effect (SATE) and the population average treatment effect
(PATE). In this book, we will focus most of our attention on the PATE (and other conditional
PATEs). We will generally assume that a well-defined population exists (usually a superpopulation
with explicit characteristics) and that the available data are a random sample from this population.
However, much of our treatment of these topics could be rewritten without the large random-sample
perspective and focusing only on the average treatment effect within the sample in hand. Many
articles in this tradition of analysis adopt this alternative starting point (especially those relevant for
small-scale studies in epidemiology and biostatistics for which the “sample” is generated in such a
way that a formal connection to a well-defined population is impossible). We discuss these issues in
substantial detail in Chapter 2, especially in its appendix on alternative population models.

19Because we will assume in these cases that the sample is infinite, we must then also assume that
the population is infinite. This assumption entails adoption of the superpopulation perspective from
statistics (wherein the finite population from which the sample is drawn is regarded as one realization
of a stochastic superpopulation). Even so, and as we will explain in Chapter 2, we will not clutter the
text of the book by making fine distinctions between the observable finite population and its more
encompassing superpopulation.
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1.5 Causal Graphs as an Introduction to the

Remainder of the Book

In Chapters 2 and 3, we will introduce what we regard as the two main pieces of the
counterfactual approach to causal analysis for observational social science – the poten-
tial outcome model and the directed graph approach to causal analysis. In Chapter
4, we will present the basic conditioning strategy for the estimation of causal effects,
after which we will then explain – in Chapters 5 through 7 – why matching, regression,
and weighted regression estimators are complementary implementations of the more
general conditioning strategy.

We will then make the transition from “easy” to “hard” instances of causal effect
estimation, for which simple conditioning will not suffice because relevant variables
that are related to causal exposure are not observed. After presenting the general
predicament in Chapter 8, we will then offer Chapters 9 through 11 on instrumental
variable techniques, mechanism-based estimation of causal effects, and the usage of
over-time data to estimate causal effects. Finally, we will consider in Chapter 12 how
to proceed when no estimators are available to offer warranted point estimates of causal
effects, considering both the literature on set identification and sensitivity analysis.

In conclusion, in Chapter 13 we will provide a summary of some of the objections
that others have developed against the counterfactual model. We will also offer a broad
discussion of the complementary modes of causal inquiry that comprise causal effect
estimation in observational social science.

In part because our detailed Table of Contents already gives an accurate accounting
of the material that we will present in the remaining chapters, we will not provide a
set of detailed chapter summaries here. Instead, we will conclude this introductory
chapter with three causal diagrams and the causal effect estimation strategies that
they suggest. These graphs allow us to foreshadow some of the specific causal effect
estimation strategies that we will present later.

Because the remainder of the material in this chapter will be reintroduced and
more fully explained later (primarily in Chapters 3, 4, 8, and 10), it can be skipped
now without consequence. However, our experience in teaching this material suggests
that many readers may benefit from a quick graphical introduction to the basic esti-
mation techniques before considering the details of the counterfactual framework for
observational data analysis.

Graphical Representations of Causal Relationships

Judea Pearl (2000, 2009) and others have developed a general set of rules for represent-
ing causal relationships with graphs.20 We will provide a more complete introduction
to directed graph representations of causal effects in Chapter 3, and for now we use
the most intuitive pieces of Pearl’s graphical apparatus with only minimal discussion
of technical details.

20These graphs can be interpreted as the most recent incarnation of the path diagrams developed
by Sewall Wright (1925, 1934; see Bollen and Pearl 2013).
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Figure 1.1 A causal graph in which back-door paths from D to Y can be blocked by
observable variables and in which C is an instrumental variable for D.

Consider the causal relationships depicted in the graph in Figure 1.1 and suppose
that these relationships are derived from a set of theoretical propositions that have
achieved consensus in the relevant scholarly community. For this graph, each node rep-
resents an observable random variable. Each directed edge (i.e., single-headed arrow)
from one node to another signifies that the variable at the origin of the directed edge
causes the variable at the terminus of the directed edge. Each curved and dashed bidi-
rected edge (i.e., double-headed arrow) signifies the existence of common unobserved
nodes that cause both terminal nodes. Bidirected edges represent common causes only,
not mere correlations with unknown sources and not relationships of direct causation
between the two variables that they connect.

Now, suppose that the causal variable of primary interest is D and that the causal
effect that we wish to estimate is the effect of D on Y . The question to consider is the
following: Given the structure of causal relationships represented in the graph, which
variables must we observe and then use in a data analysis routine to estimate the size
of the causal effect of D on Y ?

Three Strategies to Estimate Causal Effects

Although we will consider many strategies for estimating causal effects in this book, we
will give our most sustained attention to the following three strategies. First, one can
condition on variables (with procedures such as stratification, matching, and regres-
sion) to eliminate the noncausal portion of an association between a causal variable
and an outcome variable. This strategy is often referred to as conditioning to block all
“back-door” paths from the causal variable to the outcome variable, where a back-door
path is defined as any path between the causal variable and the outcome variable that
begins with an arrow that points to the causal variable. Second, one can use exogenous
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variation in an appropriate instrumental variable to isolate covariation in the causal
and outcome variables. Third, one can establish an exhaustive and isolated mechanism
that relates the causal variable to the outcome variable and then calculate the causal
effect as it propagates through the mechanism.

Consider the graph in Figure 1.1 and the opportunities it presents to estimate
the causal effect of D on Y with the conditioning estimation strategy. First note
that there are two back-door paths from D to Y in the graph that generate a sup-
plemental noncausal association between D and Y : (1) D ← A ������ F → Y and
(2) D←B ������A ������ F → Y .21 Both of these back-door paths can be blocked
in order to eliminate the supplemental noncausal association between D and Y by
observing and then conditioning on A and B or by observing and then conditioning
on F . These two conditioning strategies are general in the sense that they will suc-
ceed in producing consistent estimates of the causal effect of D on Y under a variety
of conditioning techniques and in the presence of nonlinear effects. They are mini-
mally sufficient in the sense that one can observe and then condition on any subset of
the observed variables in {A,B,C,F,G} as long as the subset includes either {A,B}
or {F}.22

Now, consider the second estimation strategy, which is to use an instrumental
variable for D to estimate the effect of D on Y . This strategy is completely different
from the conditioning strategy just summarized. The goal is not to block back-door
paths from the causal variable to the outcome variable but rather to use a localized
exogenous shock to both the causal variable and the outcome variable in order to
estimate indirectly the relationship between the two. For the graph in Figure 1.1, the
variable C is a valid instrument for D because it causes D but does not have an effect
on Y except through its effect on D. As a result, one can estimate consistently the
causal effect of D on Y by taking the ratio of the relationship between C and Y and
between C and D.23 For this estimation strategy, A, B, F , and G do not need to be
observed if the only interest of a researcher is the causal effect of D on Y .

To further consider the differences between these first two strategies, now consider
the alternative graph presented in Figure 1.2. There are five possible strategies for
estimating the causal effect of D on Y for this graph, and they differ from those

21As we note later in Chapter 4 when more formally defining back-door paths, the two paths
labeled “back-door paths” in the main text here may represent many back-door paths because the
bidirected edges may represent more than one common cause of the variables they point to. Even
so, the conclusions stated in the main text are unaffected by this possibility because the minimally
sufficient conditioning strategies apply to all such additional back-door paths as well.

22For the graph in Figure 1.1, one cannot effectively estimate the effect of D on Y by simply
conditioning only on A. We explain this more completely in Chapters 3 and 4, where we introduce
the concept of a collider variable. The basic idea is that conditioning only on A, which is a collider,
creates dependence between B and F within the strata of A. As a result, conditioning only on A does
not eliminate the noncausal association between D and Y .

23Although all other claims in this section hold for all distributions of the random variables and
all types of nonlinearity of causal relationships, one must assume for instrumental variable (IV)
estimation what Pearl labels a linearity assumption. What this assumption means depends on the
assumed distribution of the variables. It would be satisfied if the causal effect of C on D is linear and
the causal effect of D on Y is linear. Both of these would be true, for example, if both C and D were
binary variables and Y were an interval-scaled variable, and this is the most common scenario we will
consider in this book.
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Figure 1.2 A causal graph in which C is no longer an instrumental variable for D.
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Figure 1.3 A causal diagram in which M and N represent an isolated and exhaustive
mechanism for the causal effect of D on Y .

for the set of causal relationships in Figure 1.1 because a third back-door path is
now present: D← C→H→ Y . For the first four strategies, all back-door paths can
be blocked by conditioning on {A,B,C}, {A,B,H}, {F,C}, or {F,H}. For the fifth
strategy, the causal effect can be estimated by conditioning on H and then using C as
an instrumental variable for D.

Finally, to see how the third mechanistic estimation strategy can be used effectively,
consider the alternative graph presented in Figure 1.3. For this graph, four feasible
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strategies are available as well. The same three strategies proposed for the graph in
Figure 1.1 can be used. But, because the variables M and N completely account for
the causal effect of D on Y , and because M and N are not determined by anything
other than D, the causal effect of D on Y can also be calculated by estimation of the
causal effect of D on M and N and then subsequently the causal effects of M and N
on Y. And, because this strategy is available, if the goal is to obtain the causal effect
of D on Y , then the variables A, B, C, F , and G can be ignored.24

In an ideal scenario, all three of these forms of causal effect estimation could be
used to obtain estimates, and all three would generate equivalent estimates (subject
to the expected variation produced by a finite sample from a population). If a causal
effect estimate generated by conditioning on variables that block all back-door paths
is similar to a causal effect estimate generated by a valid instrumental variable esti-
mator, then each estimate is bolstered. Better yet, if a mechanism-based strategy then
generates a third equivalent estimate, all three causal effect estimates would be even
more convincing. And, in this case, an elaborated explanation of how the causal effect
comes about is also available, as a researcher could then describe how the causal effect
is propagated through the intermediate mechanistic variables M and N .

Implications

The foregoing skeletal presentation of causal effect estimation is, of course, inherently
misleading. Rarely does a state of knowledge prevail in a field that allows a researcher to
specify causes as cleanly as in the graphs in these figures. Writing down a full graph that
represents a consensus position, or a set of graphs that represent alternative positions,
can be very difficult, especially if the arguments put forward in alternative pieces of
research are open to multiple interpretations. Yet, little progress on estimating causal
effects is possible until such graphs are drawn, or at least some framework consistent
with them is brought to bear on the questions of central interest.

Beyond introducing the basic estimation strategies, these graphs convey two addi-
tional points that are relevant for the material that follows. First, there is often more
than one way to estimate a causal effect, and simple rules such as “control for all
other causes of the outcome variable” can be poor guides for practice. For example,
for Figure 1.1, there are two completely different and plausible conditioning strategies:
either condition on F or on A and B. The strategy to “control for all other causes of
the outcome variable” is misleading because (1) it suggests that one should condition
on G as well, which is unnecessary if all one wants to obtain is the causal effect of D
on Y , and (2) it does not suggest that one can estimate the causal effect of D on Y
by conditioning on a subset of the variables that cause the causal variable of interest.
In this case, one can estimate the causal effect of D on Y without conditioning on
any of the other direct causes of Y , but instead by conditioning on the variables that
cause D. Even so, this last conditioning strategy should not be taken too far. One

24Note that, for the graph in Figure 1.3, both M and N must be observed. If, instead, only M
were observed, then this mechanistic estimation strategy would not allow for estimation of the full
causal effect of D on Y . However, if M and N are isolated from each other, as they are in Figure 1.3,
then the portion of the causal effect that passes through M or N can be effectively estimated in the
absence of observation of the other. We discuss these issues in detail in Chapter 10.
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need not condition on C when also conditioning on both A and B. Not only is this
unnecessary (just as for G with the other conditioning strategy), but in doing so one
fails to use C in its (possibly) most useful way: as an instrumental variable that can be
used to consistently estimate the causal effect of D on Y , ignoring completely A, B,
F , and G.

Second, the methods we will present, as we believe is the case with all estimation
strategies in the social sciences, are best suited to the targeted estimation of the effects
of focal causes. As we will discuss at several points throughout the book, especially in
Chapters 6 and 13, the counterfactual approach can also be used to pursue the more
ambitious goal of estimating the effects of all causes of an outcome of interest. Even so,
this more ambitious goal is rarely pursued because of how difficult it is to achieve. The
way in which we have presented these graphs is telling on this point. Consider again
the question that we posed after introducing Figure 1.1. We asked a simpler version of
the following question: Given the structure of causal relationships that relate A, B, C,
D, F , G, and Y to each other (represented by presupposed edges that signify causal
effects of unknown magnitude), which variables must we observe and then use in a
data analysis routine to estimate the size of the causal effect of D on Y ? This sort of
constrained question (i.e., beginning with the conditional “given” clause) is quite a bit
different from seeking to answer the more general questions: What are all of the causes
of Y , and how large are their effects relative to each other? The methods that we will
present in this book are not irrelevant to this broader question, but they are designed
to first answer more targeted questions about the effects of subsets of all causes of an
outcome.

The limited nature of the methods that we will present implies two important
features of causal effect estimation from the perspective of counterfactual modeling.
To offer a precise and defendable causal effect estimate, a well-specified theory is needed
to justify assumptions about underlying causal relationships. And, if theory is poorly
specified, or divergent theories exist in the relevant scholarly community that support
alternative assumptions about underlying causal relationships, then alternative causal
effect estimates may be considered valid conditional on the validity of alternative
maintained assumptions. We discuss these issues in depth across the chapters of the
book, while presenting the framework and the methods that generate estimates that
must then be placed in their proper context.
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Chapter 2

Counterfactuals and the
Potential Outcome Model

In this chapter, we introduce the foundational components of the potential outcome
model. We first discuss causal states, the relationship between potential and observed
outcome variables, and the usage of the label “counterfactual” to refer to unobserved
potential outcomes. We introduce average causal effects and then discuss the assump-
tion of causal effect stability, which is maintained explicitly in most applications that
use the potential outcome model. We discuss simple estimation techniques and demon-
strate the importance of considering the relationship between the potential outcomes
and the process of causal exposure. We conclude by extending our presentation to
over-time potential outcome variables for one or more units of analysis, as well as
causal variables that take on more than two values.

2.1 Defining the Causal States

The counterfactual framework for observational data analysis presupposes the exis-
tence of well-defined causal states to which all members of the population of interest
could be exposed.1 As we will show in the next section, causal effects are then defined
based on comparisons of outcomes that would result from exposure to alternative
causal states. For a binary cause, the two states are usually labeled treatment and
control. When a many-valued cause is analyzed, the convention is to refer to the alter-
native states as alternative treatments.

Although these labels are simple, the assumed underlying states must be very
carefully defined so that the contribution of an empirical analysis based upon them
is clear. Some of the relevant issues can only be discussed as we introduce additional

1We justify the importance of carefully defining the boundaries of the population of interest when
presenting average causal effects later in this chapter. We also provide an appendix to this chapter,
in which we explain the general superpopulation model that we will adopt when the boundaries of
the population can be clearly defined and when we have the good fortune of having a large random
sample from the population.

37
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pieces of the full counterfactual framework in this chapter and the next – moving from
the definition of individual-level causal effects, through average causal effects, and
then to causal graphs and the underlying structural equations that they represent.
Nonetheless, some initial clarification of core definitional issues for these causal states
is essential.

Fine Articulation. To appreciate the value of finely articulated causal states, con-
sider the examples introduced in Section 1.3. The worker training example is straight-
forward, and the two states are “entered a training program” (the treatment state)
and “did not enter a training program” (the control state). The charter school example
is similar. Here, the alternative states are “enrolled in a charter school” (the treatment
state) and “enrolled in a regular public school” (the control state, although possibly
referred to as an alternative treatment state). One possible complication with these
examples is the possibility of inherent differences across training programs, charter
schools, and regular public schools. If any such treatment-site heterogeneity exists,
then stratified analyses may be necessary, perhaps by regions of the country, size of
the program or school, or whatever other dimension suggests that variability of the
causal states deserves explicit modeling.2

Other examples, at least as executed in the extant research, have causal states that
are not finely articulated. Consider the classic political participation line of inquiry.
For the relationship between socioeconomic status and political participation, there
are many underlying causal effects, such as the effect of having obtained at least a
college degree on the frequency of voting in local elections and the effect of having
a family income greater than some cutoff value on the amount of money donated to
political campaigns. Well-defined causal states exist for these narrow causal effects,
but it is not clear at all that well-defined causal states exist for the internally dif-
ferentiated concept of socioeconomic status, which social scientists have created for
their own analytic purposes. It is therefore unsurprising that some of the most recent
literature (e.g., Henderson and Chatfield 2011; Kam and Palmer 2008) has specified
more finely articulated causal states for this line of research, such as “entered college”
(the treatment state) in comparison to “did not enter college” (the control state).

The father absence example is an intermediate case. The original research attempted
to estimate the broad effects of single parenthood on the outcomes of children and ado-
lescents (see McLanahan and Sandefur 1994; Wu and Wolfe 2001). The more recent
literature has focused on the narrowly defined treatment state of father absence. Even
so, much variation remains in both the definition of this treatment state and the rele-
vant comparison (or control) state, as noted in a review piece:

Studies in this field measured father absence in several ways, which the
reader should keep in mind when interpreting and comparing results across
studies. Some studies compared children of divorced parents with children
of stably married parents; others compared children whose parents mar-
ried after their childs birth with those parents who never married. . . .More
recently, researchers have started to use even more nuanced categories to

2For example, Hong and Raudenbush (2006) provide a careful analysis of retention policies in
primary education, implementing this type of treatment-site stratification based on the average level
of retention in different public schools. We will discuss these types of studies in Section 2.5.
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measure family structure – including married biological-parent families,
cohabiting biological-parent families, married stepparent families, cohab-
iting stepparent families, and single parents by divorce and nonmarital
birth – reflecting the growing diversity of family forms in society. . . .We
did not identify any studies that used causal methods to study the effects
of same-sex unions. (McLanahan et al. 2013:408)

In general, research that takes account of heterogeneity by splitting treatment states
into mutually exclusive component states will break new ground if sufficient data are
available to estimate the more narrowly defined treatment effects.

Nominal States from Constitutive Features. We take a pragmatic but princi-
pled position on the characteristics of causal states, and in this subsection we want to
clarify our position for readers who are interested in debates on the nature of causation
in philosophy and how those debates are relevant for social science research. Readers
who are uninterested in these debates may wish to skim this subsection now and reen-
gage it after reading Chapter 10 on causal mechanisms and Section 13.1 on objections
to the counterfactual approach to observational data analysis (pages 438–446). In fact,
most scholars who work with counterfactual models in social science research do not
take any positions on the issues that we raise in this subsection, and their research
shows that much useful work can proceed by taking and using the causal states as
measured, without considering the features that give them their capacities to generate
effects.

Having offered these warnings, we will now explain why we take the position that
each state of each treatment should be regarded as a nominal state with constitutive
features (e.g., entities, activities, and relations) that are jointly capable of producing
the outcome of interest. Consider the Catholic school example, where the nominal
states are “enrolled in a Catholic school” and “enrolled in a public school” and where
the outcome is “learning.” Each type of school has teachers, classrooms, curricula,
administrators, normative environments, affiliated institutions, and networks of peers
and parents. The literature on the differences between Catholic schools and public
schools suggests that these constitutive features of the schools are interrelated in ways
that differ by type of school. Accordingly, while Catholic schools and public schools
both produce student learning, the particular ways in which they do so are thought to
differ meaningfully across type of school, and in ways that have not been documented
comprehensively with available data. Nonetheless, we can still conceive of each student
in the population of interest being exposed to each type of school, and we can assume
that each student would then experience the learning generated in toto by the joint
capacities of the constituent features of each type of school.

Taking this position, while at the same time embracing counterfactual dependence,
implies that we see value in mounting causal analysis in the social sciences on top of a
foundation that conjoins a metaphysics of causal powers with a metaphysics of coun-
terfactual dependence (see Collins, Hall, and Paul 2004; Mumford and Anjum 2011).
The price for such an inclusive pragmatism is an elaborate metaphysics, which most
philosophers would likely regard as insufficiently elegant and insufficiently reductive.
With reference to Hume’s example of billiard balls (Hume 1977[1772]), our position
requires that we adopt the following specific (but perhaps painfully elaborate) account
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of the nature of causation: The cue ball causes the second billiard ball to roll a partic-
ular observed distance because billiard balls are spheres and because the cue ball was
struck by the player’s pool cue in such a way that it then struck the second billiard ball
at a particular angle and with a particular force. Furthermore, the cue ball would not
have caused the second billiard ball to roll the same observed distance if the billiard
balls had instead not been spheres or if the cue ball had not been struck by the player’s
pool cue in the exact same way. Thus, the causal effect of the cue ball on the second
billiard ball is a joint product of the spherical feature of the billiard balls as well as
the external intervention of the pool player.3

For the sorts of social science examples we consider in this book, we will express
the effects of causal states using contrasts between observed exposure to one state
and what-if counterfactual exposure to another state. However, we will also take the
position that any such claims about the effects of exposure to alternative states are
incomplete until those claims are accompanied by accounts of the constitutive features
of the causal states and how those features are thought to grant the states the power to
generate outcomes.4 The most complete accounts point to evidence that mechanisms
exist that are capable of generating the outcomes of interest (and, better yet, that it
is reasonable to believe that these mechanisms will be able to explain why exposure
to alternative causal states generates differences).

Consider an example where many of these issues are settled. For the Catholic school
effect, analysis can proceed within a guiding framework shaped by a rich background
literature. The historical events that generated public schools and Catholic schools as
coherent institutions suggests that they can be meaningfully compared when studying
student achievement because they each aim to produce learning for core academic
subjects, even though they each pursue additional distinct goals (see Tyack 1974 for
one of the most widely read accounts). In addition, each type of school has a rich set
of literature that has examined the mechanisms that generate learning. For Catholic

3With the goal of reducing the complexity of such an account, philosophers seem inclined to
take positions on whether the spherical characteristic of the cue ball (its “causal power”) is more
fundamental than the striking (i.e., the “counterfactual dependence” induced by the intervention of
the player), whether “striking” can be defined in the absence of an intervening pool player, whether
a valid explanation can simply be deduced from laws of motion in space and time, whether anything
is transferred between the two billiard balls at the moment of impact, and so on. We see no reason
to take a position on these matters in this book, and we therefore quite consciously violate rule 4 of
Paul and Hall (2013:40), “Thou shall not be an ontological wimp.”

4We see little value in placing restrictions on what types of origination accounts are admissible
and should be relied upon. For some causal claims, historical narratives are appropriate, to the extent
that they focus on especially salient institutional histories while pushing into the background the
multitude of specific decisions of all individuals that have given shape to the constitutive features of
the alternative states (see Reed 2011 for examples of such “forming” narratives). In other cases, the
origins of the states can be explained as contrasting values for built concepts, based on underlying
analytic dimensions drawn from the extant social science literature, where these underlying dimensions
have been chosen precisely because background evidence exists that they are sources of productive
causal power of the nominal causal states of interest (see Goertz 2006 for examples). However, we see
one complication for this second type of account, as foreshadowed by our discussion of socioeconomic
status above. Causal states drawn from values for a built concept may be real only in the minds of
researchers. As a result, explanations based upon them may appear nonsensical to individuals who
are purported to be producing the effects of interest. Whether such behind-the-back accounts are to
be regarded as powerful or not is almost certainly a domain-specific consideration, which will also
vary with the goals of a study.
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schools, several complementary narratives exist that provide arguments that suggest
why Catholic schools have the capacity to be more effective than public schools. These
narratives include those that emphasize the relations embedded in parental network
structure alongside an appropriated ideology of the Catholic church (see Coleman and
Hoffer 1987), those that emphasize the extent to which Catholic schools are especially
responsive to parental feedback and the threat of exit (Chubb and Moe 1990), and
those that emphasize the trusting relationships between teachers and administrators
that flow from a shared purpose (Bryk, Lee, and Holland 1993).

Of course, the existence of such lower-level claims about the specific mechanis-
tic capacities of features of Catholic schools begs the question: When is it advis-
able to decompose nominal causal states into component causal states with their own
capacities for producing the outcome of interest? We see the answer to this question as
subject- and domain-specific. Accordingly, we see little value in making general argu-
ments about when such decomposition is feasible because of the inherent separability
of the productive capacities attached to particular constitutive features or is infeasible
because of the deeply entangled complementarities among them. And, as we will argue
later in Chapter 10, it is generally impossible to take a position on these issues in any
given study without first stipulating the causal structure of the mechanisms that are
presumed to produce the outcome. Fortunately, as we will demonstrate in the inter-
vening chapters, causal effects defined only by nominal causal states can be sufficiently
precise so that their estimation is itself feasible and very much worthwhile.

Local and Reasonable. Consider the literature on socioeconomic status as a
fundamental cause of health and mortality, which takes as its defining feature the
argument that it is only occasionally useful to identify causal states for the mea-
surable dimensions underneath the fundamental cause of socioeconomic status (see
page 19). For these scholars, it is the abundant causal pathways that link socioe-
conomic status with health and mortality that are most noteworthy because of the
robust, total associations that they generate. Isolating a particular causal effect that
is attributable to a contrast defined by two clearly defined underlying causal states
embedded within socioeconomic status could still be useful, such as for the estima-
tion of a health disparity attributable to a family income difference of $25,000. The
claim of this literature is that this narrow exercise could become counterproductive if
it detracted from the broader claim of fundamental causality, as would be the case if
the analyst were to imply that any such narrow effect is as robust as the total causal
effect that socioeconomic status exerts on health and mortality.

A fundamental-cause orientation may be useful in challenging the status quo in
research areas that have become too narrowly focused on only a few relevant causal
pathways, but widespread adoption of the fundamental-cause orientation to causal
analysis would not be productive. In many areas of research, it would not be hard to
take collections of narrowly and carefully defined causal contrasts, lump them together
into latent constructs, and then assert that, over sufficiently long intervals, the latent
construct is a fundamental cause because the mechanisms that are activated by com-
ponent causes switch on and off over time. Indeed, considering our other examples in
Section 1.3, one could argue quite easily that the socioeconomic status of one’s parents
is a fundamental cause of educational attainment, subsequent labor market earnings,
political participation, and fertility decisions. We doubt many scholars would disagree
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with such broad claims, and most would likely interpret them as consistent with con-
clusions drawn by scholars working with comparatively coarse data more than six
decades ago. More importantly, we think it unlikely that the reassertion of such broad
claims would encourage researchers to move in productive new directions. Instead,
we see the counterfactual perspective, and the potential outcome model in particu-
lar, as enabling the pursuit of a more ambitious goal: the careful delineation of the
relevant causal states that lie within any purported fundamental causes and then the
estimation of the specific effects generated by contrasts between them. Should there
be reason to expect that any such effects vary in time, then their estimation across
time demands empirical analysis, not simply the assertion that such effects, by nature
of their variability in time, can only be regarded as specialized instantiations of more
fundamental causes.

For a related reasonableness concern, consider a specific political participation
example. To what extent do restrictions on who can vote determine who wins elec-
tions? A highly publicized variant of this question is this: What is the effect on election
outcomes of laws that forbid individuals with felony convictions from voting?5 Uggen
and Manza (2002) make the straightforward claim that the 2000 presidential elec-
tion would have gone in favor of Al Gore if felons and ex-felons had been permitted
to vote:

Although the outcome of the extraordinarily close 2000 presidential elec-
tion could have been altered by a large number of factors, it would almost
certainly have been reversed had voting rights been extended to any cate-
gory of disenfranchised felons. (Uggen and Manza 2002:792)

Uggen and Manza (2002) then note an important limitation of their conclusion:

our counterfactual examples rely upon a ceteris paribus assumption – that
nothing else about the candidates or election would change save the voting
rights of felons and ex-felons. (Uggen and Manza 2002:795)

When thinking about this important qualification, one might surmise that a possible
world in which felons had the right to vote would probably also be a world in which
the issues (and probably candidates) of the election would be very different. Thus, the
most challenging definitional issue here is not who counts as a felon or whether or not
an individual is disenfranchised, but rather how well the alternative causal states can
be characterized.

A relevant criterion, although necessarily subjective, is whether it “stretches the
mind” too much to imagine conceivable alternative worlds in which all else remains the
same, except for the instantiation of the alternative causal states. For this particular
example, the “too much” criterion was not likely crossed. Scholars in political sociology
and criminology supported publication through blind peer review in the discipline’s
highest prestige journal, the American Sociological Review. Reviewers presumably saw
this particular line of research as an important contribution to our knowledge on
how changing laws to allow felons and ex-felons to vote could have potential effects on

5Behrens, Uggen, and Manza (2003), Manza and Uggen (2004), and Uggen, Behrens, and Manza
(2005) give historical perspective on this question.
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election outcomes, and they must have concluded that there was value in understanding
such effects in hypothetical isolation from other changes that would also likely co-occur
in the real world along with the contemplated legislative changes.

The more general point, however, is that it is important that the “what would have
been” nature of the conditionals that define the causal states of interest be carefully
considered. When a facile ceteris paribus assumption is invoked to relieve the analyst
from having to discuss other contrasts that are nearly certain to occur at the same
time, the posited causal states may be open to the charge that they are too improbable
or ill-defined to justify the pursuit of a causal analysis based on them.6

2.2 Potential Outcomes and Individual-Level
Treatment Effects

Given the existence of well-defined causal states, causal inference in the counterfactual
tradition proceeds by stipulating the existence of potential outcome random variables
that are defined over all individuals in the population of interest. For a binary cause,
we will denote potential outcome random variables as Y 1 and Y 0.

We will also adopt the notational convention from statistics in which realized values
for random variables are denoted by lowercase letters. Accordingly, y1i is the potential
outcome in the treatment state for individual i, and y0i is the potential outcome in
the control state for individual i.7 The individual-level causal effect of the treatment

6The philosopher Nancy Cartwright (2007a, 2007b) would refer to an analysis that defines potential
outcomes (see next section) in terms of ill-conceived causal states as generating “impostor counter-
factuals.” She stresses the need for full causal models of all interrelated causes of outcomes, so that
the effects of causes are not too narrowly assessed. She writes:

To evaluate counterfactuals . . .we need a causal model; and the causal model must con-
tain all the information relevant to the consequent about all the changes presumed in
the antecedent. There is no other reasonable method on offer to assess counterfactuals.
We may not always produce a model explicitly, but for any grounded evaluation there
must be a causal model implicit; and our degree of certainty about our counterfactual
judgments can be no higher than our degree of certainty that our causal model is correct.
(Cartwright 2007a:193)

We agree with the value of having a causal model, as will become clear in subsequent chapters.
However, Cartwright takes this position to an extreme that is counterproductive for practice; see
Pearl (2009:362–65).

7There is a wide variety of notation in the potential outcome and counterfactuals literature, and we
have adopted the notation that we feel is the easiest to grasp. However, we should note that Equation
(2.1) and its elements are often written as one of the following alternatives,

Δi =Y1i−Y0i,

δi =Y t
i −Y c

i ,

τi = yi(1)−yi(0),

and variants thereof. We use the right-hand superscript to denote the potential treatment state
of the corresponding potential outcome variable, but other authors use the right-hand subscript or
parenthetical notation. We also use numerical values to refer to the treatment states, but other authors
(including us, see Morgan 2001, Winship and Morgan 1999, and Winship and Sobel 2004) use values
such as t and c for the treatment and control states, respectively. There is also variation in the usage
of uppercase and lowercase letters. We do not claim that everyone will agree that our notation is the
easiest to grasp, and it is certainly not as general as, for example, the parenthetic notation. But it
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is then defined as

δi = y1i − y0i . (2.1)

Before proceeding, two caveats on this definition of individual-level causal effects
should be noted. First, the individual-level causal effect can be defined in ways other
than as the linear difference between the two relevant potential outcomes.8 One obvious
possibility is the ratio of one individual-level potential outcome to another, y1i /y

0
i . In

some research areas, alternative definitions at the individual level may have advantages.
The most prominent case is epidemiology, where the goal of estimating risk factors for
health outcomes continues to dominate practice and leads to a frequent preference for
ratio-based rather than difference-based comparisons. Nonetheless, the overwhelming
majority of the literature represents individual-level causal effects as linear differences,
as in Equation (2.1).

Second, the individual-level causal effect could be defined as the difference between
the expectations of individual-specific random variables, as in E[Y 1

i ]−E[Y 0
i ], where

E[.] is the expectation operator from probability theory (see, for a clear example of this
alternative setup, King et al. 1994:76–82). In thinking about individuals self-selecting
into alternative treatment states, it can be useful to set up the treatment effects in this
way. In many applications, individuals are thought to consider potential outcomes with
some recognition of the inherent uncertainty of their beliefs, which may properly reflect
true variability in their individual-level potential outcomes. But, with data for which
a potential outcome is necessarily observed for any individual as a scalar value (via
an observed outcome variable, defined later), this individual-level, random-variable
definition is largely redundant. Accordingly, we will denote individual-level potential
outcomes as values such as y1i and y0i , regarding these as realizations of population-
level random variables Y 1 and Y 0 while recognizing, at least implicitly, that they could
also be regarded as realizations of individual-specific random variables Y 1

i and Y 0
i .

2.3 Treatment Groups and Observed Outcomes

For a binary cause with two causal states and associated potential outcome variables
Y 1 and Y 0, a corresponding causal exposure variable, D, is specified that takes on
two values: D is equal to 1 for members of the population who are exposed to the
treatment state and equal to 0 for members of the population who are exposed to the
control state. Exposure to the alternative causal states is determined by a particular
process, typically an individual’s decision to enter one state or another, an outside
actor’s decision to allocate individuals to one state or another, a planned random
allocation carried out by an investigator, or some combination of these alternatives.

By convention, those who are exposed to the treatment state are referred to as the
treatment group, whereas those who are exposed to the control state are referred to as
the control group. Because D is defined as a population-level random variable (at least

does seem to have proven itself in our own classes, offering the right balance between specificity and
compactness.

8Rubin (2005, figure 1) uses the general notation “v.” for “versus” to depict individual-level effects
in their most general form.
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in most cases in observational data analysis), the treatment group and control group
exist in the population as well as the observed data. Throughout this book, we will use
this standard terminology, referring to treatment and control groups when discussing
those who are exposed to alternative states of a binary cause. If more than two causal
states are of interest, then we will shift to the semantics of alternative treatments and
corresponding treatment groups, thereby discarding the baseline labels of control state
and control group.

Despite our adoption of this convention, we could rewrite all that follows referring
to members of the population as what they are – those who are exposed to alternative
causal states – and not use the words treatment and control at all. Indeed, we recognize
that for some readers the usage of treatment and control language may feel sufficiently
heterodox relative to the semantics of the areas in which they work that avoidance of
these terms seems prudent. If so, it is perfectly acceptable to adopt parallel language
without using the words treatment and control.

When we refer to individuals in the observed treatment and control groups, we
will again adopt the notational convention from statistics in which realized values for
random variables are denoted by lowercase letters. Accordingly, the random variable
D takes on values of di = 1 for each individual i who is an observed member of the
treatment group and di = 0 for each individual i who is an observed member of the
control group.

Given these definitions of Y 1, Y 0, and D (as well as their realizations y1i , y
0
i , di),

we can now define the observed outcome variable Y in terms of them. We can observe
values for a variable Y as yi=y1i for individuals with di=1 and as yi=y0i for individuals
with di =0. The observable outcome variable Y is therefore defined as

Y = Y 1 if D=1,

Y = Y 0 if D=0.

This paired definition is often written compactly as

Y =DY 1+(1−D)Y 0. (2.2)

Equation (2.2) implies that one can never observe the potential outcome under the
treatment state for those observed in the control state, and one can never observe the
potential outcome under the control state for those observed in the treatment state.
This impossibility implies that one can never calculate individual-level causal effects.

Holland (1986) describes this challenge as the fundamental problem of causal infer-
ence in his widely read introduction to the potential outcome model of counterfactual
causality. Table 2.1 depicts the “problem,” which one might alternatively refer to as
the “fundamental reality of causal analysis.” Causal effects are defined by contrasts
within rows, which refer to groups of individuals observed in the treatment state or
in the control state. However, only the diagonal of the table is observable, thereby
rendering impossible the direct calculation of individual-level causal effects merely by
means of observation and then subtraction.9

9As Table 2.1 shows, we are more comfortable than some writers in using the label “counterfactual”
when discussing potential outcomes. Rubin (2005), for example, avoids the term counterfactual, under
the argument that potential outcomes become counterfactual only after treatment assignment has
occurred. Thus, no potential outcome is ever ex ante counterfactual. We agree, of course. But, because
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Table 2.1 The Fundamental Problem of Causal Inference

Group Y 1 Y 0

Treatment group (D=1) Observable as Y Counterfactual

Control group (D=0) Counterfactual Observable as Y

As shown clearly in Equation (2.2), the outcome variable Y , even if we could enu-
merate all of its individual-level values yi in the population, reveals only half of the
information contained in the underlying potential outcome variables. Individuals con-
tribute outcome information only from the treatment state in which they are observed.
This is another way of thinking about Holland’s fundamental problem of causal infer-
ence. The outcome variables we must analyze – labor market earnings, test scores,
and so on – contain only a portion of the information that would allow us to directly
calculate causal effects for all individuals.

2.4 The Average Treatment Effect

Because it is typically impossible to calculate individual-level causal effects, we usually
focus attention on the estimation of carefully defined aggregate causal effects. When
we adopt the linear difference in potential outcomes as the definition of the individual-
level causal effect, we typically define aggregate causal effects as averages of these
individual-level effects. These average causal effects can de defined for any subset of
the population, and throughout this book we will consider many different average
effects. In this section, we introduce the broadest possible average effect, which is the
average treatment effect (ATE) in the population as a whole.

With E[.] denoting the expectation operator from probability theory, the average
treatment effect in the population is

E[δ] =E[Y 1−Y 0] (2.3)

=E[Y 1]−E[Y 0].

The second line of Equation (2.3) follows from the linearity of the expectation operator:
The expectation of a difference is equal to the difference of the two expectations.10

For Equation (2.3), the expectation is defined with reference to the population of
interest. For the fertility pattern example introduced in Section 1.3, the population
would be one or more birth cohorts of women in a particular country. For the election
outcome examples, the population would be “all eligible voters” or “all eligible voters
in Florida.” For other examples, such as the worker training example, the population

our focus is on observational data analysis, we find the counterfactual label useful for characterizing
potential outcomes that are rendered unobservable ex post to the treatment assignment/selection
mechanism.

10However, at a deeper level, it also follows from the assumption that the causal effect is defined as
a linear difference at the individual level, which allows the application of expectations in this simple
way to characterize population-level average effects.
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would be “all adults eligible for training,” and eligibility would need to be defined
carefully. Thus, to define average causal effects and then interpret estimates of them,
it is crucial that researchers clearly define the characteristics of the individuals in the
assumed population of interest.11

Note also that the subscripting on i for the individual-level causal effect, δi, has
been dropped for Equation (2.3). Even so, the definition of the ATE should not be
interpreted to suggest that we now must assume that the treatment effect is constant
in the population in any fundamental sense. Rather, we can drop the subscript i in
Equation (2.3) because the expected causal effect of a randomly selected individual
from the population is equal to the average causal effect across individuals in the
population. We will at times throughout this book reintroduce redundant subscripting
on i in order to reinforce the inherent individual-level heterogeneity of the potential
outcomes and the causal effects they define.12

To see all of these pieces put together, consider the Catholic school example.
The potential outcome under the treatment, y1i , is the what-if achievement outcome
of individual i if he or she were enrolled in a Catholic school. The potential out-
come under the control, y0i , is the what-if achievement outcome of individual i if
he or she were enrolled in a public school. Accordingly, the individual-level causal
effect, δi, is the what-if difference in achievement that could be calculated if we could
simultaneously educate individual i in both a Catholic school and a public school. The
ATE, E[δ], is then the average value among all students in the population of these
what-if differences in test scores. The ATE is also equal to the expected value of the
what-if difference in test scores for a randomly selected student from the population.

An alternative group-level causal effect that we will not consider much in this book
is the causal risk ratio,

Pr[Y 1 =1]

Pr[Y 0 =1]
, (2.4)

where now the outcomes Y 1 and Y 0 are indicator variables equal to 1 if the outcome of
interest is present and 0 if not. This group-level effect is the analog to the individual-
level ratio of potential outcomes, y1i /y

0
i , noted earlier in Section 2.2. The causal risk

ratio is most frequently analyzed in epidemiology and the health sciences, where risk-
factor analysis remains dominant and the outcomes are typically onset of a disease or
a troubling symptom thereof (see Hernán and Robins 2006a). For our purposes, most
outcomes modeled as causal risk ratios can be translated to average treatment effects,
interpreting E[Y 1]−E[Y 0] as Pr(Y 1 = 1)− Pr(Y 0 = 1). Expectations of indicator
variables are equivalent to probabilities of indicator variables, and an interval metric

11And, regardless of the characterization of the features of the population, we will assume through-
out this book that the population is a realization of an infinite superpopulation. We discuss our
decision to adopt this underlying population model in an appendix to this chapter. Although not
essential to understanding most of the material in this book, some readers may find it helpful to read
that appendix now in order to understand how these definitional issues are typically settled in this
literature.

12For example, at many times in the book, we will stress that quantities such as the ATE should
not be assumed to be equal to the individual-level causal effect for any individual i, which we will
express as δi �=E[δi] =E[δ] for all i. In words, when individual-level heterogeneity of causal effects is
present, individual-level causal effects, δi, will not all be equal to the average of these individual-level
causal effects, E[δi], which is, by the definition of the expectation operator, equal to E[δ].
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is at least as sensible as a ratio metric for all of the examples we will consider. (The ratio
metric might be preferable if we were attempting to make effect comparisons across
outcomes with very different base rates, such as the effect of the same treatment on
pancreatic cancer and hypertension.)

2.5 The Stable Unit Treatment Value Assumption

In most applications, the potential outcome model retains its tractability through the
maintenance of a strong assumption known as the stable unit treatment value assump-
tion or SUTVA (see Rubin 1980b, 1986). In economics, a version of this assumption
is sometimes referred to as a no-macro-effect or partial equilibrium assumption (see
Garfinkel, Manski, and Michalopoulos 1992, Heckman 2000, 2005, for the history of
these ideas, and Manski and Garfinkel 1992 for examples).13

SUTVA, as implied by its name, is a basic assumption of causal effect stability
that requires that the potential outcomes of individuals be unaffected by changes in
the treatment exposures of all other individuals. In the words of Rubin (1986:961),
who developed the term,

SUTVA is simply the a priori assumption that the value of Y for unit u
when exposed to treatment t will be the same no matter what mechanism
is used to assign treatment t to unit u and no matter what treatments the
other units receive.

Consider the idealized example in Table 2.2, in which SUTVA is violated because the
treatment effect varies with treatment assignment patterns. For the idealized example,
there are three randomly drawn subjects from a population of interest, and the study is
designed such that at least one of the three study subjects must receive the treatment
and at least one must receive the control. The first column of the table gives the six
possible treatment assignment patterns.14 The first row of Table 2.2 presents all three
ways to assign one individual to the treatment and the other two to the control, as
well as the potential outcomes for each of the three subjects. Subtraction within the
last column shows that the individual-level causal effect is 2 for all three individuals.
The second row of Table 2.2 presents all three ways to assign two individuals to
the treatment and one to the control. As shown in the last column of the row, the
individual-level causal effects implied by the potential outcomes are now 1 instead of
2. Thus, for this idealized example, the underlying causal effects are a function of the
treatment assignment patterns, such that the treatment is less effective when more
individuals are assigned to it. For SUTVA to hold, the potential outcomes would need
to be identical for both rows of the table.

13SUTVA is a much maligned acronym, and many others use different labels. Manski (2013a:S1), for
example, has recently labeled the same assumption the “individualistic treatment response” assump-
tion in order “to mark it as an assumption that restricts the form of treatment response functions.”

14For this example, assume that the values of y1i and y0i for each individual i are either deterministic
potential outcomes or exactly equal to E[Y 1

i ] and E[Y 0
i ] for each individual i. Also, assume that these

three subjects comprise a perfectly representative sample of the population.
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Table 2.2 A Hypothetical Example in Which SUTVA Is Violated

Treatment assignment patterns Potential outcomes

⎡
⎣ d1 =1

d2 =0
d3 =0

⎤
⎦ or

⎡
⎣ d1 =0

d2 =1
d3 =0

⎤
⎦ or

⎡
⎣ d1 =0

d2 =0
d3 =1

⎤
⎦

y11=3

y12=3

y13=3

y01=1

y02=1

y03=1

⎡
⎣ d1 =1

d2 =1
d3 =0

⎤
⎦ or

⎡
⎣ d1 =0

d2 =1
d3 =1

⎤
⎦ or

⎡
⎣ d1 =1

d2 =0
d3 =1

⎤
⎦

y11=2

y12=2

y13=2

y01=1

y02=1

y03=1

This type of treatment effect dilution is only one way in which SUTVA can be
violated. More generally, suppose that d is an N × 1 vector of treatment indicator
variables for N individuals (analogous to the treatment assignment vectors in the first
column of Table 2.2), and define potential outcomes of each individual as functions
across all potential configurations of the elements of vector d. Accordingly, the outcome
for individual i under the treatment is y1i (d), and the outcome for individual i under
the control is y0i (d). The treatment effect for each individual i is then

δi(d) = y1i (d)− y0i (d). (2.5)

With this more general setup, individual-level treatment effects could be different for
every possible pattern of treatment exposure.

SUTVA is what allows us to declare y1i (d) = y1i and y0i (d) = y0i and, as a result,
assert that individual-level causal effects δi exist that are independent of the overall
configuration of causal exposure. If SUTVA cannot be maintained, then the simplified
definition in Equation (2.1) is invalid, and the individual-level treatment effect must be
written in its most general form in Equation (2.5), with all ensuing analysis proceeding
conditional on alternative vectors d.

Sometimes it is argued that SUTVA is so restrictive that we need an alternative
conception of causality for the social sciences. Our position is that SUTVA reveals
the limitations of social science data and the perils of immodest causal modeling
rather than the limitations of the potential outcome model itself. Rather than consider
SUTVA as overly restrictive, researchers should always reflect on the plausibility of
SUTVA in each application and use such reflection to motivate a clear discussion of the
meaning and scope of all causal effect estimates offered. Such reflection may lead one
to determine that only the more general case of the potential outcome framework can
be justified, and this may necessitate building the analysis on top of the individual-
level treatment effect defined in Equation (2.5) rather than the SUTVA-simplified
variant in Equation (2.1). In some cases, however, analysis can proceed assuming
SUTVA, as long as all resulting estimates are given restricted interpretations, as we
now explain.
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Typical SUTVA violations share two interrelated features: (1) influence patterns
that result from contact across individuals in social or physical space and (2) dilu-
tion/concentration patterns that one can assume would result from changes in the
prevalence of the treatment. Neither feature is entirely distinct from the other, and in
many cases dilution/concentration effects arise because influence patterns are present.
Yet, if the violation can be interpreted as a dilution/concentration pattern, even when
generated in part by an underlying influence pattern, then the analyst can proceed by
scaling back the asserted relevance of any estimates to situations where the prevalence
of the treatment is not substantially different.

For a simple example, consider the worker training example. Here, the plausibil-
ity of SUTVA may depend on the particular training program. For small training
programs situated in large labor markets, the structure of wage offers to retrained
workers may be entirely unaffected by the existence of the training program. How-
ever, for a sizable training program in a small labor market, it is possible that the
wages on offer to retrained workers would be a function of the way in which the price
of labor in the local labor market responds to the movement of trainees in and out
of the program (as might be the case in a small company town after the company
has just gone out of business and a training program is established). As a result,
SUTVA may be reasonable only for a subset of the training sites for which data have
been collected.

For an example of where influence patterns are more of a threat to SUTVA, con-
sider the example of the Catholic school effect. For SUTVA to hold, the effectiveness
of Catholic schooling cannot be a function of the number (and/or composition) of
students who enter the Catholic school sector. For a variety of reasons – endogenous
peer effects, capacity constraints, and so on – most school effects researchers would
probably expect that the Catholic school effect would change if large numbers of pub-
lic school students entered the Catholic school sector. As a result, because there are
good theoretical reasons to believe that the pattern of effects would change if Catholic
school enrollments ballooned, it may be that researchers can estimate the causal effect
of Catholic schooling only for those who would typically choose to attend Catholic
schools, but also subject to the constraint that the proportion of students educated
in Catholic schools remains constant. Accordingly, it may be impossible to determine
from any data that could be collected what the Catholic school effect on achievement
would be under a new distribution of students across school sectors that would result
from a large and effective policy intervention. As a result, the implications of research
on the Catholic school effect for research on school voucher programs may be quite
limited, and this has not been clearly enough recognized by some (see Howell and
Peterson 2002, chapter 6). A similar argument applies to research on charter school
effects.

Consider a SUTVA violation for a related example: the evaluation of the effective-
ness of mandatory school desegregation plans in the 1970s on the subsequent achieve-
ment of black students. Gathering together the results of a decade of research, Crain
and Mahard (1983) conducted a meta-analysis of 93 studies of the desegregation effect
on achievement. They argued that the evidence suggests an increase of .3 standard
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deviations in the test scores of black students across all studies.15 It seems undeni-
able that SUTVA is violated for this example, as the effect of moving from one school
to another must be a function of relative shifts in racial composition across schools.
Breaking the analysis into subsets of cities where the compositional shifts were similar
could yield conditional average treatment effect estimates that can be more clearly
interpreted. In this case, SUTVA would be abandoned in the collection of all deseg-
regation events, but it could then be maintained for some groups (perhaps in cities
where the compositional shift was comparatively small).

In general, if SUTVA is maintained but there is some doubt about its validity
because dilution or concentration patterns would emerge under shifts in treatment
prevalence, then certain types of marginal effect estimates can usually still be defended.
The idea here is to state that the estimates of average causal effects hold only for
what-if movements of relatively small numbers of individuals from one hypothetical
treatment state to another.

If, however, influence patterns are inherent to the causal process of interest, and the
SUTVA violation cannot be considered as a type of dilution or concentration, then it
will generally not be possible to circumvent the SUTVA violation by proceeding with
the same analysis and only offering cautious and conditional interpretations. The most
well-developed literature on situations such as these is the literature on the effects of
vaccine programs (see Hudgens and Halloran 2008). Here, additional causal effects of
interest using the potential outcome framework have been defined, conditional on the
overall pattern of treatment assignment:

The indirect effect of a vaccination program or strategy on an individual
is the difference between what the outcome is in the individual not being
vaccinated in a community with the vaccination program and what the
outcome would have been in the individual, again not being vaccinated,
but in a comparable community with no vaccination program. It is, then,
the effect of the vaccination program on an individual who was not vacci-
nated. The combined total effect in an individual of being vaccinated and
the vaccination program in the community is the difference between the
outcome in the individual being vaccinated in a community with the vacci-
nation program and what the outcome would be if the individual were not
vaccinated and the community did not have the vaccination program. The
total effect, then, is the effect of the vaccination program combined with
the effect of the person having been vaccinated. The overall effect of a vac-
cination program is the difference in the outcome in an average individual

15As reviewed by Schofield (1995) and noted in Clotfelter (2004), most scholars now accept that
the evidence suggests that black students who were bused to predominantly white schools experi-
enced small positive reading gains but no substantial mathematics gains. Cook and Evans (2000:792)
conclude that “it is unlikely that efforts at integrating schools have been an important part of the
convergence in academic performance [between whites and blacks], at least since the early 1970s” (see
also Armor 1995; Rossell, Armor, and Walberg 2002). Even so, others have argued that the focus
on test score gains has obscured some of the true effectiveness of desegregation. In a review of these
longer-term effects, Wells and Crain (1994:552) conclude that “interracial contact in elementary and
secondary school can help blacks overcome perpetual segregation.”
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in a community with the vaccination program compared to an average indi-
vidual in a comparable population with no vaccination program. (Halloran,
Longini, and Struchiner 2010:272; italics in the original)

Effectively estimating these types of effects generally requires a nested randomization
structure, wherein (1) vaccine programs are randomly assigned to a subset of par-
ticipating groups and then (2) vaccinations are randomly given to individuals within
groups enrolled in vaccine programs. These particular study designs are not possible
for most social science applications, but the basic interpretive framework has been
adopted to clarify what can be learned from social experiments, in particular, the
Moving to Opportunity neighborhood experiment (see Sobel 2006).16

Much observational research on social influence patterns proceeds without consid-
eration of these sorts of complications. Consider the contentious literature on whether
peer effects have accelerated the obesity epidemic, as presented in Section 1.3 (see
page 26). As we noted there, the basic claim of Christakis and Fowler (2007) is that
having a friend who becomes obese increases one’s own odds of becoming obese. Yet,
their full set of claims is substantially more detailed, suggesting that these peer effects
travel across network paths of length three before dying out. In particular, one’s odds
of becoming obese also increase if friends of friends become obese and if friends of
friends of friends become obese. The sizes of these three effects diminish with the
length of friendship distance.

Now consider whether SUTVA is reasonable for such a schedule of effects across
network ties. Holding the social network structure fixed, if obesity increases in the
population, then, on average, individuals have more obese friends, more obese friends of
friends, and more obese friends of friends of friends. Most theoretical predictions would
suggest that the effects on one’s own odds of becoming obese that result from having
friends of friends of friends who become obese should decline with the proportion of
one’s own friends who are already obese or who have just become obese.17 Effects
that cascade in these conditional ways, because they are defined across a pattern of
interpersonal contact between units, nearly always violate SUTVA.18

16Suitable models for observational data are an active frontier of research (see Hong and Raudenbush
2013; Manski 2013a). Tchetgen Tchetgen and VanderWeele (2010) show that some estimators may
be effective for applications with observational data if all relevant patterns of treatment assignment
(i.e., d) can be attributed to measured treatment-level variables.

17This means that, even if the issues raised by critics on the severity of homophily bias are invalid
(see VanderWeele 2011b for a convincing case that they have been exaggerated), the pattern of effects
only holds under the prevalence of obesity in the data analyzed, which is the pattern of obesity in
Framingham, Massachusetts, among adults born in 1948 for whom data was collected between 1971
and 1999 (and for a social network structure elicited by an unconventional name generator). The
overall pattern of declining effects may be valid, but the relation of the various lagged regression
coefficients offered to well-defined causal effects of general interest may be rather thin.

18When we have conveyed this point to network analysis researchers, a common reaction is that the
potential outcome model must not, therefore, be suitable for studying causal effects that propagate
across networks. The logic of this position eludes us for two reasons. First, the potential outcome
model cannot be deemed inappropriate because it makes clear how hard it is to define and estimate
the effects that analysts claim that they wish to estimate. Second, the potential outcome model can
accommodate SUTVA violations, although not without considerable additional effort. Weihua An
(2013) demonstrates the value of counterfactual thinking for modeling peer effects, fully embedded
within a social network perspective (see also VanderWeele and An 2013).
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2.6 Treatment Assignment and Observational

Studies

A researcher who wishes to estimate the effect of a treatment that he or she can con-
trol on an outcome of interest typically designs an experiment in which subjects are
randomly assigned to alternative treatment and control groups. Other types of exper-
iments are possible, as we described in Chapter 1, but randomized experiments are
the most common research design when researchers have control over the assignment
of the treatment.

After randomization of the treatment, the experiment is run, and the values of the
observed outcome, yi, are recorded for those in the treatment group and for those in
the control group. The mean difference in the observed outcomes across the two groups
is then anointed the estimated average causal effect, and discussion (and any ensuing
debate) then moves on to the particular features of the experimental protocol and the
degree to which the pool of study participants reflects the population of interest for
which one would wish to know the average treatment effect.

Consider this randomization research design with reference to the underlying poten-
tial outcomes defined earlier. For randomized experiments, the treatment indicator
variable D is forced by design to be independent of the potential outcome variables
Y 1 and Y 0. (However, for any single experiment with a finite set of subjects, the
values of di will be related to the values of y1i and y0i because of chance variability.)
Knowing whether or not a subject is assigned to the treatment group in a randomized
experiment yields no information whatsoever about a subject’s what-if outcome under
the treatment state, y1i , or, equivalently, about a subject’s what-if outcome under the
control state, y0i . Treatment status is therefore independent of the potential outcomes,
and the treatment assignment mechanism is said to be ignorable.19 This independence
assumption is usually written as

(Y 0,Y 1)⊥⊥ D, (2.6)

where the symbol ⊥⊥ denotes independence and where the parentheses enclosing Y 0

and Y 1 stipulate that D must be jointly independent of all functions of the potential
outcomes (such as δ). For a properly run randomized experiment, learning the treat-
ment to which a subject has been exposed gives no information whatsoever about the
size of the treatment effect.

This way of thinking about randomized experiments and potential outcomes can
be confusing to social scientists who work primarily with observational data. The
independence relationships represented by Equation (2.6) seem to imply that even
a well-designed randomized experiment cannot tell us about the causal effect of the
treatment on the outcome of interest. But, of course, this is not so, because Equation
(2.6) does not imply that D is independent of Y . Equation (2.6) implies only that in
the full population, ex ante to any pattern of treatment assignment, D is independent
of Y 0, Y 1, and any causal effects defined from them. Only after a study is undertaken

19As we will discuss in detail in later chapters, the word “ignorability” has a very specific meaning
that is broader than implied in this paragraph. In short, ignorability also holds in the weaker situation
in which S is a set of observed variables that characterize treatment assignment patterns and in
which (Y 0,Y 1) ⊥⊥ D | S. Thus, treatment assignment is ignorable when the potential outcomes are
independent of D, conditional on S.
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do values for Y emerge, from Y =DY 1 +(1−D)Y 0 in Equation (2.2). If individuals
are randomly assigned to both the treatment and the control states, and individual
causal effects are nonzero, then Y and D will be dependent because the average value
of DY 1 will not be equal to the average value of (1−D)Y 0.

Now consider the additional challenges posed by observational data analysis. These
challenges to causal inference are the defining features of an observational study,
according to Rosenbaum (2002:vii):

An observational study is an empiric investigation of treatments, policies,
or exposures and the effects they cause, but it differs from an experiment
in that the investigator cannot control the assignment of treatments to
subjects.20 (Italics in the original)

Observational data analysis in the counterfactual tradition is thus defined by a lack
of control over the treatment – and often more narrowly by the infeasibility of ran-
domization designs that allow for the straightforward maintenance of the independence
assumption in Equation (2.6). An observational researcher, hoping to estimate a causal

effect, begins with observed data in the form of values {yi,di}Ni for an observed out-
come variable, Y , and a treatment status variable, D. To determine the causal of effect
ofD on Y , the first step in analysis is to investigate the treatment selection mechanism.
Notice the switch in language from assignment to selection. Because observational data
analysis is defined as empirical inquiry in which the researcher does not have the capac-
ity to assign individuals to treatments (or, as Rosenbaum states equivalently, to assign
treatments to individuals), researchers must instead investigate how individuals are
selected into alternative treatment states.

And herein lies the challenge of much scholarship in the social sciences. Although
some of the process by which individuals select alternative treatments can be examined
empirically, a full accounting of treatment selection is sometimes impossible (e.g., if
subjects are motivated to select on the causal effect itself and a researcher does not
have a valid measure of the expectations that determine their choices). As much as
this challenge may be depressing to a dispassionate policy designer/evaluator, this
predicament should not be depressing for social scientists in general. On the contrary,
our existential justification rests on the pervasive need to deduce theoretically from a
set of basic principles or infer from experience and knowledge of related studies the set
of defendable assumptions about the missing components of the treatment selection
mechanism. Only through such effort can it be determined whether causal analysis
can proceed or whether further data collection and preliminary theoretical analysis
are necessary.

2.7 Average Causal Effects and Naive Estimation

The fundamental problem of causal inference requires that we focus on non–individual-
level causal effects, maintaining assumptions about treatment assignment and treat-
ment stability that will allow us to give causal interpretations to differences in average

20Note that Rosenbaum’s definition is consistent with the Cox and Reid definition quoted in Chapter
1 (see page 7).



2.7. Average Causal Effects and Naive Estimation 55

values of observed outcomes. In the remainder of this chapter, we define average treat-
ment effects of varying sorts and then lay out the complications of estimating them.
In particular, we consider how average treatment effects vary across those who receive
the treatment and those who do not.

2.7.1 Conditional Average Treatment Effects

The unconditional average treatment effect, which is typically labeled the ATE in
the counterfactual tradition, was defined in Equation (2.3) as E[δ] =E[Y 1−Y 0]. This
average effect is the most common subject of investigation in the social sciences, and it
is the causal effect that is closest to the sorts of effects investigated in the broad foun-
dational examples introduced in Section 1.3.1, such as the effects of family background
and mental ability on educational attainment, the effects of educational attainment
and mental ability on earnings, and the effects of socioeconomic status on political
participation. More narrowly defined average causal effects are of interest as well in
virtually all of the other examples introduced in Chapter 1.

Two conditional average treatment effects are of particular interest. The average
treatment effect for those who typically take the treatment is

E[δ|D=1]=E[Y 1−Y 0|D=1] (2.7)

=E[Y 1|D=1]−E[Y 0|D=1],

and the average treatment effect for those who typically do not take the treatment is

E[δ|D=0]=E[Y 1−Y 0|D=0] (2.8)

=E[Y 1|D=0]−E[Y 0|D=0],

where, as for the ATE in Equation (2.3), the second line of each definition follows
from the linearity of the expectation operator. These two conditional average causal
effects are often referred to by the acronyms ATT and ATC, which signify the average
treatment effect for the treated and the average treatment effect for the controls,
respectively.

Consider the examples again. For the Catholic school example, the ATT is the
average effect of Catholic schooling on the achievement of those who typically attend
Catholic schools rather than across all students who could potentially attend Catholic
schools. The difference between the ATE and the ATT can also be understood with
reference to individuals. From this perspective, the average treatment effect in Equa-
tion (2.3) is the expected what-if difference in achievement that would be observed if
we could educate a randomly selected student in both a public school and a Catholic
school. In contrast, the ATT in Equation (2.7) is the expected what-if difference in
achievement that would be observed if we could educate a randomly selected Catholic
school student in both a public school and a Catholic school.

For this example, the ATT is a theoretically important quantity, for if there is no
Catholic school effect for Catholic school students, then most reasonable theoretical
arguments would maintain that it is unlikely that there would be a Catholic school
effect for students who typically attend public schools (at least after adjustments for
observable differences between Catholic and public school students). And, if policy
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interest were focused on whether or not Catholic schooling is beneficial for Catholic
school students (and thus whether public support of transportation to Catholic schools
is a benevolent government expenditure, etc.), then the Catholic school effect for
Catholic school students is the only quantity we would want to estimate. The ATC
would be of interest as well if the goal of analysis is ultimately to determine the effect
of a potential policy intervention, such as a new school voucher program, designed to
move more students out of public schools and into Catholic schools. In fact, an even
narrower conditional average treatment effect might be of interest: E[δ|D = 0, Cur-
rentSchool = Struggling], where of course the definition of being currently educated
in a struggling school would have to be clearly specified.

The worker training example is similar, in that the subject of first investigation
is surely the ATT (as discussed in detail in Heckman et al. 1999). If a cost-benefit
analysis of a program is desired, then a comparison of the aggregate net benefits for
the treated to the overall costs of the program to the funders is needed. The treatment
effect for other potential enrollees in the treatment program could be of interest as
well, but this effect is secondary (and may be impossible to estimate for groups of
individuals completely unlike those who have enrolled in the program in the past).

The butterfly ballot example is somewhat different. Here, the treatment effect of
interest is bound by a narrow question that was shaped by media attention. The
investigators were interested only in what actually happened in the 2000 election, and
they focused very narrowly on whether the effect of having had a butterfly ballot
rather than an optical scan ballot caused some individuals to miscast their votes.
And, in fact, they were most interested in narrow subsets of the treated, for whom
specific assumptions were more easily asserted and defended (e.g., those who voted
for Democrats in all other races on the ballot but who voted for Pat Buchanan or Al
Gore for president). In this case, the ATC, and hence the all-encompassing ATE, was
of little interest to the investigators (or to the contestants and the media).

As these examples demonstrate, more specific average causal effects (or more gen-
eral properties of the distribution of causal effects) are often of greater interest than
simply the average causal effect in the population. In this book, we will focus mostly
on the three types of average causal effects represented by Equations (2.3), (2.7), and
(2.8), as well as simple conditional variants of them. But, especially when presenting
instrumental variable estimators later and discussing general heterogeneity issues, we
will also focus on more narrowly defined causal effects. Heckman (2000), Manski (1995),
and Rosenbaum (2002) all give full discussions of the variety of causal effects that may
be relevant for different types of applications, such as quantiles of the distribution of
individual-level causal effects in subpopulations of interest and the probability that the
individual-level causal effect is greater than zero among the treated (see also Heckman,
Smith, and Clements 1997).

2.7.2 Naive Estimation of Average Treatment Effects

Suppose again that randomization of the treatment is infeasible and thus that only
an observational study is possible. Instead, an autonomous fixed treatment selection
regime prevails, where π is the proportion of the population of interest that takes
the treatment instead of the control. In this scenario, the value of π is fixed in the
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population by the behavior of individuals, and it is unknown. Suppose further that we
have observed survey data from a relatively large random sample of the population of
interest.

Because we are now shifting from the population to data generated from a random
sample of the population, we must use appropriate notation to distinguish sample-
based quantities from the population-based quantities that we have considered until
now. For the sample expectation of a quantity in a sample of size N , we will use a
subscript on the expectation operator, as in EN [.]. With this notation, EN [di] is the
sample mean of the dummy treatment variable, EN [yi|di = 1] is the sample mean of
the outcome for those observed in the treatment group, and EN [yi|di=0] is the sample
mean of the outcome for those observed in the control group.21 The naive estimator
is then defined as

δ̂NAIVE ≡EN [yi|di =1]−EN [yi|di =0], (2.9)

which is simply the difference in the sample means of the observed outcome variable
Y for the observed treatment and control groups.

In observational studies, the naive estimator rarely yields consistent or unbiased
estimates of the ATE because it converges to a contrast, E[Y |D = 1]−E[Y |D = 0],
that is not equivalent to (and usually not equal to) any of the average causal effects
defined above. To see why, first decompose the ATE in Equation (2.3) as

E[δ] = {πE[Y 1|D=1]+(1−π)E[Y 1|D=0]} (2.10)

−{πE[Y 0|D=1]+(1−π)E[Y 0|D=0]}.
Equation (2.10) reveals that the ATE is a function of five unknowns: the proportion of
the population that is assigned to (or self-selects into) the treatment along with four
conditional expectations of the potential outcomes.

With observational data from a random sample of the population and without
introducing additional assumptions, we can compute estimates that are consistent
and unbiased for only three of the five unknowns on the right-hand side of Equation
(2.10). Consider π first, which we have defined as equal to E[D], and which is the
fixed proportion of the population that would be assigned to (or would select into) the
treatment. The sample-mean estimator, EN [di], is consistent for π, which we write as

EN [di]
p−→π. (2.11)

Equation (2.11) represents the claim that, as the sample sizeN increases to infinity, the
sample mean of the values for di converges to the true value of π, which we assume is

a fixed population parameter equal exactly to E[D].22 Thus, the notation
p−→ denotes

convergence in probability for a sequence of estimates over a set of samples where the
sample size N is increasing to infinity. (Estimators with this property are defined as

21In other words, the subscript N serves the same basic notational function as an overbar on yi,
as in ȳi. We use this sub-N notation because it allows for greater clarity in aligning sample-level and
population-level conditional expectations for subsequent expressions.

22Again, see our appendix to this chapter on our assumed superpopulation model. We are implicitly
assuming that these sequences are well defined because conditions are such that the law of large
numbers is applicable.
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“consistent” in the statistical literature on estimation. We can also state that EN [di]
is unbiased for π because the expected value of EN [di] over repeated samples of size
N from the same population is equal to π as well. However, in this book we focus
primarily on the consistency of estimators.)23

We can offer similar claims for consistent estimators of two other unknowns in
Equation (2.10):

EN [yi|di =1]
p−→E[Y 1|D=1], (2.12)

EN [yi|di =0]
p−→E[Y 0|D=0], (2.13)

which indicate that the sample mean of the observed outcome in the treatment group
converges to the true average outcome under the treatment state for those in the
treatment group (and analogously for the control group and control state).

Unfortunately, however, there is no assumption-free way to compute consistent
or unbiased estimates of the two remaining unknowns in Equation (2.10): E[Y 1|D=
0] and E[Y 0|D = 1]. These are counterfactual conditional expectations: the average
outcome under the treatment for those in the control group and the average outcome
under the control for those in the treatment group. Without further assumptions, no
estimated quantity based on observed data from a random sample of the population of
interest would converge to the true values for these unknown counterfactual conditional
expectations. For the Catholic school example, these are the average achievement of
public school students if they had instead been educated in Catholic schools and the
average achievement of Catholic school students if they had instead been educated in
public schools.

2.7.3 The Typical Inconsistency and Bias of the
Naive Estimator

In the last section, we concluded that the naive estimator δ̂NAIVE, which is defined
as EN [yi|di = 1]−EN [yi|di = 0], converges to a contrast, E[Y 1|D= 1]−E[Y 0|D= 0],
that does not necessarily equal the ATE. In this section, we show why this contrast
can be uninformative about the causal effect of interest in an observational study
by analyzing the typical inconsistency and bias in the naive estimator as an esti-
mator of the ATE.24 Consider the following rearrangement of the decomposition in

23Nonetheless, we will often label estimators as “consistent and unbiased” when this is true, even
though we will not state the case for unbiasedness. On the one hand, estimators of fixed, finite
values in the population that are consistent are necessarily also asymptotically unbiased. On the
other hand, some consistent estimators are not unbiased in finite samples (most prominently, for this
book, the instrumental variable estimators that we will present in Chapter 9). As with the statistical
literature on point estimation, we typically interpret unbiasedness as a desirable property among the
consistent estimators that we will present. If an estimator is not consistent (i.e., is inconsistent), then
in practice there is little reason to further consider it (as unbiased, etc.), especially when invoking a
superpopulation perspective and assuming that a dataset for a large random sample is available.

24An important point of this literature is that the inconsistency and bias of an estimator is a function
of the target parameter that has been selected for analysis. Because there are many causal effects
that can be estimated, general statements about the inconsistency and bias of particular estimators
are always conditional on a clear indication of the causal effect of interest.
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Equation (2.10):

E[Y 1|D=1]−E[Y 0|D=0]=E[δ]+ {E[Y 0|D=1]−E[Y 0|D=0]} (2.14)

+ (1−π){E[δ|D=1]−E[δ|D=0]}.
The naive estimator converges to the difference on the left-hand side of this equa-
tion, and the right-hand side shows that this difference is equal to the true ATE,
E[δ], plus the expectations of two potential sources of inconsistency and bias in
the naive estimator.25 The first source, {E[Y 0|D = 1]−E[Y 0|D = 0]}, is a baseline
bias equal to the difference in the expected outcome in the absence of the treat-
ment between those in the treatment group and those in the control group. The sec-
ond source, (1− π){E[δ|D = 1]−E[δ|D = 0]}, is a differential treatment effect bias
equal to the expected difference in the treatment effect between those in the treat-
ment group and those in the control group (multiplied by the proportion of the
population under the fixed treatment selection regime that does not select into the
treatment).

To clarify this decomposition, consider a substantive example – the effect of educa-
tion on an individual’s mental ability. Assume that the treatment is college attendance.
After administering a test to a group of young adults, we find that individuals who
have attended college score higher than individuals who have not attended college.
There are three possible reasons that we might observe this finding. First, attending
college might make individuals smarter on average. This effect is the ATE, represented
by E[δ] in Equations (2.3) and (2.14). Second, individuals who attend college might
have been been smarter in the first place. This source of inconsistency and bias is
the baseline difference represented by E[Y 0|D= 1]−E[Y 0|D= 0]. Third, the mental
ability of those who attend college may increase more than would the mental abil-
ity of those who did not attend college if they had instead attended college. This
source of inconsistency and bias is the differential effect of the treatment represented
by E[δ|D=1]−E[δ|D=0].

To further clarify the last term in the decomposition, consider the alternative hypo-
thetical example depicted in Table 2.3. Suppose, for context, that the potential out-
comes are now some form of labor market outcome, and that the treatment is whether
or not an individual has obtained a bachelor’s degree. Suppose further that 30 percent
of the population obtains a bachelor’s degree, such that π is equal to .3. As shown on
the main diagonal of Table 2.3, the average (or expected) potential outcome under the
treatment is 10 for those in the treatment group, and the average (or expected) poten-
tial outcome under the control for those in the control group is 5. Now, consider the
off-diagonal elements of the table, which represent the counterfactual average potential
outcomes. According to these values, those who have bachelor’s degrees would have
done better in the labor market than those without bachelor’s degrees in the counter-
factual state in which they did not in fact obtain bachelor’s degrees (i.e., on average
they would have received 6 instead of 5). Likewise, those who do not obtain bachelor’s

25The referenced rearrangement is simply a matter of algebra. Let E[δ] = e, E[Y 1|D = 1] = a,
E[Y 1|D=0] = b, E[Y 0|D=1]= c, and E[Y 0|D=0]= d so that Equation (2.10) can be written more
compactly as e= {πa+(1−π)b}−{πc+(1−π)d}. Rearranging this expression as a−d= e+a− b−
πa+πb+πc−πd then simplifies to a− d= e+ {c− d}+ {(1−π) [(a− c)− (b−d)]} . Substituting for
a, b, c, d, and e then yields Equation (2.14).
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Table 2.3 An Example of Inconsistency and
Bias of the Naive Estimator When the ATE Is
the Causal Effect of Interest

Group E[Y 1|D] E[Y 0|D]

Treatment group (D=1) 10 6

Control group (D=0) 8 5

degrees would not have done as well as those who did obtain bachelor’s degrees in the
counterfactual state in which they did in fact obtain bachelor’s degrees (i.e., on aver-
age they would have received 8 rather than 10). Accordingly, the ATT is 4, whereas
the ATC is only 3.26 Finally, if the proportion of the population that has a bachelor’s
degree is .3, then the ATE is 3.3, which is equal to .3(10−6)+ (1− .3)(8−5).

Consider now the inconsistency and bias of the naive estimator. For this exam-
ple, the naive estimator, as defined in Equation (2.9), would be equal to 5 for an
infinite sample (or equal to 5, on average, across repeated samples). Thus, the naive
estimator is inconsistent and upwardly biased for the ATE (i.e., yielding 5 rather
than 3.3), the ATT (i.e., yielding 5 rather than 4), and the ATC (i.e., yielding 5
rather than 3). Equation (2.14) gives the components of the total expected bias of
1.7 for the naive estimator as an estimate of the ATE. The term {E[Y 0|D = 1]−
E[Y 0|D=0]}, which we labeled the expected baseline bias, is 6−5=1. The term (1−
π){E[δ|D=1]−E[δ|D=0]}, which is the expected differential treatment effect bias, is
(1− .3)(4−3)= .7.27

2.7.4 Estimating Causal Effects Under Maintained
Assumptions About Potential Outcomes

What assumptions suffice to enable consistent and unbiased estimation of the ATE
with the naive estimator? There are two basic classes of assumptions: (1) assumptions
about potential outcomes for subsets of the population defined by treatment status
and (2) assumptions about the treatment assignment/selection process in relation to
the potential outcomes. These two types of assumptions are variants of each other, and
each may have a particular advantage in motivating analysis in a particular application.

In this section, we discuss only the first type of assumption, as it suffices for the
present examination of the fallibility of the naive estimator. And our point in introduc-
ing these assumptions is simply to explain in one final way why the naive estimator will
fail in most social science applications to generate a consistent and unbiased estimate
of the ATE when randomization of the treatment is infeasible.

26For the causal effect of education on earnings, there is debate in the recent literature on whether
the ATT is larger than the ATC. Cunha and Heckman (2007) and Carneiro, Heckman, and Vytlacil
(2011) offer results in support of this pattern, but Brand and Xie (2010) offer results in opposition
to it.

27In general, the size of this expected differential treatment effect bias declines as more of the
population is characterized by the ATT than by the ATC (i.e., as π approaches 1).
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Consider the following two assumptions:

Assumption 1: E[Y 1|D=1]=E[Y 1|D=0], (2.15)

Assumption 2: E[Y 0|D=1]=E[Y 0|D=0]. (2.16)

If one asserts these two equalities and then substitutes into Equation (2.10), the num-
ber of unknowns is reduced from the original five parameters to the three parameters
that we know from Equations (2.11)–(2.13) can be consistently estimated with data
generated from a random sample of the population. If both Assumptions 1 and 2
are maintained, then the ATE, ATT, and ATC in Equations (2.3), (2.7), and (2.8),
respectively, are all equal. And the naive estimator is consistent and unbiased for all
of them.

When would Assumptions 1 and 2 in Equations (2.15) and (2.16) be reasonable?
Clearly, if the independence of potential outcomes, as expressed in Equation (2.6), is
valid because the treatment has been randomly assigned, then Assumptions 1 and 2
in Equations (2.15) and (2.16) are implied. But, for observational data analysis, for
which random assignment is infeasible, these assumptions would rarely be justified.

Consider the Catholic school example. If one were willing to assume that those who
choose to attend Catholic schools do so for completely random reasons, then these two
assumptions could be asserted. We know from the applied literature that this char-
acterization of treatment selection is false. Nonetheless, one might be able to assert
instead a weaker narrative to warrant these two assumptions. One could maintain that
students and their parents make enrollment decisions based on tastes for an education
with a religious foundation and that this taste is unrelated to the two potential out-
comes, such that those with a taste for education with a religious foundation would
not be expected to score higher on math and reading tests if educated in Catholic
schools rather than public schools. This possibility also seems unlikely, in part because
it implies that those with a distaste for education with a religious foundation do not
attend Catholic schools. It seems reasonable to assume that these students would per-
form substantially worse in Catholic schools than the typical students who do attend
Catholic schools.

Thus, at least for the Catholic school example, there seems no way to justify the
naive estimator as a consistent and unbiased estimator of the ATE. We encourage the
reader to consider all of the examples presented in Chapter 1, and we suspect that all
will agree that Assumptions 1 and 2 in Equations (2.15) and (2.16) cannot both be
sustained for any of them.

Finally, it is important to recognize that assumptions such as these can be evaluated
separately. Consider the two relevant cases for Assumptions 1 and 2:

1. If Assumption 1 is true but Assumption 2 is not, then E[Y 1|D = 1] = E[Y 1|
D = 0], whereas E[Y 0|D = 1] �= E[Y 0|D = 0]. In this case, the naive estimator
remains inconsistent and biased for the ATE, but it is now consistent and unbi-
ased for the ATC. This result is true because of the same sort of substitution
we noted earlier. We know that the naive estimator EN [yi|di=1]−EN [yi|di=0]
converges to E[Y 1|D=1]−E[Y 0|D=0]. If Assumption 1 is true, then one can
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substitute E[Y 1|D=0] for E[Y 1|D=1]. Then, one can state that the naive esti-
mator converges to the contrast E[Y 1|D=0]−E[Y 0|D=0] when Assumption 1
is true. This contrast is defined in Equation (2.8) as the ATC.

2. If Assumption 2 is true but Assumption 1 is not, then E[Y 0|D=1]=E[Y 0|D=0],
whereas E[Y 1|D=1] �=E[Y 1|D=0]. The opposite result to the prior case follows.
One can substitute E[Y 0|D=1] for E[Y 0|D=0] in the contrast E[Y 1|D= 1]−
E[Y 0|D = 0]. Then, one can state that the naive estimator converges to the
contrast E[Y 1|D=1]−E[Y 0|D=1] when Assumption 2 is true. This contrast is
defined in Equation (2.7) as the ATT.

Considering the validity of Assumptions 1 and 2 separately shows that the naive esti-
mator may be inconsistent and biased for the ATE and yet may be consistent and
unbiased for either the ATT or the ATC. These possibilities can be important in prac-
tice. For some applications, it may be the case that we have good theoretical reason
to believe that (1) Assumption 2 is valid because those in the treatment group would,
on average, do no better or no worse in the counterfactual control state than those
in the control group, and (2) Assumption 1 is invalid because those in the control
group would not do nearly as well in the counterfactual treatment state as those in
the treatment group. Or, stated more simply, we may have good theoretical reason to
believe that the treatment is more effective for the treatment group than it would be
for the control group. Under this scenario, the naive estimator will deliver a consistent
and unbiased estimate of the ATT, even though it is still inconsistent and biased for
both the ATC and the unconditional ATE.

Now, return to the case in which neither Assumption 1 nor Assumption 2 is true. If
the naive estimator is therefore inconsistent and biased for the typical average causal
effects of interest, what can be done? The first recourse is to attempt to partition
the sample into subgroups within which assumptions such as Assumptions 1 and/or 2
can be defended. This strategy amounts to conditioning on one or more variables that
identify such strata and then asserting that the naive estimator is consistent and unbi-
ased within these strata for one of the average treatment effects. One can then average
estimates from these strata in a reasonable way to generate the average causal effect
estimate of interest. We will explain this strategy in great detail in subsequent chap-
ters. Next, we introduce over-time potential outcomes and then extend the framework
to many-valued causes.

2.8 Over-Time Potential Outcomes and

Causal Effects

Having shown in the last section that the cross-sectional naive estimator will rarely
deliver consistent and unbiased estimates of average causal effects of interest when
analyzing observational data, it is natural to then wonder whether observing individ-
uals across time and then estimating similar unconditional differences may be more
promising. We will take the position in this book that the power of over-time obser-
vation is considerable but that it is also too often oversold and misunderstood. In this
section, we lay out the basic potential outcome model when observations occur in more
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than one time period, moving from the case of a single individual or unit to multiple
individuals or units. We reserve our full treatment of the strengths and weaknesses of
alternative estimators using repeated observations for Chapter 11.

2.8.1 A Single Unit Over Time

Consider the analysis of a single unit, observed during time intervals indexed by a
discrete counter t that increases from 1 to T . The outcome variable is Yt, which has
observed values {y1,y2,y3,. . . ,yT }. Suppose that we have a two-state causal variable,
Dt, that is equal to 1 if the treatment is in place during a time period t and is equal
to 0 otherwise.

Because we are considering only one unit of analysis – possibly an individual but
more likely a school, organization, city, state, country, or other aggregate unit – we do
not have either a control group or a treatment group. Instead, we have a single unit
that is exposed to the treatment state and the control state at different points in time.
The fundamental problem/reality of causal inference now is that we cannot observe
the same unit at the same time in both the treatment state and the control state.

For an analysis of a single unit, it only makes sense to consider designs where we
have at least some pretreatment data and where the unit under consideration spends
at least one time period in the treatment state. In particular, we will label the time
period in which the treatment is initiated as t∗, and our restriction to situations in
which pretreatment data are available requires that 1 < t∗ ≤ T. We will allow the
treatment to persist for one or more time periods, from t∗ through t∗ + k, where
k≥ 0. Once the treatment ends, following t∗+k, we will not allow the treatment to be
reintroduced before the full observation window terminates at T .

We can set up the potential outcome model in the following way to capture the
basic features of before-and-after designs for a single unit of analysis:

1. Before the treatment is introduced (for t < t∗):28

Dt =0

Yt = Y 0
t

2. While the treatment is in place (from t∗ through t∗+k):

Dt =1

Yt = Y 1
t

Y 0
t exists but is counterfactual

28Although in theory counterfactual values Y 1
t exist in pretreatment time periods, these values are

not typically considered. If one were interested in asking what the treatment effect would have been if
the treatment had been introduced in an earlier time period, then these counterfactual values would
need to be introduced into the analysis.
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3. After the treatment ends (for time periods t > (t∗+k)):29

Dt =0

Yt = Y 1
t

Y 0
t exists but is counterfactual.

For a single unit, the causal effect of the treatment is

δt = Y 1
t −Y 0

t , (2.17)

and these effects may exist in more than one time period t, depending on the duration of
the treatment and whether the treatment is assumed to be a reversible treatment state
or a permanent change that cannot be undone. Studies are often unclear on maintained
assumptions such as these, as well as on the distinctions between time periods of types
2 and 3. Our setup is very general and can accommodate many alternative types of
studies with only minor modifications, including those for which time periods of types
2 or 3 are unobserved.30 Because such assumptions and design features will always be
application-specific, we offer a worked example next.

The Year of the Fire Horse

For a concrete example that reveals the possible power of over-time analysis for a single
unit, consider a variant of the demography example on the determinants of fertility
introduced in Section 1.3 (see page 17). In addition to the individual-level effects of
family background and other life course events on fertility decisions, the causal effects
of religion, values, and more general cultural beliefs have been of long-standing interest
as well (see Mayer and Marx 1957; Westoff and Jones 1979; Hayford and Morgan 2008;
Thornton, Binstock, Yount et al. 2012).

Suppose that the unit of analysis is the birth rate in a single country, estimated from
aggregate census data and vital statistics. The example we will consider is presented
in Figure 2.1, which displays birth rates in Japan between 1951 and 1980. Following
a post-war baby boom, birth rates in Japan were comparatively stable from the late
1950s through the early 1960s. However, in 1966, the birth rate fell precipitously,
after which it rebounded in 1967 and then stabilized. From the 1970s onward, Japan’s
birth rate then resumed its decline, as its population aged and it continued with its
demographic transition to a low mortality and low fertility country, as discussed in
general in Chapter 1.31

29Below we will consider an example where k ≤ (T − t∗), but we do not mean to imply that the
treatment cannot remain in place after the observation window ends at T . In fact, we place no upper
bound on values for k. If (t∗ +k)>T , then none of the time periods of type 3 are observed.

30In some applications, the treatment is stipulated to occur between observation intervals. In these
cases, time periods of type 2 are assumed to be unobserved. Typically, in this case Dt is assumed to
be equal to 1 for at least the first time period of type 3 in order to indicate that the treatment was
initiated in the unobserved time periods of type 2. Others studies imply that t∗+k=T , such that the
treatment is present through the full posttreatment observation window. In these cases, time periods
of type 3 are unobserved.

31For a comprehensive consideration of the post-1973 “baby bust” in Japan, see Retherford and
Ogawa (2006).
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One could ask many causal questions about the trend in Japan’s birth rate in
Figure 2.1, but the natural first question is, What caused the dramatic decline in the
birth rate in 1966? The demographic consensus is the following. Every 60 years, two
cycles within the Asian zodiac calendar – one over twelve animals and one over five
elements – generate a year of the “fire horse.” A folk belief exists that families who
give birth to babies designated as fire horses will suffer untold miseries, particularly
so if the baby is a girl. Enough couples supposedly held this belief in the years around
1966 that they adjusted their fertility behavior accordingly (see Hodge and Ogawa
1991).

In their discussion of causal analysis in demography, Nı́ Bhrolcháin and Dyson
(2007:8) consider this example and write that “demographers naturally interpret this
event in a causal way, without worrying about the formalities of causal inference.”
Although we agree that the assertion of a fire-horse causal effect on Japanese birth
rates in 1966 does not require a formal treatment to convince most demographers,
we will nonetheless use this example to demonstrate an over-time analysis of a causal
effect for a single unit of analysis.

The first issue to consider is measurement of the outcome. The outcome for
Figure 2.1 is known as the crude birth rate, which is the number of live births per
1,000 persons alive in the same year. A more refined outcome could be constructed,
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Figure 2.1 Crude birth rates in Japan, 1951–1980.
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standardizing for cohort sizes of women of childbearing age. An analogous drop in
standardized birth rates would still be present for 1966.32

What are the causal states that generate the seemingly obvious causal effect? At
the individual level, the causal states could be quite specific (“believing that having a
fire-horse baby is less desirable than having a baby in another year”) or considerably
more broad (“believing in the relevance of zodiac calendars”). For our purposes here,
the particular individual-level causal states do not matter because the causal states
are at the national level for this analysis. The states are “fire-horse year in the zodiac
calendar” and “not,” and they are aligned, not with observed treatment and control
groups, but with the observed years,D1966=1 versusDt�=1966=0. In the year 1966, the
treatment generates two corresponding potential outcome variables, Y 1

1966 and Y 0
1966,

which define the effect of interest for the birth rate in Japan in 1966:

δ1966 = y11966− y01966.

We can estimate this effect as

δ̂1966 = y1966− ŷ01966

=13.7− ŷ01966.

The estimate δ̂1966 is the observed birth rate in 1966, 13.7, minus an estimate of the
counterfactual birth rate, ŷ01966, that would have been observed if 1966 had not been
the year of the fire horse.

What is a reasonable estimated value for the true counterfactual outcome, y01966?
How about 18.6, which is the birth rate for 1965? Nı́ Bhrolcháin and Dyson (2007:30)
reason that “some births that might have taken place in 1966 were transferred – either
in fact, or via the year of occurrence reported by the parents at the time of registration
– to the adjacent years.” Such a possibility is evident in 1965, where the birth rate
appears elevated in comparison to prior years. In fact, the birth rate appears to be
slightly higher in 1964 as well, relative to the prevailing trend in the early 1960s. What
about the value for 1967, 19.4? Again, the birth rate appears to be higher here too,
and possibly again in 1968. Following Nı́ Bhrolcháin and Dyson’s reasoning (and also
Hodge and Ogawa 1991), these higher rates in 1964, 1965, 1967, and 1968 could be
present because parents were especially eager to have children before or after the year
of the fire horse and adjusted their behavior accordingly. Given the uncertainties of
conception, at least some of these parents started their avoidance early or failed to
conceive a child until after the year of the fire horse.

In our experience discussing this example with other researchers, most will settle on
the average of the two values for 1963 and 1969, (17.3+18.5)/2=17.9, as a reasonable
estimate of the counterfactual value, y01966. The result of such a choice is an estimated
causal effect,

δ̂1966 =13.7− 17.9=−4.2,
32At least some of the overall downward trend would disappear because the trend in Figure 2.1

is produced in part by the aging of the population (which itself is a function of the return to peace
following World War II and continuing declines in mortality). Hodge and Ogawa (1991) document
these trends and consider alternative adjustments for other demographic trajectories.
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that implies a decline in the crude birth rate of 31 percent. At the individual level,
and ignoring rates of twins and so on, this estimate suggests that nearly 1 out of 3
mothers who would have given birth in 1966 did not do so because 1966 was the year
of the fire horse. Notice also that, in selecting the average of the birth rates in 1963
and 1969 as the most reasonable estimate of the counterfactual value, one is thereby
assuming positive fire-horse-year effects in 1964, 1965, 1967, and 1968, which were
non–fire-horse years. As a result, in order to estimate the overall effect of the year
of the fire horse on the population structure of Japan, as determined by the year-by-
year evolution of what is known as the total fertility rate, one would need to model
and then appropriately combine five year-specific effects, δ1964 through δ1968, based on
additional corresponding treatment states for the specific years.

Now consider what has been learned and what has not. Visual inspection of Figure
2.1 is probably convincing on its own that something causal happened in 1966 that
altered birth rates in Japan. However, the specific explanation that is accepted in
demography is based on substantive knowledge of Asian zodiac calendars, as well as
cultural beliefs based upon them that were sufficiently widespread in 1966. The over-
time design did not generate this knowledge, even though it provided the incentive to
uncover it.

Has anything deeper been learned from this effect? Certainly the effect supports
the more general conclusion that cultural beliefs have been a cause of fertility decisions
in Japan in the past. This conclusion may then further bolster the overall perspective
in empirical demography that fertility decisions across the world are likely shaped by
cultural beliefs and cannot be reduced to a cold rational calculus of the direct costs
and psychic benefits of producing offspring.

With a little extra work, we have been able to generate the reasonable estimate
that the effect in 1966 was a reduction of the birth rate of 31 percent, and we also
took the position that there were very likely positive near-fire-horse-year effects in
the two years on either side of 1966. Notwithstanding these successes, our analysis
yields no information on which types of couples changed their fertility behavior. The
relevance of the zodiac calendar surely varies across couples in nonrandom ways, and
such patterns would be useful to know in order to develop additional perspective on
the broader consequences of the effect. We have also not learned how many women,
or which women, had fewer children or instead simply had children who were one or
two years younger or older than they would have been if their children had been born
in 1966.

We will return to this type of example in Chapter 11, where we will consider the
deeper modeling issues that accompany the estimation of these types of effects. Often
referred to as interrupted time series (ITS) designs, there are formal time series analysis
procedures for generating best estimates of counterfactual values, and these may be
easier to defend than our ad hoc choice of 17.9 as the most reasonable estimate of
the crucial counterfactual value that determines the size of the casual effect. As we
will discuss in detail in Chapter 11, the main weakness of these designs is their rarity.
In the observational social sciences, few examples are as clear-cut as the year of the
fire horse. More commonly, the causal shocks to outcomes unfolding over time are less
dramatic, and, as a result, they are more difficult to separate from underlying trends.
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Notice also that we have chosen in this section an aggregate unit – a country – as
our example of the analysis of a causal effect for a “single unit.” In part, this decision
reflects our position on what can be learned by studying individuals in isolation. Surely
there are genuine individual-level causal effects, some of which can be discerned from
examining the lives of particular individuals over time. The challenge is what in general
can be learned from documenting such apparent effects, and whether analyses can be
strengthened by considering individuals in groups, especially in representative samples.
This is the focus of our next section, where we introduce the potential outcome model
for many units over time.

2.8.2 Many Units Over Time

Suppose now that we have a collection of individuals observed at multiple points in
time. Generally referred to as panel data or longitudinal data, outcomes and causes now
vary over both individuals and time. Consider two examples. First, researchers who
study the charter school effect often have access to samples of students observed over
multiple grades in both charter schools and regular public schools. Second, researchers
who study the effects of father absence that results from divorce typically have access
to data from random samples of families. These data often include measures of child
development outcomes before and after the divorce that triggers father absence.

We will now extend the potential outcome framework to consider the estimation of
causal effects with such over-time data on samples of individuals. In earlier sections of
this chapter, we dropped subscripting on i for brevity when discussing causal effects.
For this section, in which we must deal now with some quantities that vary only
over individuals, others that vary only over time, and others that vary over both, we
subscript with i for individuals and with t for time. For a two-state cause, the potential
outcome variables are Y 1

it , Y
0
it , and the observed variables are Dit and Yit.

33 As in the
last section, we will allow the observation window to run from t= 1 to T . Unlike the
last section, we will not utilize notation for a focal time interval, t∗, in which the
treatment is introduced. Here, we want to preserve the possibility that the treatment
is introduced at different times for different individuals.

We will also now distinguish between two different treatment indicator variables.
Dit is a time-varying variable that indicates whether individual i receives the treatment
in time period t. In contrast, D∗

i is a time-constant variable that indicates whether
individual i ever receives the treatment at any point in time during the observation
window of the study (i.e., in any time period from t= 1 to T ). Dit is best thought
of as a treatment exposure indicator, and D∗

i is best thought of as a treatment group
indicator.

The setup for the potential outcome model with panel data follows directly from
these definitions. For members of the control group, Yit=Y 0

it for all time periods t. For
members of the treatment group, Yit = Y 0

it before treatment exposure, and Yit = Y 1
it

33In some cases, the subscripting is redundant. For example, in Sections 2.4 and 2.7, we represented
the causal effect as δ, recognizing that this effect can vary over individuals. In this section, we will
represent the individual-level causal effect always as δi, so that it is clear that in this form we are
assuming that it does not vary with time. For a time-varying causal effect, we would instead need to
subscript it as δit.
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after treatment exposure begins. Altogether, Yit is defined with reference to Dit, such
that

Yit =DitY
1
it +(1−Dit)Y

0
it , (2.18)

where Dit remains equal to 0 over time for all members of the control group (D∗
i =0)

but varies between 0 and 1 for all members of the treatment group (D∗
i =1).

Consider a concrete application of this notation using both the treatment exposure
indicator and the treatment group indicator. If no one is exposed to the treatment in
time period t= 1 or t=2, then Di1 = 0, Di2 =0, Yi1 = Y 0

i1, and Yi2 = Y 0
i2 for those in

the control group (D∗
i =0) and for those in the treatment group (D∗

i =1). But, if the
treatment is then introduced to all members of the treatment group in time period
t= 3, then the values of Dit and Yit diverge across the treatment and control groups
in time period 3. Now, for those in the control group (D∗

i =0), Di3 =0 and Yi3 = Y 0
i3.

But, for those in the treatment group (D∗
i =1), Di3 =1 and Yi3 = Y 1

i3.
The distinction between Dit and D∗

i reveals the potential value of panel data. For a
cross-sectional study in which all observation occurs in a single time period, Dit =D∗

i .
However, a panel dataset over multiple time periods allows a researcher to consider
how treatment exposure (Dit) can be separated from treatment group membership
(D∗

i ) and then exploit this difference to estimate the causal effect. Consider two types
of analysis.

First, when individuals receive the treatment at different times or do not receive
the treatment at all, it is possible to observe how Y 0

it changes over time for some
individuals after others have received the treatment. As a result, it may be possible to
make reasonable predictions about how Y 0

it would have evolved over time for individuals
in the treatment group during the posttreatment time period. If predictions of these
counterfactual trajectories are reasonable, inferences about the causal effect of the
treatment, δit, in time period t, can be made by comparison of the observed Yit in time
period t for those who are treated (D∗

i = 1) with predictions of their corresponding
counterfactual values of Y 0

it in time period t. The crux of the matter, of course, is how
to use observed values of Yit = Y 0

it in time period t among those in the control group
(D∗

i =0) to make reasonable predictions about posttreatment counterfactual values of
Y 0
it for those in the treatment group (D∗

i =1).
Second, in situations where it is reasonable to assume that E[Y 0

it ] is evolving in
parallel fashion across the treatment and control groups and that treatment assignment
is unrelated to the values of the outcome prior to the treatment, it is possible to
estimate the ATT by offering a model that (1) calculates the average difference in the
outcome in the treatment group between the pretreatment and posttreatment time
periods and (2) subtracts from this difference the average difference in the outcome
for the control group between the same two time periods.34 In this case, the most
important issue to consider is whether it is reasonable to assume parallel trajectories
and that treatment assignment is unrelated to pretreatment values of the outcome.
The latter assumption would be unreasonable if individuals with comparatively low
or comparatively high values of the pretreatment outcome, net of other determinants

34Moreover, if it is reasonable to assume that self-selection on the causal effect is absent, then
the ATT is equal to the ATE and ATC. A consistent and unbiased estimate of the ATT from a
difference-based estimator is then also consistent and unbiased for both the ATE and ATC.
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of the outcome, select into the treatment, either under the assumption that they are
especially suited to the treatment because of their recent strong performance or that
they are especially in need of the treatment because of their recent weak performance.

We will discuss a variety of panel data estimation strategies in Chapter 11, but we
want to foreshadow two basic conclusions here to temper the optimism that many may
feel after considering our prior two paragraphs. First, panel data estimators based only
on posttreatment observations do not usually improve on the cross-sectional estimators
we will present in this book. In our experience, analysts are often too sanguine about
the clarifying power of observing the evolution of outcome variables for those who
are always observed under exposure to the treatment of interest (e.g., students always
enrolled in Catholic high schools relative to students always enrolled in public high
schools, with no data on either group available prior to high school). Second, one needs
data from multiple pretreatment time periods and/or very well-developed theory to
justify required assumptions before the gains to panel data are clear, especially given
the other ancillary patterns, such as panel attrition, that must also often be modeled.

2.9 The Potential Outcome Model for Many-Valued

Treatments

So far in this chapter, we have focused our presentation of the potential outcome
model on binary causal variables, conceptualized as dichotomous variables that indi-
cate whether individuals are observed in treatment and control states. As we show
in this section, the counterfactual framework can be used to analyze causal variables
with more than two categories.

Consider the more general setup, in which we replace the two-valued causal expo-
sure variable, D, and the two potential outcomes Y 1 and Y 0 with

1. a set of J treatment states,

2. a corresponding set of J causal exposure dummy variables, {Dj}Jj=1, and

3. a corresponding set of J potential outcome random variables, {Y Dj}Jj=1.

Each individual receives only one treatment, which we denote Dj′. Accordingly, the
observed outcome variable for individual i, yi, is then equal to yDj′

i . For the other
J −1 treatments, the potential outcomes of individual i exist in theory as J −1 other
potential outcomes yDj

i for j �= j′, but they are counterfactual.
Consider the fundamental problem of causal inference for many-valued treatments

presented in Table 2.4 (which is simply an expansion of Table 2.1 to many-valued
treatments). Groups exposed to alternative treatments are represented by rows with,
for example, those who take treatment D2 in the second row. For a binary treatment,
we showed earlier that the observed variable Y contains exactly half of the informa-
tion contained in the underlying potential outcome random variables. In general,
for a treatment with J values, Table 2.4 shows that the observed outcome variable
Y contains only 1/J of the total amount of information contained in the underlying
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Table 2.4 The Fundamental Problem of Causal Inference for
Many-Valued Treatments

Group Y D1 Y D2 · · · Y DJ

Takes D1 Observable as Y Counterfactual · · · Counterfactual

Takes D2 Counterfactual Observable as Y · · · Counterfactual
...

...
...

. . .
...

Takes DJ Counterfactual Counterfactual · · · Observable as Y

potential outcome random variables. Thus, the proportion of unknown and inherently
unobservable information increases as the number of treatment values, J , increases.

For an experimentalist, this decline in the relative amount of information in Y is rel-
atively unproblematic. Consider an example in which a researcher wishes to know the
relative effectiveness of three pain relievers for curing headaches. The four treatments
are “Take nothing,” “Take aspirin,” “Take ibuprofen,” and “Take acetaminophen.”
Suppose that the researcher rules out an observational study, in part because individ-
uals have constrained choices (i.e., pregnant women may take acetaminophen but may
not take ibuprofen; many individuals take a daily aspirin for general health reasons).
Instead, she gains access to a large pool of subjects not currently taking any medi-
cation and not prevented from taking any of the three medicines.35 She divides the
pool randomly into four groups, and the drug trial is run. Assuming all individuals fol-
low the experimental protocol, at the end of the data-collection period the researcher
calculates the mean length and severity of headaches for each of the four groups.

Even though three quarters of the cells in a 4 × 4 observability table analogous
to Table 2.4 are counterfactual, she can easily estimate the relative effectiveness
of each of the drugs in comparison with each other and in comparison with the
take-nothing control group. Subject to random error, contrasts such as EN [yi|Take
aspirin]−EN [yi|Take ibuprofen] reveal all of the average treatment effects of inter-
est. The experimental design allows her to ignore the counterfactual cells in the
observability table by assumption. In other words, she can assume that the aver-
age counterfactual value of Y Aspirin for those who took nothing, took ibuprofen, and
took acetaminophen (i.e., E[Y Aspirin|Take nothing], E[Y Aspirin|Take ibuprofen], and
E[Y Aspirin|Take acetaminophen]) can all be assumed to be equal to the average observ-
able value of Y for those who take the treatment aspirin, E[Y |Take aspirin]. She can
therefore compare sample analogs of the expectations in the cells of the diagonal of the
observability table, and she does not have to build contrasts within its rows. Accord-
ingly, for this type of example, comparing the effects of multiple treatments with each
other is no more complicated than the bivariate case, except insofar as one nonetheless
has more treatments to assign and resulting causal effect estimates to calculate.

35Note that, in selecting this group, she has adopted a definition of the population of interest that
does not include those who (1) take one of these pain relievers regularly for another reason and (2)
do not have a reason to refuse to take one of the pain relievers. We will discuss the importance of
considering such groups of “always takers” and “never takers” when we present instrumental variable
estimators in Chapter 9.
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Table 2.5 The Observability Table for Estimating How Education Increases Earnings

Education Y HS Y AA Y BA Y MA

Obtains HS Observable as Y Counterfactual Counterfactual Counterfactual

Obtains AA Counterfactual Observable as Y Counterfactual Counterfactual

Obtains BA Counterfactual Counterfactual Observable as Y Counterfactual

Obtains MA Counterfactual Counterfactual Counterfactual Observable as Y

Now consider a variant on the education-earnings example. Suppose that a researcher
hopes to estimate the causal effect of different educational degrees on labor market
earnings, and further that only four degrees are under consideration: a high school
diploma (HS), an associate’s degree (AA), a bachelor’s degree (BA), and a master’s
degree (MA). For this problem, we therefore have four dummy treatment variables
corresponding to each of the treatment states: HS, AA, BA, and MA. Table 2.5 has
the same structure as Table 2.4. Unlike the pain reliever example, random assignment
to the four treatments is impossible. Consider the most important causal effect of
interest for policy purposes, E[Y BA−Y HS], which is the average effect of obtaining a
bachelor’s degree instead of a high school diploma.

Suppose that an analyst has survey data on a set of middle-aged individuals for
whom earnings at the most recent job and highest educational degree are recorded. To
estimate this effect without asserting any further assumptions, the researcher would
need to be able to consistently estimate population-level analogs to the expectations
of all of the cells of Table 2.5 in columns 1 and 3, including six counterfactual cells off
of the diagonal of the table. The goal would be to formulate consistent estimates of
E[Y BA−Y HS] for all four groups of differentially educated adults. To obtain a consis-
tent estimate of E[Y BA−Y HS], the researcher would need to be able to consistently
estimate E[Y BA−Y HS|HS = 1], E[Y BA− Y HS|AA= 1], E[Y BA− Y HS|BA= 1], and
E[Y BA−Y HS|MA=1], after which these estimates would be averaged across the dis-
tribution of educational attainment. Notice that this requires the consistent estimation
of some doubly counterfactual contrasts, such as the effect on earnings of shifting from
a high school diploma to a bachelor’s degree for those who are observed with a master’s
degree. The researcher might boldly assert that the wages of all high school graduates
are, on average, equal to what all individuals would obtain in the labor market if they
instead had high school diplomas. But this is very likely to be a mistaken assumption
if it is the case that those who carry on to higher levels of education would have been
judged more productive workers by employers even if they had not attained more than
high school diplomas.

As this example shows, a many-valued treatment creates substantial additional
burden on an analyst when randomization is infeasible. For any two-treatment com-
parison, one must find some way to estimate a corresponding 2(J − 1) counterfactual
conditional expectations, because treatment contrasts exist for individuals in the popu-
lation whose observed treatments place them far from the diagonal of the observability
table.

If estimating all of these counterfactual average outcomes is impossible, analysis
can still proceed in a more limited fashion. One might simply define the parameter of
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interest very narrowly, such as the average causal effect of a bachelor’s degree only for
those who typically attain high school diplomas: E[Y BA−Y HS|HS= 1]. In this case,
the causal effect of attaining a bachelor’s degree for those who typically attain degrees
other than a high school diploma are of no interest for the analyst.

Alternatively, there may be reasonable assumptions that one can invoke to sim-
plify the complications of estimating all possible counterfactual expectations. For this
example, many theories of the relationship between education and earnings suggest
that, for each individual i, yHS

i ≤ yAA
i ≤ yBA

i ≤ yMA
i . In other words, earnings never

decrease as one obtains a higher educational degree. Asserting this assumption (i.e.,
taking a theoretical position that implies it) may allow one to ignore some cells of the
observability table that are farthest from the direct comparison one hopes to estimate.
We will discuss these sorts of assumptions in Chapter 12.

Aside from the expansion of the number of causal states, potential outcomes, and
treatment effects, all other features of the potential outcome model remain essentially
the same. SUTVA is typically still maintained, and, if it is unreasonable, then more
general methods must again be used to model treatment effects that may vary with
patterns of treatment assignment. Modeling treatment selection remains the same,
even though the added complexity of having to model movement into and out of mul-
tiple potential treatment states can be taxing. And the same sources of inconsistency
and bias in standard estimators must be considered, only here again the complexity
can be considerable when there are multiple states beneath each contrast of interest.

To avoid all of this complexity, one temptation is to assume that treatment effects
are linear additive in an ordered set of treatment states. For the effect of education
on earnings, a researcher might instead choose to move forward under the assumption
that the effect of education on earnings is linear additive in the years of education
attained. For this example, the empirical literature has demonstrated that this is a
particularly poor idea. For the years in which educational degrees are typically con-
ferred, individuals appear to receive an extra boost in earnings. When discussing the
estimation of treatment effects using linear regression for many-valued treatments in
Section 6.6.1, we will consider a piece by Angrist and Krueger (1999) that shows very
clearly how far off the mark these methods can be when motivated by unreasonable
linearity and additivity assumptions.

2.10 Conclusions

In this chapter, we have introduced the main components of the potential outcome
model, which is a foundational piece of the counterfactual model of causality for obser-
vational research. We defined individual-level causal effects as the what-if differences in
potential outcomes that would result from being exposed to alternative causal states.
We then presented the assumption of causal effect stability – the stable unit treat-
ment value assumption – that is frequently relied on when estimating effects defined
by potential outcomes. We defined average causal effects at the population level, con-
sidered how ineffective the simple mean-difference estimator is for estimating average
causal effects with observational data, and concluded with extensions of the potential
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outcome model for effects observed over time and for effects defined across many values
of the cause. In the next chapter, we introduce the directed graph approach to causal
analysis, which we see as the second foundational piece of the counterfactual model of
causality for observational research.

2.11 Appendix to Chapter 2: Population and
Data Generation Models

In the counterfactual tradition, no single agreed-on way to define the population exists.
In a recent piece, for example, Rubin (2005:323) introduces the primary elements of the
potential outcome model without taking any particular position on the nature of the
population, writing that “‘summary’ causal effects can also be defined at the level of
collections of units, such as the mean unit-level causal effect for all units.” As a result,
a variety of possible population-based (and “collection”-based) definitions of potential
outcomes, treatment assignment patterns, and observed outcomes can be used. In this
appendix, we explain the choice of population model that we will use throughout the
book (and implicitly, unless otherwise specified).

Because we introduce populations, samples, and convergence claims in this chapter,
we have placed this appendix here. Nonetheless, because we have not yet introduced
models of causal exposure, some of the fine points in the following discussion may well
appear confusing (notably, how “nature” performs randomized experiments behind
our backs). For readers who wish to have a full understanding of the implicit super-
population model we will adopt, we recommend a quick reading of this appendix now
and then a second more careful reading after completing Chapters 5 through 7.

Our Implicit Superpopulation Model. The most expedient population and
data generation model to adopt is one in which the population is regarded as a real-
ization of an infinite superpopulation. This setup is the standard perspective in mathe-
matical statistics, in which random variables are assumed to exist with fixed moments
for an uncountable and unspecified universe of events. For example, a coin can be
flipped an infinite number of times, but it is always a Bernoulli distributed random
variable for which the expectation of a fair coin is equal to .5 for both heads and tails.
For this example, the universe of events is infinite because the coin can be flipped
forever.

Many presentations of the potential outcome framework adopt this basic setup,
following Rubin (1977) and Rosenbaum and Rubin (1983b, 1985a). For a binary cause,
potential outcomes Y 1 and Y 0 are implicitly assumed to have expectations E[Y 1] and
E[Y 0] in an infinite superpopulation. Individual realizations of Y 1 and Y 0 are then
denoted y1i and y0i . These realizations are usually regarded as fixed characteristics of
each individual i.

This perspective is tantamount to assuming a population machine that spawns indi-
viduals forever (i.e., the analog to a coin that can be flipped forever). Each individual
is born as a set of random draws from the distributions of Y 1, Y 0, and additional
variables collectively denoted by S. These realized values y1, y0, and s are then given
individual identifiers i, which then become y1i , y

0
i , and si.
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The challenge of causal inference is that nature also performs randomized exper-
iments in the superpopulation. In particular, nature randomizes a causal variable D
within strata defined by the values of S and then sets the value of Y as yi equal to y1i
or y0i , depending on the treatment state that is assigned to each individual. If nature
assigns an individual to the state D = 1, nature then sets yi equal to y1i . If nature
assigns an individual to the state D=0, nature then sets yi equal to y0i . The differen-
tial probability of being assigned to D= 1 instead of D= 0 may be a function in S,
depending on the experiment that nature has decided to conduct (see Chapters 4 and
5). Most important, nature then deceives us by throwing away y1i and y0i and giving
us only yi.

In our examples, a researcher with good fortune obtains data from a random sam-
ple of size N from a population, which is in the form of a dataset {yi,di,si}Ni=1. The
sample that generates these data is drawn from a finite population that is itself only
one realization of a theoretical superpopulation. Based on this set-up, the joint proba-
bility distribution in the sample PrN (Y,D,S) must converge in probability to the true
joint probability distribution in the superpopulation Pr(Y,D,S) as the sample size
approaches infinity. The main task for analysis is to model the relationship between D
and S that nature has generated in order use observed data on Y to estimate causal
effects defined by Y 1 and Y 0. [Many researchers do not have such good fortune and
instead must analyze a dataset with measures of only a subset of the variables in S,
which we will typically labelX . These researchers have access to a dataset {yi,di,xi}Ni=1

and model PrN (Y,D,X), which does not converge to Pr(Y,D,S).]
Because of its expediency, we will usually write with this superpopulation model in

the background, even though the notions of infinite superpopulations and sequences of
sample sizes approaching infinity are manifestly unrealistic. We leave the population
and data generation model largely in the background in the main text, so as not to
distract the reader from the central goals of our book.

Alternative Perspectives. There are two main alternative models of the pop-
ulation that we could adopt. The first, which is consistent with the most common
starting point of the survey sampling literature (e.g., Kish 1965), is one in which the
finite population is recognized as such but treated as so large that it is convenient
to regard it as infinite. Here, values of a sample statistic (such as a sample mean)
are said to equal population values in expectation, but now the expectation is taken
over repeated samples from the population (see Thompson 2002 for an up-to-date
accounting of this perspective). Were we to adopt this perspective, rather than our
superpopulation model, much of what we write would be the same. However, this per-
spective tends to restrict attention to large survey populations (such as all members
of a country’s population older than 18) and makes it cumbersome to discuss some
of the estimators we will consider (e.g., in Chapter 5, where we will sometimes define
causal effects only across the common support of some random variables, thereby
necessitating a redefinition of the target population).

The second alternative is almost certainly much less familiar to many empirical
social scientists but is a common approach within the counterfactual causality litera-
ture. It is used often when no clearly defined population exists from which the data
can be said to be a random sample (such as when a collection of data of some form is
available and an analyst wishes to estimate the causal effect for those appearing in the
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data). In this situation, a dataset exists as a collection of individuals, and the observed
individuals are assumed to have fixed potential outcomes y1i and y0i . The fixed poten-
tial outcomes have average values for those in the study, but these average values are
not typically defined with reference to a population-level expectation. Instead, analy-
sis proceeds by comparison of the average values of yi for those in the treatment and
control groups with all other possible average values that could have emerged under
all possible permutations of treatment assignment. This perspective then leads to a
form of randomization inference, which has connections to exact statistical tests of
null hypotheses most commonly associated with Fisher (1935). As Rosenbaum (2002)
shows, many of the results we present in this book can be expressed in this framework
(see also Rubin 1990, 1991). But the combinatoric apparatus required for doing so
can be cumbersome (and often requires constraints, such as homogeneity of treatment
effects, that are too restrictive). Nonetheless, because the randomization inference
perspective has some distinct advantages in some situations, we will refer to it at sev-
eral points throughout the book. And we strongly recommend that readers consult
Rosenbaum (2002, 2010) if the data under consideration arise from a sample that
has no straightforward and systematic connection to a well-defined population. In this
case, sample average treatment effects may be the only well-defined causal effects, and,
if so, then the randomization inference tradition is a clear choice.



Chapter 3

Causal Graphs

In his 2009 book titled Causality: Models, Reasoning, and Inference, Judea Pearl lays
out a powerful and extensive graphical theory of causality.1 Pearl’s work provides a
language and a framework for thinking about causality that differs from the poten-
tial outcome model presented in Chapter 2. Beyond the alternative terminology and
notation, Pearl (2009, section 7.3) shows that the fundamental concepts underlying
the potential outcome perspective and his causal graph perspective are equivalent,
primarily because they both encode counterfactual causal states to define causality.
Yet, each framework has value in elucidating different features of causal analysis, and
we will explain these differences in this and subsequent chapters, aiming to convince
the reader that these are complementary perspectives on the same fundamental issues.

Even though we have shown in the last chapter that the potential outcome model is
simple and has great conceptual value, Pearl has shown that graphs nonetheless provide
a direct and powerful way of thinking about full causal systems and the strategies that
can be used to estimate the effects within them. Some of the advantage of the causal
graph framework is precisely that it permits suppression of what could be a dizzying
amount of notation to reference all patterns of potential outcomes for a system of
causal relationships. In this sense, Pearl’s perspective is a reaffirmation of the utility
of graphical models in general, and its appeal to us is similar to the appeal of traditional
path diagrams in an earlier era of social science research. Indeed, to readers familiar
with path models, the directed graphs that we will present in this chapter will look
familiar. There are, however, important and subtle differences between traditional path
diagrams and Pearl’s usage of directed graphs, which we will explain.

1Our references throughout will be to the 2009 second edition of Pearl’s original 2000 book. Pearl
recognizes that his influential work was developed in dialogue with many others (see Pearl 2009:104–
5). In focusing heavily on his development of causal graphs in this book, we regrettably do not
give enough credit to the active group of researchers who have participated in developing graphical
representations of causality. We recommend that interested readers turn to this broader literature to
learn the interconnections between the many complementary perspectives that exist, starting with
pieces such as Berzuini, Dawid, and Bernardinelli (2012); Dawid (2002); Dechter, Geffner, and Halpern
(2010); Elwert (2013); Glymour, Scheines, and Spirtes (2001); Koller and Friedman (2009); Lauritzen
(1996); and Robins and Richardson (2010). For readers from philosophy who wish to know why we
do not use neuron diagrams at all, we take the same basic position as Hitchcock (2007).

77
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For our purposes in this book, Pearl’s work is important for three different reasons.
First, directed graphs encode causal relationships that are completely nonparametric
and fully interactive, and as a result when considering feasible analysis strategies it is
usually unnecessary to specify the nature of the functional dependence of an outcome Y
on the variables that cause it. A graph that includes the causal effects X→Y and W→
Y simply implies that X and W both cause Y , without specifying whether their effects
are linear, quadratic, interactive, or any other highly nonlinear function in the values of
bothX andW . This generality allows for a model of causality without side assumptions
about functional form, such as assumptions of linear additivity. Second, directed graphs
show clearly the critical importance of what Pearl labels collider variables, which are
endogenous variables that must be treated with caution in many research scenarios.
Finally, Pearl uses directed graphs to develop transparent and clear justifications for
the three basic methods for estimating causal effects that we will feature in this book:
conditioning on variables to eliminate noncausal associations by blocking all relevant
back-door paths from the causal variable, conditioning on variables that allow for
estimation by a mechanism, and using an instrumental variable that is an exogenous
shock to the causal variable in order to consistently estimate its effect.

In this chapter, we provide the foundations of the directed graph approach to
causal analysis and discuss the relationships between directed graphs and the potential
outcome model. In the course of this presentation, we provide a brief introduction to
conditioning techniques, but we will hold off on the full presentation of conditioning,
as well as Pearl’s back-door criterion for conditioning strategies, until Chapter 4.

3.1 Identification

To set the stage for our introduction to directed graph representations of causal rela-
tionships, it is helpful to define the concept of identification. In Chapter 2, we defined
causal effects as contrasts between well-defined potential outcomes and then proceeded
to consider some of the conditions under which consistent and unbiased estimators of
average causal effects are available. A complementary approach, and the one which
motivates the usage of the directed graphs that we will present in this chapter, is to
perform an identification analysis. Here, the challenges to inference that arise from the
finite nature of the available sample are held aside while the analyst considers whether
a causal effect could be computed if data on the full population were instead available.

In his 1995 book Identification Problems in the Social Sciences, Manski writes,

it is useful to separate the inferential problem into statistical and identifica-
tion components. Studies of identification seek to characterize the conclu-
sions that could be drawn if one could use the sampling process to obtain
an unlimited number of observations. (Manski 1995:4)

He continues,

Empirical research must, of course, contend with statistical issues as well
as with identification problems. Nevertheless, the two types of inferen-
tial difficulties are sufficiently distinct for it to be fruitful to study them
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separately. The study of identification logically comes first. Negative iden-
tification findings imply that statistical inference is fruitless: it makes no
sense to try to use a sample of finite size to infer something that could not
be learned even if a sample of infinite size were available. Positive iden-
tification findings imply that one should go on to study the feasibility of
statistical inference. (Manski 1995:5)

The two most crucial ingredients for an identification analysis are these:

1. The set of assumptions about causal relationships that the analyst is willing to
assert based on theory and past research, including assumptions about relation-
ships between variables that have not been observed but that are related to both
the cause and the outcome of interest.

2. The pattern of information that one can assume would be contained in the
joint distribution of the variables in the observed dataset if all members of the
population had been included in the sample that generated the dataset.

As we will begin to explain in this chapter, causal graphs can represent these ingre-
dients effectively and efficiently and are therefore valuable tools for conducting iden-
tification analyses.2 We will use the concept of identification frequently in this book,
and we will expand upon this brief introduction as we introduce additional strategies
for analysis.

3.2 Basic Elements of Causal Graphs

3.2.1 Nodes, Edges, Paths, and Cycles

The primary goal when drawing a causal system as a directed graph is to represent
explicitly all causes of the outcome of interest, based on past empirical research and
assumptions grounded in theory. As we discussed in Section 1.5, each node of a graph
represents a random variable and is labeled by a letter, such as A, B, or C. Nodes
that are represented by a solid circle • are observed random variables, whereas nodes
that are represented by a hollow circle ◦ are unobserved random variables.

Causal effects are represented by directed edges→ (i.e., single-headed arrows), such
that an edge from one node to another signifies that the variable at the origin of the

2Nonetheless, an identification analysis can be conducted, and typically is within the economet-
ric tradition, without utilizing directed graphs. Consider our discussion of the naive estimator in
Chapter 2. The equalities across the expected values of potential outcomes that we stated as Assump-
tions 1 and 2 in Equations (2.15) and (2.16) are identification assumptions. Maintenance of these
particular assumptions would allow an analyst to assert that the naive estimator in Equation (2.9)
is consistent and unbiased for the true average treatment effect in Equation (2.3), as explained by
the decompositions offered there. As such, the average treatment effect is “identified” or is “iden-
tifiable” when these assumptions can be maintained, even though an estimate from a finite sample
may, because of sampling error, depart substantially from the true average treatment effect in the
population. The value of causal graphs, as we will show in this chapter and the next, is that they
allow for an efficient representation of full systems of causal relationships, which can be helpful for
determining whether identification assumptions are reasonable.
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A

C

B

Figure 3.1 A directed graph that includes a cycle.

directed edge causes the variable at the terminus.3 These “directed” edges are what
give graphs composed of nodes and single-headed arrows the general label of “directed
graphs.”

A path is any sequence of edges pointing in any direction that connects one variable
to another. A directed path is a path in which all edges point in the same direction.
A variable is a descendant of another variable if it can be reached by a directed path.
All kinship terms are then duly appropriated. Most importantly, for directed paths of
length one, as in A→B, the variable A is the parent while the variable B is the child.

In this book, we will consider only a subset of directed graphs known as directed
acyclic graphs or DAGs. For these graphs, no directed paths emanating from a causal
variable also terminate at the same causal variable. In other words, no variable can
be its own descendant. Figure 3.1 presents a graph that includes a directed path that
forms a cycle, and as a result it is not a DAG (even though it is a directed graph
because it includes only directed edges). Unlike some graphical models from the past,
the prohibition of cycles in DAGs rules out representations of simultaneous causation
and feedback loops.4 All of our statements about graphs from this point onward assume
that only acyclic graphs are under consideration.

Under some circumstances it is useful to use a curved and dashed bidirected edge
(as in Figures 1.1–1.3) as a shorthand device to indicate that two variables are mutu-
ally dependent on one or more unobserved common causes. In this shorthand, the two
graphs presented in Figures 3.2(a) and (b) are equivalent. Such shorthand can be help-
ful in suppressing a complex set of background causal relationships that are irrelevant

3In Pearl’s framework, each random variable is assumed to have an implicit probability distribution
net of the causal effects represented by the directed edges that point to it. This position is equivalent
to assuming that background causes of each variable exist that are independent of the causes explicitly
represented in the graph by directed edges. We will discuss this assumption in more detail in Section
3.3.2, where we introduce the structural equations that correspond to directed graphs.

4As shown in White and Chalak (2009), a broader framework that accommodates cycles is possible
(a position acknowledged by Pearl and colleagues for some time, and which has its origins in the
interest in reconciling recursive and nonrecursive models since the 1960s). However, the additional
details of the broader setup can be daunting, and we recommend that interested readers first carefully
consider how much their research questions really do require the full specification of feedback loops
that generate cycles. In our experience, most such purportedly necessary loops result from a misplaced
unwillingness to consider more tractable empirical research questions that can be confined to shorter
spans of analytic time. We do not mean to imply, however, that theory should not attend to such
feedback loops, only that most empirical projects can benefit from recursion pragmatism.
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Figure 3.2 Two representations of the joint dependence of A and B on unobserved
common causes.

to the empirical analysis at hand. Nonetheless, these bidirected edges should not be
interpreted in any way other than as we have just stated. They are not indicators of
mere associations or correlations between the variables that they connect, and they do
not signify that either of the two variables has a direct cause on the other one. Rather,
they represent an unspecified set of unobserved common causes of the two variables
that they connect.

3.2.2 Causal Graphs for Three Variables

Figure 3.3 presents the three basic patterns of causal relationships that would be
observed for any three variables that are connected to each other by only two directed
edges: a chain of mediation, a fork of mutual dependence, and an inverted fork of
mutual causation. Pearl’s analysis of the first two types of relationship is conventional.
For the graph in panel (a), A affects B through A’s causal effect on C and C’s causal
effect on B. This type of a causal chain renders the variables A and B uncondition-
ally associated. For the graph in panel (b), A and B are both caused by C. Here,
A and B are also unconditionally associated, but now it is because they mutually
depend on C.5

For the third graph in panel (c), A and B are again connected by a path through
C. But now A and B are both causes of C. Pearl labels C a collider variable. Formally,
a variable is a collider along a particular path if it has two arrows pointing directly at
it. Figuratively, the causal effects of A and B “collide” with each other at C. Collider
variables are common in social science applications: Any endogenous variable that has
two or more causes is a collider along some path.

A path that is connected by a collider variable does not generate an unconditional
association between the variables that cause the collider variable. For the mutual
causation graph in panel (c) of Figure 3.3, the path between A and B through C does
not generate an unconditional association between A and B. As a result, if nothing is
known about the value that C takes on, then knowing the value that A takes on yields
no information about the value that B takes on. Pearl’s language is quite helpful here.

5The unconditional associations between A and B for both graphs mean that knowing the value
that A takes on gives one some information on the likely value that B takes on. This unconditional
association between A and B, however, is completely indirect, as neither A nor B has a direct causal
effect on each other.
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(c) Mutual causation

Figure 3.3 Basic patterns of causal relationships for three variables.

The path A→ C ←B does not generate an association between A and B because the
collider variable C “blocks” the possible causal effects of A and B on each other.

Even though collider variables do not generate unconditional associations between
the variables that determine them, we will show in the next chapter that incautious
handling of colliders can create conditional dependence that can sabotage a causal
analysis. The importance of considering collider variables is a key insight of Pearl’s
framework, and it is closely related to the familiar concerns of selecting on the depen-
dent variable and conditioning on an endogenous variable (see Elwert and Winship
2014). Before turning to these issues in detail in Chapter 4, we first need to continue
our presentation of the basic features of the directed graph approach to causal analysis.

3.2.3 A First Look at Confounding and Conditioning

The most common concern of a researcher seeking to estimate a causal effect with
observational data is that a causal variable D and an outcome variable Y are deter-
mined, in part, by a third variable, C. This common but simple scenario is represented
by the two graphs in Figure 3.4, where for panel (a) the variable C is observed and
for panel (b) it is not.

For both graphs in Figure 3.4, the total association between D and Y is composed
of two pieces: (1) the genuine causal effect of D on Y , represented by D→Y , and (2)
the common dependence of D and Y on C, represented by both C→D and C→ Y .
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(a) (b)
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Figure 3.4 Two graphs in which the causal effect of D on Y is confounded by C.

In such cases, it is often said that the causal effect of D on Y is “confounded” by C
or, even more simply, that C is a “confounder.” Regardless of the label given to C,
the causal effects C→D and C→ Y render the total association between D and Y
unequal to the causal effect D→ Y .

The frequency of basic confounding has established subgroup analysis as perhaps
the most common modeling strategy to prosecute causal questions in social science
research. Whether referred to as subclassification, stratification, tabular decomposi-
tion, or simply adjustment for a third variable, the data are analyzed after “condi-
tioning” on membership in groups defined by values of the confounder variable. Usage
of the word “conditioning” is a reference to the “ | ” operator, already used exten-
sively in Chapter 2, to define conditional expectations (see, in particular, Section 2.7).
From a graphical perspective, this modeling strategy is analogous to disconnecting the
conditioning variable from all other variables that it points to in the original graph,
rewriting the graph without the edges from the conditioning variable for each value
for the conditioning variable, analyzing the data that apply to each of these graphs
separately, and then combining the results across graphs to form an overall estimate.

For Figure 3.4(a), but not for Figure 3.4(b), consistent and unbiased estimators of
the causal effect of D on Y are available (with a large enough dataset generated by a
suitably random sample) because the analyst can condition on the observed variable
C and eliminate the portion of the association between D and Y that is generated
by their common dependence on C. We will explain this claim more formally and
more generally in Chapter 4, where we introduce Pearl’s back-door criterion for the
identification of a causal effect.

For now, consider the essential operational data analysis routine. For Figure 3.4(a),
the effect of D on Y can be estimated by conditioning on C in two steps: (1) calculate
the association between D and Y for each subgroup with C equal to c and then
(2) average these c-specific associations over the distribution of the values c that the
variable C takes on in the sample (which we assume is, again, a large random sample
from the population of interest). The resulting weighted average is a consistent and
unbiased estimator of the causal effect ofD on Y in Pearl’s framework, which would be
labeled the average treatment effect (ATE) in the potential outcome model introduced
in Chapter 2. For Figure 3.4(b), no such data analysis routine is feasible because the
analyst has no observed variable C with which to begin.

To make this example more concrete, and to begin to build connections to the
examples utilized for Chapter 2, consider the graph in Figure 3.5, where we revisit
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Figure 3.5 A causal graph in which the effect of education (E) on earnings (Y ) is
confounded by observed variables (C) and by unobserved ability (A).

the research question on ability bias in estimates of the earning returns attributable
to completed years of education. Here, education, E, is a cause of earnings, Y , but
this causal effect is confounded by two sources: (1) observed variables, C, such as
demographic characteristics and family background, and (2) an unobserved variable
for ability, A.6 For Figure 3.5, we have moved one step beyond the analysis of the naive
estimator in Chapter 2 (see Tables 2.3 and 2.5), because now we are considering the
more typical scenario in which the analyst includes in the directed graph some observed
variables in C that past research has established almost certainly have causal effects on
both years of completed education and subsequent labor market earnings. The ability
bias literature asserts that, even if we were to condition on a rich parameterization of
all values of the variables in C, we still would not be able to eliminate the confounding
generated by A.

Notice also that we have not asserted that the education variable, E, in Figure
3.5 is a two-valued cause, as was the case for the discussion of Table 2.3. Unless
specified otherwise, graphs of this type do not place restrictions on the numbers of
values taken on by any of their variables. This particular graph, for example, would
apply to either the two-valued education variable discussed in Section 2.7.3 or the
four-valued education variable introduced in Section 2.9.

3.3 Graphs and Structural Equations

Having introduced the basic elements of directed graphs, the next step is to intro-
duce the structural equations that lie beneath them. As noted in the introduction to
this chapter, directed graphs encode causal relationships that are completely nonpara-
metric and fully interactive. This generality allows for a model of causality without
assumptions about functional form, which is a major advantage over traditional path
diagrams. An appreciation for this advantage requires first understanding the con-
straints imposed by the parametric assumptions that were common in the equations
associated with these path diagrams and why many researchers had good reason to
object to them.

6In the labor economics literature, it would generally be assumed that both C and A depend on a
common unobserved cause U that generates an unconditional association between C and A. We leave
out this dependence in this diagram for simplicity. Its inclusion would not change the fact that the
effect of D on Y is not identified.
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3.3.1 The Appeal and Critique of Traditional Path Diagrams

To explain both the appeal and subsequent critique of traditional linear additive path
models, we will use the charter schools example introduced in Section 1.3.2.7 Con-
sider the path diagram presented in Figure 3.6, and suppose that we have data on
all sixth graders in a large metropolitan area. For this path diagram, Y is a stan-
dardized test taken at the end of the sixth grade, and D indicates whether or not
a student attended a charter school for the past year. The variable P represents an
omnibus parental background measure that captures differences in economic standing
and other basic dimensions of resources that predict both charter school attendance
and school performance. The variable N is neighborhood of residence, and we assume
that there are meaningful differences in the extent to which neighborhood environ-
ments are conducive to engagement with schooling. Thus, D is the cause of primary
interest, P represents individual determinants of D that also have direct causes on the
outcome Y , and N is a measure of the social context in which the effect of D on Y
occurs.8

The path diagram presented in Figure 3.6 is associated with two implicit structural
equations for the two endogenous variables:

D= aD + bPP + eD, (3.1)

Y = aY + bDD+ bPP + bNN + eY . (3.2)

These structural equations are linear and additive in the variables P , D, and N , and
each equation has terms, eD and eY , that are represented in the path diagram as all
other determinants of D and Y other than P , D, and N .9 The structure of the path
diagram and its equations imply that the proper empirical regression specification for Y
is the same as Equation (3.2). Under the implicit assumption that eY is uncorrelated
with D, P , and N , the path-model interpretation of least squares estimates of the
coefficients bD, bP , and bN is that they are consistent and unbiased estimates of the
genuine causal effects of P , D, and N on Y .10

How would such a path diagram have been presented and then discussed in a
typical research methods class in the 1970s (assuming that the charter school research
question was under discussion)? Following an introduction to graphical representations
of causal relationships via path diagrams, at least one student would invariably ask
the instructor:

7This section draws on material previously published in Morgan and Winship (2012).
8Most path models assumed the existence of unexplained correlations between all “predetermined”

or “exogenous” variables, which are P and N for Figure 3.6. In many path diagrams, curved double-
headed arrows would be drawn to represent such correlations. To avoid confusion with our usage of
bidirected edges throughout this book, we have not added such a double-headed arrow to Figure 3.6.

9The standard approach in the early days of path modeling in the social sciences would have been
to assume that eD is uncorrelated with P and that eY is uncorrelated with P , D, and N . More
complete approaches, as exemplified by Duncan (1975), would not necessarily have maintained such
assumptions.

10The estimated effects are presumed to be constant across individuals, as specified in Equation
(3.2). However, most analysts regarded the estimates as simple average effects across individuals. We
will return to this issue in detail when we discuss how regression models do not in general deliver
simple average effect estimates (see Chapter 6) and when we then introduce explicit heterogeneity
into causal graphs (see Chapter 8).
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Figure 3.6 A traditional linear additive path diagram for the effects of parental back-
ground (P ), charter schools (D), and neighborhoods (N) on test scores (Y ).

Can the effect of D on Y vary across P? That seems reasonable, since it
would seem that the effect of a charter school would depend on family back-
ground. Parents with college degrees probably help their kids get more out
of school. Actually, now that I think about it, since N captures neighbor-
hood characteristics, don’t we think that there are better schools in some
neighborhoods? In fact, charter schools are more likely to be established in
areas with troubled neighborhood-based schools. And neighborhoods with
weaker schools also tend to have stronger deviant subcultures with gangs
and such. So the effect of charter schooling probably also depends on the
neighborhood in which one lives. How do we represent such variation in
effects in the path model?11

In response, an instructor would typically explain that one can think of such effects as
supplemental arrows from a variable into the middle of another arrow in the path dia-
gram, such that the variable itself modifies the arrow under discussion. Yet, since these
sorts of arrows are not formally justified in traditional path diagrams, the instructor
would almost surely have then recommended a shift toward a more complex regression
specification, such as

Y = aY + bCC+ bPP + bC×P (C×P )+ bNN + bC×N(C×N)+ eY . (3.3)

In this case, the path diagram ceases to represent an underlying set of structural causal
relationships and is instead best interpreted as only a simplified reflection of a more
specific regression model. After all, the interaction between the effects of D and P on
Y (as well as the interaction between the effects of D and N on Y ) can be estimated
with little trouble. One need only calculate effects of interest, for example, by plugging
in values for b̂CC + b̂PP + b̂C×P (C ×P ), after producing standard regression output
from estimation of Equation (3.3). The differences then produced can be imbued with
causal interpretations based on the same justification as for Equation (3.2), assuming
that no other variables that are common causes of P and Y, D and Y, or N and Y
have been mistakenly omitted from Equation (3.3).

We see two related outcomes of the rise and then demise of traditional linear path
models conceived and estimated in this fashion in the social sciences. First, when it
became clear that there was no agreed upon way to represent within path diagrams

11Were this exchange occurring in the substance of the day, a path model from the status attainment
tradition would be the focus of the exchange. The outcome variable Y would be career success, and D
would be education. All of the same interactions noted for the charter school case would then apply
in this case, although based on different narratives of causation.
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the interactions that could be specified in regression equations to capture variability
and context, path diagrams came to seem much less useful.12 Researchers interested
in such variability and context may have continued to draw path diagrams on yellow
pads in their offices, but rarely did their drawings turn up in published articles.13

Estimation and reporting became a word and number affair, often with too much
of each.

Second, and far more troubling, many scholars apparently chose to retain a linear
additive orientation, even while no longer using path diagrams. For some, empirical
research could be fruitfully advanced by ignoring the genuine interactive nonlinearity
of the real world, in pursuit of a first-approximation, linear pragmatism. This stance
might have been an acceptable form of pragmatism if the approximation spirit had
carried over to model interpretation. Too frequently it did not, and many causal asser-
tions can be found in the literature based on linear additive models that are overly
reductionist.

Overall, the traditional path-modeling literature, and then the more general “age
of regression” that we described in Section 1.2.2, opened up quantitative research to
the claims of critics that too many practitioners had fallen prey to the belief that linear
regression modeling reveals strong causal laws in which variability and context play
minor roles. A particularly cogent presentation of this criticism is Abbott’s oft-cited
“Transcending General Linear Reality” (Abbott 1988). Although its straw-man style
is irksome to methodologists who knew of these problems all along, and who urged
better practice, it was a reasonable critique of much practice at the time.14

3.3.2 The Shift to Nonparametric Structural Equations

For the same substantive example depicted in the path diagram in Figure 3.6, consider
now its representation by a directed graph in the new causal graph tradition. Two
variants are offered in Figure 3.7. The standard representation that is depicted in
panel (a) is then shown again under “magnification” in panel (b).15 For the latter,
each variable is seen, under close examination, to have its own structural “error” or
“disturbance” term: eP , eD, eN , and eY . Analogous terms are implicitly present in all
directed graphs, but they are typically suppressed in their standard representation, as
in panel (a), for visual simplicity.

12We do not mean to imply that methodologists have not proposed solutions. Bollen (1995) offers
the elegant proposal of including functions of other variables as separate entities in diagrams and
using sawtooth arrows, �, in order to represent functional assignment relations. For example, an
interactive effect of C and P on Y can be represented altogether by three paths C→ Y , P → Y , and
(C×P )→ Y . The entity (C×P ) is not a new source of variation with an exogenous component but
rather is a deterministic function defined in C and P . This functional dependence is signified in the
diagram by including both C� (C×P ) and P � (C×P ).

13Freese and Kevern (2013:27) label such causal doodling as “arrow salad.”
14For similar critiques in sociology in the same time period, see also Lieberson (1985) and Ragin

(1987). Abbott (2001), Lieberson and Lynn (2002), and Ragin (2008) offer updates on these earlier
critiques. Leamer (1983) is the analog in economics, although written in a completely different style
and with alternative suggested remedies.

15See Pearl (2009:339) for usage of the word “magnification” to reveal the disturbance/error terms
that are implicit in all directed graphs.
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Figure 3.7 Equivalent directed graph representations of the effects of parental back-
ground (P ), charter schools (D), and neighborhoods (N) on test scores (Y ).

What are these terms, eP , eD, eN , and eY ? Pearl (2009:27) states that such terms
“represent errors (or ‘disturbances’) due to omitted factors” and are always assumed to
be independent of each other and of all other variables in the graph. For Figure 3.7(b),
the terms eP , eD, eN , and eY represent all causes of P , D, N , and Y , respectively,
that can be regarded as “idiosyncratic” causes of each variable. They are assumed to
be independent of each other and of P , D, N , and Y . As such, they can be suppressed
in the standard representation of a directed graph, as in Figure 3.7(a).16

In general, all directed graphs in the new causal graph tradition must be drawn in
sufficient detail so that any such disturbance terms can be pushed into the background.
Pearl cautions,

The disturbance terms represent independent background factors that the
investigator chooses not to include in the analysis. If any of these fac-
tors is judged to be influencing two or more variables (thus violating the
independence assumption), then that factor must enter the analysis as an
unmeasured (or latent) variable and be represented in the causal graph as
a hollow node. (Pearl 2009:68)

In other words, one must be able to assume that these structural error terms are
mutually independent of each other and of all of the other variables in the graph,
such that no pair is mutually dependent on a common third variable that has been
mistakenly omitted from the graph. If this assumption is dubious, then one must re-
draw the graph including hollow nodes for any mistakenly omitted unobserved common
causes. These unobserved variables must then be given directed edges that point to
the variables that they cause. The new error terms for the re-drawn graph can then be
redefined so that they can be pushed into the background (but still rendered visible
under magnification).

16There is considerable debate over the ontological status of these idiosyncratic causes. Their exis-
tence implies to some scholars that causality is fundamentally probabilistic. By our reading, Pearl
would maintain, for example, that the variables embedded in eP are simply implicit structural causes
of P . Under this interpretation, causality can still be considered a structural, deterministic relation.
Freedman (2010, esp. chapter 15) discusses some of the drawbacks for statistical inference of assuming
determinism of this form. Although convincing to some degree, his critique does not alter the utility
of these sorts of causal graphs for clarifying when causal effects are identified, which is Pearl’s primary
contribution.
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In fact, for the graphs in Figure 3.7, the existing literature on the charter school
effect suggests that these graphs are incomplete. Most importantly, it is almost cer-
tainly the case that the terms eD and eY in Figure 3.7(b) are mutually dependent on
a common cause that has been mistakenly omitted from the graph, analogous to the
unobserved ability confounder, A, in Figure 3.5. We will therefore extend this graph
in Chapter 8, bringing it more into line with assumptions that analysts have been
willing to maintain in existing empirical research. For now, we proceed as if the graphs
in Figure 3.7 represent the true causal model, accepted hypothetically (but counter-
factually!) by a clear consensus of researchers who have studied the charter school
effect.

Mindful of this specific definition of the disturbance/error term in directed graphs,
and supposing for now that the two causal graphs in Figure 3.7 represent a valid
and accepted causal model for the charter school effect, the corresponding structural
equations can now be introduced. Unlike path diagrams in traditional form, where the
structural equations are linear and additive and correspond only to the the endogenous
variables in the diagram (e.g., D and Y in Figure 3.6), for the new directed graph
tradition the structural equations are written for all variables and in unrestricted form
(i.e., possibly nonlinear and interactive, as explained below). The two graphs in Figure
3.7 have the same set of structural equations:

P = fP (eP ), (3.4)

D= fD(P,eD), (3.5)

N = fN (eN ), (3.6)

Y = fY (P,D,N,eY ). (3.7)

Reading from left to right in the graphs and top to bottom in these equations, P is
generated as an unspecified function, fP (.), with eP as its sole argument. The next
three equations then represent analogous unrestricted functions with inputs that rep-
resent all causes of the variables on the left-hand sides of the equations. The last is
the most elaborate, in that Y is a function of the three observed variables P , D, and
N , as well as eY , all of which transmit their effects on Y via the function fY (.).

When we say that fP (.), fD(.), fN (.), or fY (.) are unrestricted and have no assumed
functional form, we mean that a value is produced for the outcome variable of each
equation for every combination of the values in the corresponding function on the
right-hand sides of these equations. For example, Y takes on a distinct value for each
combination of values, P = p, D = d, and N = n (typically then with the assump-
tion that values of eY are drawn at random from some common distribution that is
presumed to have finite moments; see Freedman 2010, chapter 15 for discussion of
alternative approaches).17

An implication of this flexibility deserves particular emphasis, and preexisting
knowledge of traditional path models and their implicit linear additive structural

17Restrictions are not typically placed on how the drawn value of the disturbance/error term is then
transmitted by f(.) to the outcome. However, because these terms are independent (by definition)
of all other inputs in f(.), their realization in the outcome variable does not typically require any
assumption, at least when identification is the focus.
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equations can hinder full recognition of its importance. Consider the nonparamet-
ric structural equation for Y in Equation (3.7). All interactions between the effects of
P , D, and N on Y are implicitly permitted by the lack of restrictions placed on fY (.).
Importantly, this property of the structural equations means that the causal graphs
in Figure 3.7 are consistent with all such interactions because the directed edges only
signify inclusion in the functions such as fY (.). No new arrows, nor any notation of any
kind, are needed to represent interactions for more specific parameterizations where,
for example, the effect of D on Y varies with the level of P or N .

As a result, even though it may feel natural to want to “see” a specific arrow present
in the causal graph to represent an interaction effect that corresponds to a cross-
product term in a regression equation, one must learn to suppress such a desire. The
key point, in considering an analysis that utilizes causal graphs, is to drop regression
models from one’s mind when thinking about identification issues. Instead, if one must
use a data analytic machine to conceptualize how to perform an appropriate empirical
analysis of the puzzle under consideration, one should default to simple conditioning,
as introduced in the last section.

As we will explain in far greater detail in the next part of the book, if the graphs
in Figure 3.7 were the true causal system that generates the effects of charter schools
on test scores, the effect of D on Y would be confounded by the observed parental
background variables in P . In addition, the effect of D on Y may vary across the
contexts defined by neighborhoods. With a dataset of sufficient size, the analyst can
estimate the effect of D on Y for every combination of the values in P and N , adopting
a conditioning strategy for identification and estimation. These within-P -and-within-
N differences are not confounded and represent average causal effects for students
within strata defined by P and N (again, under the assumption that the directed
graph is a complete representation of the true causal system). To obtain average causal
effects for larger groups of individuals, such as those living within a particular type of
neighborhood defined by N , the analyst can combine the strata-specific estimates by
forming a weighted average where the weights are proportional to the sample sizes of
all strata that correspond to the type of neighborhood chosen.

In this way, causal analysis guided by the specification of directed graphs is an
inherently flexible enterprise. Losing sight of the lack of functional form assumed for
causal analysis with unrestricted structural equations may still lead one to fail to
transcend “general linear reality.” If so, the fault lies with the analyst, not the graph
or the possibly highly nonlinear structural equations that it represents.

3.4 Causal Graphs and the Potential
Outcome Model

What are the connections between the directed graph approach to causal analysis and
the potential outcome model introduced in Chapter 2? In short, they are intimately
related but very distinct frameworks for considering the same issues, each of which
offers unique insight in particular situations. We will return to this basic point repeat-
edly throughout this book. In this section, we begin to explain their complementary
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value and then offer a brief examination of the most important formal connection
between the two frameworks: how each encodes (potentially counterfactual) causal
states.

3.4.1 Complementary Value

We already have shown through our presentation in Chapter 2 that the potential
outcome model can be understood and utilized without reference to causal graphs.
Individual-level potential outcomes allow one to think independently about the observed
data as well as what data would have been observed if individuals had experienced
alternative causal states. From these simple pieces, the model allows for transparent
definitions of causal effects and encourages the analyst to consider individual-level
heterogeneity as a first principle.

We also demonstrated in Chapter 2 how potential outcome random variables enable
clear definitions of conditional average causal effects and provide ways to usefully
decompose sources of inconsistency and bias in estimators – into unaccounted-for base-
line differences between individuals and the differential responsiveness of individuals
to the cause of interest. Many other advantages of thinking through causal analysis
with potential outcomes will be demonstrated in the remaining chapters of this book.

However, we also began to show in Chapter 2 that the transparency of the potential
outcome model begins to cloud over when more than two causal states are considered
and when important assumptions, such as the stable unit treatment value assumption
(SUTVA) (see Section 2.5), are asserted without considerable reflection. The latter is
a specific instance of the complications of maintaining the full notational framework
of the potential outcome model when many other causal variables of interest begin to
enter the scientific problem.

In this chapter, we have shown that the basic elements of causal graphs do not
include potential outcome random variables, such Y 1 and Y 0. The remaining chapters
of the book will demonstrate how useful causal graphs can be for empirical research.
As we will begin to show in the next chapter, graphs offer a disciplined framework
for expressing causal assumptions for entire systems of causal relationships. In many
cases, their economy of presentation cannot be matched by potential-outcome-based
presentations of the same material, even though equivalent expressions are available.
This advantage is especially apparent when the analyst must consider the many causal
pathways that may be present in the real applications of observational research. Yet,
as we will then also detail later, the price paid for such economy of presentation is then
that individuals, and individual-level causal effects, which are so usefully revealed in
the potential outcome model, can be covered over by causal graphs, even if the problem
is not the causal graphs per se but the shallow interpretations that analysts can too
easily attach to them.

Having stated our position on the useful complementarity of these two frameworks,
we now lay out the most important point of connection between them. In the next
section, we show how each framework encodes causal states in analogous fashion,
thereby defining causal effects using counterfactuals.
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3.4.2 Potential Outcomes and the do(.) Operator

In Chapter 2, we introduced potential outcomes after first discussing the need to clearly
define the states of the causal variables of primary interest. We then moved directly
to the definition of potential outcomes defined by the instantiation of particular well-
defined causal states, focusing for the most part on the canonical potential outcomes
Y 1 and Y 0 for a two-valued cause. Only thereafter did we back out a definition of the
corresponding observed variable Y , and only by way of Equation (2.2), Y =DY 1 +
(1−D)Y 0.

When we then introduced directed graphs in this chapter, we skipped right over
causal states and potential outcomes. We moved straight from the representation of
observed random variables A, B, and C to discussions of causal effects invoking the
same observed variables utilized earlier in Chapter 2, the observed variables D and
Y . Corresponding potential outcomes, Y 1 and Y 0, were not incorporated into our
presentation. To demonstrate the connections between potential outcomes and directed
graphs, we need to introduce how causal states are represented in Pearl’s variant of
causal analysis.

Pearl introduces causal states in a different way, using the semantics of an ideal
experimental intervention and what he labels the do(.) operator. Recall the basic struc-
ture of the directed graph in Figure 3.4(a). For this graph, the causal effect of D on
Y is represented by D→ Y , and the directed edge indicates that D is an input in
the function, fY (.). The do(.) operator, which we present in this section, is what pro-
vides the bridge to quantities such as the ATE, E[δ] =E[Y 1−Y 0], defined earlier in
Equation (2.3).

For Figure 3.4(a), consider the case where D takes on two values, 0 and 1. For
Pearl, there are two regimes by which D takes on values of 0 or 1: pre-intervention and
under-intervention. In the pre-intervention regime, the value that D takes on for any
given unit in the population is determined by the structural equation D= fD(C,eD).
In the under-intervention regime, the value that D takes on is set by what Pearl
sometimes calls an “ideal experiment” (e.g., Pearl 2009:358) and at other times calls an
“atomic intervention” (e.g., Pearl 2009:70). Notationally, this intervention is do(D=1)
or do(D=0).18

For Pearl, all causal quantities are defined by under-intervention distributions,
not pre-intervention distributions (Pearl 2009, definitions 3.2.1 and 7.1.2-5). For D
and Y in Figure 3.4(a), the two probability distributions that define causal effects are
Pr[Y |do(D=1)] and Pr[Y |do(D=0)], not Pr[Y |D=1] and Pr[Y |D=0]. In particular,
the average causal effect is E[Y |do(D=1)]−E[Y |do(D=0)], under the assumption that

18As we will explain in more detail in the appendix to this chapter, Pearl typically also assumes
“modularity,” which is the assumption that an intervention on a variable can be carried out with-
out simultaneously altering anything else about the causal relationships encoded in the graph. The
atomic intervention is assumed not to generate other interventions on other variables or to open up
new causal pathways inconsistent with the structure of the pre-intervention graph. Although modu-
larity is typically assumed, compound interventions are easily accommodated. More difficult, but not
impossible, are cases where the assumed intervention generates initially unforeseen counterfactuals.
In this case, the pre-intervention causal graph must be redrawn to represent all patterns of unfolding
counterfactuals that may follow from prior events.



3.4. Causal Graphs and the Potential Outcome Model 93

the individual-level causal effect is defined by the individual-level difference induced
by the hypothetical intervention, [yi|do(di =1)]− [yi|do(di =0)]).19

Under this setup, observable associational quantities, based on Pr[Y |D], do not
necessarily equal causal quantities, based on Pr[Y |do(D)]. Most importantly, for graphs
such as Figure 3.4(a), the associational difference E[Y |D = 1]−E[Y |D = 0] does not
equal the average causal effect defined by the atomic intervention on D, E[Y |do
(D= 1)]−E[Y |do(D = 0)]. The confounding from C generates additional dependence
between D and Y that enters into the average associational difference, E[Y |
D = 1]−E[Y |D = 0], but not the average causal difference, E[Y |do(D = 1)]−E[Y |do
(D = 0)]. The reason that C does not enter the under-intervention difference is that
D is determined by a hypothetical ideal experiment in this regime. In contrast, in the
pre-intervention regime, D is determined by the structural equation D = fD(C,eD)
that has C as one of its inputs.

Consider now the connection with potential outcomes. The do(.) operator is the
exact analog to the superscripts given to potential outcomes in order to designate
the underlying causal states that define them. In particular, Pearl states that the
do(.) operator “is a mathematical device that helps us specify explicitly and formally
what is held constant, and what is free to vary” (Pearl 2009:358). The semantics that
accompany the do(.) operator – “ideal experiment” and “atomic intervention” – are
Pearl’s chosen way to express the idea that all units in the population could be assigned
to the causal states in which they are observed (the “factual” ones) or to the causal
states in which they are not observed (the “counterfactual” ones) and that causal
effects are defined by differences attributable to movement between these alternative
states. In this sense, E[Y 1]−E[Y 0] is equivalent to E[Y |do(D=1)]−E[Y |do(D=0)]
for the graph in Figure 3.4(a), differing only in how the causal states are signified.20

Even though the do(.) operator is a crucial piece of Pearl’s variant of the directed
graph approach to causal analysis, we introduced and discussed causal graphs in this
chapter without any reference to it. In fact, we asserted that a directed edge signifies a
causal effect, and that representations such as A→B are equivalent to the assumption
that A is a cause of B. Yet, only here, at the end of this chapter, do we note that it
is the do(.) operator that defines the causal effects that are signified by these directed
edges.

As long as one maintains that it is the do(.) operator that defines causal effects, not
associational contrasts such as E[Y |D= 1]−E[Y |D = 0], the do(.) operator does not
need to be represented in the causal graph in any explicit way. The primary purpose of
the graph is to encode the full set of causal relationships that one assumes characterize
a causal effect of interest, so that those causal relationships can be considered in both
the pre-intervention regime and the under-intervention regime. The do(.) operator is

19Other causal quantities, based on comparisons of Pr[Y |do(D=1)] and Pr[Y |do(D=0)] could also
be defined, analogous to choosing something other than the simple difference to define individual-level
causal effects in the potential outcome model or selecting something other than the comparison of
population expectations of individual-level potential outcomes. In fact, Pearl prefers to avoid selecting
any particular comparison, emphasizing that all such comparisons are less general than focusing on
the full under-intervention distribution, Pr[Y |do(D)].

20When we introduced our chosen notation for the potential outcomes, we also noted that even for
the potential outcome model there is a wide variety of notation adopted to signify causal states (see
footnote 7 on page 43).
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therefore a piece of the underlying structure of the graphical approach, such as the
error terms of nonparametric structural equations, which can be brought into the
foreground when necessary to explain an identification result.21

And, even though we have not done so, the do(.) operator can be represented in
graphical fashion. For each causal graph of the type presented in this chapter, two
types of graphs can be drawn to show the associated under-intervention regime. For
“mutilated” graphs, the directed edges that point to the causal variable of interest
are deleted, leaving a causal variable with no parents because it is set by the atomic
intervention. For “augmented” graphs, the original pre-intervention graph is drawn
with an additional “forcing” variable that represents the atomic intervention.

For readers who wish to have an introduction to these additional types of graphs,
as well as a slightly more formal presentation of the do(.) operator (and its associated
modularity condition within an overall definition of a Markovian causal graph), the
appendix to this chapter offers an introduction to the primary literature where com-
plete explanations can be found. The appendix also explains why potential outcome
variables are rarely depicted in directed graphs. Readers who are uninterested in these
details can skip the appendix and will be able to understand all of the material that
follows.

3.5 Conclusions

In this chapter, we have introduced the directed graph approach to causal analysis. We
first introduced the basic elements of causal graphs and then presented the canonical
causal graph for a confounded causal effect. We explained the nonparametric nature
of these graphs, as represented by the structural equations that assume no functional
form for the effects of causes on outcomes. We concluded by noting the equivalence
between causal effects defined by directed edges in a causal graph and causal effects
defined by potential outcomes, demonstrating that the equivalence lies in their common
invocation of what-if causal states grounded in counterfactual reasoning.

Along the way, we have noted that one goal of writing down a causal graph is
to represent the set of causal relationships implied by past research and maintained
theories. In all remaining parts of this book, we will enrich our discussion of this first
goal, when, for example, we discuss whether simple graphs – such as Figure 3.7(a)
for the charter school effect – are sufficiently rich to adequately represent the causal
relationships that generate effects in real applications.

Another goal of writing down a causal graph is to assess the feasibility of alternative
estimation strategies in light of the data that have been observed. Following up on this
second goal, in the next part of the book we offer a full presentation of the rationale
for conditioning as a causal effect estimation strategy. We then present three related
methods for enacting conditioning estimators – matching, regression, and weighted
regression – in three separate chapters.

21This is similar to the implementation of particular estimation strategies that are motivated by
the potential outcome model. In this case, the researcher analyzes data using observed variables Y
and D. Potential outcomes, Y 1 and Y 0, are brought out, typically at the beginning of an analysis, to
define the causal effects of interest and the assumptions that will be maintained to estimate them.
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In subsequent parts of the book, we then further demonstrate how directed graphs
can be used to represent heterogeneity and selection on unobserved variables in order to
consider how one should analyze causal effects when conditioning on observed variables
does not identify the causal effect. We will consider mechanistic and instrumental
variable approaches and conclude with estimators that use both pretreatment and
posttreatment observations on the outcome variable.

3.6 Appendix to Chapter 3: Graphs, Interventions,
and Potential Outcomes

In this appendix, we first explain the intervention foundation of Pearl’s variant of
causal graph methodology, and we then explain why potential outcomes are not com-
monly depicted as outcome variables in causal graphs. This appendix is written for
curious readers who wish to have an introduction to formal details before consulting
the primary literature for more complete explanations.

Graphs That Represent Atomic Interventions. As noted in Section 3.4.2, the
key linkage between the potential outcome model and the directed graph approach to
causal analysis is Pearl’s concept of an atomic intervention, as represented by the do(.)
operator. Although the do(.) operator is not visible in the standard representation of a
causal graph, additional related graphs can be offered to demonstrate the connection
more explicitly.

The graph in Figure 3.8(a) is known as an “augmented” graph because it is the pre-
intervention causal graph from Figure 3.4(a), augmented with a representation of the
atomic intervention on D.22 The augmentation takes the from of a special “forcing”
variable, FD, which is placed within � to denote its special status as an assumed
outside force that can produce a hypothetical atomic intervention. Accordingly, this
forcing variable takes on three values in this case: do(D=0), do(D=1), and idle.

Augmented graphs have accompanying structural equations that represent both
the pre-intervention and the under-intervention regimes for the setting of variables
subject to the atomic intervention (see Pearl 2009, section 3.2.2). For this graph, the
structural equation for Figure 3.4(a), D= fD(C,εD), is replaced with

D= Int[fD(.),C,εD ],

where the Int[.] function is defined so that it reduces to 1 if FD = do(D = 1), to 0 if
FD = do(D = 0), and to fD(C,εD) if FD = idle. In other words, the pre-intervention
structural equation fD(C,εD) that generates D becomes the value of FD when the
forcing variable is idle because the hypothetical atomic intervention has not been
enacted.

Figure 3.8(b) then shows how to think about the graph in Figure 3.8(a) when
FD = do(D = 0) and FD = do(D = 1). The two graphs in Figure 3.8(b) are known
as the mutilated graphs under an atomic intervention. The mutilation refers to the
removal of all edges pointing to the variable that is intervened upon. In this case, the

22Little would be gained by adding forcing variables for either C or Y , since the former has no
causes other than εC and the latter causes nothing else specified in the graph. Even so, no formal
rules prevent the inclusion of both FC and FY in a fully augmented graph.
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Y

C

Y

C

YD

do (D = 0) do (D = 1)

(a) Augmented casual graph with a “forcing”
variable that represents an intervention

(b) “Mutilated” graphs that demonstrate the
do (.) operator for the two values of D

FD

Figure 3.8 Two alternative representations of assumed interventions in causal graphs
where the effect of D on Y is confounded by C.

observed variable for D, represented in Figure 3.4(a) by •, is replaced by �’s in two
separate graphs that correspond to the two values of do(D = 0) and do(D = 1) that
are determined by the intervention. Because D is no longer determined by C, having
been set by a hypothetical atomic intervention, there is no directed edge from C to D
in either graph in Figure 3.8(b).

Now, compare the standard representation of the canonical confounding graph in
Figure 3.4(a) with its augmented variant in Figure 3.8(a). The latter shows the inter-
vention explicitly, and the former leaves it implicit. Dawid (2010:75) claims that Pearl
once regarded the inclusion of forcing variables as crucial components of causal graphs.
Dawid argues that “he [Pearl], and most of those following him, have [recently] been
using only the implicit version, in which the intervention variables FV are not explicitly
included in the diagram, but (to comply with the Pearlian interpretation) the DAG is
nevertheless to be interpreted as if they were.” Dawid regards the suppression of inter-
vention variables as a “retrograde move” that entails a “loss of transparency.”23 For
simple graphs, Dawid is surely correct that forcing variables do increase transparency.
For more complex diagrams, forcing variables can be a visual distraction. Accordingly,
in this book, we will generally follow Pearl and not offer such representations. As we
explain in the next section, however, Pearl builds very precise definitions of causal
graphs, which, when kept in mind while interpreting a causal graph in its standard
representation, leave little doubt about the crucial role of atomic interventions and the
do(.) operator.

23Dawid prefers a more general influence diagram for causal graphs, resting on top of the decision
theoretic approach he has long championed (see Dawid 2002, 2012).
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Criteria for Causal Graphs. For the canonical confounding graph in Figure
3.4(a), only three observable variables are present: C, D, and Y . No reference to the
do(.) operator that defines causal effects is visible in the graph. Yet, we wrote in this
chapter that this directed graph is also a “causal graph.” The careful reader may have
noticed that we have presented other directed graphs in this chapter from which we
have withheld the label “causal graph.” We now explain.

Pearl has specific requirements for when a directed graph can be anointed a causal
graph (Pearl 2009, definitions 1.3.1-3, 2.2.2, and 7.1.1), based on whether the candidate
graph and its implied joint probability distribution satisfy “Markovian” conditions
(Pearl 2009, theorem 1.4.1). These criteria are difficult to convey in direct form without
introducing all aspects of Pearl’s approach. We offer the following simplified criteria
and strongly encourage readers to consult Pearl (2009) for their more complete and
original expression.24 Accordingly, and at the risk of too much oversimplification, a
directed graph can be considered a causal graph by Pearl’s definitions if

1. All variables in the graph, {V }, are observed (other than those variables implic-
itly included in the error terms, {eV }, that are only revealed under magnifica-
tion).

2. All variables in the graph, {V }, have error terms, {eV }, that are independent of
all variables in the graph, {V }, and that are mutually independent of each other.

3. It is reasonable to assume that each variable in the graph, V , can be subjected
to a hypothetical intervention, do(V = v), that

(a) replaces the pre-intervention probability distribution of V , Pr(V ), with a
single intervention value v,

(b) removes the directed edges in the graph that terminate at V, and

(c) changes nothing else in the graph (even though the setting of V to v propa-
gates through the probability distributions of the descendants of V via the
directed paths that remain in the graph).

Criteria 1 and 2 should be clear to those familiar with path models; they are stronger
versions of the standard linear path model identifying assumptions that “all causal
variables are uncorrelated with the error terms of all endogenous variables” and “all
error terms on endogenous variables are uncorrelated with each other.” Criterion 3 is
typically considered to be unique to Pearl’s framework, but Pearl himself makes the
case that versions of criterion 3 were essential to early motivations of path-modeling
techniques and were subsequently forgotten by their inheritors (see Bollen and Pearl
2013).25

24We will not, for example, discuss the basic requirement that the graph, and its associated struc-
tural equations, fully determines the joint probability distribution across all variables depicted in the
graph. Using our simplified notation, this criterion is “All variables in the graph, {V }, have proba-
bility distributions, {Pr(V )}, that are generated by associated structural equations {fV (.)} that are
functions only in (a) the variables that point directly to them in the graph (i.e, their “parents”) and
(b) their own error terms, eV .”

25In the broader literature on causal graphs beyond Pearl’s work, criterion 3 is required only for
the subset of the variables in the graph that are immediately relevant for identification of the focal
causal effect (see Dawid 2002; Glymour et al. 2001; Robins and Richardson 2010).
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Before addressing criterion 3, we should clarify one aspect of criteria 1 and 2. Figure
3.4(a) can be anointed a causal graph because its meets criteria 1 and 2 and because
we have implicitly assumed up until now that criterion 3 is met as well. If criterion 1
is not met, but criteria 2 and 3 are, then the directed graph is “semi-Markovian” and
typically thought of as if it is a causal graph (because what is observable and what is
unobservable is subject to change).

Now consider criterion 3. The lead in – “It is reasonable to assume . . .” – is our
own writing, but it is consistent with Pearl’s presentation of the same material. The
key idea is that, by placing such a structure on the graph through a series of finely
articulated definitions that are adopted as assumptions, causal effects can be rigorously
defined. The payoff to adopting such structure is twofold. First, a directed graph that
is a causal graph does not require that forcing variables be displayed to represent
the atomic interventions that define all of the causal effects in the graph. Second, if a
directed graph is a causal graph that satisfies criteria 1, 2, and 3, then the observed data
can be manipulated to deliver estimated causal contrasts that are equal to true causal
contrasts defined by the application of the do(.) operator separately to all variables in
the graph.26 (Weaker variants of this implication are available, and should be obvious.
Even if the full causal graph does not meet these criteria, it is often possible to identify
specific causal effects while other effects in the graph remain unidentified.)

We will demonstrate more fully the second implication in the next chapter, where
we introduce the back-door criterion for sufficient conditioning to identify a causal
effect.27 To get a handle on this implication now, it may be helpful to consider it in
reverse for the simplest estimators we have considered so far in this book. Whenever
conditioning estimators, or simple naive estimators, can be used to recover all causal
contrasts in a graph from observed associational contrasts, the directed graph is a
causal graph. For example, for Figure 3.4(a) a conditioning estimator (described in
brief in Section 3.2.3) can be used to generate a consistent estimate of the average
causal effect of D on Y , defined as E[Y |do(D=1)]−E[Y |do(D=0)].28 This result is
true because the graph in Figure 3.4(a) is a causal graph: All variables are observed;
the error terms that are viewable under magnification are defined to be independent
of all else in the graph; and we have no reason to believe that it is unreasonable to
assume that criterion 3 applies (because we have no reason to believe that intervening
on D would alter C, etc.).

For another example that also serves as a substantive bridge to the final section of
this appendix, recall the graph in Figure 3.5 that includes an unobserved confounder,

26Written in this form, this implication holds only for an infinite sample, so as to render sampling
error unable to destroy the “equal to” within it. The estimates are therefore best interpreted as
consistent estimates of the true causal effects.

27More generally, Pearl (2009, section 3.4) presents three rules that can be applied to candidate
directed graphs and their associated structural equations to assess whether all effects in the graph
can be identified. He characterizes such assessment as the application of “do calculus” with the goal
of reducing do-defined probability distributions to equivalent probability distributions based only
on observable variables (or, more specifically, the joint probability distribution of all variables, as
structured by the pre-intervention regime encoded in the graph).

28In addition, because the effects of C on both D and Y are unconfounded, assuming criterion 2
holds, the naive estimator (or variants of it if C has more than two values) can be used to consistently
estimate these two effects.
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A, for the effect of education, E, on earnings, Y . Assuming criteria 2 and 3 are met, this
graph is still not fully Markovian, and hence not a causal graph, because criterion 1 is
not met. Accordingly, no conditioning estimator can be undertaken with the observed
data to generate values that would correspond to E[Y |do(E= e)] for all values e of E.
Conditioning only on the observed confounder C does not eliminate the confounding by
the unobserved variable A. However, for Pearl, this graph would be semi-Markovian
because observation of A would then render it a fully Markovian causal graph, for
which an effective conditioning estimator would then become available. Thus, if we
can assume that criteria 2 and 3 are met, then we can state that Figure 3.5 would be
a causal graph if A were observed.

The Absence of Potential Outcome Variables from Causal Graphs. Imag-
ine a graph that included arrows between D and Y 0 and between D and Y 1, suggesting
purported causal effects such as D→ Y 0 and D→ Y 1. Such causal relationships are
inherently nonsensical because Y 1 and Y 0 are defined in relation to each other, as they
jointly determine the observed variable Y in interaction with the causal states indexed
by D.

Recall the definition offered in Equation (2.2):

Y =DY 1+(1−D)Y 0. (3.8)

One trivial way to explain why causal effects such as D→Y 1 are nonsensical is to take
Equation (3.8) and rewrite Y 1 in individual realizations as

y1i =
yi− (1−di)y

0
i

di
. (3.9)

If we think of the supposed causal effect D→Y 1 as being the theoretical difference in
y1i that would result from the action of switching di from 0 to 1, we can alternatively
substitute 0 and 1 into Equation (3.9) and generate the result that the supposed
causal effect of di on y1i is the difference between “undefined” and yi. Doing the same
operation for y0i delivers a supposed causal effect of di on y0i as the difference between
yi and “undefined.”

In other words, it does not make any sense to seek the causal effect of D on Y 1

or of D on Y 0, even though we have already offered examples where, empirically and
theoretically, there may be good reason to believe that within the population of interest
there may be an association between values of D and Y 1 and/or between D and Y 0

because of the ways individuals enter into the observed causal states (see Section
2.7). From a causal graph perspective, if such associations exist, they are produced by
causal relations that connectD and Y but that do not travel throughD→Y . These are
exactly the sorts of relationships that we earlier argued, with reference to Equation
(2.14), generate inconsistency and bias in the the naive estimator. Individuals with
di =1 may have higher values, on average, for y0i and/or y1i than those with di =0. If
so, such average differences must arise because D and Y both mutually depend on a
third variable, such as C in Figure 3.4(a).29

29Pearl (2009:342) would state such dependence as “{Y 0,Y 1} represents the sum total of all exoge-
nous variables, latent as well as observed, which can influence Y through paths that avoid D” (with
notation changes from the original to match our example). The only point which differs from our
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Can one represent the same basic insight using causal graphs? Pearl, in his own
writing, has largely chosen not to do so (but see Pearl 2009, section 11.3.2).30 The
broader literature in causal graph methodology shows that it is possible to express
the same ideas using directed graphs, although these are not graphs that are to be
used in the same way as other graphs in this book. (A recent usage similar to ours in
this section can be found in de Luna, Waernbaum, and Richardson (2011). See their
citations to precursors.)

Recall Figure 3.5, which was used to bridge our first presentation of conditioning
in causal graphs with our earlier presentation of the ability bias example used to
introduce the potential outcome model in Chapter 2. In that graph, conditioning on C
will not generate a consistent and unbiased estimate of the effect of education, E, on
earnings, Y , because of the presence of the unobserved ability confounder, A. However,
in Chapter 2 we discussed such confounding by ability instead as inconsistency and bias
in the naive estimator. In Section 2.7.3, we defined two types of inconsistency and bias,
aided by the potential outcome definitions. Baseline bias in the naive estimator was
present when E[Y 0|D=1] �=E[Y 0|D=0], and treatment effect bias was present when
E[δ|D=1] �=E[δ|D=0] (which would be present whenever E[Y 1|D=1] �=E[Y 1|D=0],
assuming no highly unlikely canceling produced by the joint distribution of Y 0 and
Y 1).

Figure 3.9 presents pairs of directed graphs that express the mutual dependence of
potential outcomes and causal variables on exogenous confounders in three different
scenarios. Notice first that none of the graphs in Figure 3.9 include either nonsensical
causal effects, such as E→Y 0 or E→Y 1, or the observed outcome variable earnings,
Y . Instead, these graphs are drawn solely to represent the mutual dependence of the
potential outcomes for earnings, Y 0 and Y 1, and the focal causal variable, E, on
observed confounders, C, and the unobserved ability confounder, A.

Recall that for the representation in Figure 3.5, it was not necessary to stipulate
that E took on any particular values because the graph holds under a many-valued
version of E. For simplicity of representation, and to match our earlier discussion in
Section 2.7.3, we will now consider the case where E takes on only two values: 0 for
those who do not obtain a bachelor’s degree and 1 for those who do.

For Figure 3.9(a), confounding by C generates noncausal associations between E
and both Y 0 and Y 1. Baseline confounding by ability, A, generates a noncausal asso-
ciation between only education and Y 0. This is the case, noted earlier in Section 2.7.3,
where those who have college degrees would have higher earnings than those without

explanation here is that Pearl uses the {., .} notation to emphasize, as in ignorability, that the exoge-
nous variables can structure a function defined in Y 1 and Y 0, such as the difference between these
two. We make the same point in the graphs that follow.

30Although Pearl has not devoted a great deal of attention to developing graphical models that
include potential outcomes, he and his colleagues have devoted considerable attention to the represen-
tation of counterfactuals in causal graphs. Shpitser and Pearl (2007) develop a powerful framework
for counterfactual graphs, following on Pearl’s earlier work on twinned network graphs; see Pearl
(2000:213–14) and citations therein to earlier work; Shpitser (2012a, 2012b) offers particularly clear
expositions of these graphs. Counterfactual graphs are beyond the scope of this book, in part because
they require a more thorough understanding of Pearl’s do calculus and full structural causal models
than we have space to provide and than is necessary to understand the relevance of his framework
for most forms of observational research in the social sciences.
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Figure 3.9 Alternative graphs for the joint dependence of a two-valued causal vari-
able for education (E) and potential outcomes for earnings (Y 0 and Y 1) on observed
confounders (C) and on an unobserved confounder for ability (A).

college degrees in the counterfactual state in which they did not in fact obtain college
degrees (even after adjustment for C). In other words, being “smarter” pays off in the
labor market, even if one does not carry on to earn a bachelor’s degree.

In contrast, for Figure 3.9(b), confounding by ability generates a noncausal associ-
ation between education and Y 1 but not between education and Y 0. This is a form of
treatment effect confounding, wherein those who do not obtain college degrees would
not have earnings as high as those who do obtain college degrees in the counterfactual
state in which they did in fact obtain college degrees (again, after adjustments for
C). Here, being smarter helps one get more of an earnings payoff from obtaining a
bachelor’s degree, even though, contrary to Figure 3.9(a), being smarter does not lead
to higher earnings in the absence of a college degree.

For Figure 3.9(c), both types of confounding by ability are present, as in the pattern
presented earlier in Section 2.7.3. In this case, however, there is little advantage in using
the paired graph representation instead of the single directed graph in Figure 3.5. For
Figures 3.9(a), (b), and (c), the separate graphs for Y 0 and Y 1 allow for distinct
patterns of confounding, and such clarity may be useful in some situations.
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Chapter 4

Models of Causal Exposure
and Identification Criteria
for Conditioning Estimators

In this chapter, we present the basic conditioning strategy for the estimation of causal
effects. We first provide an account of the two basic implementations of conditioning
– balancing the determinants of the cause of interest and adjusting for other causes of
the outcome – using the language of “back-door paths.” After explaining the unique
role that collider variables play in systems of causal relationships, we present what
has become known as the back-door criterion for sufficient conditioning to identify a
causal effect. To bring the back-door criterion into alignment with related guidance
based on the potential outcome model, we then present models of causal exposure,
introducing the treatment assignment and treatment selection literature from statistics
and econometrics. We conclude with a discussion of the identification and estimation
of conditional average causal effects by conditioning.

4.1 Conditioning and Directed Graphs

In Section 1.5, we introduced the three most common approaches for the estimation of
causal effects, using language from the directed graph literature: (1) conditioning on
variables that block all back-door paths from the causal variable to the outcome vari-
able, (2) using exogenous variation in an appropriate instrumental variable to isolate
covariation in the causal variable and the outcome variable, and (3) establishing the
exhaustive and isolated mechanism that intercepts the effect of the causal variable on
the outcome variable and then calculating the causal effect as it propagates through
the mechanism. In this chapter, we consider the first of these strategies, which moti-
vates the basic matching, regression, and weighted regression techniques that we will
present in Chapters 5, 6, and 7.

105
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D Y

C O

Figure 4.1 A graph in which the causal effect of D on Y is confounded by the back-
door path D←C→O→ Y .

In Chapter 3, we explained the motivation for and execution of very simple con-
ditioning estimators (see Section 3.2.3). In this chapter, we provide a more complete
explanation of when, why, and how conditioning estimators will succeed in delivering
estimates that can be given causal interpretations. We first reintroduce conditioning
in a way that will reorient our perspective away from the “confounder variable” per-
spective of Chapter 3 to the more complete “back-door path” perspective that we will
use in the remainder of this book.

4.1.1 From Confounders to Back-Door Paths

Consider Figure 4.1, which is an elaboration of the canonical confounding graph pre-
sented earlier in Figure 3.4(a). For this figure, the intermediate observed variable, O,
expands the single-edge causal effect C → Y in Figure 3.4(a) to the directed path
C→O→Y in Figure 4.1. We noted in our prior discussion of Figure 3.4(a) that con-
ditioning on C would allow us to generate a consistent and unbiased estimate of the
causal effect of D on Y . This result holds for Figure 4.1 as well. However, for Figure
4.1, one could instead condition on O and achieve the same result. In fact, one could
condition on both C and O as a third alternative.

The key goal of a conditioning strategy is not to adjust for any particular con-
founder but rather to remove the portion of the total association between D and Y
that is noncausal. For Figure 4.1, the strategy to adjust for C is often referred to as
“balancing the determinants of treatment assignment,” and it is the standard motiva-
tion for matching estimators of causal effects. The alternative strategy to adjust for
O is often referred to as “adjusting for all other causes of the outcome,” and it is the
standard motivation for regression estimators of causal effects.

Pearl characterizes both strategies in a novel way, using the language of back-door
paths. As defined in Section 3.2.1, a path is any sequence of edges pointing in any
direction that connects one variable to another. We now formally define a particular
type of path that we have invoked informally already: A back-door path is a path
between any causally ordered sequence of two variables that begins with a directed
edge that points to the first variable.1 For the directed graph in Figure 4.1, two paths
connect D and Y : D← C → O→ Y and D→ Y . The path D← C → O→ Y is a

1“Causally ordered” means that the first variable causes the second variable by a directed path of
some length. For the example discussed in this paragraph, D and Y are causally ordered because D
causes Y by D→ Y . C and Y are also causally ordered because C causes Y by C→O→Y . D and O
are not causally ordered because the only two paths that connect them (D←C→O and D→Y ←O)
are not directed paths. Both of these paths have edges pointing in two directions. Recall also that we
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back-door path because it begins with a directed edge pointing to D. Likewise, the
path D→ Y is not a back-door path because it does not begin with a directed edge
pointing to D.2

In Pearl’s language, the observed association between D and Y does not identify
the causal effect of D on Y in Figure 4.1 because the total association between D
and Y is an unknown composite of the true causal effect D→ Y and a noncausal
association between D and Y that is generated by the back-door path D←C→O→
Y . Fortunately, conditioning on C, O, or both C and O will block the back-door
path, leaving within-stratum associations between D and Y that can be given causal
interpretations (and can also be suitably averaged to obtain consistent and unbiased
estimates of average causal effects of various types). The remainder of this chapter
explains this result, as well as many others that are more complex.

4.1.2 Conditioning and Collider Variables

As a technique for estimating causal effects, conditioning is a very powerful and very
general strategy. But, it is a much more complicated procedure in general than is
suggested by our discussion of the simple directed graphs in Figures 3.4(a) and 4.1.
Many of the complications arise when collider variables are present, and Pearl has
explained systematically how to resolve these complications.

Recall that a variable is a collider along a particular path if it has two edges point-
ing directly to it, such as C in the path A→C←B in Figure 3.3(c). For conditioning
estimators of causal effects, collider variables must be handled with caution. Condi-
tioning on a collider variable that lies along a back-door path does not help to block
the back-door path but instead creates new associations.

The reasoning here is not intuitive, but it can be conveyed by a simple example with
the mutual causation graph in Figure 3.3(c). Suppose that the population of interest
is a set of applicants to a particular selective college and that C indicates whether
applicants are admitted or rejected (i.e., C =1 for admitted applicants and C =0 for
rejected applicants). Admissions decisions at this hypothetical college are determined
entirely by two characteristics of students that are known to be independent within
the population of applicants: SAT scores and a general rating of motivation based on
an interview. These two factors are represented by A and B in Figure 3.3(c). Even
though SAT scores and motivation are unrelated among applicants in general, they are
not unrelated when the population is divided into admitted and rejected applicants.
Among admitted applicants, the most motivated students will have lower than average
SAT scores, and the least motivated students will have higher than average SAT scores.
Thus, the college’s sorting of applicants generates a pool of admitted students within
which SAT scores and motivation are negatively related.3

stipulated in Chapter 3 that we will only consider acyclic graphs in this book. Without cycles, causal
order is easily discerned by inspecting the directed paths in the graph.

2Recall that a directed path is a path in which all edges point in the same direction. Because
all back-door paths have edges pointing in two directions, back-door paths are not directed paths.
However, they can contain directed paths, such as the directed path C→O→Y that is embedded in
the back-door path D←C→O→ Y .

3A negative correlation will emerge for rejected students as well if (1) SAT scores and motivation
have similarly shaped distributions and (2) both contribute equally to admissions decisions. As these
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Figure 4.2 Simulation of conditional dependence within values of a collider variable.

This example is depicted in Figure 4.2 for 250 simulated applicants to this hypo-
thetical college. For this set of applicants, SAT and motivation have a very small
positive correlation of .035.4 Offers of admission are then determined by the sum of
SAT and motivation and granted to the top 15 percent of applicants (as shown in the
upper right-hand portion of Figure 4.2).5 Among admitted applicants, the correlation
between SAT and motivation is −.641, whereas among rejected applicants the corre-
lation between SAT and motivation is −.232. Thus, within values of the collider (the
admissions decision), SAT and motivation are negatively related.

As Pearl documents comprehensively with a wide range of hypothetical examples,
this is a very general feature of causal relationships and is present in many real-world
applications. Elwert andWinship (2014) present many examples from the social science
literature. In the next section, we show that care must be taken when attempting to
estimate a causal effect by conditioning because conditioning on a collider variable can
spoil an analysis.

conditions are altered, other patterns can emerge for rejected students, such as if admissions decisions
are a nonlinear function of SAT and motivation.

4The values for SAT and motivation are 250 independent draws from standard normal variables.
The draws result in an SAT variable with mean of .007 and a standard deviation of 1.01 as well as a
motivation variable with mean of −.053 and a standard deviation of 1.02. Although the correlation
between SAT and motivation is a small positive value for this simulation, we could drive the correlation
arbitrarily close to 0 by increasing the number of applicants for the simulation.

5Admission is offered to the 37 of 250 students (14.8 percent) whose sum of SAT and motivation
is greater than or equal to 1.5.
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4.2 The Back-Door Criterion

With his language of back-door paths, colliders, and descendants, Pearl has developed
what he labels the back-door criterion for determining whether or not conditioning
on a given set of observed variables will identify the causal effect of interest.6 The
overall goal of a conditioning strategy guided by the back-door criterion is to block
all paths that generate noncausal associations between the causal variable and the
outcome variable without inadvertently blocking any of the paths that generate the
causal effect itself. In practice, a conditioning strategy that utilizes the back-door
criterion is implemented in two steps:

Step 1: Write down the back-door paths from the causal variable to the
outcome variable, determine which ones are unblocked, and then search
for a candidate conditioning set of observed variables that will block all
unblocked back-door paths.

Step 2: If a candidate conditioning set is found that blocks all back-door
paths, inspect the patterns of descent in the graph in order to verify
that the variables in the candidate conditioning set do not block or
otherwise adjust away any portion of the causal effect of interest.

This two-step procedure is justified by the following reasoning, which constitutes
Pearl’s back-door criterion:

Back-Door Criterion

If one or more back-door paths connect the causal variable to the outcome
variable, the causal effect is identified by conditioning on a set of variables
Z if

Condition 1. All back-door paths between the causal variable and
the outcome variable are blocked after conditioning on Z, which
will always be the case if each back-door path

(a) contains a chain of mediation A→C→B, where the
middle variable C is in Z, or

(b) contains a fork of mutual dependence A←C→B,
where the middle variable C is in Z, or

(c) contains an inverted fork of mutual causation A→
C←B, where the middle variable C and all of C’s
descendants are not in Z;

6The back-door criterion is meant to be used only when the causal effect of interest is specified
as a component of a graph that is a Markovian causal model, or would be if all variables represented
in the graph were observed; see Pearl’s causal Markov condition for the existence of a causal model
(Pearl 2009, section 1.4.2, theorem 1.4.1), as well as our discussion in the appendix to Chapter 3.
This requirement can be weakened when the graph is only a locally Markovian causal model, as long
as the underspecified causal relations are irrelevant to an evaluation of the back-door criterion for the
particular causal effect under consideration. All of the examples we utilize in this book meet these
conditions.
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and

Condition 2. No variables in Z are descendants of the causal
variable that lie on (or descend from other variables that lie on)
any of the directed paths that begin at the causal variable and
reach the outcome variable.7

To explain the back-door criterion, we will first consider Conditions 1(a), (b), and (c),
using examples where Condition 2 is met by default because the only descendant of
the causal variable D in the graph is the outcome variable Y (and where we assume
that the analyst does not consider conditioning on Y itself).

Conditions 1(a) and 1(b) of the back-door criterion should be clear as stated.
Return one last time to the simple example in Figure 4.1. Here, there is a single
back-door path, D← C → O→ Y , which includes within it both a fork of mutual
dependence (D←C→O) and a chain of mediation (C→O→ Y ). By the back-door
criterion, conditioning on C blocks the path D←C→O→Y because C is the middle
variable in a fork of mutual dependence. Likewise, conditioning on O blocks the path
D←C→O→Y because O is the middle variable in a chain of mediation. As a result,
the candidate conditioning set meets Pearl’s back-door criterion if Z is C, O, or both
C and O.

Condition 1(c), however, is quite different than Conditions 1(a) and 1(b) and is not
intuitive. It states instead that the set of candidate conditioning variables Z cannot
include collider variables that lie on back-door paths.8 Consider the following example.
A common but poorly justified practice in the social sciences is to salvage a regression
model from suspected omitted-variable bias by adjusting for an endogenous variable
that can be represented as a proxy for the omitted variable that is unobserved. In many
cases, this strategy will fail because the endogenous variable is usually a collider.

Suppose that an analyst is confronted with a directed graph similar to the one
in Figure 3.4(b), in which the causal effect of D on Y is confounded by an unob-
served variable, such as C. When in this situation, researchers often argue that the
effects of the unobserved confounder can be decomposed in principle into a lagged pro-
cess, using a prior variable for the outcome, Yt−1, and two separate unobserved vari-
ables, U and V , as in Figure 4.3. For this graph, there are two back-door paths from
D to Y :

1. D← V → Yt−1→ Y and

2. D← V → Yt−1←U→ Y .

7This representation of the back-door criterion is a combination of Pearl’s definition of d-separation
(Pearl 2009:16–17), his original specification of the back-door criterion (Pearl 2009:79), and the gen-
eralization of the back-door criterion that was developed and labeled the “adjustment criterion” by
Shpitser, VanderWeele, and Robins (2010). In an appendix to this chapter, we clarify our specifi-
cation of Condition 2, as incorporated from the adjustment criterion. In brief, for Pearl’s original
back-door criterion, Condition 2 requires more simply (but overly strongly) that no variables in Z
can be descendants of the causal variable.

8Because the “or” in the Conditions 1(a), (b), and (c) of the back-door criterion is inclusive,
one can condition on colliders and still satisfy the back-door criterion if the back-door paths along
which the colliders lie are otherwise blocked because Z satisfies Condition 1(a) or Condition 1(b) with
respect to another variable on the same back-door path.
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Figure 4.3 A causal diagram in which Yt−1 is a collider along a back-door path.

The lagged outcome variable Yt−1 lies on both of these back-door paths, but Yt−1

does not satisfy the back-door criterion. Notice first that Yt−1 blocks the first back-
door path because, for this path, Yt−1 is the middle variable in a chain of mediation,
V → Yt−1→ Y . But, for the second path, D← V → Yt−1←U → Y , Yt−1 is a collider
because it is the middle variable in an inverted fork of mutual causation, V →Yt−1←U .
Accordingly, conditioning on Yt−1 would eliminate part of the back-door association
between D and Y because Yt−1 blocks the first back-door path D← V → Yt−1→ Y .
But, at the same time, conditioning on Yt−1 would create a new back-door association
between D and Y because conditioning on Yt−1 unblocks the second back-door path
D← V → Yt−1←U→ Y .

How can conditioning on a collider unblock a back-door path? To see the answer to
this question, recall the discussion of conditioning in reference to Figure 3.3(c) and then
as demonstrated in Figure 4.2. There, with the example of SAT and motivation effects
on a hypothetical admissions decision to a college, we explained why conditioning on
a collider variable induces an association between those variables that the collider is
dependent on. That point applies here as well, when the causal effect of D on Y in
Figure 4.3 is considered. Conditioning on a collider that lies along a back-door path
unblocks the back-door path in the sense that it creates an association between D and
Y within at least one of the subgroups enumerated by the collider.

Consider the slightly more complex example that is presented in Figure 4.4 (which
is similar to Figure 1.1, except that the bidirected edges that signified unspecified and
unobserved common causes have been replaced with two specific unobserved variables,
U and V ). Suppose, again, that we wish to estimate the causal effect of D on Y . For
this directed graph, there are two back-door paths between D and Y :

1. D←A←V →F →Y and

2. D←B←U→A←V →F →Y .

Notice that A is a collider variable in the second back-door path but not in the first
back-door path. As a result, the first back-door path generates a noncausal association
between D and Y , but the second back-door path does not. We therefore want to block
the first path without unblocking the second path.
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Figure 4.4 A causal diagram in which A is a collider on a back-door path.

For this example, there are two entirely different and effective conditioning strate-
gies available that will identify the causal effect (numbers 1 and 3 in the following list)
and a third one that may appear to work but that will fail (number 2 in the following
list):

1. F is the middle variable in a chain of mediation, V →F→Y , for both back-door
paths. As a result, F satisfies the back-door criterion, and conditioning on F
identifies the causal effect of D on Y .

2. A is a middle variable in a chain of mediation, D←A←V , for the first back-door
path. However, A is a collider variable for the second back-door path because it
is the middle variable in a fork of mutual causation, U →A← V . As a result,
A alone does not satisfy the back-door criterion. Conditioning on A does not
identify the causal effect of D on Y , even though A lies along both back-door
paths. Conditioning on A would unblock the second back-door path and thereby
create a new, noncausal, back-door association between D and Y .

3. A is a middle variable in a chain of mediation, D←A← V , for the first back-
door path. Likewise, B is a middle variable in a chain of mediation, D ←B←U ,
for the second back-door path. Thus, even though A blocks only the first back-
door path (and, in fact, conditioning on it unblocks the second back-door path),
conditioning on B blocks the second back-door path. As a result, A and B
together (but not alone) satisfy the back-door criterion, and conditioning on
them together identifies the causal effect of D on Y .
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In sum, for this example the causal effect can be identified by conditioning in one of
two minimally sufficient ways: either condition on F or condition on both A and B.9

Now, we need to consider the complications introduced by descendants, as stipu-
lated in both Condition 1(c) and Condition 2. Notice that Condition 1(c) states that
neither C nor the descendants of C can be in Z. In words, conditioning on a collider
or the descendant of a collider that lies on a back-door path will unblock the back-
door path. Consider an extension of our prior analysis of Figure 4.3. For the graph in
Figure 4.5, there are again two back-door paths from D to Y :

1. D← V → Yt−2→ Yt−1→ Y and

2. D← V → Yt−2←U→Y.

The first path does not contain any colliders and therefore confounds the causal effect
of D on Y . The second back-door path, however, is blocked without any conditioning
because Yt−2 is a collider on it. One might think, therefore, that conditioning on Yt−1

will block the first path without unblocking the second path. Condition 1(c) rules out
this possibility because Yt−1 is a descendant of Yt−2, and the latter is a collider on an
already blocked path. The reasoning here is straightforward. The descendant Yt−1 is
simply a noisy version of Yt−2 because its structural equation is

Yt−1 = fYt−1(Yt−2,eYt−1),

where the error term, eYt−1 , is (as usual) assumed to be independent of all else in the
graph. As a result, conditioning on Yt−1 has the same consequences for the second
back-door path as conditioning on Yt−2.

10

Having explained Conditions 1(a), (b), and (c) of the back-door criterion, we can
now consider Condition 2, which states that none of the variables in the possible
conditioning set Z can be descendants of the causal variable that block the causal
effect of interest by lying on or descending from any of the directed paths that begin
at the causal variable and reach the outcome variable. Recall that a directed path is a
path in which all edges point in the same direction. In all prior examples discussed in
this section, the only descendant of D has been Y , and thus Condition 2 has been met
by default (under the assumption that the analyst has not considered conditioning on
the outcome variable Y itself).

We now consider two examples where additional descendants of D are present.
Figure 4.6 presents a graph that elaborates Figure 4.1, where now the total effect of D
on Y is separated into an indirect pathway through a mediating variable, D→N→Y ,
and a remaining direct effect, D→ Y . We will discuss models with such mediating

9 One can of course condition in three additional ways that also satisfy the back-door criterion:
F and A, F and B, and F , A, and B. These conditioning sets include unnecessary and redundant
conditioning.

10Hernn, Hernandez-Diaz, and Robins (2004) offer an excellent discussion of examples in epidemi-
ology for which such descendants of colliders are a primary focus. For their types of examples, the
outcome is “death,” the collider on the back-door path (or elsewhere in the causal graph) is “getting
sick enough to be admitted to a hospital for treatment,” and the variable that is conditioned on is
“in a hospital.” Conditioning on “in a hospital” (by undertaking a study of hospital patients) induces
associations between the determinants of sickness that can spoil standard analyses. Elwert (2013) and
Elwert and Winship (2014) cover many of the same issues from a social science perspective. In an
appendix to this chapter, we also provide additional discussion and examples.
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Figure 4.5 A causal diagram in which Yt−2 is a collider on a back-door path and Yt−1

is its descendant.
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Figure 4.6 A confounded causal effect expressed as an indirect effect and a net direct
effect.

mechanisms in substantial detail in Chapter 10, and for now we will use this graph
only to introduce a discussion of Condition 2 of the back-door criterion.

As we have noted in this section and elsewhere (and, assuming now, without loss of
generality that D is a two-valued treatment), conditioning on either C or O identifies
the total average causal effect ofD on Y , which we defined in Section 3.4 asE[Y |do(D=
1)]−E[Y |do(D=0)]. The back-door criterion states that if, in addition to C and/or O,
we also conditioned on N , the resulting estimate would no longer identify the casual
effect of D on Y . The conditioning set of C, O, and N violates Condition 2 of the back-
door criterion because N is a descendant ofD that lies on a directed path,D→N→Y ,
that reaches Y . As a result, the back-door criterion indicates that the analyst should
not condition on N .

We suspect that this conclusion would be clear to readers without consulting the
back-door criterion (by reasoning that adjustment for N would rob the total causal
effect of D on Y of some of its magnitude, leaving only a partial direct effect that
is not equal to E[Y |do(D = 1)]−E[Y |do(D = 0)]).11 Such reasoning is correct, and
Condition 2 of the back-door criterion is, in part, a formalization of this intuition.

11In this section, we are considering only how to apply the back-door criterion when the goal is to
estimate the total effect of the cause D on the outcome Y . If, instead, the analyst is interested in
estimating the direct effect of D on Y , net of the indirect effect of D on Y through N , then adjustment
for N is necessary. VanderWeele (in press) provides a comprehensive treatment of the identification
and estimation of direct effects. We will return to these issues in Chapter 10, where we will consider
how to identify causal effects using generative mechanisms.
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Figure 4.7 A graph where the effect of D on Y is not identified by conditioning on
O and B because O is a descendant of D.

However, Condition 2 is more finely articulated than this intuition alone. It invalidates
conditioning sets that adjust away any portion of the causal effect of interest, not just
those portions that are carried by variables that mediate the causal effect. Just as
conditioning on the descendant of a collider has the same consequences as conditioning
on the collider itself, conditioning on a descendant of a variable that lies on a directed
path from the causal variable to the outcome variable has the same consequences for
identification results as conditioning directly on the variable from which it descends.12

Consider Figure 4.7, where we are again interested in the effect ofD on Y and where
we have now specified two mediating variables,M and N , that completely characterize
the total effect of D on Y . For this graph, three back-door paths connect D to Y :

1. D←C→O→ Y ,

2. D←C→O←M→ Y , and

3. D←B→U→ Y .

In addition, the variables C, M , and U are unobserved, and thus they are not available
to use in a conditioning estimator.

Suppose that one decides to condition on both O and B. First, note that these
two variables do not satisfy Conditions 1(a), (b), and (c) of the back-door criterion.

12Notice further that Condition 2 applies to descendants of the cause that lie on or descend from
variables on directed paths that begin at the causal variable and “reach the outcome variable” rather
than “end at the outcome variable.” The word “reach” has been chosen to allow for Condition 2 to
invalidate conditioning sets that include descendants of the cause that are also descendants of the
outcome. Suppose that an additional observed variable W is added to Figure 4.6 along with a directed
edge from Y to W , as in Y →W . The new variable W is a descendant of both D and Y via the two
directed paths D→ Y →W and D→N → Y →W that begin at D and reach Y (and, in this case,
carry on to W ). There is, of course, no reason to condition on W in an attempt to estimate the
causal effect of D and Y because W does not lie on a back-door path from D to Y that confounds
the causal effect of interest. If an analyst does do so, by adding W to a conditioning set that includes
C and/or O, then Conditions 1(a), (b), and (c) of the back-door criterion are met but Condition 2
is not. The variable W is simply a noisy version of Y , and the causal effect of D on Y is therefore
embedded within it. Conditioning on W will, in fact, mistakenly suggest that D has no casual effect
on Y because within strata defined by W , D and Y are independent (assuming no measurement error
and an infinite sample that enables fully nonparametric estimation).
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Conditioning on O will block path 1, and conditioning on B will block path 3. However,
conditioning on O will unblock path 2 because it is a collider on an already blocked
back-door path.

What we want to stress now is that the candidate conditioning set of O and B also
does not satisfy Condition 2 of the back-door criterion. O is a descendant of D on a
directed path, D→M →O→ Y , that reaches Y . Furthermore, O is a descendant of
M , via M→O, and M is a variable that lies on another directed path, D→M→ Y ,
that begins at D and reaches Y .

Notice also that the graph in Figure 4.7 is realistic and not contrived. If a researcher
follows the (sometimes wrong) conditioning strategy of “adjusting for all other causes
of the outcome,” and the researcher has not drawn the full causal graph in Figure
4.7, then the researcher would almost certainly condition on O (even if the researcher
wisely decides not to condition on the clearly endogenous observed variable N but
does decide to condition on the second-order cause B in place of the unobserved
direct cause U). In practice, other causes of an outcome that are observed are hard
to resist conditioning on, even though many of them are descendants of the cause
along directed paths that reach the outcome and thereby violate Condition 2 of the
back-door criterion. If a researcher does not observe a mechanistic variable like M , the
analyst may not recognize the endogeneity of O with respect to D (especially if the
analyst comes to believe that the only mechanistic variable has been observed as N
and that the remaining effect of D on Y is an unmediated direct effect).

Condition 2 of the back-door criterion is a general requirement for sufficient condi-
tioning sets, and it is easy to apply. One need only examine each candidate conditioning
variable to determine whether it lies on (or descends from a variable that lies on) the
directed paths that begin at the causal variable and reach the outcome variable.

Although Condition 2 is easy to apply, we discuss additional examples in an
appendix to this chapter that are more challenging to explain. In particular, we recon-
sider the graphs just presented, building toward a full reexamination of the graph
in Figure 4.7, which is even more complex than our presentation here reveals. In
the appendix, we show that a full assessment of the consequences of conditioning on
descendants of the cause is enabled by drawing the graphs under magnification so that
it is easier to recognize all such descendants as colliders. Although these more complex
cases are interesting to examine, so as to understand the full range of identification
challenges that graphical models help to explain, one need not fully understand them
or absorb them to effectively adhere to conditioning strategies that are warranted by
the back-door criterion.

The two key points of this section are the following. First, conditioning on variables
that lie on back-door paths can be an effective strategy to identify a causal effect. If all
back-door paths between the causal variable and the outcome variable are blocked after
the conditioning is enacted, then back-door paths do not contribute to the association
between the causal variable and the outcome variable. However, it must be kept in mind
that conditioning on a collider (or a descendant of a collider) has the opposite effect.
Any such conditioning unblocks already blocked back-door paths. And thus, when a
conditioning strategy is evaluated, each back-door path must be assessed carefully
because a variable can be a collider on one back-door path but not a collider on
another.
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Second, if a set of conditioning variables blocks all back-door paths, the analyst
must then verify that no variables within the conditioning set block the causal effect of
interest or otherwise mistakenly adjust it away. If none of the candidate conditioning
variables are also descendants of the cause that lie on or descend from directed paths
that begin at the causal variable and reach the outcome variable, then the causal effect
is identified and a conditioning estimator is consistent and unbiased for the average
causal effect.

Pearl’s back-door criterion for evaluating conditioning strategies is a generalization
(and therefore a unification) of various traditions for how to solve problems that are
frequently attributed to omitted-variable bias. From our perspective, Pearl’s frame-
work is particularly helpful in two respects. First, it shows clearly that researchers do
not need to condition on all omitted direct causes of an outcome variable in order
to solve an omitted-variable bias problem. This claim is not new, of course, but
Pearl’s back-door criterion shows clearly why researchers need to condition on only
a minimally sufficient set of variables that (a) renders all back-door paths blocked
and (b) does not block the causal effect itself. Second, Pearl’s framework shows how
to think clearly about the appropriateness of conditioning on endogenous variables.
Writing down each back-door path and then determining whether or not each endoge-
nous variable is a collider along any of the back-door paths is a much simpler way
to begin to consider the full complications of a conditioning strategy than other
approaches.13

In the next section, we consider models of causal exposure that have been used in
the counterfactual tradition, starting first with the statistics literature and carrying on
to the econometrics literature. We will show that the assumptions often introduced in
these two traditions to justify conditioning estimation strategies – namely, ignorability
and selection on the observables – have close connections to the back-door criterion
presented in this section.

13The back-door criterion is not the only available graphical guide for the selection of conditioning
variables. Elwert (2013:256–61) offers a crisp summary of the alternatives. Among these, the adjust-
ment criterion is the most general and is guaranteed to select all possible sufficient conditioning sets.
Nonetheless, we make the case in the appendix to this chapter that the version of the back-door
criterion that we present in the main text of this chapter has advantages relative to the completeness
of the adjustment criterion. Among the other criteria, the disjunctive cause criterion of VanderWeele
and Shpitser (2011) is also particularly useful because it can serve as a guide to conditioning when
the analyst is unwilling to commit to a set of assumptions that enable a full directed graph to be
drawn for the generation of the outcome. The disjunctive cause criterion instructs the analyst to
adjust for all variables that are causes of the treatment or the outcome, but not those variables that
are causes neither of the treatment nor of the outcome. The analyst therefore does not need to con-
struct a directed graph, only take a position on whether the candidate conditioning variables should
be assumed to be causes of the treatment, causes of the outcome, or neither. Of course, the price to
be paid for the simplicity of the disjunctive cause criterion is that it will not necessarily identify the
causal effect (because one cannot know about all sources of confounding if one cannot draw the full
directed graph for the generation of the outcome) and can suggest redundant conditioning (because
one does not need to condition on variables that lie on back-door paths that are already blocked
by colliders, variables that lie on back-door paths that are already blocked by conditioning on other
variables, or variables that do not lie on any back-door paths). Nonetheless, the disjunctive cause
criterion will prevent the analyst from inducing noncausal associations between the treatment and
outcome that would result from conditioning on the relevant colliders that already block back-door
paths.
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4.3 Models of Causal Exposure and Point

Identification Based on the Potential
Outcome Model

With this general presentation of the conditioning strategy in mind, return to the
familiar case of a binary cause D and an observed outcome variable Y . As discussed in
Chapter 2, for the potential outcome model we consider Y to have been generated by a
switching process between two potential outcome variables, as in Y =DY 1+(1−D)Y 0,
where the causal variable D is the switch. To model variation in Y and relate it to
the individual-level causal effects defined by the potential outcome variables Y 1 and
Y 0, a model for the variation in D must be adopted. This is typically known in the
statistics literature as “modeling the treatment assignment mechanism” and in the
econometrics literature as “modeling the treatment selection mechanism.”

In this section, we first consider the notation and language developed by statisti-
cians, and we then turn to the alternative notation and language developed by econo-
metricians. Although both sets of ideas are equivalent, they each have some distinct
conceptual advantages. In showing both, we hope to deepen the understanding of each.

4.3.1 Treatment Assignment Modeling in Statistics

The statistics literature on modeling the treatment assignment mechanism is an out-
growth of experimental methodology and the implementation of randomization research
designs. Accordingly, we begin by considering a randomized experiment for which the
phrase “treatment assignment” remains entirely appropriate.

As discussed in Chapter 2, if treatment assignment is completely randomized by
design, then the treatment indicator variableD is completely independent of the poten-
tial outcomes Y 0 and Y 1 as well as any function of them, such as the distribution of
δ; see the earlier discussion of Equation (2.6). In this case, the treatment assignment
mechanism is known because it is set by the researcher who undertakes the randomiza-
tion. If the researcher wants treatment and control groups of approximately the same
size, then Pr[D=1] is set to .5. Individual realized values of D for those in the study,
denoted di generically, are then equal to 1 or 0 and are determined by the flip of a fair
coin (or by a computer that runs Bernoulli trials for the random variable D with .5 as
the probability).

To facilitate the transition to designs for observational research, consider a slightly
more elaborate design where study subjects are stratified first by gender and then
assigned with disproportionate probability to the treatment group if female. In this
case, the treatment assignment protocol would instead be represented by two condi-
tional probabilities, such as

Pr[D=1|Gender=Female] = .7, (4.1)

Pr[D=1|Gender=Male] = .5. (4.2)

These conditional probabilities are typically referred to as “propensity scores” in the
literature because they indicate the propensity that an individual with specific charac-
teristics will be observed in the treatment group. Although labeled propensity scores
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in the literature, they are nonetheless nothing more than conditional probabilities that
lie within an interval bounded by 0 and 1. For this example, the propensity score is .7
for female subjects and .5 for male subjects. The general point is that for randomized
experiments, the propensity scores are known to the researcher.

In contrast, a researcher with observational data does not possess a priori knowledge
of the exact propensity scores that apply to all individuals. However, the researcher
may know all of the characteristics of individuals that systematically determine their
propensity scores, even if the researcher does not know the specific values of the propen-
sity scores.14 In this case, treatment assignment patterns are represented by a general
conditional probability distribution,

Pr[D=1|S], (4.3)

where S now denotes all variables that systematically determine all treatment assign-
ment patterns. Complete observation of S then allows a researcher to assert that treat-
ment assignment is “ignorable” and then consistently estimate the average treatment
effect (ATE), as we now explain.

The general idea here is that, within strata defined by S, the remaining variation
in the treatment D is completely random and hence the process that generates this
remaining variation is labeled “ignorable.” The core of the concept of ignorability is
the independence assumption that was introduced in Equation (2.6),

(Y 0,Y 1) ⊥⊥ D,

where the symbol ⊥⊥ denotes independence. As defined by Rubin (1978), ignorability
of treatment assignment holds when the potential outcomes are independent of the
treatment dummy indicator variable, as in this case all variation in D is completely
random. Ignorability also holds in the weaker case where

(Y 0,Y 1) ⊥⊥ D | S (4.4)

and

all variables in S are observed.

In words, the treatment assignment mechanism is ignorable when the potential out-
comes (and any function of them, such as δ) are independent of the treatment variable,
D, within strata defined by all combinations of values on all variables, S, that sys-
tematically determine all treatment assignment patterns. If some components of S are
unobserved, the conditional independence condition in Equation (4.4) may still hold,
but treatment assignment cannot be considered ignorable with respect to the observed
data. In this case, treatment assignment must be regarded as nonignorable, even if it
is known that it would be ignorable if all variables in S had instead been observed.15

14This would be the situation for the randomized experiment represented by Equations (4.1) and
(4.2) if the experimentalist knew that the probability of being assigned to the treatment differed by
gender (and only by gender) but had forgotten the values of .7 and .5.

15Rosenbaum and Rubin (1983a) defined strong ignorability to develop the matching literature,
which we will discuss later. To Rubin’s ignorability assumption, Rosenbaum and Rubin (1983a)
required for strong ignorability that each subject have a nonzero probability of being assigned to
both the treatment and the control groups. Despite these clear definitions, the term ignorability is
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In practice, in order to assert that treatment assignment is ignorable for an obser-
vational study, a researcher would

1. determine from related studies and supportable assumptions grounded in theory
what the components of S are,

2. measure each of the component variables in S, and

3. collect enough data to be able to consistently estimate outcome differences on
the observed variable Y within strata defined by S.

This third step can be weakened if the data are merely sparse, as we will discuss when
presenting models based on estimate propensity scores in Chapters 5 and 7. The key
point is that a researcher does not need to know the exact propensity scores (i.e., what
Pr[D = 1|S = s] is equal to for all s), only that the systematic features of treatment
assignment can be exhaustively accounted for by the data in hand on the characteristics
of individuals. The naive estimator can then be calculated within strata defined by
values of the variables in S, and a weighted average of these stratified estimates can
be formed as a consistent estimate of the ATE.16

Consider the Catholic school example. It is well known that students whose par-
ents self-identify as Catholic are more likely to be enrolled in Catholic schools than
students whose parents self-identify as non-Catholic. Suppose that parents’ religious
identity is the only characteristic of students that systematically determines whether
they attend Catholic schools instead of public schools. In this case, a researcher can
consistently estimate the ATE by collecting data on test scores, students’ school sector
attendance, and parent’s religious identification. A researcher would then estimate the
effect of Catholic schooling separately by using the naive estimator within groups of
students defined by parents’ religious identification and then take a weighted average
of these estimates based on the proportion of the population of interest whose parents
self-identify as Catholic and as non-Catholic. In the words of the prior section, the
researcher can generate consistent and unbiased estimates of the ATE by conditioning
on parents’ religious identification.

Assumptions of ignorability have a close connection to the back-door criterion of
Pearl, given the shared centrality of the conditioning operation. Even so, it is impor-
tant to recognize some differences. Suppose that we are confronted with the graph in
Figure 4.8(a), which includes the causal effect D→ Y but also the bidirected edge
D ������Y . The most common solution is to build an explicit causal model that rep-
resents the variables that generate the bidirected edge between D and Y in Figure
4.8(a). The simplest such model is presented in Figure 4.8(b), where D ������ Y has
been replaced with the back-door path D← S→ Y . If S is observed, then condition-
ing on S will solve the causal inference problem, according to the back-door criterion

often defined in different ways in the literature. We suspect that this varied history of usage explains
why Rosenbaum (2002) rarely uses the term in his monograph on observational data analysis, even
though he is generally credited, along with Rubin, with developing the ignorability semantics in this
literature. And it also explains why some of the most recent econometrics literature uses the words
unconfoundedness and exogeneity for the same set of independence and conditional-independence
assumptions (see Imbens 2004).

16Again, we assume that measurement error does not exist, which requires that step 2 be undertaken
without error.
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Figure 4.8 Causal diagrams in which treatment assignment is (a) nonignorable and
(b) ignorable.

presented in the previous section. In the statistics literature, the same result is explained
by noting that treatment assignment is ignorable when S is observed, which is then
written as Equation (4.4).

When identification by back-door conditioning is feasible with the observed data,
then treatment selection is ignorable with respect to the observed data. However, we
do not mean to imply with this statement that the assertion of a valid ignorability
assumption will lead the researcher to condition on the exact same variables suggested
by the back-door criterion. Recall that the back-door criterion guides the researcher
in selecting minimally sufficient conditioning sets. Ignorability can be asserted with
respect to these sets or with respect to broader sets of conditioning variables. For
an example, let S in Figure 4.8(b) be a set of variables. Suppose that, upon reflec-
tion, a researcher decides that one of the variables in S, S′, has a direct effect on
D but no direct effect on Y . Accordingly, it is appropriate to separate S′ from the
other variables in S and assert that S′ is a cause of D that causes Y only indirectly
throughD.17 In this case, S′ does not generate any confounding because S′ does not lie
on a back-door path between D and Y . The minimally sufficient conditioning sets that
are judged admissible by the back-door criterion would not include S′, even though
treatment assignment is ignorable with respect to S′ and the remaining variables in
S. Thus, when asserting ignorability with respect to the observed data, the researcher
may decide to condition on S′, even though such conditioning is unnecessary. After all,
S′ does determine treatment assignment and, hence, does structure the true propen-
sity score. And it is possible that the strong assumption that S′ does not have a direct
effect on Y is incorrect.

We will begin to discuss specific techniques for conditioning estimators in
Chapter 5, where we first present matching estimators of causal effects. But the imme-
diate complications of undertaking a conditioning analysis strategy for the Catholic
school example should be clear. How do we determine all of the factors that system-
atically determine whether a student enrolls in a Catholic school instead of a public
school? And can we obtain measures of all of these factors? Attendance at a Catholic
school is determined by more than just parents’ religious self-identification, and some
of these determinants are likely unmeasured. If this is the case, then the treatment
assignment mechanism is likely to be nonignorable, as treatment selection is then a
function of unobserved characteristics of students that generate confounding. These

17S′ is an instrumental variable, as we will explain in full detail in Chapter 9.
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issues are best approached by first drawing a directed graph. It may be that some
of the unobserved determinants of treatment assignment do not generate confound-
ing because (a) they do not lie on back-door paths, (b) they lie on back-door paths
that are already blocked by colliders, or (c) they lie on back-door paths that can be
blocked by conditioning on other variables that lie on the same back-door paths. If so,
the researcher may be able to assert an ignorability assumption with respect to only a
subset of the variables we have designated as S for this section. However, in most cases,
the opposite challenge will dominate: The directed graph will show clearly that only
a subset of the variables in S that generate confounding are observed, and the con-
founding that they generate cannot be eliminated by conditioning with the observed
data. Treatment assignment is then nonignorable with respect to the observed data.

4.3.2 Treatment Selection Modeling in Econometrics

The econometrics literature also has a long tradition of analyzing causal effects, and
this literature may be more familiar to social scientists. Whereas concepts such as
ignorability are used somewhat infrequently in the social sciences, the language of
selection bias is commonly used throughout the social sciences. This usage is due, in
large part, to the energy that economists have devoted to exploring the complications
of self-selection bias.

The selection-bias literature in econometrics is vast, but the most relevant piece
that we focus on here is James Heckman’s specification of the random-coefficient model
for the treatment effects of training programs, which he attributes, despite the differ-
ence in substance, to Roy (1951). The clearest specification of this model was presented
in a series of papers that Heckman wrote with Richard Robb (see Heckman and Robb
1985, 1986, 1989), but Heckman worked out many of these ideas in the 1970s. Using
the notation we have adopted in this book, take Equation (2.2),

Y =DY 1+(1−D)Y 0,

and then rearrange and relabel terms as follows:

Y = Y 0+(Y 1−Y 0)D (4.5)

= Y 0+ δD

=μ0+ δD+υ0,

where μ0≡E[Y 0] and υ0≡ Y 0−E[Y 0]. The standard outcome model from the econo-
metrics of treatment evaluation simply reexpresses Equation (4.5) so that potential
variability of δ across individuals in the treatment and control groups is relegated to
the error term, as in

Y =μ0+(μ1−μ0)D+ {υ0+D(υ1−υ0)}, (4.6)

where μ1 ≡ E[Y 1], υ1 ≡ Y 1 −E[Y 1], and all else is as defined for Equation (4.5).18

Note that, in evolving from Equation (2.2) to Equation (4.6), the definition of the

18The original notation is a bit different, but the ideas are the same. Without much usage of the
language of potential outcomes, Heckman and Robb (1985, section 1.4) offered the following setup for
the random coefficient model of treatment effects to analyze posttreatment earnings differences for a
fictitious worker training example. For each individual i, the earnings of individual i if trained are
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observed outcome variable Y has taken on the look and feel of a regression model.19

The first μ0 term is akin to an intercept, even though it is defined as E[Y 0]. The term
(μ1−μ0) that precedes the first appearance of D is akin to a coefficient on the primary
causal variable of interest D, even though (μ1−μ0) is defined as the true ATE, E[δ].
Finally, the term in braces, {υ0+D(υ1−υ0)}, is akin to an error term, even though it
represents both heterogeneity of the baseline no-treatment potential outcome and of
the causal effect, δ, and even though it includes within it the observed variable D.20

Heckman and Robb use the specification of the treatment evaluation problem in
Equation (4.6), and many others similar to it, to demonstrate all of the major problems
created by selection bias in program evaluation contexts when simple regression estima-
tors are used. Heckman and Robb show why a regression of Y on D does not in general
identify the ATE, in this case (μ1−μ0), when D is correlated with the population-level
variant of the error term in braces in Equation (4.6), as would be the case when the
size of the individual-level treatment effect, in this case (μ1−μ0)+{υ0

i +di(υ
1
i −υ0

i )},
differs among those who select the treatment and those who do not.

The standard regression strategy that prevailed in the literature at the time was to
include additional variables in a regression model of the form of Equation (4.6), hoping

y1i = β1 +U1
i ,

and the earnings of individual i in the absence of training are

y0i = β0 +U0
i ,

(where we have suppressed subscripting on t for time from the original presentation and also shifted
the treatment state descriptors from subscript to superscript position). With observed training status
represented by a binary variable, di, Heckman and Robb then substitute the right-hand sides of these
equations into the definition of the observed outcome in Equation (2.2) and rearrange terms to obtain

yi = β0 +(β1−β0)di +U0
i +(U1

i −U0
i )di,

which they then collapse into

yi = β0 + ᾱdi +{U0
i + εidi},

where ᾱ≡ β1−β0 and εi ≡U1
i −U0

i (see Heckman and Robb 1985, equation 1.13). As a result, ᾱ is
the ATE, which we defined as E[δ] in Equation (2.3), and εi is the individual-level departure of δi
from the ATE, E[δ]. Although the notation in this last equation differs from the notation in Equation
(4.6), the two equations are equivalent. Heckman and Vytlacil (2005, 2007) give a fully nonparametric
version of this treatment selection framework, which we draw on below.

19Sometimes, Equation (4.6) is written as

Y =μ0 +[(μ1−μ0)+(υ1−υ0)]D+υ0

in order to preserve its random-coefficient interpretation. This alternative representation is nothing
other than a more fully articulated version of Equation (4.5).

20Statisticians sometimes object to the specification of “error terms” because, among other things,
they are said to represent a hidden assumption of linearity. In this case, however, the specification
of this error term is nothing other than an expression of the definition of the individual-level causal
effect as the linear difference between y1i and y0i .
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to break the correlation between D and the error term.21 Heckman and Robb show
that this strategy is generally ineffective with the data available on worker training
programs because (1) some individuals are thought to enter the programs based on
anticipation of the treatment effect itself and (2) none of the available data sources
have measures of such anticipation. We will return to this case in detail in Chapter 6,
where we discuss regression models.

To explain these complications, Heckman and Robb explore how effectively the
dependence between D and the error term in Equation (4.6) can be broken. They
proceed by proposing that treatment selection be modeled by specifying a latent con-
tinuous variable D̃ as

D̃=Zφ+U, (4.7)

where Z represents all observed variables that determine treatment selection, φ is a
coefficient (or a vector of coefficients if Z includes more than one variable), and U
represents both systematic unobserved determinants of treatment selection and com-
pletely random idiosyncratic determinants of treatment selection. The latent contin-
uous variable D̃ in Equation (4.7) is then related to the treatment selection dummy,
D, by

D=1 if D̃≥ 0,

D=0 if D̃ < 0,

where the threshold 0 is arbitrary because the term U has no inherent metric (because
it is composed of unobserved and possibly unknown variables).

To see the connection between this econometric specification and the one from the
statistics literature introduced in the last section, first recall that statisticians typi-
cally specify the treatment selection mechanism as the general conditional probability
distribution Pr[D=1|S], where S is a vector of all systematic observed determinants
of treatment selection.22 This is shown in the graph in Figure 4.8(b). The correspond-
ing causal diagram for the econometric selection equation is presented in two different
graphs in Figure 4.9, as there are two scenarios corresponding to whether or not all
elements of S have been observed as Z.

For the case in which Z in Equation (4.7) is equivalent to the set of variables in
S in Equation (4.3), treatment selection is ignorable, as defined in Equation (4.4),
because conditioning on Z is exactly equivalent to conditioning on S. In the econo-
metric tradition, this situation would not, however, be referred to as a case for which
treatment assignment/selection is ignorable. Rather, treatment selection would be
characterized as “selection on the observables” because all systematic determinants
of treatment selection are included in the observed treatment selection variables Z.
This phrase is widely used by social scientists because it conveys the essential content

21Barnow, Cain, and Goldberger (1980:52) noted that “the most common approach” is to “simply
assume away the selection bias after a diligent attempt to include a large number of variables” in the
regression equation.

22When more specific, the basic model is usually a Bernoulli trial, in which Pr[D= 1|S = s] gives
the specific probability of drawing a 1 and the complement of drawing a 0 for individuals with S equal
to s.
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Figure 4.9 Causal diagrams for the terminology from econometric modeling of treat-
ment selection.

of the ignorability assumption: All systematic determinants of treatment selection have
been observed.23

The scenario of selection on the observables is depicted in Figure 4.9(a). The vari-
able S in Figure 4.8(b) is simply relabeled Z, and there are no back-door paths from
D to Y other than the one that is blocked by Z. The remaining idiosyncratic random
variation in D is attributed in the econometric tradition to a variable U , which is
presented in Figure 4.9(a) as a cause of D that is conditionally independent of both
Z and Y . This error term U represents nothing other than completely idiosyncratic
determinants of treatment selection. It could therefore be suppressed in Figure 4.9(a),
which would render this graph the same as the one in Figure 4.8(b).24

Now consider the case in which the observed treatment selection variables in Z
are only a subset of the variables in S. In this particular case, some components of
S enter into the treatment selection latent variable D̃ through the error term, U ,
of Equation (4.7). In this case, treatment selection is nonignorable. In the words of
econometricians, “selection is on the unobservables” (or, more completely, “selection
is on the observables Z and the unobservables U”). The scenario of selection on the
unobservables is depicted in Figure 4.9(b), where there are now back-door paths from
D to Y represented by D←U ������ Y . Conditioning on Z for this graph does not
block all back-door paths.

In spite of differences in language and notation, there is little that differentiates
the statistics and econometrics models of treatment selection, especially now that the
outcome equations used by economists are often completely general nonparametric ver-
sions of Equation (4.6) (see Heckman and Vytlacil 2005, which we will discuss in a few
different places later in the book, such as Chapters 9 and 12). For now, the key point is
that both the statistics and econometric specifications consider the treatment indica-
tor variable, D, to be determined by a set of systematic treatment selection variables

23And, as with ignorability, the variables in Z are not necessarily equivalent to those in the mini-
mally sufficient conditioning sets suggested by the back-door criterion. The admissible sets according
to the back-door criterion may be subsets of the variables in Z or even variables not in Z that are
proximate determinants of Y and that, when conditioned on, block all back-door paths generated by
the variables in Z.

24The latent variable specification in the econometric tradition can be made equivalent to almost
all particular specifications of the statement Pr[D = 1|S] in the statistics tradition by the choice of
an explicit probability distribution for U . The full nonparametric equivalence in the causal graph
tradition would be D= fD(S,eD) = fD(Z,U).
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in S. When all of these variables are observed, the treatment selection mechanism is
ignorable and selection is on the observables only. When some of the variables in S
are unobserved, the treatment selection mechanism is nonignorable and selection is on
the unobservables.

Finally, the qualifications we noted in the prior section about the differences between
ignorability assumptions and the back-door criterion apply in analogous fashion to
assumptions of selection on the observables. Minimally sufficient conditioning sets
suggested by the back-door criterion may be subsets of the variables in Z or entirely
different variables that, when conditioned on, eliminate the confounding generated by
Z. Variables of the latter type would typically be proximate determinants of Y that
intercept the effects of the variables in Z on Y , such as the variable F in Figure 4.4.

4.3.3 Point Identification of Conditional Average
Treatment Effects by Conditioning

At the beginning of this chapter, we indicated that we would implicitly focus our pre-
sentation of directed graphs and identification issues on the estimation of the uncon-
ditional ATE. This narrow focus is entirely consistent with the graphical tradition,
in which parameters such as the average treatment effect for the treated (ATT) in
Equation (2.7) and the average treatment effect for the controls (ATC) in Equation
(2.8) are given considerably less attention than in the potential outcome modeling
tradition in both statistics and econometrics. Some comments on the connections may
be helpful at this point to foreshadow some of the specific material on causal effect
heterogeneity that we will present in the next three chapters.

Identification When the Unconditional ATE Is Identified

If one can identify and consistently estimate the unconditional ATE with conditioning
techniques, then one can usually estimate some of the conditional average treatment
effects that may be of interest as well. As we will show in the next three chapters,
consistent estimates of conditional average treatment effects can usually be formed
by specification of alternative weighted averages of the average treatment effects for
subgroups defined by values of the conditioning variables. Thus, calculating average
effects other than the unconditional ATE may be no more complicated than simply
adding one step to the more general conditioning strategy we have presented in this
chapter.

Consider again the graph presented in Figure 4.8(b). The back-door path from D to
Y is blocked by S. As a result, a consistent estimate of the ATE in Equation (2.3) can
be obtained by conditioning on S. But, in addition, consistent estimates of the ATT in
Equation (2.7) and the ATC in Equation (2.8) can be obtained by properly weighting
conditional differences in the observed values of Y . In particular, first calculate the
sample analogs to the differences E[Y |D=1,S= s]−E[Y |D=0,S= s] for all values s
of S. Then, weight these differences by the conditional distributions Pr[S|D= 1] and
Pr[S|D=0] to calculate the ATT and the ATC, respectively.
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Identification When the Unconditional ATE Is Not Identified

If selection is on the unobservables, conditioning strategies will typically fail to identify
unconditional ATEs. Nonetheless, weaker assumptions may still allow for the iden-
tification and subsequent estimation by conditioning of various conditional average
treatment effects. We will present these specific weaker assumptions in the course of
explaining matching and regression techniques in the next three chapters, but for now
we give a brief overview of the identification issues in relation to the graphical models
presented in this chapter. (See also the discussion in Section 2.7.4 of similar issues with
regard to the inconsistency and bias of the naive estimator.)

Suppose, for example, that the graph in Figure 4.9(b) now obtains, and hence that
a back-door path from D to Y exists via unobserved determinants of the cause, U .
In this case, conditioning on Z will not identify the unconditional ATE. Nonetheless,
conditioning on Z may still identify a conditional average treatment effect of interest,
as narrower effects can be identified if weaker assumptions can be maintained even
though unblocked back-door paths may still exist between D and Y .

Consider a case for which partial ignorability holds, such that Y 0 ⊥⊥D|S is true but
(Y 0,Y 1) ⊥⊥ D | S is not. Here, conditioning on S generates a consistent estimate of the
ATT even though S does not block the back-door path fromD to Y . The opposite is, of
course, also true. If partial ignorability holds in the other direction, such that Y 1⊥⊥D|S
holds but (Y 0,Y 1) ⊥⊥ D|S does not, then the ATC can be estimated consistently.25

Consider the first case, in which only Y 0 ⊥⊥ D | S holds. Even after conditioning on
S, a back-door path remains between D and Y because Y 1 still differs systematically
between those in the treatment and control groups and Y is determined in part by Y 1;
see Equation (2.2). Nonetheless, if, after conditioning on S, the outcome under the no-
treatment-state, Y 0, is independent of exposure to the treatment, then the ATT can
be estimated consistently. The average values of Y , conditional on S, can be used to
consistently estimate the average what-if values for the treated if they were instead in
the control state. This type of partial ignorability is akin to Assumption 2 in Equation
(2.16), except that it is conditional on S. We will give a full explanation of the utility
of such assumptions when discussing matching estimates of the ATT and the ATC in
the next chapter.

Graphs Do Not Clearly Reveal the Identification Possibilities for
the ATT and ATC When the ATE Is Not Also Identified

In the prior section, we noted in our presentations of ignorability and selection on
the observables that graphs help guide researchers toward minimally sufficient con-
ditioning sets that may differ from the conditioning sets suggested by the statistics
and econometrics literature. The back-door criterion is especially helpful in this regard
because of its targeted focus on back-door paths that generate noncausal associations
between the causal variable and the outcome variable. However, it must also be stated,
as implied by this section, that directed graphs will not clearly reveal effective analysis

25And, as we will show in the next chapter, the required assumptions are even simpler because the
entire distributions of Y 0 and Y 1 need not be conditionally independent of D. As long as the stable
unit treatment value assumption (SUTVA) holds, only mean independence must be maintained.
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strategies to identify either the ATT or the ATC in situations where the ATE cannot
also be identified by conditioning.

The overall implication of this point is that researchers should learn all three
frameworks for approaching causal identification challenges. Graphs help immensely
in selecting conditioning sets when the target parameter is the ATE. When the ATE is
not identified by any feasible conditioning sets, the potential outcome model – either
as deployed in statistics or econometrics – can still guide the researcher to identifica-
tion strategies for narrower conditional average effects, most commonly the ATT or
the ATC. Directed graphs remain a useful tool in these situations, as they help to
organize one’s thinking about the full system of causal relationships that are relevant.
But, the identification strategy that is then selected to estimate either the ATT or
the ATC is likely to emerge from thinking through the possibilities from within the
potential outcome model.

4.4 Conditioning to Balance and Conditioning
to Adjust

When presenting Pearl’s back-door criterion for determining a sufficient set of condi-
tioning variables, we noted that for some applications more than one set of conditioning
variables is sufficient. In this section, we return to this point as a bridge to the fol-
lowing three chapters that present both matching and regression implementations of
conditioning. Although we will show that matching and regression can be considered
variants of each other, here we point to the different ways in which they are usually
invoked in applied research. Matching is most often considered a technique to bal-
ance the determinants of the causal variable, and regression is most often considered
a technique to adjust for other causes of the outcome.

To frame this discussion, consider first the origins of the balancing approach in
the randomized experiment tradition. Here, the most familiar approach is a random-
ized experiment that ensures that treatment status is unassociated with all observed
and unobserved variables that determine the outcome (although only in expectation).
When treatment status is unassociated with an observed set of variables W , the data
are balanced with respect to W . More formally, the data are balanced if

Pr[W |D=1]=Pr[W |D=0], (4.8)

which requires that the probability distribution of W be the same within the treatment
and control groups.

Now consider the graph presented in Figure 4.10. Back-door paths are present from
D to Y , represented by D←S ������X→Y , where S is the complete set of variables
that are direct causes of treatment assignment/selection, X is the complete set of
variables other than D that are direct causes of Y , and the bidirected edge between
S and X signifies that they are mutually caused by some set of common unobserved
causes.26

26For this example, we could have motivated the same set of conclusions with other types of causal
graphs. The same basic conclusions would hold even if X and S include several variables within them
in which some members of X cause D directly and some members of S cause Y directly. In other
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Figure 4.10 A causal diagram in which sufficient conditioning can be performed with
respect to S or X .

Because neither S nor X is a collider, all back-door paths in the graph can be
blocked by conditioning on either S or X (and we write “paths” because there may be
many back-door paths through the bidirected edge between S and X). Conditioning
on S is considered a balancing conditioning strategy, whereas conditioning on X is
considered an adjustment-for-other-causes conditioning strategy. If one observes and
then conditions on S, the variables in S and D are no longer associated within the
subgroups defined by the conditioning. The treatment and control groups are thereby
balanced with respect to the distribution of S. Alternatively, if one conditions on X ,
the resulting subgroup differences in Y across D within X can be attributed to D
alone. In this case, the goal is not to balance X but rather to partial out its effects on
Y in order to isolate the net effect of D on Y .

The distinction between balancing and adjustment for other causes is somewhat
artificial (see Hansen 2008). For the graph in Figure 4.10, balancing X identifies the
causal effect. Thus, it is technically valid to say that one can identify a causal effect
by balancing a sufficient set of other causes of Y . Nonetheless, the graph in Figure
4.10 demonstrates why the distinction is important. The ultimate set of systematic
causes that generates the relationship between S and X is unobserved, as it often is in
many applied research situations. Because one cannot condition on these unobserved
variables, one must condition on either S or X in order to identify the causal effect.
These two alternatives may be quite different in their practical implementation.27

Should one balance the determinants of a cause, or should one adjust for other
causes of the outcome? The answer to this question is situation specific, and it depends
on the quality of our knowledge and measurement of the determinants of D and Y .

words, all that we need to make the distinction between balancing and adjustment for other direct
causes is two sets of variables that are related to each other, with at least one variable in one set that
causes D but not Y and at least one variable in the other set that causes Y but not D.

27Note also that the ingredients utilized to estimate the ATE (as well as the ATT and the ATC)
will differ based on the particular conditioning routine, and this will allow alternative expressions of
underlying heterogeneity. If S is observed, then conditional average treatment effects can be calculated
for those who are subject to the cause for different reasons, based on the values of S that determine D.
If X is observed, then conditional average treatment effects can be calculated holding other causes of
Y at chosen values of X. Each of these sets of conditional average treatment effects has its own appeal,
with the relative appeal of each depending on the application. In the potential outcome tradition,
average treatment effects conditional on S would likely be of more interest than average treatment
effects conditional on X. But for those who are accustomed to working within an all-cause regression
tradition, then average treatments effects conditional on X might be more appealing.
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One answer is that the researcher should do both.28 Nonetheless, there is a specific
advantage of balancing that may tip the scales in its favor if both strategies are feasible:
Balancing diminishes the inferential problems that can be induced by data-driven
specification searches, as we will explain in Chapter 6.29

4.5 Conclusions

In this chapter, we have used the causal graphs introduced in Chapter 3 to explain
the rationale for conditioning estimators of causal effects, focusing on the back-door
criterion for selecting sufficient sets of conditioning variables that identify the ATE.
We then introduced models of treatment assignment and treatment selection from
statistics and econometrics that are used to assert similar claims about conditioning
estimators, focusing also on the ATT and ATC.

In the next three chapters, we present details and connections between the three
main types of conditioning estimation strategies utilized in the social sciences: match-
ing, regression, and weighted regression. We show how they typically succeed when
selection is on the observables and fail when selection is on the unobservables. We lay
out the specific assumptions that allow for the identification of unconditional average
treatment effects, as well as the weaker assumptions that allow for the identification
of narrower conditional average treatment effects, such as the ATT and ATC. In later
chapters, we then present additional methods for identifying and estimating causal
effects when conditioning methods do not suffice because crucial variables on back-
door paths are unobserved.

4.6 Appendix to Chapter 4: The Back-Door and

Adjustment Criteria, Descendants, and
Colliders Under Magnification

In order to properly utilize the back-door criterion when evaluating alternative con-
ditioning sets, an analyst does not need to understand all details of all scenarios in
which its violation will prevent a conditioning estimator from generating consistent
and unbiased estimates of causal effects of interest. However, a deeper examination
of additional scenarios provides insight into common methodological challenges, while
also demonstrating the powerful contribution that graphical methods are likely to
make to social science research in the coming decades.

In this appendix, we offer additional examples where colliders and descendants
must be carefully considered in order to understand the fine points of why the back-
door criterion warrants causal inference. We show how Condition 2 of the back-door

28As we discuss in later chapters, many scholars have argued for conditioning on both S and X.
Robins, for example, argues for this option as a double protection strategy that offers two chances to
effectively block the back-door paths between D and Y (see Robins and Rotnitzky 2001).

29We phrase this guidance with “may” because it must be evaluated alongside another concern.
Balancing all variables that determine D, including those that do not generate confounding, is unnec-
essary and inefficient. As a result, it may render conditioning infeasible in datasets of the size typically
available to social scientists.
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Figure 4.11 A causal graph with a confounded causal effect and where the variables
along the back-door path are viewed under magnification.

criterion, which appears only to prevent the analyst from inadvertently conditioning
on variables that adjust away the causal effect of interest, also plays a role in blocking
hidden as-if back-door paths that also result from conditioning on endogenous vari-
ables. We show that this result can only be seen when endogenous variables are viewed
under magnification, so that it becomes clear that these variables are also colliders.
We conclude with an examination of the connections between Pearl’s original back-
door criterion, its generalization as the adjustment criterion of Shpitser, VanderWeele,
and Robins (2010), and our blended alternative, which retains the targeted spirit and
inherent practicality of Pearl’s original back-door criterion while also incorporating
some of the insight furnished by the admirably broad adjustment criterion.

Like the appendix to Chapter 3, nothing in this appendix is necessary for under-
standing the next three chapters that follow. We offer it for curious readers who crave
a deeper understanding of the back-door criterion and who wish to dive into the orig-
inal literature after reading this book. We also offer it to explain to the community of
causal graph methodologists why we have chosen the version of the back-door criterion
that we have.

The Back-Door Criterion Explained with Causal Graphs Viewed Under
Selective Magnification. The first step in fully considering why violations of the
back-door criterion prevent conditioning estimators from delivering consistent and
unbiased estimates is to repeat some of the material from the main body of the chapter,
after redrawing the causal graphs under magnification. As we introduced in Section
3.3.2 using Figure 3.7, under magnification the unobserved structural error terms of
the associated structural equations are brought into view. For Figure 4.11, we have
redrawn Figure 4.1 under what we will call “selective magnification.” In this case, we
magnify the nodes of all variables that we might consider conditioning on, leaving the
error terms on the causal variable and the outcome variable hidden as in the standard
representation for visual simplicity. Accordingly, Figure 4.11 shows two additional
causal effects, eC→C and eO→O, that were only implicit in Figure 4.1.

Now, reconsider our explanation of the back-door criterion for this graph. We wrote
earlier that conditioning on C and/orO would identify the causal effect. As a transition
to the additional examples in this appendix, we will now present the same explanation
considering how the inclusion of eC → C and eO→ O in the graph does not change
this claim.
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In the directed graph tradition, C is a “root” variable because it has no causes
other than those embedded in its structural error term. Root variables do not need
to be considered in any other way when viewed under magnification because their
structural error terms are nothing more than the source of the variation observed for
these variables. Accordingly, it is still the case that conditioning on C blocks the sole
back-door path D←C→O→ Y because C is the middle variable of a fork of mutual
dependence that lies within the path. Because C is also not a descendant of D, it
satisfies the back-door criterion.

For O, an additional complication should be clear. Under magnification, it is
revealed that O is a collider variable because C→O is now accompanied by eO→O.
In general, all variables in a causal graph that are not root variables will appear
as colliders when viewed under magnification. We have urged caution when handling
colliders, and yet only now do we reveal that all variables such as O are, in fact, col-
liders as well. Accordingly, conditioning on O will induce an association between C
and eO. Fortunately, this conditioning does not invalidate the back-door criterion by
unblocking an already blocked back-door path, as we will now explain.

Recall our prior discussions of colliders in Sections 3.2.2 and 4.1.2. We have said
that for a blocked path, A→C←B, where C is the collider, conditioning on C opens
up this path. We now introduce a piece of notation to convey this result: a conditioning
“button,” 
, that can be deployed to show the genesis of a new induced association,
· · ·
 · · · .30 For example, for the blocked path A→C←B, conditioning on C generates
a new association, A · · · 
 · · ·B, where the conditioning action itself, 
, generates the
association between A and B. For our hypothetical college admissions example in
4.1.2, the notation represents the following action: A button is pushed for “admissions
decisions,” and the population of applicants is then divided into those admitted and
those rejected. Within both groups, A and B are now associated, as shown in Figure
4.2. The only way to eliminate the induced association is to undo the conditioning
that generates it (i.e., release the conditioning button).

Return to Figure 4.11 so that we can demonstrate this new notation when consid-
ering the conclusions suggested by an evaluation of the back-door criterion. Suppose
again that O is our candidate conditioning variable, and we know that conditioning
on O will block the back-door path D ← C → O → Y. When seen under magnifi-
cation, it should be clear that now conditioning on O also generates a new associ-
ation, C · · · 
 · · ·eO. In fact, conditioning on O also generates a second association,
eC · · · 
 · · ·eO.31 Pearl (2009:339) explains, for examples such as this one, that these
induced associations create two as-if back-door paths:

1. D←C · · ·
 · · ·eO→O→ Y and

2. D←C← eC · · ·
 · · ·eO→O→ Y .

30Pearl and other authors often use alternative notation to convey the same associations, most
commonly A—B. We prefer our more active “button,” which can also be directly extended to actual
operator status, as in · · ·� (.) · · · . If one wanted to show conditioning on more than one variable, we
would have · · ·� (C,O) · · · , etc.

31Conditioning on a collider, or a descendant of a collider, induces associations between all ancestors
of the collider on separate directed paths that reach the collider.
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Figure 4.12 A diagram where the causal effect of D on Y is not confounded and
where the observed variable O on the back-door path is a descendant of both
D and Y .

Fortunately, both of these as-if back-door paths are also blocked when O is conditioned
on because O is the middle variable in a chain of mediation, eO→O→ Y , for both
of them. Thus, O satisfies the back-door criterion because O is not a descendant of D
and because conditioning on O eliminates all back-door associations between D and
Y , including two associations created by as-if back-door paths that are only revealed
under magnification.

Of course, we already knew that O satisfied the back-door criterion from our consid-
eration of Figure 4.1. Viewing the graph under selective magnification has forced us to
reckon with the unobserved structural error terms, and little insight has been gained.
We will now consider two additional examples where consideration of the structural
error terms leads to additional insight that will convince the reader of how simple and
effective the back-door criterion is.

Consider Figure 4.12, where again we have four variables, and where all variables
but D and Y are displayed under magnification. The only back-door path between
D and Y , which is D← C→O← Y , is blocked by the collider O. Although it may
seem awkward to refer to D← C→ O← Y as a back-door path between D and Y
(because it does not end with → Y ), it satisfies our definition because it is a path
between two causally ordered variables D and Y that begins with D←. As a result, it
is still a back-door path, even though it does not terminate with →Y (unlike all other
back-door paths displayed so far in our examples).32 Because the sole back-door path
between D and Y does not generate a noncausal association between D and Y , there
is no need to adjust for any variables in order to generate a consistent and unbiased
estimate of the causal effect of D on Y.

In fact, all that one can do is make the situation worse. Suppose that an analyst
believes mistakenly that the path D←C→O←Y is an unblocked back-door path that
must be blocked in order to generate a consistent and unbiased estimate of the effect
of D on Y . Because C is unobserved, suppose that the analyst decides to condition
on O instead, under the rationale that it is the only observed variable that lies on the
back-door path.

32We could bring this graph in line with prior ones by replacing Y → O with O← U → Y . The
explanation would then change a bit because O would no longer be a descendant of D via a directed
path, but the analysis with respect to Condition 1 of the back-door criterion would be the same.
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The variable O violates both conditions of the back-door criterion. Consider Con-
dition 1 first. Because O is a collider variable, conditioning on O generates many new
associations, including C · · ·
· · ·Y , eC · · ·
· · ·Y , C · · ·
· · ·eO, and eO · · ·
· · ·Y . These
induced associations generate three as-if back-door paths:

1. D←C · · ·
 · · ·Y ,

2. D←C← eC · · ·
 · · ·Y , and

3. D←C · · ·
 · · ·eO · · ·
 · · ·Y .

Because C is unobserved, these as-if back-door paths remain unblocked after condi-
tioning on O, and therefore O does not satisfy Condition 1 of the back-door criterion.

Now consider Condition 2, and notice that O lies on a directed path, D→Y →O,
that begins at D and reaches Y . As we noted earlier, we chose to specify Condition 2
of the back-door criterion with the words “reaches the outcome variable” rather than
“ends at at the outcome variable” in order to capture cases such as this one. In this
case, O lies on the directed path that represents the causal effect of interest, even
though O does not mediate the casual effect itself. The intuition of Condition 2 of the
back-door criterion should nonetheless still be clear. Because the causal effect of D on
Y is fully embedded within the variation in O, adjusting for O would explain away the
causal effect itself.33

Overall, then, conditioning on O in this graph would make the situation consider-
ably worse. No unblocked back-door paths needed to be blocked in the first place, and
conditioning on O would generate as-if back-door paths that induce new noncausal
associations between D and Y while at the same time robbing the causal effect of
(possibly all) of its magnitude.

To now transition to a more complicated case, pause to consider how our language
in this appendix differs from the language used in the main body of the chapter. Up
until now, we have expressed similar results to those for Figure 4.12 on the perils
of conditioning on colliders using more brief language. For this graph, the simpler
language would be the following:

Conditioning on the collider variable O unblocks the already blocked back-
door path, D←C→O← Y .

This explanatory syntax is concise and correct. Even so, it should now be clear that a
more laborious way to understand this result is the following:

Conditioning on the variable O that is a collider on the back-door pathD←
C → O ← Y creates additional as-if back-door paths such as
D←C · · ·
 · · ·Y , D←C← eC · · ·
 · · ·Y , and D←C · · ·
 · · ·eO · · ·
 · · ·Y .
These as-if back-door paths are unblocked when conditioning on O.

33In an infinite sample, wherein one could stratify the data on all values of O, D and Y would be
independent within the strata of O. In a finite sample, possibly necessitating the use of a different
type of conditioning estimator, the conditional association between D and Y might not equal zero
but would still not be a consistent estimate of the causal effect.
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Figure 4.13 A graph where the effect of D on Y is not identified by conditioning on
O and B because O is a descendant of D.

For the graphs considered in the main body of this chapter, this more tortured language
would not have been helpful and therefore was not used. However, for this particular
graph, the more tortured language may offer a clearer explanation. The brief expla-
nation does not make clear why conditioning on O generates a back-door association
by unblocking D← C → O← Y , given that this back-door path does not end with
→ Y . The more tortured language, which uses the conditioning button, does provide
the proper imagery because the as-if back-door path, D←C · · · 
 · · ·Y , does not end
with ←Y .

For an additional example, which draws many of these issues together, consider
Figure 4.13. This graph is a redrawn version Figure 4.7, but now with all variables
other than D and Y displayed under magnification. As noted earlier for Figure 4.7,
there are three back-door paths from D to Y :

1. D←C→O→ Y ,

2. D←C→O←M→ Y , and

3. D←B→U→ Y .

Again, suppose that one decides to condition on both O and B. Using the condi-
tioning button to reveal all of the associations generated by the conditioning action
itself would generate many new as-if back-door paths. Consider just two of these. The
induced association C · · ·
· · ·M creates the as-if back-door path D←C · · ·
· · ·M→Y
that remains unblocked after conditioning on O and B. This as-if back-door path is
similar to those considered for Figure 4.12. But now consider how the induced associ-
ation D · · ·
 · · ·eM creates the as-if back-door path D · · ·
 · · ·eM→M→Y . This path
is also unblocked after conditioning on O and B. But, most importantly, this as-if
back-door path only comes to the foreground when the causal graph is viewed under
magnification. Except under magnification, it is all too easy to fail to recognize that
M is a collider and that conditioning on a descendant of M will induce an association
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between D and eM . For all but the most experienced causal graph practitioners, this
as-if back-door path would be hidden by the standard representation of the graph.

As a result, the conditioning set of O and B does not satisfy Conditions 1(a),
(b), and (c) of the back-door criterion. As we used this graph to show in the main
body of the chapter, this graph also does not satisfy Condition 2 of the back-door
criterion either. This result does not need to be explained in any different fashion
when the graph is viewed under selective magnification. Overall, the adjusted effect of
D on Y , which results from conditioning on O and B, would steal some of the total
effect of D on Y . Yet, as we show here, the conditioning action also generates new
back-door associations, one through the unobserved mediating variable M . This last
as-if back-door path is completely hidden from view in the standard representation
of a causal graph. Fortunately, all such hidden as-if back-door paths that emerge
under conditioning will never creep into an empirical analysis as long as the back-door
criterion is properly evaluated.

And this is the key point of this last example: Condition 2 of the back-door criterion
must be heeded for two reasons. First, as was also presented in the main body of the
chapter, conditioning on descendants of the cause that lie on (or descend from) directed
paths that begin at D and that reach Y will always mistakenly adjust away some of
the causal effect the analyst is interested in estimating. Second, as we have now shown
in this appendix, conditioning on the descendants of the cause (such as O) that are
also descendants of unobserved colliders that are are themselves descendants of the
cause (such as M) will always generate unblocked back-door associations that spoil
the analysis. Fortunately, if one uses to the back-door criterion to select conditioning
sets, then the threat of such hidden unblocked back-door associations can be avoided.

The Back-Door and Adjustment Criteria Considered. As we noted earlier,
our version of the back-door criterion incorporates insight gained from the more recent
development of the adjustment criterion by Shpitser et al. (2010). Figure 4.14 presents
a graph that reveals the differences between Pearl’s original back-door criterion and
the more recent generalization that is the adjustment criterion. We will use this graph
to explain why we have modified Pearl’s original back-door criterion to a small degree
but also why we have not adopted the adjustment criterion as a whole.

As we have specified it in the main body of this chapter, the back-door criterion is
evaluated in the following two steps. The first step is to write down the back-door paths
from D to Y , determine which ones are unblocked, and then search for a conditioning
set that will block all unblocked back-door paths. For Figure 4.14, the two back-door
paths are

1. D←A→B←C→ Y and

2. D←E→ Y .

Path 1 is already blocked by the collider B, and so only path 2 must be blocked by
conditioning. Here, the solution is simple: Condition on E because it is the middle
variable of a fork of mutual dependence.

The second step is to verify that the variables in the candidate conditioning set
are not descendants of the causal variable that lie along, or descend from, all directed
paths from the causal variable that reach the outcome variable. For Figure 4.14, it
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Figure 4.14 A directed graph that reveals the differences between the back-door cri-
terion and the adjustment criterion.

is easy to see that E is a root variable and as such is not a descendant of any other
variable in the graph.

However, to understand the differences between the back-door criterion in its orig-
inal form and the adjustment criterion, we need to consider this step in more detail.
For more elaborate causal graphs, in order to evaluate Condition 2 of the back-door
criterion one needs to ascend the family tree by looking “upstream” through the arrows
that point to each candidate conditioning variable (i.e., from the parent, to the grand-
parent, to the great grandparent, and so on) to determine whether the causal variable
is a direct ancestor of any of the candidate conditioning variables. If the causal vari-
able is not found to be an ancestor of any of the candidate conditioning variables
in the set under consideration, then by definition none of the candidate conditioning
variables lies on or descends from directed paths that begin at the causal variable and
that reach the outcome variable. In this case, a conditioning estimator that uses the
variables under consideration will generate consistent and unbiased estimates of the
causal effect of interest.

If the causal variable is discovered to be an ancestor of any of the candidate condi-
tioning variables in the set under consideration, then for our version of the back-door
criterion (which incorporates insight from the adjustment criterion), one has to deter-
mine whether the directed paths from the causal variable that establish the descent
of the conditioning variable(s) also reach the outcome variable. If not, then one can
still condition on any such variables and generate consistent and unbiased estimates.
If, instead, any of the candidate conditioning variables are descendants of the causal
variable and lie on or descend from directed paths that begin at the causal variable
and reach the outcome variable, then the conditioning set will block or adjust away
some of the causal effect. In this case, the conditioning set will not generate consistent
and unbiased estimates of the causal effect of interest.

To now transition to a parallel consideration of the adjustment criterion, and why
we have not adopted it in whole, return to the case of Figure 4.14 and consider how
the back-door criterion might be utilized in practice by an experienced analyst. As we
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noted above in this appendix, conditioning on E alone satisfies the back-door criterion.
Notice, however, that, in addition to E, one could also condition on A, on C, on A and
B, on B and C, or on A, B, and C. The back-door criterion does not rule out these
possibilities, but it does not encourage the analyst to consider A and C as members
of the candidate conditioning set because the back-door path on which these variables
lie is already blocked in the absence of any conditioning by B. Instead, the back-door
criterion guides the analyst to the essential information: (1) path 1 is already blocked
by B and can be left alone; (2) path 2 must be blocked by conditioning on E.

Nonetheless, an experienced analyst might reason that, although one should not
condition only on B, one could condition on B as long as either A or C is also condi-
tioned on. The experienced analyst might then choose to offer two estimates, one that
conditions only on E and one that conditions on B and C as well (perhaps because a
fair critic has a theory says that the B←C in Figure 4.14 should instead be B→C).
The experienced analyst might reach this position even though she regards condition-
ing on B and C as unnecessary and inefficient, given that she truly does believe that
her theoretical assumptions represented by the original graph are beyond reproach.
Nevertheless, she might reason that it is prudent to show a fair critic that even if his
alternative assumptions are correct, the main results of the ensuing empirical analysis
remain the same.

Once one begins to allow supplementary but unnecessary conditioning variables
into the conditioning set, a question arises as to whether the back-door criterion covers
all cases. This is the inspiration for the adjustment criterion, developed by Shpitser
et al. (2010). It is designed to allow the analyst to identify all permissible conditioning
sets, including those that include unnecessary and redundant conditioning, as we now
explain.

The adjustment criterion also has two steps. For the first step, the analyst considers
all paths in the graph that begin at the causal variable and then categorizes all paths
into (1) “causal paths,” which are defined as all directed paths from the causal variable
to the outcome variable, and (2) “noncausal paths,” which are defined as all paths from
the causal variable that are not causal paths. For Figure 4.14, one would enumerate
the following paths, categorizing them as follows:

1. D←A→B←C→D (noncausal),

2. D←E→ Y (noncausal),

3. D→M→Y (causal),

4. D→N→ Y (causal),

5. D→N→O (noncausal),

6. D→P (noncausal),

7. D→Q←Y (noncausal),

8. D→R←S→ T ← Y (noncausal).
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Notice that paths 1 and 2 are back-door paths for the back-door criterion but, for
the adjustment criterion, are classified as members of the more encompassing set of
noncausal paths. The first step of the adjustment criterion then requires that the
analyst search for variables that, when conditioned on, will ensure that all noncausal
paths between D and Y are blocked. This is analogous to the back-door criterion, but
now all noncausal paths, not just back-door paths, must be considered. For Figure 4.14,
this part of the first step requires the analyst to search for all permissible conditioning
sets that will block the noncausal paths 1, 2, 5, 6, 7, and 8. For the case of Figure 4.14,
more sets than we wish to enumerate would be selected. In brief, all sets would include
E and exclude Q. Yet, these sets would include many combinations of additional
unnecessary conditioning variables, including appropriate combinations of A, B, C,
N , O, P , R, S, and T , such as the maximal blocking set {A,B,C,E,N,O,P,R,S,T }.

For the second step of the adjustment criterion, one then implements the same
second step as the version of the back-door criterion we have specified in the main body
of the chapter. For Figure 4.14, this step requires that the candidate conditioning sets
not include the variables M , N , or O. Presumably M would not have been considered
as a conditioning variable in the first place because it is not a variable that lies on
any of the noncausal paths that the analyst is attempting to block. Nonetheless, the
analyst must also strike all conditioning sets that include N and O, and this conclusion
has to be discerned from the graph, not the list of the paths that does not reveal full
patterns of descent. (This is also the case for the back-door criterion.)

The advantage of the adjustment criteria is that it will reveal all permissible condi-
tioning sets, such as the maximal permissible conditioning set {A,B,C,E,P,R,S,T },
assuming that the analyst devotes the necessary energy to delineating all patterns of
permissible conditioning. The disadvantage is that, for graphs such as the one in Fig-
ure 4.14, the adjustment criterion is laborious and is likely to lead one to condition on
more variables than is necessary to identify the causal effect.

We have therefore chosen to stick with the back-door criterion in the main body
of the chapter, with only one substantial modification to Pearl’s original specification
in deference to the completeness of the adjustment criterion. As we noted earlier in
our footnote on Condition 2 of our version of the back-door criterion, Pearl’s original
back-door criterion requires more simply (but overly strongly) that no variables in
the conditioning set Z can be descendants of the causal variable. For our version of
the back-door criterion, we weaken Pearl’s original no-descendants condition to allow
conditioning on variables, such as P in Figure 4.14, that are descendants of the cause
D but that do not lie on or descend from directed paths that begin at D and reach
Y . We doubt an analyst would think to condition on P when evaluating the back-
door criterion for this graph (because the back-door criterion focuses attention more
narrowly on back-door paths, rather than all noncausal paths). Still, this modification
of the back-door criterion allows it to identify more of the permissible conditioning sets
that are identified by the more laborious but admirably complete adjustment criterion.



Chapter 5

Matching Estimators of
Causal Effects

The rise of the counterfactual model to prominence has increased the popularity of
data analysis routines that are most clearly useful for estimating the effects of causes.
The matching estimators that we will review and explain in this chapter1 are perhaps
the best example of a classic technique that has reemerged in the past three decades as
a promising procedure for estimating causal effects.2 Matching represents an intuitive
method for addressing causal questions, primarily because it pushes the analyst to
confront the process of causal exposure as well as the limitations of available data.
Accordingly, among social scientists who adopt a counterfactual perspective, matching
methods are fast becoming an indispensable technique for prosecuting causal questions,
even though they usually prove to be the beginning rather than the end of causal
analysis on any particular topic.

We begin with a brief discussion of the past use of matching methods. Then, we
present the fundamental concepts underlying matching, including stratification of the
data, weighting to achieve balance, and propensity scores. Thereafter, we discuss how
matching is usually undertaken in practice, including an overview of various matching
algorithms.

In the course of presentation, we will offer four hypothetical examples that demon-
strate some of the essential claims of the matching literature, progressing from idealized
examples of stratification and weighting to the implementation of alternative match-
ing algorithms on simulated data for which the treatment effects of interest are known
by construction. As we offer these examples, we add real-world complexity in order
to demonstrate how such complexity can overwhelm the power of the techniques. In

1This chapter has its origins in Morgan and Harding (2006), and David Harding’s contributions
are gratefully acknowledged.

2Matching techniques can be motivated as estimators without invoking causality. Just as with
regression modeling, which we discuss in detail in Chapters 6 and 7, matching can be used to adjust
the data in search of a meaningful descriptive fit to the data in hand. Given the nature of this book,
we will focus on matching as an estimator of causal effects. We will, however, discuss the descriptive
motivation for regression estimators in Chapter 6.
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the next two chapters, we build on the same examples when presenting regression and
weighted regression estimators. The overall goals of Chapters 5, 6, and 7 are to explain
the interconnections between the most prominent techniques for implementing condi-
tioning estimators that are justified by the back-door criterion presented in Chapter
4, but that are also typically motivated in the social science literature by assumptions
of ignorability of treatment assignment or selection on the observables.

5.1 Origins of and Motivations for Matching

Matching techniques have origins in experimental work from the first half of the twen-
tieth century. Relatively sophisticated discussions of matching as a research design
can be found in early methodological texts in the social sciences (e.g., Greenwood
1945) and also in attempts to adjudicate between competing explanatory accounts in
applied demography (Freedman and Hawley 1949). This early work continued in soci-
ology (e.g., Althauser and Rubin 1970, 1971; Yinger, Ikeda, and Laycock 1967) right
up to the key foundational literature in statistics (Rubin 1973a, 1973b, 1976, 1977,
1979, 1980a) that provided the conceptual foundation for the new wave of matching
techniques that we will present in this chapter.

In the early 1980s, matching techniques, as we conceive of them now, were advanced
in a set of papers by Rosenbaum and Rubin (1983a, 1984, 1985a, 1985b) that offered
solutions to a variety of practical problems that had limited matching techniques to
very simple applications in the past.3 Variants of these new techniques found some
use immediately in sociology (Berk and Newton 1985; Berk, Newton, and Berk 1986;
Hoffer, Greeley, and Coleman 1985), continuing with work by Smith (1997). Since the
late 1990s, economists and political scientists have contributed to the development
of new matching techniques (e.g., Heckman et al. 1999; Heckman, Ichimura, Smith,
and Todd 1998; Heckman, Ichimura, and Todd 1997, 1998 in economics and Ho, Imai,
King, and Stuart 2007 and Diamond and Sekhon 2013 in political science). Given the
growth of this literature, and the applications that are accumulating, we expect that
matching will complement other types of modeling in the social sciences with greater
frequency in the future.

In the methodological literature, matching is usually introduced in one of two
ways: (1) as a method to form quasi-experimental contrasts by sampling comparable
treatment and control cases from among two larger pools of such cases or (2) as a
nonparametric method of adjustment for treatment assignment patterns when it is
feared that ostensibly simple parametric regression estimators cannot be trusted.

For the first motivation, the archetypical example is an observational biomedical
study in which a researcher is called on to assess what can be learned about a particular
treatment. The investigator is given access to two sets of data, one for individuals who
have been treated and one for individuals who have not. Each dataset includes a
measurement of current symptoms, Y , and a set of characteristics of individuals, as a
vector of variables X , that are drawn from demographic profiles and health histories.

3See Rubin (2006) for a compendium. See Guo and Fraser (2010), Sekhon (2009), and Stuart
(2010) for reviews that connect the early literature to the current state of practice, but with different
points of emphasis than we offer in this chapter.
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Typically, the treatment cases are not drawn from a population by means of any
known sampling scheme. Instead, they emerge as a result of the distribution of initial
symptoms, patterns of access to the health clinic, and then decisions to take the
treatment. The control cases, however, may represent a subsample of health histories
from some known dataset. Often, the treatment is scarce, and the control dataset is
much larger than the treatment dataset.

In this scenario, matching is a method of strategic subsampling from among treated
and control cases. The investigator selects a nontreated control case for each treated
case based on the characteristics observed as xi. All treated cases and matched control
cases are retained, and all nonmatched control cases are discarded. Differences in
the observed yi are then calculated for treated and matched cases, with the average
difference serving as the treatment effect estimate for the group of individuals given
the treatment.4

The second motivation has no archetypical substantive example, as it is similar
in form to any attempt to use regression to estimate causal effects with survey data.
Suppose, for a general example, that an investigator is interested in the causal effect
of an observed dummy variable, D, on an observed outcome, Y . For this example,
it is assumed that a simple bivariate regression, Y = α+ δD+ ε, will yield an esti-
mated coefficient δ̂ that is an inconsistent and biased estimate of the causal effect of
interest because the causal variable D is associated with variables included in the error
term, ε. For a particular example, if D is the receipt of a college degree and Y is a mea-
sure of economic success, then the estimate of interest is the causal effect of obtaining a
college degree on subsequent economic success. However, family background variables
are present in ε that are correlated with D, and this relationship produces omitted-
variable bias for a college-degree coefficient estimated from a bivariate ordinary least
squares (OLS) regression of Y on D.

In comparison with the biomedical example just presented, this motivation differs
in two ways: (1) in most applications of this type, the data represent a random sample
from a well-defined population and (2) the common practice in the applied literature
is to use regression to estimate effects. For the education example, a set of family
background variables in X is assumed to predict both D and Y . The standard regres-
sion solution is to estimate an expanded regression equation: Y = α+ δD+Xβ+ ε∗.
With this strategy (which we will discuss in detail in the next chapter), the goal is to
estimate simultaneously the causal effects of X and D on the outcome, Y .

In contrast, a matching estimator nonparametrically balances the variables in X
acrossD solely in the service of obtaining the best possible estimate of the causal effect
of D on Y . The most popular technique is to estimate the probability of D for each
individual i as a function of X and then to select for further analysis only matched sets
of treatment and control cases that contain individuals with equivalent values for these
predicted probabilities. This procedure results in a subsampling of cases, comparable
with the matching procedure described for the biomedical example, but for a single

4A virtue of matching, as developed in this tradition, is cost-effectiveness for prospective studies.
If the goal of a study is to measure the evolution of a causal effect over time by measuring symptoms
at several points in the future, then discarding nontreated cases unlike any treated cases can cut
expenses without substantially affecting the quality of causal inferences that a study can yield. See
Stuart and Ialongo (2010).
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dimension that is a function of the variables in X . In essence, the matching procedure
throws away information from the joint distribution of X and Y that is unrelated to
variation in the treatment variableD until the remaining distribution ofX is equivalent
for both the treatment and control cases. When this equivalence is achieved, the data
are said to be balanced with respect to X .5 Under specific assumptions, the remaining
differences in the observed outcome between the treatment and matched control cases
can then be regarded as attributable solely to the effect of the treatment.6

At most points in the remainder of this chapter, we will adopt this second scenario
because research designs in which data are drawn from random-sample surveys are
much more common in the social sciences.7 Thus, we will assume that the data in
hand were generated by a relatively large random-sample survey (in some cases an
infinite sample to entirely remove sampling error from consideration), in which the
proportion and pattern of individuals who are exposed to the cause are fixed in the
population by whatever process generates causal exposure.

5.2 Matching as Conditioning via Stratification

In this section we introduce matching estimators in idealized research conditions, draw-
ing connections with the broad perspective on conditioning introduced in Chapter 4.
Thereafter, we proceed to a discussion of matching in more realistic scenarios, which
is where we explain the developments of matching techniques that have been achieved
in the past three decades.

5.2.1 Estimating Causal Effects by Stratification

Suppose that those who take the treatment and those who do not are very much unlike
each other, and yet the ways in which they differ are captured exhaustively by a set of
observed treatment assignment/selection variables S. For the language we will adopt
in this chapter, knowledge and observation of S allow for a “perfect stratification”of
the data. By “perfect,”we mean precisely that individuals within groups defined by
values on the variables in S are entirely indistinguishable from each other in all ways
except for (1) observed treatment status and (2) differences in the potential outcomes
that are independent of treatment status. Under such a perfect stratification of the
data, even though we would not be able to assert Assumptions 1 and 2 in Equations

5As we will discuss later, in many applications balance can be hard to achieve without some
subsampling from among the treatment cases. In this case, the causal parameter that is identified
is narrower even than the ATT (and is usually a type of marginal treatment effect pinned to the
common support of treatment and control cases).

6A third motivation, which is due to Ho et al. (2007; see also Iacus and King 2012), has now
emerged. Matching can be used as a data preprocessor that prepares a dataset for further causal
modeling with a parametric model. We discuss this perspective along with others when we intro-
duce particular matching techniques that are currently in use in the applied literature, including the
“coarsened exact matching” of Iacus, King, and Porro (2011, 2012a).

7See our earlier discussion in Section 1.4 of this random-sample setup.
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(2.15) and (2.16), we would be able to assert conditional variants of those assumptions:

Assumption 1-S: E[Y 1|D=1,S] =E[Y 1|D=0,S], (5.1)

Assumption 2-S: E[Y 0|D=1,S] =E[Y 0|D=0,S]. (5.2)

These assumptions would suffice to enable consistent and unbiased estimation of the
average treatment effect (ATE) because the treatment can be considered randomly
assigned within groups defined by values on the variables in S.

When in this situation, researchers often assert that the naive estimator in Equation
(2.9) is subject to bias (either generic omitted-variable bias or individually generated
selection bias). But, because a perfect stratification of the data can be formulated,
treatment assignment is ignorable – see the earlier discussion of Equation (4.3) – or
treatment selection is on the observable variables only – see the earlier discussion of
Equation (4.7). This is a bit imprecise, however, because Assumptions 1-S and 2-S are
implied by ignorability and selection on the observables (assuming S is observed). For
ignorability and selection on the observables to hold more generally, the full distribu-
tions of Y 1 and Y 0 (and any functions of them) must be independent of D conditional
on S; see the discussion of Equation (4.4). Thus Assumptions 1-S and 2-S are weaker
than assumptions of ignorability and selection on the observables, but they are suffi-
cient to identify the three average causal effects of primary interest.

Recall the directed graph in Figure 4.8(b), where S lies on the only back-door path
from D to Y . As discussed there, conditioning on S allows for consistent and unbiased
estimation of the unconditional ATE, as well as the average treatment effect for the
treated (ATT) and the average treatment effect for the controls (ATC). Although we
gave a conceptual discussion in Chapter 4 of why conditioning works in this scenario,
we will now explain more specifically with a demonstration. First note why every-
thing works out so cleanly when a set of perfect stratifying variables is available. If
Assumption 1-S is valid, then

E[δ|D=0,S] =E[Y 1−Y 0|D=0,S]

=E[Y 1|D=0,S]−E[Y 0|D=0,S]
(5.3)

=E[Y 1|D=1,S]−E[Y 0|D=0,S]

=E[Y |D=1,S]−E[Y |D=0,S].

If Assumption 2-S is valid, then

E[δ|D=1,S] =E[Y 1−Y 0|D=1,S]

=E[Y 1|D=1,S]−E[Y 0|D=1,S]
(5.4)

=E[Y 1|D=1,S]−E[Y 0|D=0,S]

=E[Y |D=1,S]−E[Y |D=0,S].

The last line of Equation (5.3) is identical to the last line of Equation (5.4), and neither
line includes counterfactual conditional expectations. Accordingly, one can consistently
estimate the difference in the last line of Equation (5.3) and the last line of Equation
(5.4) for each value of S. To then form consistent estimates of alternative average
treatment effects, one simply averages the stratified estimates over the distribution of
S, as we show in the following demonstration.
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Matching Demonstration 1

Consider a completely hypothetical example in which Assumptions 1 and 2 in Equa-
tions (2.15) and (2.16) cannot be asserted because positive selection ensures that those
who are observed in the treatment group are more likely to benefit from the treatment
than those who are not. But assume that a three-category perfect stratifying variable
S is available that allows one to assert Assumptions 1-S and 2-S in Equations (5.1)
and (5.2). Moreover, suppose for simplicity of exposition that our sample is infinite so
that sampling error is zero. In this case, we can assume that the sample moments in
our data equal the population moments (i.e., EN [yi|di =1]=E[Y |D=1] and so on).

If it is helpful, think of Y as a measure of an individual’s economic success at age
40,D as an indicator of receipt of a college degree, and S as a mixed family-background
and preparedness-for-college variable that completely accounts for the pattern of self-
selection into college that is relevant for lifetime economic success. Note, however, that
no one has ever discovered such a variable as S for this particular causal effect.

Suppose that, for our infinite sample, the sample mean of the outcome for those
observed in the treatment group is 10.2, whereas the sample mean of the outcome for
those observed in the control group is 4.4. In other words, we have data that yield
EN [yi|di =1]= 10.2 and EN [yi|di =0]= 4.4, and for which the naive estimator would
yield a value of 5.8 (i.e., 10.2− 4.4).

Consider, now, an underlying set of potential outcome variables and treatment
assignment patterns that could give rise to a naive estimate of 5.8. Table 5.1 presents
the joint probability distribution of the treatment variable D and the stratifying vari-
able S in its first panel as well as expectations, conditional on S, of the potential
outcomes under the treatment and control states. The joint distribution in the first
panel shows that individuals with S equal to 1 are more likely to be observed in the
control group, individuals with S equal to 2 are equally likely to be observed in the
control group and the treatment group, and individuals with S equal to 3 are more
likely to be observed in the treatment group.

As shown in the second panel of Table 5.1, the average potential outcomes condi-
tional on S and D imply that the average causal effect is 2 for those with S equal to
1 or S equal to 2, but 4 for those with S equal to 3 (see the last column). Moreover,
as shown in the last row of the table, where the potential outcomes are averaged over
the within-D distribution of S, E[Y |D=0]= 4.4 and E[Y |D=1]= 10.2, matching the
initial setup of the example based on a naive estimate of 5.8 from an infinite sample.

Table 5.2 shows what can be calculated from the data, assuming that S offers a
perfect stratification of the data. The first panel presents the sample expectations of
the observed outcome variable conditional on D and S. The second panel of Table 5.2
presents corresponding sample estimates of the conditional probabilities of S given D.

The existence of a perfect stratification (and the supposed availability of data from
an infinite sample) ensures that the estimated conditional expectations in the first
panel of Table 5.2 equal the population-level conditional expectations of the second
panel of Table 5.1. When stratifying by S, the average observed outcome for those
in the control/treatment group with a particular value of S is equal to the average
potential outcome under the control/treatment state for those with a particular value
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Table 5.1 The Joint Probability Distribution and Conditional Population
Expectations for Matching Demonstration 1

Joint probability distribution of S and D
D=0 D=1

S=1 Pr[S=1,D=0]= .36 Pr[S =1,D=1]= .08 Pr[S =1]= .44
S=2 Pr[S=2,D=0]= .12 Pr[S =2,D=1]= .12 Pr[S =2]= .24
S=3 Pr[S=3,D=0]= .12 Pr[S =3,D=1]= .2 Pr[S =3]= .32

Pr[D=0]= .6 Pr[D=1]= .4

Potential outcomes

Under the control state Under the treatment state

S=1 E[Y
0|S=1]= 2 E[Y

1|S=1]= 4 E[Y
1−Y 0|S =1]= 2

S=2 E[Y
0|S=2]= 6 E[Y

1|S=2]= 8 E[Y
1−Y 0|S =2]= 2

S=3 E[Y
0|S=3]= 10 E[Y

1|S=3]= 14 E[Y
1−Y 0|S =3]= 4

E[Y 0|D=0] E[Y 1|D=1]
= .36

.6 (2)+
.12
.6 (6) = .08

.4 (4)+
.12
.4 (8)

+ .12
.6 (10) + .2

.4(14)
=4.4 = 10.2

Table 5.2 Estimated Conditional Expectations and Probabilities
for Matching Demonstration 1

Estimated mean observed outcome conditional on si and di
Control group Treatment group

si=1 EN [yi|si=1,di=0]= 2 EN [yi|si=1,di=1]= 4
si=2 EN [yi|si=2,di=0]= 6 EN [yi|si=2,di=1]= 8
si=3 EN [yi|si=3,di=0]= 10 EN [yi|si=3,di=1]= 14

Estimated probability of S conditional on D

si=1 PrN [si=1|di=0]= .6 PrN [si=1|di=1]= .2
si=2 PrN [si=2|di=0]= .2 PrN [si=2|di=1]= .3
si=3 PrN [si=3|di=0]= .2 PrN [si=3|di=1]= .5

of S. Conversely, if S were not a perfect stratifying variable, then the sample means in
the first panel of Table 5.2 would not equal the expectations of the potential outcomes
in the second panel of Table 5.1. The sample means would be based on heterogeneous
groups of individuals who differ systematically within the strata defined by S in ways
that are related with individual-level treatment effects.
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If S offers a perfect stratification of the data, then one can estimate from the
numbers in the cells of the two panels of Table 5.2 both the ATT as

(4− 2)(.2)+ (8− 6)(.3)+ (14−10)(.5)= 3

and the ATC as

(4− 2)(.6)+ (8− 6)(.2)+ (14−10)(.2)= 2.4.

Finally, if one calculates the appropriate marginal distributions of S and D (using
sample analogs for the marginal distribution from the first panel of Table 5.1), one can
estimate the unconditional ATE either as

(4− 2)(.44)+ (8− 6)(.24)+ (14−10)(.32)= 2.64

or as

3(.4)+2.4(.6)= 2.64.

Thus, for this hypothetical example, the naive estimator would be inconsistent and
(asymptotically) upwardly biased for the ATT, ATC, and the ATE. But, by appropri-
ately weighting stratified estimates of the treatment effect, one can obtain consistent
and unbiased estimates of all three of these average treatment effects.

In general, if a stratifying variable S completely accounts for all systematic differ-
ences between those who take the treatment and those who do not, then conditional-
on-S estimators yield consistent and unbiased estimates of the average treatment effect
conditional on a particular value s of S:

{EN [yi|di =1,si = s]−EN [yi|di =0,si = s]}
(5.5)

p−→E[Y 1−Y 0|S= s] =E[δ|S= s].

Weighted sums of these stratified estimates can then be taken, such as for the uncon-
ditional ATE:

∑
s

{EN [yi|di =1,si = s]−EN [yi|di =0,si = s]}PrN [si = s]
p−→E[δ]. (5.6)

Substituting into this last expression the distributions of S conditional on the two
possible values of D (i.e., PrN [si = s|di = 1] or PrN [si = s|di = 0]), one can obtain
consistent and unbiased estimates of the ATT and ATC.

The key to using stratification to solve the causal inference problem for all three
causal effects of primary interest is twofold: finding the stratifying variable and then
obtaining the marginal probability distribution Pr[S] as well as the conditional prob-
ability distribution Pr[S|D]. Once these steps are accomplished, obtaining consistent
and unbiased estimates of the within-strata treatment effects is straightforward. There-
after, estimates of other average treatment effects can be formed by taking appropriate
weighted averages of the stratified estimates.

This simple example shows all of the basic principles of matching estimators that
we will present in greater detail in the remainder of this chapter. Treatment and control
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subjects are matched together in the sense that they are grouped together into strata.
Then, an average difference between the outcomes of treatment and control subjects is
estimated, based on a weighting of the strata (and thus the individuals within them)
by a common distribution.

5.2.2 Overlap Conditions for Estimation of the ATE

Suppose again that a perfect stratification of the data is available, such that within
values of a stratifying variable S individuals are indistinguishable from each other as
defined in the last section. But now suppose that there is a stratum of the population
(and hence of the observed data) in which no member of the stratum ever receives the
treatment. In this case, the ATE is ill-defined, and the analyst will only be able to
generate a consistent and unbiased estimate of the ATT, as we show in the following
demonstration.8

Matching Demonstration 2

For the example depicted in Tables 5.3 and 5.4, S again offers a perfect stratification
of the data. The setup of these two tables is exactly equivalent to that of the prior
Tables 5.1 and 5.2 for Matching Demonstration 1. We again assume that the data
are generated by a random sample of a well-defined population, and for simplicity
of exposition that the sample is infinite. The major difference is evident in the joint
distribution of S and D presented in the first panel of Table 5.3. As shown in the first
cell of the second column, no individual in the population with S equal to 1 would
ever be observed in the treatment group of a dataset of any size because the joint
probability of S equal to 1 and D equal to 1 is zero. Corresponding to this structural
zero in the joint distribution of S and D, the second panel of Table 5.3 shows that
there is no corresponding conditional expectation of the potential outcome under the
treatment state for those with S = 1. And, thus, as shown in the last column of the
second panel, no average causal effect is presented for individuals with S =1 because
this particular average causal effect is ill-defined.9

Adopting the same framing as for the college-degree example used in Matching
Demonstration 1, this hypothetical example asserts that there is a subpopulation of
individuals from such disadvantaged backgrounds that no individuals with S=1 have
ever graduated from college. For this group of individuals, we assume in this example
that there is simply no justification for using the wages of those from more advantaged
social backgrounds to extrapolate to the what-if wages of the most disadvantaged
individuals if they had somehow overcome the obstacles that prevented them from
obtaining college degrees.

8In this section, we focus on the lack of overlap that may exist in a population (or super-
population). For now, we ignore the lack of overlap that can emerge in observed data solely because
of the finite size of a dataset. We turn to these issues in the next section, where we discuss solutions
to sparseness.

9By “ill-defined,” we mean the following. No information about E[Y |S = 1,D = 1] or E[Y 1|S =
1,D=1] exists in the population (and, as a result, the data will never give us a value for EN [yi|si =
1, di =1] because no individuals in the data will ever have both si =1 and di =1).
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Table 5.3 The Joint Probability Distribution and Conditional Population
Expectations for Matching Demonstration 2

Joint probability distribution of S and D
D=0 D=1

S=1 Pr[S =1,D=0]= .4 Pr[S =1,D=1]= 0 Pr[S =1]= .4
S=2 Pr[S =2,D=0]= .1 Pr[S =2,D=1]= .13 Pr[S =2]= .23
S=3 Pr[S =3,D=0]= .1 Pr[S =3,D=1]= .27 Pr[S =3]= .37

Pr[D=0]= .6 Pr[D=1]= .4

Potential outcomes

Under the control state Under the treatment state

S=1 E[Y
0|S=1]= 2

S=2 E[Y
0|S=2]= 6 E[Y

1|S =2]= 8 E[Y
1−Y 0|S=2]= 2

S=3 E[Y
0|S=3]= 10 E[Y

1|S =3]= 14 E[Y
1−Y 0|S=3]= 4

E[Y
0|D=0] E[Y

1|D=1]
= .4

.6 (2)+
.1
.6 (6) = .13

.4 (8)+ .27
.4 (14)

+ .1
.6 (10)

=4 =12.05

Table 5.4 Estimated Conditional Expectations and Probabilities
for Matching Demonstration 2

Estimated mean observed outcome conditional on si and di
Control group Treatment group

si=1 EN [yi|si=1,di=0]= 2
si=2 EN [yi|si=2,di=0]= 6 EN [yi|si=2,di=1]= 8
si=3 EN [yi|si=3,di=0]= 10 EN [yi|si=3,di=1]= 14

Estimated probability of S conditional on D

si=1 PrN [si=1|di=0]= .667 PrN [si=1|di=1]= 0
si=2 PrN [si=2|di=0]= .167 PrN [si=2|di=1]= .325
si=3 PrN [si=3|di=0]= .167 PrN [si=3|di=1]= .675

Table 5.4 shows what can be estimated consistently for this example. Even though
S offers a perfect stratification of the data, the fact that Pr[S=1,D=1]= 0 prevents
the analyst from using the data for the stratum with S=1 to estimate a stratum-level
causal effect. No value exists for EN [yi|si =1,di =1].

Fortunately, the analyst can consistently estimate the average effect of the treat-
ment separately for the two strata with S=2 and S=3. And, because all members of
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the treatment group belong to these two strata, the analyst can therefore consistently
estimate the ATT as

(8− 6)(.325)+ (14−10)(.675)= 3.35.

Still, no consistent and unbiased estimates of the ATC or the ATE are available.10

Are examples such as this one ever found in practice? For an example that is more
realistic than the causal effect of a college degree on economic success, consider the
evaluation of a generic program in which there is an eligibility rule. The benefits of
enrolling in the program for those who are ineligible cannot be estimated from the
data, even though, if some of those individuals were enrolled in the program, they
would likely be affected by the treatment in some way. Developing such estimates
would require going well beyond the data, introducing assumptions that allow for
extrapolation off of the joint distribution of S and D.

More generally, even in best-case data availability scenarios where the sample size
is infinite, it may not be possible to consistently estimate all average causal effects
of theoretical or practical interest because the distribution of the treatment across
all segments of the population is incomplete. However, at other times, the data may
appear to suggest that no causal inference is possible for some group of individuals
even though the problem is simply a small sample size. There is a clever solution to
sparseness of data for this latter type of situation, which we discuss in the next section.

5.3 Matching as Weighting

As shown in the last section, if all of the variables in S have been observed such that
a perfect stratification of the data would be possible with an infinitely large random
sample from the population, then a consistent and unbiased estimator is available in
theory for each of the average causal effects of interest defined in Equations (2.3),
(2.7), and (2.8) as the ATE, ATT, and ATC, respectively. Unfortunately, in many (if
not most) datasets of finite size, it may not be possible to use the simple estimation
methods of the last section to generate consistent and unbiased estimates. Treatment
and control cases may be missing at random within some of the strata defined by S,
such that some strata contain only treatment or only control cases. In this situation,
some within-stratum causal effect estimates cannot be calculated with the available
data. We now introduce a set of weighting estimators that rely on estimated propensity
scores to solve the sparseness problems that afflict samples of finite size.

10The naive estimate can be calculated for this example, and it would equal 8.05 for an infinite
sample because [8(.325)+ 14(.675)]− [2(.667)+ 6(.167)+ 10(.167)] is equal to 8.05. See the last row
of Table 5.3 for the population analogs to the two pieces of the naive estimator. This means that,
without determining the lack of overlap by stratifying the data, an incautious analyst might offer the
naive estimate and then discuss its relationship to the ATE, which is itself a target parameter that is
ill-defined.
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5.3.1 The Utility of Known Propensity Scores

An estimated propensity score is the estimated probability of taking the treatment
as a function of variables that predict treatment assignment. Before the attraction of
estimated propensity scores is explained, there is value in understanding why known
propensity scores would be useful in an idealized context such as a perfect stratification
of the data. (See also our prior discussion of propensity scores in Section 4.3.1.)

Within a perfect stratification, the true propensity score is nothing other than
the within-stratum probability of receiving the treatment, or Pr[D = 1|S]. For the
hypothetical example in Matching Demonstration 1, the propensity scores are

Pr[D=1|S=1]=
.08

.44
= .182,

Pr[D=1|S=2]=
.12

.24
= .5,

Pr[D=1|S=3]=
.2

.32
= .625.

Why is the propensity score useful? As shown earlier for Matching Demonstration 1,
if a perfect stratification of the data is available, then the final ingredient for calculat-
ing estimates of the ATT and ATC is the conditional distribution Pr[S|D]. One can
recover Pr[S|D] from the propensity scores by applying Bayes’ rule using the marginal
distributions of D and S. For example, for the first stratum,

Pr[S =1|D=1]=
Pr[D=1|S=1]Pr[S =1]

Pr[D=1]
=

(.182)(.44)

(.4)
= .2.

Thus, the true propensity scores encode all of the necessary information about the joint
dependence of S and D that is needed to estimate and then combine conditional-on-S
treatment effect estimates into estimates of the ATT and the ATC. Known propensity
scores are thus useful for unpacking the inherent heterogeneity of causal effects and
then averaging over such heterogeneity to calculate average treatment effects.

Of course, known propensity scores are almost never available to researchers work-
ing with observational rather than experimental data. Thus, the literature on matching
more often recognizes the utility of propensity scores for addressing an entirely dif-
ferent concern: solving comparison problems created by the sparseness of data in any
finite sample. These methods rely on estimated propensity scores, as we discuss next.

5.3.2 Weighting with Estimated Propensity Scores to
Address Sparseness

Suppose again that a perfect stratification of the data exists and is known. In particu-
lar, Assumptions 1-S and 2-S in Equations (5.1) and (5.2) are valid, and S is observed.
But, suppose now that (1) there are multiple variables in S, (2) some of the variables
in S take on many values, and (3) the true propensity score is greater than 0 and less
than 1 for every stratum defined by S. In this scenario, there may be many strata
in the available data from a finite sample in which no treatment and/or no control
cases are observed, even though the true propensity score is between 0 and 1 for every
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stratum in the population (i.e., every population-level stratum includes individuals in
both the treatment and control states).

Can average treatment effects be consistently estimated in this scenario?
Rosenbaum and Rubin (1983a) answer this question affirmatively. The essential points
of their argument are the following (see the original article for a formal proof): First,
the sparseness that results from the finiteness of a sample is random, conditional on
the joint distribution of S and D. As a result, within each stratum for a perfect stratifi-
cation of the data, the probability of having a zero cell in the treatment or the control
state is solely a function of the propensity score. Because such sparseness is condi-
tionally random, strata with identical propensity scores (i.e., different combinations of
values for the variables in S but the same within-stratum probability of treatment)
can be combined into more coarse strata. Over repeated samples from the same pop-
ulation, zero cells would emerge with equal frequency across all strata within these
coarse propensity-score-defined strata.

Because sparseness emerges in this predictable fashion, stratifying on the propen-
sity score itself (rather than more finely on all values of the variables in S) solves the
sparseness problem because the propensity score can be treated as a single stratify-
ing variable. In fact, as we show in the next hypothetical example, one can obtain
consistent estimates of treatment effects by weighting the individual-level data by an
appropriately chosen function of the estimated propensity score, without ever having
to compute any stratum-specific causal effect estimates.

But how does one obtain the propensity scores for data from a random sample of the
population of interest? Rosenbaum and Rubin (1983a) argue that, if one has observed
the variables in S, then the propensity score can be estimated using standard methods,
such as logit modeling. That is, one can estimate the propensity score, assuming a
logistic distribution,

Pr[D=1|S] = exp(Sφ)

1+exp(Sφ)
, (5.7)

and invoke maximum likelihood to estimate a vector of coefficients φ̂. One can then
stratify on the index of the estimated propensity score, e(si) = siφ̂, or appropriately
weight the data, and all of the results established for known propensity scores then
obtain.11 Consider the following hypothetical example, in which weighting is performed
only with respect to the estimated propensity score, resulting in consistent and unbi-
ased estimates of average treatment effects even though sparseness problems are severe.

11As Rosenbaum (1987) later clarified (see also Rubin and Thomas 1996), the estimated propensity
scores do a better job of balancing the observed variables in S than the true propensity scores would
in any actual application, because the estimated propensity scores correct for the chance imbalances
in S that characterize any finite sample. This insight has led to a growing literature that seeks to
balance the observed variables in S by various computationally intensive but powerful nonparametric
techniques (e.g., Diamond and Sekhon 2013; Lee, Lessler, and Stuart 2009; McCaffrey, Ridgeway, and
Morral 2004). We discuss this literature later, and for now we use only parametric models for the
estimation of propensity scores, as they dominate the foundational literature on matching.
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Matching Demonstration 3

Consider the following Monte Carlo simulation, which is an expanded version of the
hypothetical example in Matching Demonstration 1 in two respects. First, for this
example, there are two stratifying variables, A and B, each of which has 100 separate
values. As for Matching Demonstration 1, these two variables represent a perfect strat-
ification of the data and, as such, represent all of the variables in the set of perfect
stratifying variables, defined earlier as S. Second, to demonstrate the properties of
alternative estimators, this example utilizes 50,000 samples of data, each of which is a
random realization of the same set of definitions for the constructed variables and the
stipulated joint distributions between them.

Generation of the 50,000 Datasets. For the simulation, we gave the variables A
and B values of .01, .02, .03, and upward to 1. We then cross-classified the two variables
to form a 100×100 grid and stipulated a propensity score, as displayed in Figure 5.1,
that is a positive, nonlinear function in both A and B.12 We then populated the
resulting 20,000 constructed cells (100× 100 for the A×B grid multiplied by the two
values of D) using a Poisson random-number generator with the relevant propensity
score as the Poisson parameter for the 10,000 cells for the treatment group and one
minus the propensity score as the Poisson parameter for the 10,000 cells for the control
group. This sampling scheme generates (on average across simulated datasets) the
equivalent of 10,000 sample members, assigned to the treatment instead of the control
as a function of the probabilities plotted in Figure 5.1.

Across the 50,000 simulated datasets, on average 7,728 of the 10,000 possible com-
binations of values for both A and B had no individuals assigned to the treatment, and
4,813 had no individuals assigned to the control. No matter the actual realized pattern
of sparseness for each simulated dataset, all of the 50,000 datasets are afflicted, such
that a perfect stratification on all values for the variables A and B would result in
many strata within each dataset for which only treatment or control cases are present.

To define treatment effects for each dataset, two potential outcomes were defined
as linear functions of individual values for A and B:

y0i =100+3ai+2bi+υ0
i , (5.8)

y1i =102+6ai+4bi+υ1
i , (5.9)

where both υ0
i and υ1

i are independent random draws from a normal distribution
with expectation 0 and standard deviation of 5. Then, as in Equation (2.2), individ-
uals from the treatment group were given an observed yi equal to their simulated
y1i , and individuals from the control group were given an observed yi equal to their
simulated y0i .

With this setup, the simulation makes available 50,000 datasets for which the
individual treatment effects can be calculated exactly (because true values of y1i and

12The parameterization of the propensity score is a constrained tensor product spline regression for
the index function of a logit. See Ruppert, Wand, and Carroll (2003) for examples of such parameter-
izations. Here, Sφ in Equation (5.7) is equal to −2+3(A)− 3(A− .1)+2(A− .3)− 2(A− .5)+4(A−
.7)−4(A− .9)+1(B)−1(B − .1)+2(B− .7)−2(B− .9)+3(A− .5)(B− .5)−3(A− .7)(B− .7).
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Figure 5.1 The propensity score specification for Matching Demonstration 3.

y0i are available for all simulated individuals). As a result, the true ATE, ATT, and
ATC are known for each simulated dataset, and these known average effects can serve
as baselines against which alternative estimators that use data only on yi, di, ai, and
bi can be compared.

The first row of Table 5.5 presents true Monte Carlo means and standard deviations
of the three average treatments effects, calculated across the 50,000 simulated datasets.
The mean of the true ATE across all datasets is 4.525, whereas the means of the true
ATT and ATC are 4.892 and 4.395, respectively. Similar to the hypothetical example
in Matching Demonstration 1, this example represents a form of positive selection, in
which those who are most likely to be in the treatment group are also those most likely
to benefit from the treatment. Accordingly, the ATT is larger than the ATC.

Methods for Treatment Effect Estimation. The last three rows of Table 5.5
present results for three propensity-score-based weighting estimators. For the esti-
mates in the second row, it is (incorrectly) assumed that the propensity score can be
estimated consistently with a logit model with linear terms for A and B (i.e., assuming
that, for Equation (5.7), a logit with Sφ specified as α+φAA+φBB will yield con-
sistent estimates of the propensity score surface plotted in Figure 5.1). After the logit
model was estimated for each of the 50,000 datasets with the wrong specification, the
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Table 5.5 Monte Carlo Means and Standard
Deviations of True and Estimated Treatment Effects
for Matching Demonstration 3

ATE ATT ATC

True treatment effects 4.525 4.892 4.395

(.071) (.139) (.083)

Propensity-score-based

weighting estimators:

Misspecified propensity 4.456 4.913 4.293

score estimates (.122) (.119) (.128)

Perfectly specified 4.526 4.892 4.396

propensity score estimates (.120) (.127) (.125)

True propensity scores 4.527 4.892 4.396

(.127) (.127) (.132)

estimated propensity score for each individual was then calculated,

p̂i =
exp(α̂+ φ̂Aai+ φ̂Bbi)

1+exp(α̂+ φ̂Aai+ φ̂Bbi)
, (5.10)

along with the estimated odds of the propensity of being assigned to the treatment

r̂i =
p̂i

1− p̂i
, (5.11)

where p̂i is as constructed in Equation (5.10).
To estimate the ATT, we then implemented a weighting estimator by calculating

the average outcome for the treated and subtracting from this average outcome a
counterfactual average outcome using weighted data on those from the control group:

δ̂ATT,weight≡
(

1

n1

∑
i:di=1

yi

)
−

⎛
⎜⎝

∑
i:di=0

r̂iyi∑
i:di=0

r̂i

⎞
⎟⎠ , (5.12)

where n1 is the number of individuals in the treatment group and r̂i is the estimated
odds for each individual i of being in the treatment group instead of in the control
group, as constructed in Equations (5.10) and (5.11). The weighting operation in the
second term gives more weight to control group individuals equivalent to those in the
treatment group; see Rosenbaum (1987, 2002); see also Imbens (2004) and Hainmueller
(2012).13 To estimate the ATC, we then implemented a weighting estimator that is

13As we will describe in Chapter 7 when discussing the connections between matching and regres-
sion, the weighting estimator in Equation (5.12) can be written as a weighted regression estimator.
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the mirror image of the one in Equation (5.12):

δ̂ATC,weight≡

⎛
⎜⎝

∑
i:di=1

yi/r̂i∑
i:di=1

n1/r̂i

⎞
⎟⎠−

(
1

n0

∑
i:di=0

yi

)
, (5.13)

where n0 is the number of individuals in the control group. Finally, the corresponding
estimator of the unconditional ATE is

δ̂ATE,weight≡
(
1

n

∑
i

di

)(
δ̂ATT,weight

)
+

[(
1− 1

n

∑
i

di

)](
δ̂ATC,weight

)
, (5.14)

where δ̂ATT,weight and δ̂ATC,weight are as defined in Equations (5.12) and (5.13), respec-
tively.

The same basic weighting scheme is implemented for the third row of Table 5.5,
but the estimated propensity scores utilized to define the estimated odds of treatment,
r̂i, are instead based on results from a flawlessly estimated propensity score equation
(i.e., one that uses the exact same specification that was fed to the random-number
generator that assigned individuals to the treatment; see footnote on page 153 for
the specification). Finally, for the last row of Table 5.5, the same weighting scheme is
implemented, but, in this case, the estimated odds of treatment, r̂i, are replaced with
the true odds of treatment, ri, as calculated with reference to the exact function that
generated the propensity score for Figure 5.1.

Monte Carlo Results. On average across all 50,000 simulated datasets, the naive
estimator yields a value of 5.388, which is substantially larger than all three of the
average values for the true ATE, ATT, and ATC presented in the first row of Table
5.5. The reason is simple. The two variables A and B mutually cause both D and Y
(in a structure analogous to Figure 3.5). The two back-door paths, D←A→ Y and
D←B→ Y , generate noncausal associations between D and Y . These paths must be
blocked, and this is the motivation for the weighting estimators.

The second row of the table presents three estimates from the weighting estima-
tors in Equations (5.12), (5.13), and (5.14), using weights based on the misspecified
logit described above. These estimates are closer to the true average values presented
in the first row (and much closer than the average value of the naive estimate), but
the misspecification of the propensity-score-estimating equation appears to generate
systematic bias in the estimates, suggesting that they are unlikely to be consistent esti-
mates. The third row of the table presents another three weighting estimates, using
a perfect specification of the propensity-score-estimating equation, and now the esti-
mates appear to be consistent and unbiased for the ATE, ATT, and ATC. Finally, the
last row presents weighting estimates that utilize the true propensity scores, which we
know by construction are consistent and asymptotically unbiased (but, as shown by
Rosenbaum 1987, more variable than those based on the flawlessly estimated propen-
sity score; see also Hahn 1998; Hirano, Imbens, and Ridder 2003; Rosenbaum 2002).
The last two rows demonstrate the most important claim of the literature: If one can
obtain consistent estimates of the true propensity scores, one can solve the problems
created by sparseness of data.
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This example shows the potential power of propensity-score-based modeling. If
treatment assignment can be modeled perfectly, one can solve the sparseness problems
that afflict finite datasets. At the same time, this simulation also develops two impor-
tant qualifications of this potential power. First, this solution only holds in expectation
over repeated samples (or in the limit as the sample size increases to infinity). For any
single dataset, any resulting point estimate of a treatment effect will differ from the
true target parameter to some degree because of sampling variability.

Second, without a perfect specification of the propensity-score-estimating equa-
tion, one cannot rest assured that consistent and unbiased estimates can be obtained.
Because propensity scores achieve their success by “undoing” the treatment assign-
ment patterns, analogous to weighting a stratified sample so that it is representative
of the population, systematically incorrect estimated propensity scores can generate
systematically incorrect weighting schemes that yield inconsistent and biased estimates
of treatment effects.

There are two common sources of inconsistency and bias that can be considered
separately. As discussed at length in Chapter 4, if the conditioning set leaves one
or more back-door paths unblocked, then Assumption 1-S and/or Assumption 2-S
in Equations (5.1) and (5.2) are/is invalid. We avoided this problem in Matching
Demonstration 3 because we used A and B to estimate the propensity scores, and we
know by construction that S is defined as the set {A,B}. Had we mistakenly used
only A or only B, then we would not have conditioned fully on S, thereby leaving
a back-door path unblocked. We will have much more to say about this source of
inconsistency and bias in the remainder of this chapter.

The second source of inconsistency and bias is misspecification of the equation that
estimates the propensity scores, and this is especially important to consider for the sort
of propensity-score-based weighting estimators utilized for Matching Demonstration 3.
For the results reported in the second row of Table 5.5, we included both A and B in
the propensity-score estimating equation. But, we did not do so while also choosing a
flexible enough parameterization of A and B that would allow the data to generate a
sufficiently accurate set of estimated propensity scores (which, in expectation, would
match the shape of the surface in Figure 5.1, when plotted in three dimensions). As a
result, the estimated effects in the Monte Carlo simulation were systematically biased
when the weights based on these estimated propensity scores were used. Only when
the correct specification was used to generate the weights were we able to generate
unbiased estimates of the ATE, ATT, and ATC.

These possible weaknesses aside, one concluding question should be answered: In
what sense are the individual-level weighting estimators of the hypothetical example
in Matching Demonstration 3 equivalent to matching estimators? For the hypothet-
ical examples in Matching Demonstrations 1 and 2, we explained how stratification
estimators have a straightforward connection to matching. The strata that are formed
represent matched sets, and a weighting procedure is then used to average stratified
treatment effect estimates in order to obtain the average treatment effects of inter-
est. The propensity-score weighting estimators presented in this section have a less
straightforward connection. Here, the data are, in effect, stratified coarsely by the esti-
mation of the propensity score, and then the weighting is performed directly across
individuals instead of across the strata. This individual-level weighting is made nec-
essary by sparseness, since some of the fine strata for which propensity scores are
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estimated necessarily contain only treatment or control cases, thereby preventing the
direct calculation of stratified treatment effect estimates.

5.4 Matching as a Data Analysis Algorithm

Algorithmic matching estimators differ primarily in (1) the number of matched cases
designated for each to-be-matched target case and (2) how multiple matched cases are
weighted if more than one is utilized for each target case. In this section, we describe
the four main types of matching estimators as well as recent extensions to them.

Heckman, Ichimura, and Todd (1997, 1998) and Smith and Todd (2005) outline
a general framework for representing alternative matching estimators, and we follow
their lead. With our variant of their notation, all matching estimators of the ATT can
be expressed as some variation of

δ̂ATT,match =
1

n1

∑
i

⎡
⎣(yi|di =1)−

∑
j

ωi,j(yj |dj =0)

⎤
⎦ , (5.15)

where n1 is the number of treatment cases, i is the index over treatment cases, j is the
index over control cases, and ωi,j represents a set of scaled weights that measure the
distance between each control case and the target treatment case. In Equation (5.15),
the weights are entirely unspecified. For the ATC, an opposite expression is available,
with alternative weights ωj,i instead attached to the control cases

δ̂ATC,match =
1

n0

∑
j

[
(yj |dj =0)−

∑
i

ωj,i(yi|di =1)

]
, (5.16)

and where n0 is the number of control cases.
Alternative matching estimators can be represented as different procedures for

deriving the weights represented by ωi,j and ωj,i in these two expressions. As we will
describe next, the weights can take on many values, indeed as many n1×n0 different
values, because alternative weights can be used when constructing the counterfactual
value for each target case. The difference in the propensity score between the target
case and each potential matched case is the most common distance measure used to
construct weights. Other measures of distance are available, including the estimated
odds of the propensity score, the index of an estimated logit, probit, or other parametric
binary outcome model, and the Mahalanobis metric.14

Before describing the four main types of matching algorithms, and their extensions,
we note three important points. First, for simplicity of presentation, in the remainder
of this section we will focus on matching estimators of the ATT. Each of the following
matching algorithms could be described in reverse, explaining how treatment cases
can be matched to control cases in order to construct an estimate of the ATC, relying
on Equation (5.16) rather than Equation (5.15). We mention this, in part, because it

14The Mahalanobis metric is (Si − Sj)′Σ−1(Si − Sj), where Σ is the covariance matrix of the
variables in S (usually calculated for the target cases only). There is a long tradition in this literature
of using Mahalanobis matching, sometimes in combination with propensity-score matching.
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is sometimes implied in the applied literature that the matching techniques that we
are about to summarize are useful for estimating only the ATT. This is false. If (1) all
variables in S are known and observed, such that a perfect stratification of the data
could be formed with a suitably large dataset because both Assumptions 1-S and 2-S
in Equations (5.1) and (5.2) are valid and (2) the ranges of all of the variables in S
are the same for the treatment group and the control group, then simple variants of
the matching estimators that we will present in this section can be formed that are
consistent for both the ATT and ATC (and, as a result, for the ATE as a weighted
average).

Second, if it is the case that one only wants to estimate the ATT, one does not need
to assume full ignorability of treatment assignment or that both Assumptions 1-S and
2-S in Equations (5.1) and (5.2) are valid. Instead, only Assumption 2-S (i.e., E[Y 0|D=
1,S] =E[Y 0|D=0,S]) must hold. In other words, to estimate the ATT, it is sufficient
to assume that, conditional on S, the average level of the outcome under the control
for those in the treatment is equal, on average, to the average level of the outcome
under the control for those in the control group.15 This assumption is still rather
stringent, in that it asserts that those in the control group do not disproportionately
gain from exposure to the control state more than would those in the treatment group
if they were instead in the control group. But it is surely weaker than having to assert
Assumptions 1-S and 2-S together.16

Third, the matching algorithms we summarize next are data analysis procedures
that can be used more generally when ignorability, or related assumptions, cannot be
assumed to hold because some of the variables in the perfect stratification set S are
unobserved. Matching routines are still useful, according to Rosenbaum (2002) and
others, as techniques that generate provisional estimates that can then be subjected
to further analysis in pursuit of warranted causal inferences.

5.4.1 Basic Variants of Matching Algorithms

Exact Matching

Exact matching for the ATT constructs the counterfactual for each treatment case
using the control cases with identical values on all of the variables in S. In the notation
of Equation (5.15), exact matching uses weights equal to 1/ki for the matched control
cases, where ki is the number of exact matches identified for each target treatment
case i. Weights of 0 are given to all unmatched control cases. If only one exact match
is chosen at random from among available exact matches, then ωi,j is set to 1 for the
randomly selected match and to 0 for all other control cases.

15There is an ignorability variant of this mean-independence assumption: D is independent of Y 0

conditional on S. One would always prefer a study design in which this more encompassing form of
independence holds. Resulting causal estimates would then hold under transformations of the potential
outcomes. This would be particularly helpful if the directly mapped Y – defined as DY 1+(1−D)Y 0 –
is not observed but some monotonic transformation of Y is observed (as could perhaps be generated
by a feature of measurement).

16And this is again weaker than having to assert an assumption of ignorability of treatment assign-
ment.
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If S includes more than one or two variables and/or the sample size of the available
data is limited, then exact matching is typically infeasible, since many treatment cases
will remain unmatched. As a result, exact matching is rarely used on its own and is
instead most commonly used in combination with one of the other matching methods
described in the following sections. The analyst performs an exact match on one or two
of the variables in S and then utilizes another matching algorithm for the remaining
variables in S.

Nearest-Neighbor, Caliper, and Radius Matching

Nearest-neighbor matching for the ATT constructs the counterfactual for each treat-
ment case using the control cases that are closest to the treatment case on a unidi-
mensional distance measure constructed from the variables in S, most commonly an
estimated propensity score (see Althauser and Rubin 1970; Cochran and Rubin 1973;
Rosenbaum and Rubin 1983a, 1985a, 1985b; Rubin 1973a, 1973b, 1976, 1980a, 1980b).
As noted in our discussion of Equation (5.15), other distance metrics are sometimes
used.

The traditional algorithm randomly orders the treatment cases and then selects for
each treatment case the single control case with the smallest distance on the chosen
metric. The algorithm can be run with or without replacement. With replacement, a
control case is returned to the pool after a match and can be matched later to another
treatment case. Without replacement, a control case is taken out of the pool once it
is matched.

One weakness of the traditional algorithm when used without replacement is that
the estimate will vary depending on the order in which the the treatment cases are
passed to the matching algorithm. Moreover, any single estimate may not be based
on the minimum aggregate distance between all treatment cases and their matched
control cases. A form of optimal matching, which we discuss below, has been developed
to remedy these weakness in the traditional algorithm by selecting the best overall
match of the data from among all of those that are possible.

An analyst can also match on a fixed number of multiple nearest neighbors for
each target treatment case, such as 5 nearest neighbors for each target treatment
case. The decision of whether to set the algorithm to select more than one nearest
neighbor represents a subtle trade-off. Matching more control cases to each treatment
case results in lower expected variance of the treatment effect estimate but also tends
to increase bias because the probability of making more poor matches increases with
the number of matches.

If only one nearest neighbor is selected for each treatment case, as in the traditional
algorithm, then ωi,j is set equal to 1 for the matched control case. If multiple nearest
neighbors are selected, the weights ωi,j are set equal to 1/ki for each matched nearest
neighbor, where ki is the number of matches selected for each target treatment case i.
As with exact matching, the weights are set to 0 for all unmatched control cases.

A danger with nearest-neighbor matching, especially when the algorithm is forced
to find a fixed multiple of matches such as 5, is that it may result in some very poor
matches for some treatment cases. A version of nearest-neighbor matching, known
as caliper matching, is designed to remedy this drawback by restricting matches to
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a chosen maximum distance, such as .25 standard deviations of the distance metric
when calculated only for the treatment cases. This distance restriction then also allows
for variable numbers of multiple nearest neighbors (e.g., ≤ 5 nearest neighbors within
the caliper for each target treatment case). However, with this type of matching, some
treatment cases may not receive matches, since for some of these cases no control
cases will fall within their caliper. If this occurs, the resulting effect estimate then
applies only to the subset of the treatment cases that have received matches (even if
ignorability holds and there is simply sparseness in the data). Because such a data-
induced shift of focus in the target parameter may be undesirable, a common strategy
is to then use a hybrid approach, where in a second step all treatment cases without
any caliper-based matches are then matched to a single nearest neighbor outside of
the caliper.

Finally, for radius matching, there is variation in terminology and definitions in the
literature. Most commonly, all control cases within a particular distance of each target
treatment case are matched, and as a result the “radius” is functionally equivalent to
the caliper in caliper matching. And, again, the weights ωi,j are set equal to 1/ki for the
matched nearest neighbors, where ki is the number of matches selected for each target
treatment case i. The difference from caliper matching is simply that all potential
matches within the caliper of each treatment case are anointed as matches for the target
treatment case, which means that the matching is performed with replacement.17 As
with caliper matching, supplemental single nearest-neighbor matching may be needed
if the analyst wishes to keep all treatment cases in the analysis. For some researchers,
such additional forced matching is an essential component of radius matching, unlike
caliper matching.

Interval Matching

Interval matching (also referred to as subclassification and stratification matching) for
the ATT sorts the treatment and control cases into segments of a unidimensional dis-
tance metric, usually the estimated propensity score (see Cochran 1968; Rosenbaum
and Rubin 1983a, 1984; Rubin 1977). For the traditional estimator of the ATT, the
intervals are defined by cutpoints on the distance metric that subdivide the treatment
cases into a chosen number of equal-sized subgroups (e.g., the intervals that subdivide
1,000 treatment cases into five groups of 200). More recent variants of interval match-
ing, sometimes referred to as full matching, use an optimization step to first generate
intervals of variable size that minimize the within-subgroup average difference in the
distance metric.

No matter how defined, for each interval a variant of the matching estimator in
Equation (5.15) is then estimated separately. The weights ωi,j are set to give the same
amount of weight to the treatment cases and control cases within each interval. The
ATT is then calculated as the mean of the interval-specific treatment effects, weighted
by the number of treatment cases in each interval.

17In contrast, caliper matching can be performed without replacement, although it is most com-
monly performed with replacement.
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Kernel Matching

Kernel matching for the ATT constructs the counterfactual for each treatment case
using all control cases but weights each control case based on its distance from the
treatment case (see Heckman, Ichimura, and Todd 1997, 1998). The weights repre-
sented by ωi,j in Equation (5.15) are calculated with a kernel function, G(.), that
transforms the distance between the selected target treatment case and all control
cases in the study. When the estimated propensity score is used to measure the dis-
tance, kernel-matching estimators define the weight as

ωi,j =
G(

p̂j−p̂i

an
)∑

jG(
p̂j−p̂i

an
)
, (5.17)

where an is a bandwidth parameter that scales the difference in the estimated propen-
sity scores based on the sample size and p̂ is the estimated propensity score.18 The
numerator of this expression yields a transformed distance between each control case
and the target treatment case. The denominator is a scaling factor equal to the sum
of all the transformed distances across control cases, which is needed so that the sum
of ωi,j is equal to 1 across all control cases when matched to each target treatment
case.

Although kernel-matching estimators appear complex, they are a natural exten-
sion of nearest-neighbor caliper and radius matching: All control cases are matched
to each treatment case but weighted so that those closest to the treatment case are
given the greatest weight. Smith and Todd (2005) offer an excellent intuitive discus-
sion of kernel matching along with generalizations to local linear matching (Heckman,
Ichimura, Smith, and Todd 1998) and local quadratic matching (Ham, Li, and Reagan
2011).

5.4.2 Recent Matching Routines That Seek Optimal Balance

In the description of the matching algorithms above, we have given no indication
of which algorithm will work best. We will defer this question until after we offer
a demonstration of a variety of matching techniques below. Instead, in this section
we will shift the motivation of matching slightly in order to present the most recent
matching estimators that we will discuss in this section.

Consider our order of presentation of the main issues so far in this chapter. We
offered Matching Demonstrations 1 and 2 to explain the basic conditioning strategy
that underlies matching and to clarify why consistent estimates of the ATT, ATC, and
ATE are all available when the set of perfect stratifying variables S is observed. We
then turned to Matching Demonstration 3 to explain how estimated propensity scores
can address the problems posed by finite sample sizes, under the recognition that a
full stratification of the data on all of the variables in S will rarely be feasible if S
includes many variables and/or those variables take on many values.

The recent methodological literature on matching assumes that the reader already
knows these points and instead moves directly to the consideration of an omnibus

18Increasing the bandwidth increases bias but lowers variance. Smith and Todd (2005) find that
estimates are fairly insensitive to the size of the bandwidth.
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performance criterion that motivates most recent matching routines: the capacity of
matching estimators to balance the variables that have been matched on. We therefore
need to explain the concept of balance in more detail, first in an abstract sense and
then in relation to the particular matching estimators considered so far in this chapter.
(See also our earlier brief discussion of balance in Section 4.4.)

Consider a case where we have many variables in the perfect stratification set S,
where all of these variables are observed, but where we have a finite sample afflicted by
rampant sparseness. In such a dataset, many combinations of values on the variables
in S will not be present, even though individuals with these patterns of values exist in
the population. To capture this point formally, let PrN [si] represent the observed joint
distribution across the realized values s of all variables in S for a particular sample of
size N . For a dataset with substantial sparseness, the joint distribution PrN [si] will
not in general be equal to the population distribution of S, denoted Pr[S]. Generic
sampling variation will lead to over-representation and under-representation of most
combinations of values on the variables in S, and many of the rarest combinations in
the population will not be present in the sample.

To now consider within-sample balance with respect to a treatment effect param-
eter, we must consider the observed joint distribution of S conditional on member-
ship in the observed treatment and control groups, PrN [si|di = 1] and PrN [si|di =0],
respectively. For all examples considered so far in this chapter, the observed data are
imbalanced with respect to treatment effect estimates for D because

PrN [si|di =1] �=PrN [si|di =0]. (5.18)

In words, the joint distributions for the observed versions of the variables in the perfect
stratification set S are not the same in the treatment and control groups.

The underlying goal of all matching estimators is to transform the data in such a
way that they can be analyzed as if they are balanced with respect to the treatment
effect of interest, which will be the case if

PrN [si|di =1]=PrN [si|di =0] (5.19)

in the matched dataset. If the ATT is the parameter of interest, then the data will only
be balanced when matching has yielded a set of matched control cases that have the
same joint distribution for the observed variables in S that the treatment cases have
in the original observed dataset. If the ATC and ATE are also parameters of interest,
then the data will only be balanced with respect to these additional parameters if the
same routine also yields a set of matched treatment cases that have the same joint
distribution for the observed variables in S that the control cases have in the original
observed dataset.

Consider classic exact matching in a scenario where all treatment cases have one
available exact match among the control cases, and where by exact we mean again
that the resulting matched pairs have the same values on all of the variables in S.
In this case, optimal balance is achieved for estimation of the ATT. In particular,
all unmatched cases are tossed out of the dataset, and the remaining treatment and



164 Chapter 5. Matching Estimators of Causal Effects

control cases have the exact same observed joint distribution across all variables in S.
These data are not, however, balanced with respect to either the ATC or the ATE.19

For a closely related example, where the data are balanced with respect to the
ATT, ATC, and ATE, consider our hypothetical stratification example in Matching
Demonstration 1. For that example, we assumed an infinite sample where the distribu-
tion of S (see Table 5.1) differs across the treatment and control groups, such that the
population and sample have treatment groups with disproportionately low numbers of
individuals with si=1 and disproportionately high numbers of individuals with si=3.
Accordingly, the observed data are imbalanced. However, when the data are analyzed
within the strata of S, the average values for the outcome Y are generated from bal-
anced comparisons with respect to S because, within each stratum, all individuals have
the same value for S.20 To generate estimates of the ATT, ATC, and ATE, a common
distribution of S is then passed back to the estimator as stratum-level weights. In this
sense, a stratification estimator, if available, is a generalization of exact matching that
allows one to optimally balance the data for all average treatment effects that can be
defined as functions in the underlying strata, including the ATT, ATC, and ATE.

As we noted above, finite datasets generally render exact matching and full strati-
fication infeasible. Indeed, this was the impetus for the development of matching esti-
mators, such as propensity-score matching, that utilize distance metrics for matching
that are lower-dimensional than the full joint distribution of the perfect stratification
set S. In these cases, perfect balance is generally impossible to achieve, as we now
explain.

Consider our hypothetical example in Matching Demonstration 3. For the assumed
data there, the distributions of A and B (which jointly represent the perfect strat-
ification set S) differ across the treatment and control groups, such that the 50,000
simulated samples, on average, have treatment groups with disproportionately high
values for A and B. Similar to Matching Demonstration 1, individuals are grouped
into strata, but now only implicitly by estimation of the propensity score and only
coarsely (i.e., not based on the full stratification defined by the full joint distribu-
tion of A and B). Individuals are then weighted within these propensity-score-defined
strata, although indirectly by individual-level weights, in order to ensure that the
expected distribution of S is the same within the treatment and control cases that are
then used to estimate the ATT, ATC, and ATE.

Notice the inclusion of the word “expected” in the last sentence. Unlike exact
matching and our full stratification example in Matching Demonstration 1, the data

19They would be balanced with respect to the ATC and ATE if the unmatched control cases also
had the same observed joint distribution for S as the treatment cases. This would be the case if
(1) all treatment cases have two exact matches among the control cases, (2) there are no other control
cases that are exact matches, and (3) for each treatment case the exact match that is chosen from
among the available two is determined by the toss of fair coin. We implicitly assume that this is not
the case for this example because, if it were, then the original dataset would have been balanced in
the first place and no matching would have been performed.

20In other words, the stratification match allows the unbalanced data to be analyzed in a trans-
formed fashion (i.e., within strata) where the data are balanced. In particular, the probability dis-
tribution of S collapses to a single value and becomes degenerate within each stratum, at which
point stratum-level effects are calculated. The distribution of S is then reanimated with stratum-
level weights that generate average treatments effects weighted by a distribution of S common to the
treatment and control cases.
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for this example are only balanced in expectation. For any single sample among the
50,000 samples in the simulation, imbalance in the observed joint distribution of A
and B will almost certainly exist within some of the coarse strata defined by the
estimated propensity scores. Any imbalance that resides within these coarse strata
then cumulates to the sample level.21

Now, consider the traditional matching algorithms presented in the last section.
Because nearest-neighbor, caliper, radius, interval, and kernel matching also utilize a
unidimensional distance metric to form matches, they have the same basic features
as the weighting estimators for Matching Demonstration 3. For a single dataset, a
set of perfect matches on the estimated propensity score, or any other unidimensional
metric, does not guarantee balance on the observed joint distribution of S. In fact, if
such optimal balance were possible, then exact matching or a full stratification of the
data could have been used in the first place. Although the applied matching literature
is replete with misleading claims that propensity-score matching is a complete remedy
for covariate imbalance in a single sample (and, even more distressing, even for selection
on the unobservables!), the core methodological literature is clear on these points (see
Rubin 2006).

The most recent literature has focused on developing estimators that optimize
within-sample balance, typically by more closely tying the estimation steps to bal-
ance assessment. Ongoing research on matching methods can be grouped into four
non-mutually exclusive streams: new methods for balance assessment, more flexible
estimation of the distance metric on which matching is performed, optimization of the
matching step that follows the estimation of the distance metric, and coarsening the
stratification variables before matching is performed.

Enhancing Routines for Balance Assessment

Assessing the balance of the variables on which the cases have been matched can be
difficult for two reasons. First, if exact matching or full stratification are not possible,
then it will not in general be possible to achieve perfect balance. Yet, there are no clear
standards, nor any sense that there must be common standards across all applications,
in what features of balance can be traded off against others. Surely it is correct that
one should attempt to match the mean values of variables that strongly predict both
the treatment and the outcome, as opposed to the mean values of variables that only
strongly predict one or the other. But, beyond this obvious point, there is no clear
consensus on the relative importance of alternative components of overall balance.
Second, the use of any hypothesis test of similarity for the features of two distributions
has two inherent associated dangers: (a) with small samples, a null hypothesis of no
difference may be accepted when in fact the data are far from balanced; (b) with
very large samples, almost any difference, however small, is likely to be statistically
significant, leading to the possibility that no amount of balance would ever be deemed

21More formally, the foundational propensity-score literature claims only that the observed data
will be balanced after propensity-score matching on average over repeated sampling from the same
population. For any single finite sample, either Equation (5.18) or (5.19) could be true. And, unfor-
tunately, except for the simplest stratification sets S, it is far more likely that the observed data will
remain unbalanced to some degree.
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acceptable. As such, hypothesis tests are generally less useful for assessing balance
than measures that focus on differences in magnitude.22

Against the backdrop of these acknowledged challenges, substantial attention has
been devoted to the creation of new methods for balance assessment. The favorite
measure of balance, following the sole consensus position just outlined, is that balance
should first be assessed based on the standardized difference in sample means,

|EN [xi|di =1]−EN [xi|di =0]|√
1
2VarN [xi|di =1]+ 1

2VarN [xi|di =0]
, (5.20)

which is calculated twice for every variable X that is matched on: (1) before any
matching is performed in order to establish the baseline level of imbalance in the
original data and (2) across the matched treatment and control cases to determine how
much of the initial imbalance has been removed by matching. Because this measure of
balance is a scaled absolute difference in the means of each X across treatment and
control cases, variable-specific measures can be compared between alternative Xs. In
addition, one can take the mean of these standardized differences across all variables
that have been matched on, and this single value then summarizes the quality of the
balance in means across all variables.

Equation (5.20) is but the tip of the iceberg among all possible balance measures
that one could construct. Most of the matching software in use has improved tremen-
dously in the past decade, offering researchers more ways to examine how much balance
has been achieved by particular matching routines, based on analogs to standardized
differences for higher moments of the distributions of the matching variables, as well as
indices based on differences between full distributions and between quantile-quantile
plots (see Austin 2009a; Hansen and Bowers 2008; Iacus et al. 2011; Imai et al. 2008;
Sekhon 2007).

With these new tools for balance assessment in hand, an analyst can optimize bal-
ance by pursuing two different strategies: reestimating the distance metric on which
matching is performed and optimizing the matching algorithm that uses these dis-
tances. In some of the most recent matching routines, these two steps are blended, but
for clarity we present them next with some artificial separation.

Reestimating the Distance Metric

If the covariates remain substantially imbalanced after a particular matching routine
has been performed, the first recourse is to return to the model that estimates the
distances between the treatment and control cases. Typically, this involves respecify-
ing the propensity-score-estimating equation progressively in pursuit of improvements
in balance (which, of course, can only be measured after the analyst then passes the
reestimated distance metric through to the matching algorithm of choice). The ana-
lyst can try adding interaction terms, quadratic terms, and other higher-order terms,

22For a full discussion of these issues, and somewhat different conclusions, see Hansen and Bowers
(2008), Heller, Rosenbaum, and Small (2010), Iacus et al. (2011), Imai, King, and Stuart (2008), and
Rubin and Thomas (1992, 1996).
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guided by the balance indices that are now on offer.23 Such respecification can be labor
intensive and frustrating because alternative respecifications can improve balance in
some variables while simultaneously eroding balance in others. In the end, there is no
guarantee that through such a respecification loop the analyst will find the specifica-
tion that will deliver the best possible balance for the single sample under analysis.
For this reason, some of the most recent literature has moved toward more flexible
ways of estimating the difference metric, attempting to remove the analyst from the
initial specification, and then any resulting respecification loop, by harnessing available
computational power through data mining protocols. We will discuss this literature
next.

A second, not mutually exclusive, option is to assess whether balance improvement
may result from the relaxation or alteration of the parametric assumptions one may
have implicitly adopted in estimating the unidimensional distance metric. Estimated
propensity scores are only one distance metric that can be adopted before matching is
performed, and from its origins the matching literature has been especially enamored of
one alternative, the Mahalanobis metric, which reduces the data in a different fashion,
preserving more of the multidimensional content of the matching variables (but in a
way that makes verbal description difficult; see the note on page 158). Even for the
propensity score, the preference for a default logit specification is rarely justified in
any formal sense and rather is typically adopted because the literature suggests that
it has worked well enough in the past.

Recently, multiple articles have tested for the sensitivity of the logit functional form
in simulation studies and with real data (e.g., Harder, Stuart, and Anthony 2010; Hill
et al. 2011). Our reading of this literature is that logit specifications have performed
moderately well. Still, in some head-to-head competitions, nonparametric estimation
has performed comparatively well (e.g., Harder et al. 2010), and these results may
portend that the future of propensity score estimation lies in regression tree modeling
(e.g, McCaffrey et al. 2004).24

Such a trajectory may be appealing because a case can be made that the whole
business of asserting a parametric model and then searching for a balance-maximizing
specification by trying out one after another is the sort of error-prone sausage making
that it would be best to avoid. Jasjeet Sekhon’s position is common, even if infrequently
expressed in writing:

The literature on matching, particularly the debate over the LaLonde
(1986) data, makes clear the need to find algorithms which produce matched
datasets with high levels of covariate balance. The fact that so many tal-
ented researchers over several years failed to produce a propensity score

23Because this type of respecification does not involve examining the effects of the matching vari-
ables on the outcome of interest, it is not considered one of the pernicious forms of data mining (e.g.,
where false effects are claimed when variables sneak through specification screens as a function solely
of sampling error; see our discussion later in Section 6.6.2).

24As we will show in a later demonstration, the main danger to effect estimates is still unblocked
back-door paths that exist because some variables in S have either been left out of the estimating
equation or unobserved. This position has been reinforced by a related set of evaluations, this time
with a “yoked experiment,” where mode of data analysis was far less important that the selection of
the variables with which to balance or adjust the data (see Cook, Steiner, and Pohl 2009; Steiner,
Cook, Shadish, and Clark 2010).
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model which had a high degree of covariate balance is a cautionary tale.
In situations like these, machine learning can come to the rescue. There
is little reason for a human to try all of the multitude of models possible
to achieve balance when a computer can do this more systematically and
much faster. Even talented and well trained researchers need aid. (Sekhon
2007:8)

From this orientation, Diamond and Sekhon (2013) have proposed a general multi-
variate matching method that uses a genetic algorithm to search for the match that
achieves the best possible balance. Although their algorithm can be used to carry out
matching after the estimation of a propensity score, their technique is more general
and can almost entirely remove the analyst from having to make any specification
choices other than designating the matching variables. Diamond and Sekhon (2013)
show that their matching algorithms provide superior balance in both Monte Carlo
simulations and a test with genuine data.25 Imai and Ratkovic (2014) offer a related
approach, but it is one that integrates covariate balancing into the estimation of the
propensity score.

Optimizing the Matching Algorithm

Suppose that an analyst eschews methods such as those proposed by Diamond and
Sekhon (2013) and instead decides to preserve the traditional two-step estimation
strategy. Even with a distance metric in hand from an iterative first step that delivers
the best observed balance (ascertained by running candidate distance metrics through
the intended matching algorithm), there is no guarantee that the chosen matching
algorithm will then optimize the balance that the distance metric may be able to
deliver.

For example, as we noted above, nearest-neighbor matching without replacement
can generate suboptimal matching patterns because of order effects that emerge in the
matching process. Although these problems are not large when the pool of available
control cases includes many good matches for each treatment case, they can be sub-
stantial for even moderate-sized datasets and/or when the number of control cases is
comparatively small. Consideration of these effects has led to the more general recog-
nition that any serial matching of pairs that passes over the target cases only once will
not necessarily guarantee that the overall average distance on the unidimensional met-
ric within matched pairs is minimized. If this average distance is not minimized, then
there is little chance that the underlying joint distribution of the matching variables
will be balanced as completely as the distance metric may allow.

To address the weaknesses of nearest-neighbor matching, and other related algo-
rithms, Rosenbaum (1989) began a literature on optimal matching that has now fully
matured. The key advances are to (1) consider the closeness of a match pattern across
all treatment and control cases using a global metric that is a function in all pairwise
differences in the chosen unidimensional distance metric and (2) use a computationally

25A natural end-state of this orientation is the full nonparametric estimation of the effects, dispens-
ing with the intermediate estimation of a propensity score (see Hill 2011; Hill et al. 2011).
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rich algorithm to search through possible matching patterns for the one that delivers
the smallest average within-pair distance.

Although optimal matching algorithms vary and allow the user to specify many
additional constraints on the match patterns searched (see Hansen 2004; Rosenbaum
2002, 2010; Zubizarreta 2012), optimal matching routines are based on the idea of
minimizing the average distance between the estimated propensity scores (or some
other unidimensional distance metric) for the cases that are matched together. The
most recent literature combines optimal pair matching with attempts to achieve near
exact matching on the variables deemed most crucial to balance (see Yang, Small,
Silber, and Rosenbaum 2012; Rosenbaum 2012; Zubizarreta 2012).

Direct Coarsening of the Stratification Variables

One way to improve balance is to ask less of the matching variables, while invoking
a theoretical justification for doing so. Consider a political participation example. If
one seeks to estimate the average effect of receiving a college degree on participation
(according to some index of participatory acts; see Section 1.3.1, page 16), theory
may suggest that one can block all back-door paths by conditioning on five variables:
self-reported racial-ethnic identity, gender, state of residence, household income, and
marital status.26 For datasets of finite size, it may be difficult to balance these five
variables if they are measured in full detail. Accordingly, an analyst might consider
conditioning on a coarse representation of state of residence (reliable red state, reliable
blue state, and swing state), marital status (collapsing widows and widowers with
those currently married, but leaving never married and formerly married as separate
categories), self-reported race (collapsing Hispanic ethnicity into two categories, Cuban
and non-Cuban), and household income (using quintiles of household income rather
than the full interval scale). One suspects that researchers have been making such
decisions for decades, using reasoned theoretical judgment and background knowledge
for doing so.

Iacus et al. (2012a; see also Iacus and King 2012) have refined this approach into
a new matching strategy that they label “coarsened exact matching.” As suggested
by the label, the key idea is to perform only exact matching, but after the matching
variables have been coarsened in some principled fashion. They situate this new method
within a broader class of “monotone imbalance bounding” (MIB) matching methods
that they propose (see Iacus et al. 2011), all of which have the attractive property of
allowing the analyst to avoid setbacks in variable-specific balance when respecifying
the routine by altering the specifications for other variables.27

The primary trade-off of using exact matching, even with coarsened data, is that
cases will typically be dropped from both the treatment and control groups in the
observed data. Such a narrowing of the dataset shifts the target parameter to some-
thing narrower than the population-based ATT, ATC, and ATE that we have focused

26For a recent debate on these issues for this particular example, see the discussion of alternative
matching estimates in Henderson and Chatfield (2011), Kam and Palmer (2008, 2011), and Mayer
(2011).

27Because the matching is exact, no propensity score is estimated. Rather, here the respecification
involves coarsening the matching variables in alternative ways, which may then also shift the target
parameter, as we discuss in the main text.
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on in this book. Iacus et al. (2012a:5) imply that the most common target parameter of
coarsened exact matching is the local sample average treatment effect for the treated
(local SATT), which they define as “the treatment effect averaged over only the subset
of treated units for which good matches exist among available controls.” This is a well-
defined parameter in theory, but in practice it moves with each coarsening decision
because these decisions recalibrate what counts as a good match.28

When are such methods likely to lead to improvements in estimation relative to
other matching methods? Iacus et al. (2012a:1) write that “the key goal of matching
is to prune observations from the data so that the remaining data have better balance
between the treated and control group.” As such, coarsened exact matching is a natural
endpoint for the data preprocessing perspective on matching methods introduced into
the literature by Ho et al. (2007). Overall, coarsened exact matching is likely to work
quite well for analysts who can accept that the key goal of matching is to “prune”
the data in pursuit of an estimate of a local SATT. And this will often be a very
reasonable position when there is no clear correspondence between the data and a
well-defined population, such as for non-random collections of individuals who have
received a treatment in a biomedical study or for collections of aggregate units that
are defined by social processes, such as nation states or congressional districts.

This book reflects our tastes for target parameters anchored in well-defined pop-
ulations and random samples of them, and our tastes are grounded in the tradition
of random-sample survey analysis that dominates sociology and demography. Yet, the
overall matching literature, especially the streams that have always seen matching as a
type of practical sampling in the service of best estimates of hard-to-estimate average
treatment effects, is closer to the motivation of coarsened exact matching than is our
treatment of matching in this book.29

5.4.3 Which of These Matching Algorithms Works Best?

Very little specific guidance exists in the literature on which of these matching algo-
rithms works best. We have given some indication of the relative strengths and weak-
nesses in our introduction of each technique, but the strengths and weaknesses of each
will necessarily vary in their relevance for alternative applications.

We do not mean to imply that no one advocates for the superiority of particu-
lar matching estimators. On the contrary, the strongest advocates for any particular
estimators would appear to be those who have had a hand in developing them. Heck-
man, Ichimura, and Todd (1997, 1998), for example, argue for the advantages of kernel
matching. Diamond and Sekhon (2013) prefer genetic matching for similar situations.
Rosenbaum (2010) defends optimal matching, and now Iacus et al. (2011) advocate
for coarsened exact matching. We could continue.

28In particular, as coarsening proceeds variable by variable, more of the cases are exactly matched,
until the local SATT becomes the SATT. At the same time, the ability to defend the exact matching
estimate as unbiased for the SATT declines as coarsening is pursued.

29From the perspective of Iacus et al. (2012a), we are willing to accept some model dependence in
final estimates, so as to preserve the correspondence between sample and population-based quantities.
Our orientation will become clear over the next two chapters, where we endorse modeling strategies,
such as weighted regression, that blend matching methods with more traditional forms of regression
analysis.
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These scholars are very likely correct that the matching estimators they have devel-
oped are the best for the applications they have been developed to model. This does
not mean that it is easy to choose from among the alternatives, as we showed in
the first edition of this book, and as others have since also documented (e.g., Austin
2009b; Harder et al. 2010; Hill et al. 2011). Because there is no clear guidance on
which of these matching estimators is “best,” we offer a fourth hypothetical example
to give a sense of how often alternative matching estimators yield appreciably similar
estimates.

Matching Demonstration 4

The debate over the size of the causal effect of Catholic schooling on the test scores of
high school students has spanned more than three decades (see Section 1.3.2, page 22).
The example we offer here is based on Morgan (2001), although we will use simulated
data for which we have defined the potential outcomes and treatment assignment
patterns so that we can explore (a) the relative performance of alternative matching
estimators and (b) the consequences of conditioning on only a subset of the variables
in the set of perfect stratification variables S. Similar to Matching Demonstration 3,
we will repeat the simulation for multiple samples, but for many fewer of them for the
reasons we explain below.

Generation of the Data. The simulated datasets that we constructed mimic the
real dataset from the National Education Longitudinal Study (NELS) analyzed by
Morgan (2001). For that application, regression and matching estimators were used to
estimate the effect of Catholic schooling on the achievement of high school students in
the United States. For our simulation here, we generated datasets of 10,000 individuals
with values for baseline variables that resemble closely the joint distribution of the
similar variables in Morgan (2001). The variables for respondents include variables
for race, region, urbanicity, whether they have their own bedrooms, whether they live
with two parents, an ordinal variable for number of siblings, and a continuous variable
for socioeconomic status. Departing from Morgan (2001), we also created a cognitive
skill variable, assumed to reflect innate and acquired skills in unknown proportions,
that we assume was measured just prior to the decision of whether or not to enroll in
a Catholic school.30

30To be precise, each sample, with a fixed N of 10,000, was generated using a multinomial dis-
tribution with parameters calibrated by a 40-cell cross-tabulation of race (five categories of white,
Asian, Hispanic, black, and Native American), region (four categories), and urbanicity (two cate-
gories), based on the data in Morgan (2001). Values for socioeconomic status were then drawn from
normal distributions with means and standard deviations estimated separately for each of the race-
by-region-by-urbanicity cells using the NELS data with respect to socioeconomic status. Thereafter,
all other variables were generated from socioeconomic status, using parameter values for suitable ran-
dom distributions based on auxiliary estimates from the NELS data. Because we relied on standard
parametric distributions, and did not build interactions between these additional variables into the
simulation routine, the data for these additional variables are smoother than the original NELS data.
But, because the sampling cross-tabulation has 40 cells, for which socioeconomic status is then param-
eterized differently for each, the simulation is initiated as a mixture distribution for socioeconomic
status that is itself rather lumpy, given the pronounced differences in socioeconomic status between
racial groups and across geographic space in the referent NELS data.
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We defined potential outcomes for all 10,000 individuals of each dataset, assuming
that the observed outcome of interest is a standardized test taken at the end of high
school. For the potential outcome under the control (i.e., a public school education),
we generated what-if test scores as

y0i =100+2(Asiani)− 3(Hispanici)−4(Blacki)

−5(NativeAmericani)− 1(Urbani)+ .5(Northeasti)

+.5(NorthCentrali)− .5(Southi)+ .02(Numberof Siblingsi) (5.21)

+.05(OwnBedroomi)+1(TwoParentHouseholdi)

+2(SocioeconomicStatusi)+4(CognitiveSkillsi)+υ0
i ,

where the values for υ0
i are independent random draws from a normal distribution

with expectation 0 and standard deviation of 12.31

We then assumed that the what-if test scores under the treatment (i.e., a Catholic
school education) would be equal to the outcome under the control plus a boosted
outcome under the treatment that is a function in race, region, and cognitive skills
(under the assumption, based on the dominant position in the extant literature, that
black and Hispanic respondents from the north, as well as all students with high preex-
isting cognitive skills, are disproportionately likely to benefit from Catholic secondary
schooling). Accordingly, we generated the potential outcomes under the treatment as

y1i = y0i + δ′i+ δ′′i , (5.22)

where the values for δ′i are independent random draws from a normal distribution
with expectation 6 and standard deviation of 0.5. To this common but stochastic
individual-level treatment effect, we added a second component with values for δ′′i that
vary systematically over individuals. These values were constructed as draws from a
normal distribution with expectation equal to

0+1(Hispanici×Northeasti)+ .5(Hispanici×NorthCentrali)

+1.5(Blacki×Northeasti)+ .75(Blacki×NorthCentrali) (5.23)

+.5(CognitiveSkillsi)

and with a standard deviation of 2, after which we subtracted the mean of all drawn
values in the simulated sample (in order to center the draws for δ′′i on 0). Taken
together, the values of δ′i and δ′′i for each individual represent two additive compo-
nents of their individual-level treatment effects, as is clear from a rearrangement of
Equation (5.22), with reference to the definition of the individual-level treatment effect
in Equation (2.1), as δi = y1i − y0i = δ′i+ δ′′i .

We then defined the probability of attending a Catholic school using a logistic
distribution,

Pr[Di =1|Si] =
exp(Siφ)

1+exp(Siφ)
, (5.24)

31Across simulated datasets, the standard deviations of socioeconomic status and cognitive skills
varied but were typically close to 1.
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where

Siφ=−4.6− .69(Asiani)+ .23(Hispanici)− .76(Blacki)

− .46(NativeAmericani)+2.7(Urbani)+1.5(Northeasti)

+1.3(NorthCentrali)+ .35(Southi)− .02(Numberof Siblingsi)

− .018(OwnBedroomi)+ .31(TwoParentHouseholdi)

+ .39(SocioeconomicStatusi)+ .33(CognitiveSkillsi)

− .032(SocioeconomicStatus2i)− .32(CognitiveSkills2i ) (5.25)
− .084(SocioeconomicStatusi×CognitiveSkillsi)

− .37(TwoParentHouseholdi×Blacki)

+1.6(Northeasti×Blacki)− .38(NorthCentrali×Blacki)

+ .72(Southi×Blacki)+ .23(TwoParentHouseholdi×Hispanic)

− .74(Northeasti×Hispanici)−1.3(NorthCentrali×Hispanici)

− 1.3(Southi×Hispanici)+ .25δ′′i .

The specification for Equation (5.25) is based on the results of Morgan (2001), along
with an additional assumed self-selection dynamic in which individuals are slightly
more likely to select the treatment as a function of the relative size of the systematic
component of the individual-specific shock to their treatment effect, δ′′i .

The probabilities defined by Equation (5.24) were then specified as the parameter
for random draws from a binomial distribution, generating a treatment variable di
for each simulated student. Finally, following Equation (2.2), simulated students in
Catholic schools were given observed values for yi equal to their simulated y1i , while
all others were given an observed values for yi equal to their simulated y0i .

The ATT as the Target Parameter. The presence of the self-selection term, δ′′i ,
in both Equation (5.22) and Equation (5.25) creates a nearly insurmountable challenge
for the estimation of the ATE. We will consider cases such as this one in detail in later
chapters, but for now we will explain briefly why the only target parameter that can
be estimated with any degree of confidence is the ATT.

Consider the directed graph presented in Figure 5.2, and consider why this graph
indicates that the ATE cannot be estimated with the available data. Equations (5.21)
and (5.25) imply that all of variables whose names are written out in this figure are
mutual causes of both D and Y . All of these variables are on the right-hand sides
of both of these equations, and the nonparametric nature of the directed graph also
represents the variety of higher-order and cross-product terms embedded in Equation
(5.25). If we observe and then condition on all of these variables, we will be able to
block many back-door paths that would otherwise confound the causal effect of D
on Y . Unfortunately, there is an additional back-door path, represented by the bidi-
rected edge D ������Y , that will remain unblocked after such conditioning. This is the
noncausal back-door association that is generated by the presence of δ′′i in both Equa-
tion (5.22) and Equation (5.25). As with many real-world applications, this simulation
assumes that individuals (in this case students, although surely informed by parents
and others) select from among alternative treatments based on accurate expectations,
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D Y

Cognitive
Skills

Race, Urbancity, Region,
Number of Siblings, Have Own
Bedroom, Have Two Parents,

Socioeconomic Status

Figure 5.2 The directed graph implied by the underlying data generation model for
Matching Demonstration 4.

unavailable as measures to researchers, of their likely gains from alternative treatment
regimes. Accordingly, prospective Catholic school students with comparatively high
values of δ′′i are more likely to be in Catholic schools, according to Equation (5.25),
and are also more likely to benefit from Catholic schooling, according to Equations
(5.22) and (5.23). This pattern is the most common type of selection on the unobserv-
ables in the social sciences.

The directed graph reveals clearly why the ATE is not identified, and yet it does
not at all suggest that the ATT is, in fact, still identified in cases such as this one.
Here, it is helpful to consult the equations again. The set of variables that was used to
generate y0i in Equation (5.21) does not include the individual-specific shock, δ′′i . We
therefore do not need to observe δ′′i in order estimate reasonable counterfactual values
for y0i among simulated students enrolled in Catholic schools. As discussed earlier – see
Equations (2.16) and (5.2) – these are the only counterfactual values that are needed
in order to effectively estimate the ATT.32

The problem for the ATE is that the ATC is not identified. Because of the way in
which the generation of y1i and di are entangled by their joint dependence on δ′′i , we
cannot estimate reasonable counterfactual values for y1i among those who are enrolled
in public schools. Net of all of the other observed variables, the students most likely
to benefit from Catholic schooling are in Catholic schools, and they therefore have
values for yi = y1i that are too positive, even net of the observables, to enable effective
estimation of the counterfactual values of y1i for public school students.

(Although the directed graphs we have introduced so far do not make the identifi-
cation of the ATT particularly clear when the ATE is not also identified, in Chapter
8 we will offer elaborated directed graphs, which use latent classes and variables for
individuals’ own expectations, to communicate results such as these. Still, it is often
the case that targeted identification results are best conveyed by equations, whether

32Notice that we did not specify self-selection on the causal effect in both directions. If we had,
the ATT would not be identified either. We have built this simulation assuming that public schools
serve as a baseline state, out of which students may exit in order to capture additional learning gains
that may be available to them from Catholic schooling. The more complicated scenario would be one
where Equation 5.21 also included δ′′i but with a negative coefficient (such that, net of observables,
those who are least likely to do well in Catholic schooling are those most likely to do well in public
schools).
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these are equations furnished by the potential outcome model or based on the nonpara-
metric structural equations that underlie all directed graphs. We will consider these
issues in substantial detail in the next part of the book.)

Methods for Treatment Effect Estimation. In Tables 5.6 and 5.7, we offer 19
separate matching estimates of the ATT, where we match the simulated control cases
to the simulated treatment cases. These estimates are produced by routines written
for R and Stata by others (see the notes to Table 5.6 for citations to the software),
and the row labels we have chosen for the tables map onto the terminology that we
used to present the matching estimators in Sections 5.4.1 and 5.4.2.

We estimate all matching estimators under two basic scenarios. First, we offer a
set of estimates based on an incomplete specification of treatment assignment, where
we omit the cognitive skills variable. In addition, for routines that utilize estimated
propensity scores, we also omitted the higher-order and cross-product interaction terms
present in Equation (5.25). The exclusion of the cognitive skills variable is particularly
important because it has correlations of 0.4 with the outcome variable and 0.2 with
the treatment variable, on average across the simulated datasets. For the second sce-
nario, which we label the complete specification scenario, we included the cognitive
skills variable, and, for those routines that utilize propensity scores, the higher-order
and cross-product interaction terms present in Equation (5.25). Both scenarios lack an
adjustment for the self-selection dynamic, in which individuals select into the treat-
ment partly as a function of an accurate expectation of their own individual-specific
treatment effect. In this sense, the complete specification is only complete enough to
deliver a consistent and asymptotically unbiased estimate of the ATT, not of the ATC
or the ATE as explained above.

Regarding the specific settings for the alternative matching estimators, we list some
relevant information in the row labels for each (i.e., caliper size, kernel specification).
Beyond these settings, we generally accepted the default options for all estimators as
specified in the relevant software, on the argument that this “horse race” between
estimators ought to be fair. As we will note below, each of the estimates we offer
could be tailored to this specific application more so than for the analysis that we
present, and perhaps some estimators could therefore get closer on average to the
target parameter and be shown to outperform all others. We have made the datasets
available, on the book’s Web site (www.cambridge.org/9781107065079), for any readers
who wish to try. We encourage instructors using this book to share these datasets with
their students and to use them to try out additional matching estimators beyond those
we have presented here, including any matching routines developed after publication
of this edition of the book.

We will not provide estimated standard errors in the tables, although we will indi-
cate their range in the text. As we describe following the demonstration (see Section
5.5), there is no common methodology that allows the estimation of standard errors
in analogous ways across all estimators, which makes informative comparisons across
estimators difficult (in terms of relative efficiency or expected mean-squared error).
Nonetheless, the literature agrees that estimators that use more of the data, such as
interval matching and kernel matching, have smaller estimated standard errors than

http://www.cambridge.org/9781107065079


176 Chapter 5. Matching Estimators of Causal Effects

Table 5.6 Matching Estimates of the ATT, Catholic Schooling on Achievement for
One Simulated Dataset

Specification of treatment
assignment variables: Number of treatment cases

retained for the

Method Incomplete Complete estimate of the ATT

Nearest-neighbor match:

1 without replacement (ps2) 7.37 7.03 1052

1 without replacement (MI) 7.55 7.09 1052

1 with replacement (ps2/psc) 7.77 7.17 1052

1 with replacement (MI) 7.96 7.38 1052

1 with replacement and

caliper = .05 SD (ps2) 7.77 7.15 1051

1 with replacement and

caliper = .05 SD (MI) 7.27 6.43 1051

5 with replacement (ps2) 7.51 6.42 1052

5 with replacement (MI) 8.06 7.29 1052

5 with replacement and

caliper = .05 SD (ps2) 7.55 6.37 1051

5 with replacement and

caliper = .05 SD (MI) 8.00 7.12 1051

Radius match:

Caliper = .05 SD (ps2) 7.61 6.36 1051

Caliper = .05 SD (psc) 8.23 7.84 1051

Interval match:

10 fixed blocks (MI) 8.71 8.71 1052

Variable blocks (ps2) 7.50 6.60 1052

Kernel match:

Epanechnikov (ps2/psc) 7.57 6.58 1052

Gaussian (ps2/psc) 7.70 6.82 1052

Optimal match (MI-opt) 6.84 6.78 1052

Genetic match (MI-gen) 7.80 6.46 1052

Coarsened exact match (cem) 7.54 6.59 1015/973

Notes: The software utilized is denoted “ps2” for Leuven and Sianesi (2012), “MI” for
Ho et al. (2011), “psc” for Becker and Ichino (2005), “opt” for Hansen, Fredrickson, and Buckner
(2013), “gen” for Sekhon (2013), and “cem” for Iacus et al. (2012b).

those that discard more of the data, such as nearest-neighbor matching. The latter have
a claim to lower bias, since bad matches are thrown away, and yet also have greater
sampling variability. In this sense, comparisons of matching estimators represent a
classic trade-off between bias and variance.
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Results. Table 5.6 presents matching estimates of the ATT for a single dataset, as
would be the case in nearly all applications of the methodology presented in this book.
However, one important difference from the typical scenario is that we know for this
simulated dataset that the true ATT is equal to 6.92. And, even though we will not
estimate them here, we also know that the true ATE and ATC are equal to 6.00 and
5.90, respectively. By construction, the ATT is larger than the ATC because those who
are most likely to benefit from Catholic schooling are more likely to enroll in Catholic
schooling, both as a function of observed variables that lie on the back-door paths
in Figure 5.2 and because of the self-selection on the individual-level treatment effect
itself.

Estimates based on the incomplete specification are reported in the first column
of Table 5.6. As expected, the estimates are generally much larger than the true value
of the ATT, which is 6.92 (although the optimal match estimate yields a surprisingly
close value of 6.84 for this single dataset). Most of the positive bias of these estimates
is due to the mistaken exclusion of the variable for cognitive skills from the model for
treatment assignment.

Estimates based on the complete specification are then reported in the second
column of Table 5.6. On the whole, this second set of estimates is considerably closer
to the true ATT, oscillating on either side of the true value of 6.92 (i.e., 10 have
negative bias for the ATT, and 9 have positive bias for the ATT). The standard errors
for these estimates, which all software routines provide, fall within a range between .43
and .66, although using different estimation techniques. The point values reported in
the second column are consistent with what one would expect for variation produced
by sampling error alone. However, the variation across the point estimates does not
arise from sampling error, since all estimators use the same sample, but rather from
the different ways in which the estimators use the data. As such, it is unclear how
comforting is the claim that this level of variation is consistent with what would be
produced by sampling error alone.

Notice also that the third column reports the number of treatment cases retained
for the estimate of the ATT. For estimators that do not impose a nearness crite-
rion (i.e., a caliper or radius), all 1,052 treatment cases were retained for the esti-
mate. Even when quite narrow calipers are selected, only one treatment case is dis-
carded for the relevant estimates for this single dataset. This pattern indicates that
these data are therefore well suited for matching estimators that force the utiliza-
tion of all treatment cases, such as traditional nearest-neighbor matching without a
caliper, because there are many suitable control cases on the support of the match-
ing variables for the treatment cases. This will not always be the case for datasets
with more extreme patterns of treatment assignment and/or a more limited sample
size.

Much more could be said about each pair of estimates, but we will note only a
few additional patterns. First, in some cases software programs that utilized the same
routine yielded estimates that were quite different. The reasons for these differences are
not obvious, but they tend to occur for estimators that process the matching algorithm
in ways that could vary or that utilize difference calculations across propensity scores
within calipers that can be sensitive to rounding error. Second, although it may be
tempting to conclude that the optimal match is superior to all others, we will show
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Table 5.7 Bias for Matching Estimates of the ATT, Catholic Schooling on
Achievement Across 10 Simulated Datasets

Specification of treatment assignment variables:

Incomplete specification Complete specification

Method Min, Max Average Min, Max Average

Nearest-neighbor match:

1 without replacement (ps2) −.37, 2.17 .79 −1.17, 0.68 −.04

1 without replacement (MI) −.23, 2.08 .75 −1.11, 0.56 .00

1 with replacement (ps2/psc) −.35, 2.00 .77 −1.18, 0.40 −.13

1 with replacement (MI) −.25, 2.22 .95 −.70, 0.84 .19

1 with replacement and

caliper = .05 SD (ps2) −.32, 2.04 .78 −1.21, 0.35 −.13

1 with replacement and

caliper = .05 SD (MI) −.16, 1.89 .98 −.99, 1.16 .07

5 with replacement (ps2) −.01, 1.77 .79 −.79, 0.83 −.04

5 with replacement (MI) .43, 2.29 1.17 −.44, 1.34 .50

5 with replacement and

caliper = .05 SD (ps2) −.01, 1.71 .77 −.81, 0.75 −.04

5 with replacement and

caliper = .05 SD (MI) .15, 2.43 1.19 −.49, 1.18 .39

Radius match:

Caliper = .05 SD (ps2) −.18, 2.07 .81 −.82, 1.02 −.08

Caliper = .05 SD (psc) .36, 2.42 1.17 .10, 2.03 .89

Interval match:

10 fixed blocks (MI) .84, 3.02 1.68 .84, 3.02 1.68

Variable blocks (ps2) .03, 2.18 .88 −.85, 1.12 −.03

Kernel match:

Epanechnikov (ps2/psc) .08, 2.25 .89 −.76, 1.25 .01

Gaussian (ps2/psc) .08, 2.34 1.00 −.59, 1.44 .19

Optimal match (MI-opt) .45, 2.89 1.28 −.36, 1.53 .54

Genetic match (MI-gen) .09, 1.66 .96 −.89, 1.55 .23

Coarsened exact match (cem) .58, 2.66 1.28 −.43, 1.59 .35

Notes: see notes to Table 5.6 for software details.

below that this is partly a chance result for this single sample (even though optimal
matching is designed to outperform traditional estimators and can be expected to do
so). Third, the interval match with fixed blocks does not improve for the complete
specification because the inclusion of the variable for cognitive skills does not have
consequences for the ordering of the data, and hence it does not move cases in between
the 10 intervals that are used. For the alternative interval matching estimator that
uses variable blocks, selected in order to maximize within-interval mean balance on
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the propensity score, the utilization of the variable for cognitive skills does improve
the estimate.

The only estimates that require more detailed explanation are those based on
coarsened exact matching. For this estimator, we could have coarsened the data more
in order to retain all treatment cases. Or we could have coarsened the data less and
retained fewer cases. We chose a strategy that kept most of the treatment cases so
that the assumed local SATT is not too far from the target parameter for all other
matching estimators, the true ATT.

In particular, for the incomplete specification, we made coarsening decisions that,
collectively, defined 868 strata that contained either treatment or control cases, of
which 244 had both treatment and control cases present. Overall, 37 of 1,052 treatment
cases fell into strata without any control cases and were therefore discarded from the
analysis. The specific coarsening decisions were to coarsen the variable for number of
siblings into three categories (0, 1 or 2, and 3 or more) and socioeconomic status into
five categories as equal-sized quintiles. No other variables were coarsened.

For the complete specification, we then included the variable for cognitive skills,
which we also coarsened into quintiles. This additional variable increased to 1,540 the
number of strata that contained either treatment or control cases, of which 316 had
both treatment and control cases present. Because of the increasingly specific strata,
79 treatment cases fell into strata without any control cases and were discarded from
the analysis. In the end, the local SATT for the complete specification is estimated for
973 of the 1,052 treatment cases (or 92.5 percent). It is unclear, therefore, whether it
is sensible to compare the resulting estimate to the true ATT for this example, as we
do here. Yet, it could also be unfair to compare it to its own implied target parameter,
the true local SATT, without similarly doing so for caliper and radius estimators, for
example, that also discard some treatment cases.

In sum, when we consider a single sample, and when we know the true value for
the ATT, it is clear that omitting a crucial variable, such as the variable for cognitive
skills in this application, will prevent matching estimators from effectively estimating
the ATT. When the complete specification is adopted, matching appears to perform
quite well, although the particular matching estimators give point value estimates that
oscillate around the true target parameter.

How general are these results? In one sense, they are very general. We know from a
rich existing literature that matching estimators can be an effective tool for estimating
causal effects in these situations. And we could, therefore, with suitable computational
power and investigator patience, perform a Monte Carlo version of this simulation
across 50,000 simulated datasets, as for Matching Demonstration 3.33 A less ambitious
multiple-sample simulation will suffice to reveal the general results.

Table 5.7 presents results from 10 simulated samples, of which one was used for the
estimates reported already in Table 5.6.34 Across all 10 samples, the true values for
the ATT vary only slightly, from a low of 6.87 to a high of 6.98. Rather than present

33Doing so for 50,000 datasets would require substantial time, since some estimators, such as the
genetic matching estimator of Sekhon (2013), take far more time to estimate than the simple weighted
averages analyzed for Matching Demonstration 3.

34In fact, for the estimates reported in Table 5.6, we chose the sample from among these 10 that,
on average over all estimators, delivered estimates that were closest to their respective true ATT. In
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the specific point estimates of the ATT for all 10 samples (i.e., an additional 9 versions
of Table 5.6), we instead offer the minimum, maximum, and average bias across all 10
estimates of the true ATT for each matching estimator.

As shown in the first two columns, for the incomplete specification the average
bias of all estimators was positive and substantial, from a low of .75 to a high of 1.68.
Moreover, the minimum amount of bias was positive for many estimators, and the
maximum amount of bias was never less than 1.66. When the complete specification
was used, the average amount of bias was considerably smaller, and the minima and
maxima for each estimator were typically negative and positive, respectively.

If we were to repeat this exercise for 50,000 simulated datasets, we would have more
confidence that the average values for the bias inform us of how well these matching
estimators perform for this particular pattern of simulated data. We do not do so,
in part, because this could give a misleading impression that one of these estimators
should be more generally preferred, even for applications very much unlike this one.
Instead, we hope to have convinced the reader of a more basic point. Even for examples
such as this one, where this is considerable overlap between the treatment and control
groups, such that even the traditional estimators that have been around for decades
can be used with some confidence, the specific point values generated by matching
estimators can differ considerably. It is possible that some of the variability of these
estimates can be reduced by routine-specific respecifications of the matching variables
after assessing the achieved balance of each estimator. It is unlikely that all variability
can be eliminated, and therefore researchers who wish to use a matching strategy
should make sure that their conclusions hold across a reasonable range of matching
estimators.

We have demonstrated three general points with this example. First, the sort of
self-selection dynamic built into this example – in which individuals choose Catholic
schooling as a function of their expected gains from Catholic schooling – does not
prevent one from consistently estimating the ATT (because Assumption 2-S may still
hold), even though it makes estimation of both the ATC and ATE impossible (because
Assumption 1-S does not hold). If all variables in S other than anticipation of the
individual-level causal effects are observed, then the ATT can be estimated consis-
tently.35

Second, even when the ATT is formally identified by conditioning on S while
maintaining Assumption 2-S, matching estimators cannot compensate for a decision
to mistakenly exclude an observed covariate in S. Failure to condition on the variable

contrast, Table 5.7 shows that it will often be the case that matching estimators perform substantially
worse.

35At the same time, this example shows that even our definition of a “perfect stratification” is
somewhat underspecified. According to the definition stated above, if self-selection on the causal
effect occurs, a perfect stratification is available only if variables that accurately measure anticipation
of the causal effect for each individual are also available and duly included in S. Thus, perhaps it
would be preferable to refer to three types of perfect stratification: ATC-perfect stratification for
which Assumption 1-S is valid (which enables estimation of the ATC), ATT-perfect stratification for
which Assumption 2-S is valid (which enables estimation of the average treatment for the treated),
and our unconditionally perfect stratification for which both are valid, enabling estimation of the
ATT, ATC, and ATE.
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for cognitive skills in this example would invalidate Assumption 2-S (in addition to
Assumption 1-S that is already invalidated by the self-section on the causal effect
itself). The matching routines will still attempt balance the matching variables, but
the resulting estimates will remain inconsistent and biased for the ATT, ATC, and the
ATE.

Third, in cases such as this one, where a researcher attempts to estimate the ATT
and where there is a large reservoir of suitable control cases to match to the treatment
cases, many alternative specific matching estimators can be used. They will all tend
to offer slightly different point estimates, and there is no clear guidance for which
ones should be preferred. We therefore recommend that, in these situations, many
point estimates be offered and that conclusions not be selected that depend on only
a subset of all permissible estimates. However, for applications that depart from the
features of this example, some of the more recently developed matching estimators may
have a clear advantage, particularly optimal matching when the sample size is small,
genetic matching when there is very little prior research to help establish a specification
for a propensity score, and coarsened exact matching when one wishes to eliminate
incomparable cases in a principled way and when one is comfortable narrowing the
analysis to a subset of the treatment cases.

5.5 Remaining Practical Issues in Matching
Analysis

In this section, we discuss the remaining practical issues that analysts who consider
using matching estimators must confront. We first discuss the possibility of using
matching to estimate parameters when the ATE, ATT, and ATC are not identified.
We then consider the literature on when, why, and how an analyst may want to
estimate effects only after restricting the analysis to the range of common support for
the matching variables. We then discuss what is known about the sampling variance
of alternative matching estimators, and we conclude with some guidance on matching
estimators for causal variables with more than two values.

5.5.1 Matching When Treatment Assignment Is Nonignorable

What if neither Assumption 1-S nor Assumption 2-S is valid because we observe only a
subset of the variables in S, which we will now denote by X? We can still match on X
using the techniques just summarized, as we did for the incomplete specification in the
hypothetical example for Matching Demonstration 4. In that example, we showed that
if the complete specification is available, one should of course use it. Yet, in practice
this will often not be possible, and yet matching can still be used as a data analysis
technique with substantial payoff, assuming that the results are properly interpreted.

Consider, for example, the paper of Sekhon (2004), in which a matching algo-
rithm is used to balance various predictors of voting at the county level in an attempt
to determine whether or not John Kerry lost votes in the 2004 presidential election
campaign because optical scan voting machines were used instead of direct electronic
voting machines in many counties (see Section 1.3.2, page 26, on voting technology
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effects in Florida for the 2000 election). Sekhon shows that it is unlikely that voting
technology caused John Kerry to lose votes. In his analysis, ignorability is not asserted
in strict form, as it is quite clear that unobserved features of the counties may well
have been related to both the distribution of votes and voting technology decisions.
Nonetheless, the analysis is convincing because the predictors of treatment assignment
are quite rich, and Sekhon is cautious in his interpretations.

When in this position, however, it is important to concentrate on estimating only
one type of treatment effect (usually the ATT, although perhaps the ATE). Because
a crucial step must be added to the project – assessing the level of inconsistency
and bias that may arise from possible nonignorability of treatment – focusing on a
very specific treatment effect of primary interest helps to ground a discussion of an
estimate’s limitations. Then, after using one of the matching estimators of the last
section, one should use the data to minimize bias in the estimates and, if possible,
proceed thereafter to a sensitivity analysis (which we will discuss later in Chapter 12).
We will return to this issue in depth in Chapter 7, where we will present techniques that
combine matching and regression estimators, often for examples wherein assumptions
of ignorability are knowingly suspect.

5.5.2 Matching Only on the Region of Common Support

Treatment cases may have no counterparts among the control cases in the observed
data because they are said to be “off the support” of S, and vice versa for the control
cases.36 Typically, researchers will notice this situation when the distributions of the
estimated propensity scores for the treatment and control cases have substantially
different minimum and maximum values, and that is the situation we will consider in
this section.

In some cases, the lack of observed overlap in estimated propensity scores may
reflect generic sparseness because unusual treatment and control cases will often fail to
be sampled for finite datasets. In other cases, there is good reason to believe that some
of the lack of observed overlap may have emerged from systematic sources, often related
to the choice behavior of individuals. In these situations, it is not a sparseness problem.
Instead, a more fundamental mismatch between the observed treatment and control
cases exists in the population, as in our earlier hypothetical example in Matching
Demonstration 2. In still other situations, unlike those that we focus on in this book,
the data exist for a collection of units that is either not drawn at random from a
well-defined population (as in many biomedical examples) or where the population
is not well-defined (as in many social science examples when administrative units, or
other socially defined units, are analyzed). In these cases, the treatment and control
cases may be off of the support of each other, and matching is invoked precisely to
take account of this predicament, using a variant of the data preprocessing perspective
proposed by Ho et al. (2007) to define a useful comparison that can move the relevant
literature forward.

36Support is often given slightly different definitions depending on the context, although most
definitions are consistent with a statement such as this one: Support is the union of all intervals of a
probability distribution that have true nonzero probability mass.
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When in any of these situations, applied researchers who use matching techniques
to estimate treatment effects may choose to estimate narrower treatment effects. For
example, analysis may be confined only to treatment cases whose estimated propensity
scores fall between the minimum and maximum estimated propensity scores of the
control cases. Resulting estimates are then interpreted as estimates of a treatment
effect that is narrower even than the ATT and is typically labeled the common-support
ATT (see Heckman, Ichimura, and Todd 1997, 1998; see also Crump, Hotz, Imbens,
and Mitnik 2009). Although using the estimated propensity score to find the region
of overlap may not capture all dimensions of the common support (as there may be
interior spaces in the joint distribution defined by the matching variables), subsequent
matching is then expected to finish the job of eliminating incomparable cases.

Sometimes matching on the region of common support helps to clarify and sharpen
the contribution of a study. Even if imposing a common-support condition results in
throwing away some of the treatment cases, this can be considered an important sub-
stantive finding for some applications. Any resulting estimate is a conditional average
treatment effect that is informative only about those in the treatment and control
groups who are substantially equivalent with respect to observed treatment assignment
and selection variables. In some applications, this is precisely the estimate needed, such
as when evaluating whether a program should be expanded in size in order to accom-
modate more treatment cases but without changing eligibility criteria. (We will discuss
these marginal treatment effects in Chapter 9.)

The literature on these common-support strategies is now well developed. Heckman,
Ichimura, and Todd (1998; see also Smith and Todd 2005) recommend trimming the
region of common support to eliminate cases in regions of the common support with
extremely low density (and not just with respect to the estimated propensity score but
for the full distribution of the matching variables). This involves selecting a minimum
density (labeled the “trimming level”) that is greater than zero. Heckman and his
colleagues have found that estimates are sensitive to the level of trimming in small
samples, with greater bias when the trimming level is lower. More recently, Crump
et al. (2009) have developed optimal weighting estimators that are more general but
designed to achieve the same goals. Coarsened exact matching can be seen as motivated
by the same basic strategy, guided directly by the matching variables rather than their
unidimensional reduction in the estimated propensity score. The common support
ATT may coincide with the local SATT of coarsened exact matching, but the latter
will always be at least as narrow if the underlying matching variables are the same at
the outset before any coarsening is applied.

5.5.3 The Expected Variance of Matching Estimates

After computing a matching estimate of some form, most researchers naturally desire a
measure of its expected variability across samples of the same size from the same popu-
lation, either to conduct hypothesis tests or to offer an informed posterior distribution
for the causal effect that can guide subsequent research.37 We did not, however, report

37There is also a related set of randomization inference techniques, built up from consideration
of all of the possible permutations of treatment assignment patterns that could theoretically emerge
from alternative enactments of the same treatment assignment routine (see Rosenbaum 2002). These
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standard errors for the treatment effect estimates reported in Tables 5.6 or 5.7 for the
hypothetical example in Matching Demonstration 4 (although we did indicate in the
text the range of the estimates that are provided by the relevant software routines).

Although most of the available software routines provide estimated standard errors,
many rely on different methodologies for calculating them. Given their lack of agree-
ment, we caution against too strong of a reliance on the standard error estimates
produced by any one software routine, at least at present. Much remains to be worked
out before commonly accepted standards for calculating standard errors for all types
of matching estimators are available (see Abadie and Imbens 2009, 2012; Hill and
Reiter 2006; Imbens and Wooldridge 2009). For now, our advice is to report a range of
standard errors produced by alternative software routines for corresponding matching
estimates.38

We recommend caution for the following reasons. In some simple cases, there is
widespread agreement on how to properly estimate standard errors for matching esti-
mators. For example, if a perfect stratification of the data can be found, the data can
be analyzed as if they are a stratified random sample with the treatment randomly
assigned within each stratum. In this case, the variance estimates from stratified sam-
pling apply. But rarely is a perfect stratification available in practice without substan-
tial sparseness in the data at hand. Once stratification is performed with reference
to an estimated propensity score, the independence that is assumed within strata for
standard error estimates from stratified sampling methodology is no longer present.
And, if one adopts a Bayesian perspective, the model uncertainty of the propensity-
score-estimating equation must be represented in the posterior (see Abadie and Imbens
2009; An 2010).

Even so, there is now also widespread agreement that convergence results from
nonparametric statistics can be used to justify standard error estimates for large sam-
ples. A variety of scholars have begun to work out alternative methods for calculating
such asymptotic standard errors for matching estimators, after first rewriting match-
ing estimators as forms of nonparametric regression (see Abadie and Imbens 2006,
2011; Hahn 1998; Heckman, Ichimura, and Todd 1998; Hirano et al. 2003; Imbens
2004; Imbens and Wooldridge 2009). For these large-sample approaches, however, it is

permutation ideas generate formulas for evaluating specific null hypotheses, which, from our perspec-
tive, are largely uncontroversial. They are especially reasonable when the analyst has deep knowledge
of a relatively simple treatment assignment regime and has reason to believe that treatment effects
are constant in the population. Although Rosenbaum provides large-sample approximations for these
permutation-based tests, the connections to the recent econometrics literature that draws on non-
parametric convergence results have not yet been established.

38Many matching software routines allow one to calculate bootstrapped standard errors. This is
presumably because these easy-to-implement methods were once thought to provide a general frame-
work for estimating the standard errors of alternative matching estimators and hence were a fair and
quite general way to compare the relative efficiency of alternative matching estimators (see Tu and
Zhou 2002). Unfortunately, Abadie and Imbens (2008) show that conventional bootstrapping will not
work for nearest neighbor matching and related estimators. In essence, these matching estimators are
a type of two-stage sampling in which a set of treatment and control cases are sampled first and then
the possible matching cases are subsampled again based on nearness to the target cases. Yet, there
is too much dependence between the first and second sampling stages in the single observed sample,
such that resampling within the first stage using the observed sample of target cases does not then
generate suitable variation among matching cases in the second stage.
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generally assumed that matching is performed directly with regard to the variables in
S, and the standard errors are appropriate only for large samples in which sparseness
is vanishing. Accordingly, the whole idea of using propensity scores to solve rampant
sparseness problems is almost entirely dispensed with, and estimated propensity scores
then serve merely to clean up whatever chance variability in the distribution of S across
treatment and control cases remains in a finite sample.

Given that the literature on methods to estimate standard errors for matching esti-
mates is still developing, and that software developments lag the literature, it seems
prudent to (1) report the standard errors offered by the relevant software routines in
sufficient detail so that a reader can understand the method adopted but (2) avoid
drawing conclusions that depend on accepting any one particular method for calculat-
ing standard errors.

5.5.4 Matching Estimators for Many-Valued Causes

Given the prevalence of studies of many-valued causes, it is somewhat odd to place
this section under the more general heading of practical issues. But this is appropriate
because most of the complications of estimating many-valued treatment effects are
essentially practical, even though very challenging in some cases.

Recall the setup for many-valued causes from Section 2.9, where we have a set
of J treatment states, a set of J causal exposure dummy variables, {Dj}Jj=1, and a

corresponding set of J potential outcome random variables, {Y Dj}Jj=1. The treatment
received by each individual is Dj′, and the outcome variable for individual i, yi, is

then equal to yDj′
i . For j �= j′, the potential outcomes of individual i exist as J − 1

counterfactual outcomes yDj
i .

There are two basic approaches to matching with many-valued treatments (see
Rosenbaum 2002, section 10.2.4). The most straightforward and general approach is
to form a series of two-way comparisons between the multiple treatments, estimating
a separate propensity score for each contrast between each pair of treatments.39 After
the estimated propensity scores are obtained, treatment effect estimates are calculated
pairwise between treatments. Care must be taken, however, to match appropriately on
the correct estimated propensity scores. The observed outcomes for individuals with
equivalent values on alternative propensity scores cannot be meaningfully compared
(see Imbens 2000, section 5).

For example, for three treatments with J equal to 1, 2, and 3, one would first
estimate three separate propensity scores, corresponding to three contrasts for the
three corresponding dummy variables:D1 versusD2,D1 versusD3, andD2 versusD3.

39Some simplification of the propensity score estimation is possible. Rather than estimate propensity
scores separately for each pairwise comparison, one can use multinomial probit and logit models to
estimate the set of propensity scores (see Lechner 2002a, 2002b; see also Hirano and Imbens 2004;
Imai and van Dyk 2004; Imbens 2000; Zhao, van Dyk, and Imai 2012). One must still, however, extract
the right contrasts from such a model in order to obtain an exhaustive set of estimated propensity
scores.
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One would obtain three estimated propensity scores: PrN [d1i=1|d1i=1 or d2i=1,si],
PrN [d1i=1|d1i=1 or d3i=1,si], and PrN [d2i=1|d2i=1 or d3i=1,si]. One would then
match separately for each of the three contrasts leaving, for example, those with d3i=1
unused and unmatched when matching on the propensity score for the comparison of
treatment 1 versus treatment 2. At no point would one match together individuals with
equivalent values for alternative estimated propensity scores. For example, there is no
meaningful causal comparison between two individuals, in which for the first individual
d2i=1 and PrN [d1i=1|d1i=1 or d2i=1,si]= .6 and for the second individual d3i=1
and PrN [d1i =1|d1i =1 or d3i =1,si] = .6.

When the number of treatments is of modest size, such as only four or five alter-
natives, there is much to recommend in this general approach. However, if the number
of treatments is considerably larger, then this fully general approach may be infeasi-
ble. One might then choose to simply consider only a subset of causal contrasts for
analysis, thereby reducing the aim of the causal analysis.

If the number of treatments can be ordered, then a second approach developed by
Joffe and Rosenbaum (1999) and implemented in Lu, Zanutto, Hornik, and Rosen-
baum (2001) is possible. These models generally go by the name of dose-response
models because they are used to estimate the effects of many different dose sizes of
the same treatment, often in comparison with a base dosage of 0 that signifies no
treatment.

Rather than estimate separate propensity scores for each pairwise comparison,
an ordinal probability model is estimated and the propensity score is defined as a
single dimension of the predictors of the model (i.e., ignoring the discrete shifts in
the odds of increasing from one dosage level to the next that are parameterized by
the estimated cut-point parameters for each dosage level). Thereafter, one typically
performs a slightly different form of matching in which optimal matched sets are
formed by two criteria, which Lu et al. (2001:1249) refer to as “close on covariates;
far apart on doses.” The idea here is to form optimal contrasts between selected sets
of comparable individuals to generate estimates of counterfactually defined responses.
The goal is to be able to offer a predicted response to any shift in a dosage level
from any k′ to k′′, where both k′ and k′′ are between the smallest and largest dosage
values observed. Again, however, these methods assume that the treatment values can
be ordered, and further that the propensity scores can be smoothed across dose sizes
after partialing out piecewise shifts. Even so, these assumptions are no more severe
than what is typically invoked implicitly in standard parametric regression modeling
approaches to causality, as we discuss in later chapters.

Some work has continued to examine how the rationale for propensity scores can
be usefully generalized without necessarily adopting the full structure of dose-response
models. Ordered and nonordered multinomial probability models for modeling treat-
ment assignment are again the foundations of these models (see Hirano and Imbens
2004; Imai and van Dyk 2004; and Zhao et al. 2012 for further details). This litera-
ture has progressed slowly because analogs to balance checking across many values of
a treatment have not been developed, placing these particular approaches outside of
the balance-optimizing agenda that has driven the most recent research on matching
methods, as discussed in Section 5.4.2.
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5.6 Conclusions

We conclude this chapter by discussing the strengths and weaknesses of matching as
a method for causal inference from observational data. Some of the advantages of
matching methods are not inherent or unique to matching itself but rather are the
result of the analytical framework in which most matching analyses are conducted.
Matching focuses attention on the heterogeneity of the causal effect, and it suggests
clearly why thinking separately about the ATT, ATC, and ATE is crucial. Matching
also forces the analyst to examine the alternative distributions of covariates across
those exposed to different levels of the causal variable, and it may suggest that for
some applications the only estimates worth interpretation are those that are restricted
to the region of common support. Matching, as will become clear in the next chapter,
is comparatively conservative in a modeling sense because it does not implicitly invoke
the interpolation and extrapolation that characterize parametric regression models.

Although these are the advantages of matching, it is important that we not oversell
the potential power of the techniques. In much of the applied literature on matching,
the propensity score is presented as a single predictive dimension that can be used to
balance the distribution of important covariates across treatment and control cases,
thereby warranting causal inference. If one does not observe and utilize variables that,
in an infinite sample, would yield a perfect stratification, then simply predicting treat-
ment status from a more limited set of observed variables with a logit model and
then matching on the estimated propensity score does not solve the causal inference
problem. The estimated propensity scores will balance those variables (in expectation)
across the treatment and control cases. But the study will remain open to the sort of
“hidden bias” explored by Rosenbaum (2002), which is often labeled selection on the
unobservables in the social sciences. Matching is thus a statistical method for analyz-
ing available data, which may have some advantages in some situations. The regression
estimators that we will present in the next two chapters are complementary, and our
understanding of them has been enriched by the matching literature presented in this
chapter.



Chapter 6

Regression Estimators of
Causal Effects

Regression models are perhaps the most common form of data analysis used to evalu-
ate alternative explanations for outcomes of interest to quantitatively oriented social
scientists. In the past 50 years, a remarkable variety of regression models have been
developed by statisticians. Accordingly, most major data analysis software packages
allow for regression estimation of the relationships between interval and categorical
variables, in cross sections and longitudinal panels, and in nested and multilevel pat-
terns. In this chapter, however, we restrict our attention to ordinary least squares
(OLS) regression, focusing mostly on the regression of an interval-scaled variable on a
binary causal variable. As we will show, the issues are complicated enough for these
models, and it is our knowledge of how least squares models work that allows us to
explain this complexity. In addition, nearly all of the insight that can be gained from
a deep examination of OLS models carries over to more complex regression models
because the identification and heterogeneity issues that generate the complexity apply
in analogous fashion to all regression-type models.

In this chapter, we present least squares regression from three different perspectives:
(1) regression as a descriptive modeling tool, (2) regression as a parametric adjustment
technique for estimating causal effects, and (3) regression as a matching estimator of
causal effects. We give more attention to the third of these three perspectives on
regression than is customary in methodological texts because this perspective allows
one to understand the others from a counterfactual perspective. At the end of the
chapter, we will draw some of the connections between least squares regression and
more general models, and we will discuss the estimation of causal effects for many-
valued causes.

6.1 Regression as a Descriptive Tool

Least squares regression can be justified without reference to causality because it can
be considered nothing more than a method for obtaining a best-fitting descriptive

188
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model under entailed linearity constraints. Goldberger (1991), for example, motivates
least squares regression as a technique to estimate a best-fitting linear approximation
to a conditional expectation function that may be nonlinear in the population.

Consider this descriptive motivation of regression a bit more formally. If X is a
collection of variables that are thought to be associated with Y in some way, then the
conditional expectation function of Y , viewed as a function in X , is denoted E[Y |X ].
Each particular value of the conditional expectation for a specific realization x of X
is then denoted E[Y |X = x].

Least squares regression yields a predicted surface Ŷ =Xβ̂, where β̂ is a vector of
estimated coefficients from the regression of the realized values yi on xi. The predicted
surface, Xβ̂, does not necessarily run through the specific points of the conditional
expectation function, even for an infinite sample, because (1) the conditional expec-
tation function may be a nonlinear function in one or more of the variables in X and
(2) a regression model can be fit without parameterizing all nonlinearities in X . An
estimated regression surface simply represents a best-fitting linear approximation of
E[Y |X ] under whatever linearity constraints are entailed by the chosen parameteriza-
tion of the estimated model.1

The following demonstration of this usage of regression is simple. Most readers
know this material well and can skip ahead to the next section. But, even so, it may
be worthwhile to read the demonstration quickly because we will build directly on it
when shifting to the consideration of regression as a causal effect estimator.

Regression Demonstration 1

Recall the stratification example presented as Matching Demonstration 1 (see Section
5.2.1, page 145). Suppose that the same data are being analyzed, as generated by
the distributions presented in Tables 5.1 and 5.2; features of these distributions are
reproduced in Table 6.1 in more compact form. As before, assume that well-defined
causal states continue to exist and that S serves as a perfect stratification of the data.2

Accordingly, the conditional expectations in the last three panels of Table 6.1 are equal
as shown.

But, for this demonstration of regression as a descriptive tool, suppose that a
cautious researcher does not wish to rush ahead and attempt to estimate the specific
underlying causal effect of D on Y , either averaged across all individuals or averaged
across particular subsets of the population. Instead, the researcher is cautious and
is willing to assert only that the variables S, D, and Y constitute some portion of a
larger system of causal relationships. In particular, the researcher is unwilling to assert
anything about the existence or nonexistence of other variables that may also lie on
the directed paths that reach D and Y . This is tantamount to doubting the claim
that S offers a perfect stratification of the data, even though that claim is true by
construction for this example.

1One can fit a large variety of nonlinear surfaces with regression by artful parameterizations of the
variables in X, but these surfaces are always generated by a linear combination of a coefficient vector
and values on some well-defined coding of the variables in X.

2For this section, we will also stipulate that the conditional variances of the potential outcomes
are constant across both of the potential outcomes and across levels of S.
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Table 6.1 The Joint Probability Distribution and
Conditional Population Expectations for Regression
Demonstration 1

Joint probability distribution of S and D
Control group: D=0 Treatment group: D=1

S =1 Pr[S=1,D=0]= .36 Pr [S=1,D=1]= .08
S =2 Pr[S=2,D=0]= .12 Pr [S=2,D=1]= .12
S =3 Pr[S=3,D=0]= .12 Pr [S=3,D=1]= .2

Potential outcomes under the control state

S =1 E[Y
0|S =1,D=0]= 2 E[Y

0|S =1,D=1]= 2

S =2 E[Y
0|S =2,D=0]= 6 E[Y

0|S =2,D=1]= 6

S =3 E[Y
0|S =3,D=0]= 10 E[Y

0|S =3,D=1]= 10

Potential outcomes under the treatment state

S =1 E[Y 1|S =1,D=0]= 4 E[Y 1|S =1,D=1]= 4

S =2 E[Y 1|S =2,D=0]= 8 E[Y 1|S =2,D=1]= 8

S =3 E[Y
1|S =3,D=0]= 14 E[Y

1|S =3,D=1]= 14

Observed outcomes

S =1 E[Y |S =1,D=0]= 2 E[Y |S =1,D=1]= 4
S =2 E[Y |S =2,D=0]= 6 E[Y |S =2,D=1]= 8
S =3 E[Y |S =3,D=0]= 10 E[Y |S =3,D=1]= 14

In this situation, suppose that the researcher simply wishes to estimate the best lin-
ear approximation to the conditional expectation E[Y |D,S] and does not wish to then
give a causal interpretation to any of the coefficients that define the linear approx-
imation. The six true values of E[Y |D,S] are given in the last panel of Table 6.1.
Notice that the linearity of E[Y |D,S] in D and S is present only when S ≤ 2. The
value of 14 for E[Y |D=1,S=3] makes E[Y |D,S] nonlinear in D and S over their full
distributions.

Now consider the predicted surfaces that would result from the estimation of two
alternative least squares regression models with data from a sample of infinite size (to
render sampling error zero). A regression of Y on D and S that treats D as a dummy
variable and S as an interval-scaled variable would yield a predictive surface of

Ŷ =−2.71+2.69(D)+4.45(S). (6.1)

This model constrains the partial association between Y and S to be linear. It rep-
resents a sensible predicted regression surface because it is a best-fitting, linear-in-
the-parameters model of the association between Y and the two variables D and S,
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where “best” is defined as minimizing the average squared differences between the
fitted values and the true values of the conditional expectation function.

For this example, one can offer a better descriptive fit at little interpretive cost by
using a more flexible parameterization of S. An alternative regression that treats S as
a discrete variable represented in the estimation routine by dummy variables S2 and
S3 (for S equal to 2 and S equal to 3, respectively) would yield a predictive surface of

Ŷ =1.86+2.75(D)+3.76(S2)+8.92(S3). (6.2)

Like the predicted surface for the model in Equation (6.1), this model is also a best
linear approximation to the six values of the true conditional expectation E[Y |D,S].
The specific estimated values are

D=0,S=1 : Ŷ =1.86,

D=0,S=2 : Ŷ =5.62,

D=0,S=3 : Ŷ =10.78,

D=1,S=1 : Ŷ =4.61,

D=1,S=2 : Ŷ =8.37,

D=1,S=3 : Ŷ =13.53.

In contrast to the model in Equation (6.1), for this model the variable S is given a fully
flexible coding. As a result, parameters are fit that uniquely represent all values of S.3

The predicted change in Y for a shift in S from 1 to 2 is 3.76 (i.e., 5.62− 1.86= 3.76

3The difference between a model in which a variable is given a fully flexible coding and one in
which it is given a more constrained coding is clearer for a simpler conditional expectation function.
For E[Y |S], consider the values in the cells of Table 6.1. The three values of E[Y |S] can be obtained
from the first and fourth panels of Table 6.1 as follows:

E[Y |S=1] =
.36

(.36+ .08)
(2)+

.08

(.36+ .08)
(4)= 2.36,

E[Y |S=2] =
.12

(.12+ .12)
(6)+

.12

(.12+ .12)
(8)= 7,

E[Y |S=3] =
.12

(.12+ .2)
(10)+

.2

(.12+ .2)
(14) = 12.5.

Notice that these three values of E[Y |S] do not fall on a straight line; the middle value of 7 is closer
to 2.36 than it is to 12.5.

For E[Y |S], a least squares regression of Y on S, treating S as an interval-scaled variable, would
yield a predictive surface of

Ŷ =−2.78+5.05(S).

The three values of this estimated regression surface lie on a straight line −2.27, 7.32, and 12.37 – and
they do not match the corresponding true values of 2.36, 7, and 12.5. A regression of Y on S, treating
S as a discrete variable with dummy variables S2 and S3, would yield an alternative predictive surface
of

Ŷ =2.36+4.64(S2)+10.14(S3).

This second model uses a fully flexible coding of S, and each value of the conditional expectation
function is a unique function of the parameters in the model (that is, 2.36 = 2.36, 4.64+ 2.36 = 7,
and 10.14+ 2.36 = 12.5). Thus, in this case, the regression model would, in a suitably large sample,
estimate the three values of E[Y |S] exactly.
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and 8.37− 4.61= 3.76), whereas the predicted change in Y for a shift in S from 2 to
3 is 5.16 (i.e., 10.78− 5.62= 5.16 and 13.53−8.37= 5.16).

Even so, the model in Equation (6.2) constrains the parameter for D to be the
same without regard to the value of S. And, because the level of Y depends on the
interaction of S and D, specifying more than one parameter for the three values of S
does not bring the predicted regression surface into alignment with the six values of
E[Y |D,S] presented in the last panel of Table 6.1. Thus, even when S is given a fully
flexible coding (and even for an infinitely large sample), the fitted values do not equal
the true values of E[Y |D,S].4 As we discuss later, a model that is saturated fully in
both S and D – that is, one that adds two additional parameters for the interactions
between D and both S2 and S3 – would yield predicted values that would exactly
match the six true values of E[Y |D,S] in a dataset of sufficient size.

Recall the more general statement of the descriptive motivation of regression anal-
ysis presented above, in which the predicted surface Ŷ =Xβ̂ is estimated for the sole
purpose of obtaining a best-fitting linear approximation to the true conditional expec-
tation function E[Y |X ]. When the purposes of regression are so narrowly restricted,
the outcome variable of interest, Y , is not generally thought to be a function of poten-
tial outcomes associated with well-defined causal states. Consequently, it would be
inappropriate to give a causal interpretation to any of the estimated coefficients in β̂.

This perspective implies that if one were to add more variables to the predictors,
embedding X in a more encompassing set of variables W , then a new set of least
squares estimates γ̂ could be obtained by regressing Y on W . The estimated surface
Wγ̂ then represents a best-fitting, linear-in-the-parameters, descriptive fit to a more
encompassing conditional expectation function, E[Y |W ]. Whether one then prefers

Wγ̂ to Xβ̂ as a description of the variation in Y depends on whether one finds it
more useful to approximate E[Y |W ] than E[Y |X ]. The former regression approxima-
tion is often referred to as the long regression, with the latter representing the short
regression. These labels are aptly chosen, when regression is considered nothing more
than a descriptive tool, because there is no inherent reason to prefer a short to a long
regression if neither is meant to be interpreted as anything other than a best-fitting
linear approximation to its respective true conditional expectation function.

In many applied regression textbooks, the descriptive motivation of regression
receives no direct explication. And, in fact, many textbooks state that the only cor-
rect specification of a regression model is one that includes all explanatory variables.
Goldberger (1991) admonishes such textbook writers, countering their claims:

4Why would one ever prefer a constrained regression model of this sort? Consider a conditional
expectation function, E[Y |X], where Y is earnings and X is years of education (with 21 values from
0 to 20). A fully flexible coding of X would fit 20 dummy variables for the 21 values of X. This would
allow the predicted surface to change only modestly between some years (such as between 7 and 8
and between 12 and 13) and more dramatically between other years (such as between 11 and 12 and
between 15 and 16). However, one might wish to treat X as an interval-scaled variable, smoothing
these increases from year to year by constraining them to a best-fitting line parameterized only by
an intercept and a constant slope. This constrained model would not fit the conditional expectation
function as closely as the model with 20 dummy variables, but it might be preferred in some situations
because it is easier to present and uses fewer degrees of freedom, which could be important if the
model is estimated with a small sample.
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An alternative position is less stringent and is free of causal language.
Nothing in the CR [classical regression] model itself requires an exhaustive
list of explanatory variables, nor any assumption about the direction of
causality. (Goldberger 1991:173)

Goldberger is surely correct, but his perspective nonetheless begs an important ques-
tion on the ultimate utility of descriptively motivated regression. Clearly, if one wishes
to know only predicted values of the outcome Y for those not originally studied but
whose variables in X are known, then being able to form the surface Xβ̂ is a good
first step (and perhaps a good last step). And, if one wishes to build a more elaborate
regression model, allowing for an additional variable in W or explicitly accounting for
multilevel variability by modeling the nested structure of the data, then regression
results will be useful if the aim is to generate descriptive reductions of the data. But,
if one wishes to know the value of Y that would result for any individual in the pop-
ulation if a variable in X were shifted from a value k to a value k′, then regression
results may be uninformative.

Many researchers (perhaps a clear majority) who use regression models in their
research are very much interested in causal effects. Knowing the interests of their
readers, many textbook authors offer presentations of regression that sidestep these
issues artfully by, for example, discussing how biased regression coefficients result from
the omission of important explanatory variables but without introducing explicit, for-
mal notions of causality into their presentations. Draper and Smith (1998:236), for
example, write of the bias that enters into estimated regression coefficients when only
a subset of the variables in the “true response relationship” are included in the fit-
ted model. Similarly, Greene (2000:334) writes of the same form of bias that results
from estimating coefficients for a subset of the variables from the “correctly specified
regression model.”5 And, in his presentation of regression models for social scientists,
Stolzenberg (2004:188) equivocates:

Philosophical arguments about the nature of causation notwithstanding
(see Holland, 1986), in most social science uses of regression, the effect of
an independent variable on a dependent variable is the rate at which differ-
ences in the independent variable are associated with (or cause) differences
or changes in the dependent variable. (italics in the original)

We assume that the readers of our book are interested in causal effect estimators. And
thus, although we recognize the classical regression tradition, perhaps best defended by
Goldberger (1991) as interpretable merely as a descriptive data reduction tool, we will
consider regression as a causal effect estimator in the remaining sections of this chapter.
And we further note that, in spite of our reference to Goldberger (1991), in other
writing Goldberger has made it absolutely clear that he too was very much interested in
the proper usage of regression models to offer warranted causal claims. This is perhaps
most clear in work in which he criticized what he regarded as unwarranted causal
claims generated by others using regression techniques, such as in his robust critique
of Coleman’s Catholic schools research (see Goldberger and Cain 1982). We will return

5There are, of course, other textbooks that do present a more complete perspective, such as Angrist
and Pischke (2009), Berk (2004), Freedman (2005), and Gelman and Hill (2007).
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to a discussion of the notion of a correct specification of a regression model in the final
section of the chapter, where we discuss the connections between theoretical models
and regressions as all-cause perfect specifications. Until then, however, we return to
the same basic scenario considered in our presentation of matching in Chapter 5: the
estimation of a single causal effect that may be confounded by other variables.

6.2 Regression Adjustment as a Strategy to
Estimate Causal Effects

In this section, we consider the estimation of causal effects in which least squares
regression is used to adjust for variables thought to be related to both the causal vari-
able and the outcome variable. We first consider the textbook treatment of the concept
of omitted-variable bias, with which most readers are probably well acquainted. There-
after, we consider the same set of ideas after specifying the potential outcome variables
that the counterfactual tradition assumes lie beneath the observed data.

6.2.1 Regression Models and Omitted-Variable Bias

Suppose that one is interested in estimating the causal effect of a binary variable D
on an observed outcome Y . This goal can be motivated as an attempt to obtain a
consistent and unbiased estimate of a coefficient δ in a generic bivariate regression
equation,

Y =α+ δD+ ε, (6.3)

where α is an intercept and ε is a summary random variable that represents all other
causes of Y (some of which may be related to the causal variable of interest, D).
When Equation (6.3) is used to represent the causal effect of D on Y without any
reference to individual-varying potential outcomes, the parameter δ is implicitly cast
as an invariant, structural causal effect that applies to all members of the population
of interest.6

The OLS estimator of this bivariate regression coefficient is then

δ̂OLS, bivariate≡ CovN (yi,di)

VarN (di)
, (6.4)

where CovN (.) and VarN (.) are consistent and unbiased, sample-based estimates from
a sample of size N of the population-level covariance and variance of the variables
that are their arguments.7 Because D is a binary variable, δ̂OLS, bivariate is exactly
equivalent to the naive estimator, EN [yi|di =1]−EN [yi|di =0], presented in Equation

6Although this is generally the case, there are of course introductions to regression that explicitly
define δ as the mean effect of D on Y across units in the population of interest or, as was noted in
the last section, without regard to causality at all.

7Notice that we are again focusing on the essential features of the methods. When we present
least squares regression estimators in this chapter, we will maintain three implicit assumptions to
simplify inference complications in order to focus on identification issues. First, we ignore degree-of-
freedom adjustments because we assume that the available sample is very large. To be more precise
in justifying unbiasedness for a finite sample, we would want to indicate that the sample variance
of D does not equal the population-level variance of D in the absence of such a degree-of-freedom
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(2.9) (i.e., the sample mean of yi for those in the treatment group minus the sample
mean of yi for those in the control group). Our analysis thus follows quite closely the
discussion of the naive estimator in Section 2.7.3. The difference is that here we will
develop the same basic claims with reference to the relationship between D and ε
rather than the general implications of heterogeneity of the causal effect.

Consider first a case in which D is randomly assigned, as when individuals are
randomly assigned to the treatment and control groups. In this case, D would be
uncorrelated with ε in Equation (6.3), even though there may be a chance correlation
between D and ε in any finite set of study subjects.8 The literature on regression, when
presented as a causal effect estimator, maintains that, in this case, (1) the estimator

δ̂OLS, bivariate is consistent and unbiased for δ in Equation (6.3) and (2) δ can be
interpreted as the causal effect of D on Y .

To understand this claim, it is best to consider a counterexample in which D is
correlated with ε in the population because D is correlated with other causes of Y
that are implicitly embedded in ε. For a familiar example, consider again the effect
of education on earnings. Individuals are not randomly assigned to the treatment
“completed a bachelor’s degree.” It is generally thought that those who complete
college would be more likely to have had high levels of earnings in the absence of a
college education. If this is true, D and the population-level error term ε are correlated
because those who have a 1 on D are more likely to have high values rather than low
values for ε. For this example, the least squares regression estimator δ̂OLS, bivariate in
Equation (6.4) would not yield an estimate of δ that can be regarded as consistent or

unbiased for the causal effect of D on Y . Instead, δ̂OLS,bivariate must be interpreted
as inconsistent and upwardly biased. In the substance of the college-degree example,
δ̂OLS, bivariate would be a poor estimate of the causal effect of a college degree on

adjustment, and so on. We merely label VarN (.) as signifying such a consistent and unbiased estimate
of the population-level-variance of that which is its argument. Thus, VarN (.) implicitly includes the
proper degree-of-freedom adjustment, which would be N/(N−1) and which would then be multiplied
by the average of squared deviations from the sample mean. Second, we will assume that the sampling-
error components of the regression error terms have “zero conditional mean”; see Wooldridge (2010,
equation 4.3); see also the “strict exogeneity” assumption of Hayashi (2000, equation 1.1.7). Under this
assumption, the finite sample bias of the OLS estimator of each coefficient has expectation equal to 0,
even though we allow the predictors to be random variables rather than a fixed feature of the design.
As will become clear, we will have a lot to say about assumptions regarding regression error terms
in this chapter, and for now we invoke this assumption only in the limited sense that it allows us to
eliminate finite sample bias from our consideration. Third, our perfect measurement assumption rules
out measurement error in predictors, which eliminates attenuation bias in all regression coefficient
estimates.

8We will frequently refer to D and ε as being uncorrelated for this type of assumption, as this is the
semantics that most social scientists seem to use and understand when discussing these issues. Most
textbook presentations of regression discuss very specific exogeneity assumptions for D that imply a
correlation of 0 between D and ε. Usually, in the social sciences the assumption is defined either by
mean independence of D and ε or as an assumed covariance of 0 between D and ε. Both of these imply
a correlation between D and ε of 0. In statistics, one often finds a stronger assumption: D and ε must
be completely independent of each other. The argument in favor of this stronger assumption, which is
convincing to statisticians, is that an inference is strongest when it holds under any transformation of
Y (and thus any transformation of ε). When full independence of D and ε holds, mean independence
of D and ε, a covariance of 0 between D and ε, and a 0 correlation between D and ε are all implied.
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D

(a) A graph in which the
casual effect is not identified

(b) An equivalent regression
representation of the same graph

Y

ε

DY

Figure 6.1 Graphs for a regression equation of the causal effect of D on Y .

earnings because it would suggest that the effect of obtaining a college degree is larger
than it really is.9

Figure 6.1(a) presents a graph where D and Y are connected by two types of
paths, the direct causal effect D→ Y and an unspecified number of back-door paths
represented by D ������Y . (Recall that bidirected edges ������ represent an unspec-
ified number of common causes of the two variables that they connect.) For Figure
6.1(a), the causal effect of D on Y is not identified because no observable variables are
available to block the back-door paths represented by D ������Y .

Figure 6.1(b) is the regression analog to the graph in Figure 6.1(a). It contains
three edges: D→ Y, ε→ Y, and D ������ ε, where the node for ε is represented by a
hollow circle ◦ rather than a solid circle • in order to indicate that ε is an unobserved
variable. The unblocked back-door paths from D to Y now run through the error term
ε, and the dependence represented by the bidirected edge confounds the causal effect
of D on Y . Bivariate regression results, when interpreted as warranted causal effect
estimates, assume that there are no such unblocked back-door paths from the causal
variable to the outcome variable.

For many applications in the social sciences, a correlation between D and ε is
conceptualized as a problem of omitted variables. For the example in this section,
a bivariate OLS estimate of the effect of a college degree on labor market earnings
would be said to be biased because intelligence is unobserved but is correlated with
both education and earnings. Its omission from Equation (6.3) leads the estimate of
the effect of a college degree on earnings from that equation to be larger than it would
have been if a variable for intelligence were instead included in the equation.

This perspective, however, has led to much confusion, especially in cases in which a
correlation betweenD and ε emerges because subjects choose different levels ofD based
on their expectations about the variability of Y , and hence their own expectations of
the causal effect itself. For example, those who attend college may be more likely
to benefit from college than those who do not, even independent of the unobserved
ability factor. Although this latent form of anticipation can be labeled an omitted

9Consider for one last time the alternative and permissible descriptive interpretation: The least
squares regression estimator δ̂OLS, bivariate in Equation (6.4) could be interpreted as consistent and
unbiased for δ, where the regression surface generated by the estimation of δ in Equation (6.3)
is considered only a descriptively motivated, best linear prediction of the conditional expectation
function, E[Y |D] (i.e., where α̂ is a consistent and unbiased for E[Y |D = 0] and α̂+ δ̂ is consistent
and unbiased for E[Y |D=1]). In the substance of the college-degree example, the estimate could be
regarded as an estimate of the mean difference between the earnings of those who have obtained a
college degree and those who have not, without requiring or warranting any causal interpretation.
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variable, it is generally not. Instead, the language of research shifts toward notions
such as self-selection bias, and this is less comfortable territory for the typical applied
researcher.

To clarify the connections between omitted-variable bias and self-selection bias
within a more general presentation, we utilize the potential outcome model in the
next section. We break the error term in Equation (6.3) into component pieces defined
by underlying potential outcome variables and allow for the more general forms of
causal effect heterogeneity that are implicitly ruled out by constant-coefficient models.

6.2.2 Potential Outcomes and Omitted-Variable Bias

Consider the same set of ideas but now use the potential outcome model to define the
observed variables. Here, we will build directly on the variant of the potential outcome
model presented in Section 4.3.2. From that presentation, recall Equation (4.6), which
we reintroduce here as

Y = μ0+(μ1−μ0)D+{υ0+D(υ1−υ0)}, (6.5)

where μ0≡E[Y 0], μ1≡E[Y 1], υ0≡Y 0−E[Y 0], and υ1≡Y 1−E[Y 1]. We could rewrite
this equation to bring it into closer alignment with Equation (6.3) by stipulating that
α= μ0, δ = (μ1−μ0), and ε= υ0+D(υ1− υ0). But note that these equalities would
redefine what is typically meant by the terms α, δ, and ε in Equation (6.3). The
parameters α and δ in Equation (6.3) are usually not considered to be equal to E[Y 0]
or E[δ] for two reasons: (1) models are usually asserted in the regression tradition
(e.g., in Draper and Smith 1998) without any reference to underlying causal states
tied to potential outcomes and (2) the parameters α and δ are usually implicitly held
to be constant structural effects that do not vary over individuals in the population.
Similarly, the error term, ε, in Equation (6.3) is almost never separated into two pieces
as a function of the definition of potential outcomes and their relationship to D. For
these reasons, Equation (6.5) is quite different from the traditional bivariate regression
in Equation (6.3), in the sense that it is more finely articulated but also irretrievably
tied to a particular formalization of a causal effect that is allowed to vary across
individuals.

Suppose that we are interested in estimating the average treatment effect (ATE),
denoted (μ1−μ0) here. The causal variable D could be correlated with the population-
level variant of the error term υ0+D(υ1−υ0) in Equation (6.5) in two ways. First, sup-
pose that there is a net baseline difference in the hypothetical no-treatment state that
is correlated with membership in the treatment group, but the size of the individual-
level treatment effect does not differ on average between those in the treatment group
and those in the control group. In this case, υ0 would be correlated with D, generating
a correlation between {υ0+D(υ1− υ0)} and D, even though the D(υ1−υ0) term in
{υ0+D(υ1− υ0)} would be equal to zero on average because υ1− υ0 does not vary
with D. Second, suppose there is a net treatment effect difference that is correlated
with membership in the treatment group, but there is no net baseline difference in the
absence of treatment. Now, D(υ1− υ0) would be correlated with D, even though υ0

is not, because the average difference in υ1− υ0 varies across those in the treatment
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Table 6.2 Examples of the Two Basic Forms of Bias for Least Squares
Regression

Differential baseline bias only

y1i y0i υ1
i υ0

i yi di υ0
i+di(υ

1
i−υ0

i )

In treatment group 20 10 0 5 20 1 0
In control group 20 0 0 −5 0 0 −5

Differential treatment effect bias only

y1i y0i υ1
i υ0

i yi di υ0
i+di(υ

1
i−υ0

i )

In treatment group 20 10 2.5 0 20 1 2.5
In control group 15 10 −2.5 0 10 0 0

Both types of bias

y1i y0i υ1
i υ0

i yi di υ0
i+di(υ

1
i−υ0

i )

In treatment group 25 5 5 −2.5 25 1 5
In control group 15 10 −5 2.5 10 0 2.5

group and those in the control group. In either case, an OLS regression of the realized
values of Y on D would yield an inconsistent and biased estimate of (μ1−μ0).

It may be helpful to see precisely how these sorts of bias come about with reference
to the potential outcomes of individuals. Table 6.2 presents three simple two-person
examples in which the least squares bivariate regression estimator δ̂OLS, bivariate in
Equation (6.4) is biased. Each panel presents the potential outcome values for two
individuals and then the implied observed data and error term in the braces from
Equation (6.5). Assume for convenience that there are only two types of individuals in
the population, both of which are homogeneous with respect to the outcomes under
study and both of which comprise one half of the population. For the three examples
in Table 6.2, we have sampled one of each of these two types of individuals for study.

For the example in the first panel, the true ATE is 15, because for the individual
in the treatment group δi is 10, whereas for the individual in the control group δi is
20. The values of υ1

i and υ0
i are deviations of the values of y1i and y0i from E[Y 1] and

E[Y 0], respectively. Because these expectations are equal to 20 and 5, the values of υ1
i

are both equal to 0 because each individual’s value of y1i is equal to 20. In contrast,
the values of υ0

i are equal to 5 and −5 for the individuals in the treatment and control
groups, respectively, because their two values of y0i are 10 and 0.

As noted earlier, the bivariate regression estimate of the coefficient on D is equal
to the naive estimator, EN [yi|di =1]−EN [yi|di =0]. Accordingly, a regression of the
values for yi on di would yield a value of 0 for the intercept and a value of 20 for
the coefficient on D. This estimated value of 20 is an upwardly biased estimate for the
true average causal effect because the values of di are positively correlated with the
values of the error term υ0

i +di(υ
1
i −υ0

i ). In this case, the individual with a value of 1
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for di has a value of 0 for the error term, whereas the individual with a value of 0 for
di has a value of −5 for the error term.

For the example in the second panel, the relevant difference between the individual
in the treatment group and the individual in the control group is in the value of y1i
rather than y0i . In this variant, both individuals would have had the same outcome if
they were both in the control state, but the individual in the treatment group would
benefit relatively more from being in the treatment state. Consequently, the values
of di are correlated with the values of the error term in the last column because the
true treatment effect is larger for the individual in the treatment group than for the
individual in the control group. A bivariate regression would yield an estimate of 10
for the ATE, even though the true ATE is only 7.5 in this case.10

Finally, in the third panel of the table, both forms of baseline and net treatment
effect bias are present, and in opposite directions. In combination, however, they still
generate a positive correlation between the values of di and the error term in the last
column. This pattern results in a bivariate regression estimate of 15, which is upwardly
biased for the true ATE of 12.5.

For symmetry, and some additional insight, now consider two additional two-person
examples in which regression gives an unbiased estimate of the average causal effect.
For the first panel of Table 6.3, the potential outcomes are independent of D, and as
a result a bivariate regression of the values yi on di would yield an unbiased estimate
of 10 for the true ATE. But the example in the second panel is quite different. Here,
the values of υ1

i and υ0
i are each correlated with the values of di, but they cancel

each other out when they jointly constitute the error term in the final column. Thus,
a bivariate regression yields an unbiased estimate of 0 for the true ATE of 0. And,
yet, with knowledge of the values for y1i and y0i , it is clear that these results mask
important heterogeneity of the causal effect. Even though the average causal effect is
indeed 0, the individual-level causal effects are equal to 10 and −10 for the individuals
in the treatment group and control group, respectively. Thus, regression gives the right
answer, but it hides the underlying heterogeneity that one would almost certainly wish
to know.11

Having considered these examples, we are now in a position to answer, with refer-
ence to the potential outcome model, the question that so often challenges students
when first introduced to regression as a causal effect estimator: What is the error term
of a regression equation? Compare the third and fourth columns with the final column
in Tables 6.2 and 6.3. The regression error term, υ0 +D(υ1− υ0), is equal to υ0 for
those in the control group and υ1 for those in the treatment group. This can be seen
without reference to the examples in the tables. Simply rearrange υ0+D(υ1−υ0) as

10Note, however, that 10 is the true average treatment effect for the treated (ATT), or in this case
the treatment effect for the treated for the sole individual in the treatment group. This is the same
essential pattern as for Matching Demonstration 4, where the ATT is identified because, in this case,
Assumption 2 in Equation (2.16) would hold because (y0i |di =1)= (y0i |di =0)= 10.

11Assumptions 1 and 2 in Equations (2.15) and (2.16) are therefore sufficient but not necessary for
the naive estimator and bivariate OLS regression estimator to consistently estimate the ATE. We have
not mentioned this qualification until now because we do not believe that perfect cancellation occurs in
social science applications. This assumption is sometimes labeled “faithfulness” in the counterfactuals
literature.
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Table 6.3 Two-Person Examples in Which Least Squares Regression
Estimates Are Unbiased

Independence of (Y 1,Y 0) from D

y1i y0i υ1
i υ0

i yi di υ0
i+di(υ

1
i−υ0

i )

In treatment group 20 10 0 0 20 1 0
In control group 20 10 0 0 10 0 0

Offsetting dependence of Y 1and Y 0 on D

y1i y0i υ1
i υ0

i yi di υ0
i+di(υ

1
i−υ0

i )

In treatment group 20 10 5 −5 20 1 5
In control group 10 20 −5 5 20 0 5

Dυ1+(1−D)υ0 and then rewrite Equation (6.5) as

Y =μ0+(μ1−μ0)D+{Dυ1+(1−D)υ0}. (6.6)

It should be clear that the error term now appears very much like the definition of Y
presented earlier as DY 1+(1−D)Y 0 in Equation (2.2). Just as Y switches between Y 1

and Y 0 as a function ofD, the error term switches between υ1 and υ0 as a function ofD.
Given that υ1 and υ0 can be interpreted as Y 1 and Y 0 centered around their respective
population-level expectations E[Y 1] and E[Y 0], this should not be surprising.

Even so, few presentations of regression characterize the error term of a bivariate
regression in this way. Some notable exceptions do exist. The connection is made to
the counterfactual tradition by specifying Equation (6.3) as

Y =α+ δD+ ε(D), (6.7)

where the error term ε(D) is considered to be an entirely different random variable
for each value of D (see Pratt and Schlaifer 1988). Consequently, the error term ε in
Equation (6.3) switches between ε(1) and ε(0) in Equation (6.7) depending on whether
D is equal to 1 or 0.12

6.2.3 Regression as Adjustment for Otherwise
Omitted Variables

The basic strategy behind regression analysis as an adjustment technique to estimate
a causal effect is to add a sufficient set of “control variables” to the bivariate regression
in Equation (6.3). The goal is to break a correlation between the treatment variable

12This is the same approach taken by Freedman (see Berk 2004; Freedman 2005), and he refers
to Equation (6.7) as a response schedule. See also the discussion of Sobel (1995). For a continuous
variable, Garen (1984) notes that there would be an infinite number of error terms (see his discussion
of his equation 10).
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D Y

X ε ∗

Figure 6.2 A causal graph for a regression equation in which the causal effect of D
on Y is identified by conditioning on X .

D and the error term ε, as in

Y =α+ δD+Xβ+ ε∗, (6.8)

where X represents one or more variables, β is a coefficient (or a conformable vector
of coefficients if X represents more than one variable), ε∗ is a residualized version of
the original error term ε from Equation (6.3), and all else is as defined for Equation
(6.3).

For the multiple regression analog to the least squares bivariate regression estimator
δ̂OLS, bivariate in Equation (6.4), the observed data values di and xi are embedded in an
all-encompassing Q matrix, which is N × K, where N is the number of respondents
and K is the number of variables in X plus 2 (one for the constant and one for the
treatment variable D). The OLS estimator for the parameters in Equation (6.8) is
then written in matrix form as

δ̂OLS, multiple≡ (Q′Q)−1Q′y, (6.9)

where y is an N × 1 vector for the observed outcomes yi. As all regression textbooks
show, there is nothing magical about these least squares computations, even though
the matrix representation may appear unfamiliar to some readers. OLS regression is
equivalent to the following three-step regression procedure with reference to Equation
(6.8) – and without reference to the perhaps overly compact Equation (6.9):

1. Regress yi on xi and calculate y∗i = yi− ŷi;

2. Regress di on xi and calculate d∗i = di− d̂i;

3. Regress y∗i on d∗i .

The regression coefficient on d∗i yielded by step 3 is the OLS estimate of δ in Equation
(6.8), which is typically declared consistent and unbiased for the true value of δ if the
correlation between D and ε∗ is assumed to be equal to zero. Thus, in this simple
example, OLS regression is equivalent to estimating the relationship between residu-
alized versions of Y and D from which their common dependence on other variables
in X has been “subtracted out.”

Even though the variables in X might be labeled control variables in a regression
analysis of a causal effect, this label expresses the intent rather than the outcome of
their utilization. The goal of such a regression adjustment strategy is to find variables
in X that can be used to redraw the graph in Figure 6.1(b) as the causal graph in
Figure 6.2. If this can be done, then one can condition on X in order to consistently
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estimate the causal effect ofD on Y becauseX blocks the only back-door path between
D and Y .

If D is uncorrelated with ε∗ (i.e., the error term net of adjustment for X), then least
squares regression yields an estimate that is ostensibly freed of the bias generated by
the correlation of the treatment D with the error term ε in Equation (6.3). However,
even in this case some complications remain when one invokes the potential outcome
model.

First, if one assumes that δ is truly constant across individuals (i.e., that y1i −y0i is
equal to the same constant for all individuals i), then the OLS estimate is consistent
and unbiased for δ and for (μ1−μ0). If, however, y1i −y0i is not constant, then the OLS
estimate represents a conditional-variance-weighted estimate of the underlying causal
effects of individuals, δi, in which the weights are a function of the conditional variance
of D (see Angrist 1998 and Angrist and Pischke 2009, as well as our explanation of
this result in the next section). Under these conditions, the OLS estimate is consistent
and unbiased and for this particular weighted average, which is usually not a causal
parameter of primary interest.

Second, note that the residualized error term, ε∗, in Equation (6.8) is not equivalent
to either ε from Equation (6.3) or to the multipart error term {υ0+D(υ1−υ0)} from
Equation (6.5). Rather, it is defined by whatever adjustment occurs within Equation
(6.8), as represented by the term Xβ. Consequently, the residualized error term ε∗

cannot be interpreted independently of decisions about how to specify the vector of
adjustment variables inX , and this can make it difficult to define when a net covariance
between D and ε∗ can be assumed to be zero.

We explain these two complications and their important implications in the follow-
ing sections of this chapter and the next, where we consider a variety of examples that
demonstrate the connections between matching and regression estimators of causal
effects. Before developing these explanations, however, we conclude this section with
two final small-N examples that demonstrate how the regression adjustment strategy
does and does not work.

Table 6.4 presents two six-person examples. For both examples, a regression of Y
on D yields a biased estimate of the true ATE. And, in fact, both examples yield
the same biased estimate because the observed values yi and di are the same for both
examples. Moreover, an adjustment variable X is also available for both examples, and
its observed values xi have the same associations with the observed values yi and di
for both examples. But the underlying potential outcomes differ substantially between
the two examples. These differences render regression adjustment by X effective for
only the first example.

For the example in the first panel, a regression of Y on D would yield an estimate
of the coefficient for D of 11.67, which is an upwardly biased estimate of the true
average causal effect of 10. The bias arises because the correlation between the error
term in the last column and the realized values for di is not zero but is instead .33.

For the example in the second panel, a regression of Y onD would yield an estimate
of the coefficient for D of 11.67 because the values for yi and di are exactly the same
as for the example in the first panel. Moreover, this estimate is also upwardly biased
because the error term in the last column is positively correlated with the realized
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Table 6.4 Two Six-Person Examples in Which Regression Adjustment Is
Differentially Effective

Regression adjustment with X
generates an unbiased estimate for D

y1i y0i υ1
i υ0

i yi di xi υ0
i+di(υ

1
i−υ0

i )

In treatment group 20 10 2.5 2.5 20 1 1 2.5
In treatment group 20 10 2.5 2.5 20 1 1 2.5
In treatment group 15 5 −2.5 −2.5 15 1 0 −2.5
In control group 20 10 2.5 2.5 10 0 1 2.5
In control group 15 5 −2.5 −2.5 5 0 0 −2.5
In control group 15 5 −2.5 −2.5 5 0 0 −2.5

Regression adjustment with X
does not generate an unbiased estimate for D

y1i y0i υ1
i υ0

i yi di xi υ0
i+di(υ

1
i−υ0

i )

In treatment group 20 10 2.83 2.5 20 1 1 2.83
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In treatment group 15 5 −2.17 −2.5 15 1 0 −2.17
In control group 18 10 .83 2.5 10 0 1 2.5
In control group 15 5 −2.17 −2.5 5 0 0 −2.5
In control group 15 5 −2.17 −2.5 5 0 0 −2.5

values of di. However, here the patterns are more complex. The underlying potential
outcomes are different, and individual-level heterogeneity of the causal effect is now
present. One member of the control group has an individual-level treatment effect of
only 8, and as a result the true ATE is only 9.67. Consequently, the same bivariate
regression coefficient of 11.67 has a larger upward bias in this second example, and the
correlation between the values of di and the error term in the last column is now .39
rather than .33.

This underlying difference in potential outcomes also has consequences for the
capacity of regression adjustment to effectively generate unbiased estimates of the
ATE. This is easiest to see by rearranging the rows in Table 6.4 for each of the two
examples based on the values of X for each individual, as in Table 6.5. For the first
example, the values of di are uncorrelated with the error term within subsets of individ-
uals defined by the two values ofX . In contrast, for the second example, the values of di
remain positively correlated with the error term within subsets of individuals defined
by the two values of X . Thus, conditioning on X breaks the correlation between D
and the error term in the first example but not in the second example. Because the
observed data are the same for both examples, this difference is entirely a function of
the underlying potential outcomes that generate the data.
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Table 6.5 A Rearrangement of the Example in Table 6.4 That Shows How
Regression Adjustment Is Differentially Effective

Regression adjustment with X
generates an unbiased estimate for D

y1i y0i υ1
i υ0

i yi di xi υ0
i+di(υ

1
i−υ0

i )

For those with X =1
In treatment group 20 10 2.5 2.5 20 1 1 2.5
In treatment group 20 10 2.5 2.5 20 1 1 2.5
In control group 20 10 2.5 2.5 10 0 1 2.5

For those with X =0
In treatment group 15 5 −2.5 −2.5 15 1 0 −2.5
In control group 15 5 −2.5 −2.5 5 0 0 −2.5
In control group 15 5 −2.5 −2.5 5 0 0 −2.5

Regression adjustment with X
does not generate an unbiased estimate for D

y1i y0i υ1
i υ0

i yi di xi υ0
i+di(υ

1
i−υ0

i )

For those with X =1
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In control group 18 10 .83 2.5 10 0 1 2.5

For those with X =0
In treatment group 15 5 −2.17 −2.5 15 1 0 −2.17
In control group 15 5 −2.17 −2.5 5 0 0 −2.5
In control group 15 5 −2.17 −2.5 5 0 0 −2.5

This example demonstrates an important conceptual point. Recall that the basic
strategy behind regression analysis as an adjustment technique is to estimate

Y =α+ δD+Xβ+ ε∗,

where X represents one or more control variables, β is a coefficient (or a conformable
vector of coefficients if X represents more than one variable), and ε∗ is a residualized
version of the original error term ε from Equation (6.3); see our earlier presentation of
Equation (6.8). The literature on regression often states that an estimated coefficient

δ̂ from this regression equation is consistent and unbiased for the average causal effect
if ε∗ is uncorrelated with D. But, because the specific definition of ε∗ is conditional
on the specification of X , many researchers find this requirement of a zero correlation
difficult to interpret and hence difficult to evaluate.

The crux of the idea, however, can be understood without reference to the error
term ε∗ but rather with reference to the simpler and (as we have argued in Section
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6.2.2) more clearly defined error term υ0+D(υ1−υ0) from Equation (6.5) or, equiva-
lently, Dυ1+(1−D)υ0 from Equation (6.6). Regression adjustment by X in Equation
(6.8) will yield a consistent and unbiased estimate of the ATE when

1. D is mean independent of (and therefore uncorrelated with) υ0+D(υ1−υ0) for
each subset of respondents identified by distinct values on the variables in X ,

2. the causal effect of D does not vary with X , and

3. a fully flexible parameterization of X is used.

Consider the relationship between this set of conditions and what was described in Sec-
tion 4.3.1 as an assumption that treatment assignment is ignorable. Switching notation
from S to X in Equation (4.4) results in

(Y 0,Y 1) ⊥⊥ D | X, (6.10)

where, again, the symbol ⊥⊥ denotes independence. Now, rewrite the assumption, devi-
ating Y 0 and Y 1 from their population-level expectations:

(υ0,υ1) ⊥⊥ D | X. (6.11)

This switch from (Y 0,Y 1) to (υ0,υ1) does not change the assumption, at least insofar
as it is relevant here (because we have defined the individual-level causal effect as a
linear difference, because the expectation operator is linear, and because E[Y 0] and
E[Y 1] do not depend on who is in the treatment state and who is in the control
state). Consequently, ignorability of treatment assignment can be defined only with
respect to individual-level departures from the true average potential outcomes across
all members of the population under the assumptions already introduced.

Given that an assumption of ignorable treatment assignment can be written as
Equation (6.11), the connections between this assumption and the set of conditions
that we have said justify a regression estimator as consistent and unbiased for the ATE
can be explored. Two important points should be noted. First, if treatment assignment
is ignorable, as defined in Equation (6.11), then an estimator that conditions fully on
all values ofX exists that will yield a consistent and unbiased estimate of the ATE (and
that can be implemented in practice if the sample size is large enough). For reasons
we will explain in the next section, a regression estimator with dummy variables for
all but one categories of X will only be the appropriate estimator if, in addition, our
number 2 just above also holds: the causal effect of D does not vary with X . Second,
ignorability stipulates full independence. Instead, for our set of conditions, υ0 and υ1 –
as well as functions of them, such as υ0+D(υ1−υ0) – must only be mean independent
of D conditional on X , not fully independent of D conditional on X .

Finally, we should note that our three conditions are not the only ones that would
establish least squares estimators as consistent and unbiased for the ATE, but they are
the most common ones that would apply in most research situations.13 Our point in

13For example, the second condition can be dropped if the heterogeneity of the causal effect is
modeled as a function of X (i.e., the parameterization is fully saturated in both D and X). In this
case, however, regression then becomes a way of enacting a stratification of the data, as for the
matching techniques presented in Chapter 5.
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laying out these conditions is not to provide a rigid guideline applicable to all types of
regression models in all situations but instead to show why the earlier statement that
“ε∗ must be uncorrelated with D” is insufficiently articulated from a counterfactual
perspective.

A larger point of this section, however, is that much of the received wisdom on
regression modeling breaks down in the presence of individual-level heterogeneity of
a causal effect, as would be present in general when causal effects are defined with
reference to underlying potential outcomes tied to well-defined causal states. In the
next section, we begin to explain these complications more systematically, starting from
the assumption, as in prior chapters, that causal effects are inherently heterogeneous
and likely to vary systematically between those in the treatment and control groups.
Beginning with the next section and continuing in Chapter 7 on weighted regression, we
then present the connections among regression, matching, and stratification, building
directly on our presentation of matching in Chapter 5.

6.3 Regression as Conditional-Variance-Weighted
Matching

In this section, we return to the demonstrations utilized to explain matching estimators
in Chapter 5. Our goal is to show why matching routines and least squares regression
yield different results, even though a researcher is attempting to adjust for the same
set of variables.

We first show why least squares regression can yield misleading causal effect esti-
mates in the presence of individual-level heterogeneity of causal effects, even if the
only variable that needs to be adjusted for is given a fully flexible coding (i.e., when
the adjustment variable is parameterized with a dummy variable for each of its val-
ues, save one for the reference category).14 In these cases, least squares estimators
implicitly invoke conditional-variance weighting of individual-level causal effects. This
weighting scheme generates a conditional-variance-weighted estimate of the average
causal effect, which is not an average causal effect that is often of any inherent interest
to a researcher.15 Angrist (1998) provides a more formal explanation of the following
results, which is then placed in the context of a larger class of models in Angrist and
Krueger (1999) and Angrist and Pischke (2009).

14When we write of a fully flexible coding of a variable, we are referring to a dummy variable coding
of that variable only (i.e., one dummy for a two-category variable, two dummies for a three-category
variable, and so on). As we will discuss later, a saturated model entails a fully flexible coding of
each variable as well as all interactions between the dummy variables of each them. For the models
discussed in this section, a saturated model would include interactions between the causal variable
D and each dummy variable for all but one of the values of S. For a model with only a fully flexible
coding of S, these interactions are left out.

15It could be of interest to a researcher who seeks a minimum-variance estimate and who has reason
to believe that the inconsistency and bias of the regression estimate is modest. We discuss this point
later, but we hope to show that most applied researchers have good reason to want consistent and
unbiased estimates rather than minimum mean-squared-error estimates that remain inconsistent and
biased.



6.3. Regression as Conditional-Variance-Weighted Matching 207

Regression Demonstration 2

Reconsider Regression Demonstration 1 (see page 189), but now step back from the
cautious mindset of the fictitious descriptively oriented researcher. Suppose that a
causality-oriented researcher had performed the same exercise and obtained the same
results for the regression model reported above in Equation (6.2):

Ŷ =1.86+2.75(D)+3.76(S2)+8.92(S3). (6.12)

We know from Matching Demonstration 1 (see page 145), on which Regression Demon-
stration 1 is based, that for this hypothetical example the ATT is 3, the average treat-
ment effect for the controls (ATC) is 2.4, and the unconditional ATE is 2.64. If the
causality-oriented researcher were to declare that the coefficient on D of 2.75 in Equa-
tion (6.12) is a good estimate of the causal effect of D on Y , then the researcher would
be incautious but not appreciably incorrect. The value of 2.75 is indeed close to the
true ATE of 2.64, and we know from the setup of Regression Demonstration 1 that
the variable S continues to serve as a perfect stratifying variable, as defined earlier.16

Thus, if the researcher were to state that the regression model in Equation (6.12)
statistically controls for the common effect of S on both D and Y , as in Equation
(6.8), where S is specified as the sole element of X but as two dummy variables S2
and S3, then the researcher is not horribly off the mark. The researcher has offered an
adjustment for S and gotten close to the true ATE.

Unfortunately, the closeness of the estimate to the true ATE is not a general fea-
ture of this type of a regression estimator. Under this particular specification of the
regression equation, the OLS estimator yields precisely the value of 2.75 in an infinite
sample as the sum of sample analogs to three terms:

Var[D|S=1]Pr[S=1]∑
S

Var[D|S= s]Pr[S= s]
{E[Y |D=1,S =1]−E[Y |D=0,S=1]} (6.13)

+
Var[D|S=2]Pr[S =2]∑
S

Var[D|S= s]Pr[S= s]
{E[Y |D=1,S =2]−E[Y |D=0,S=2]}

+
Var[D|S=3]Pr[S =3]∑
S

Var[D|S= s]Pr[S= s]
{E[Y |D=1,S =3]−E[Y |D=0,S=3]} .

These three terms are not as complicated as they may appear. First, note that the dif-
ferences in the braces on the right-hand side of each term are simply the

16Moreover, S satisfies the back-door criterion by construction. However, this does not imply that
every conditioning estimator will deliver consistent and unbiased estimates of the ATT, ATC, or ATE
that could be calculated nonparametrically in a sufficiently large sample. In this case, as we show in
this section, the least squares estimator introduces parametric constraints that deliver an alternative
average causal effect. The back-door criterion gives a correct result – a causal inference of some type
is indeed warranted by conditioning via a regression model on variables that satisfy the back-door
criterion – but the causal effect estimate that is produced by the regression estimator is not one of
the average causal effects that the analyst typically wants.
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stratum-specific differences in the outcomes, which in this case are

E[Y |D=1,S=1]−E[Y |D=0,S=1]= 4−2, (6.14)

E[Y |D=1,S=2]−E[Y |D=0,S=2]= 8−6, (6.15)

E[Y |D=1,S=3]−E[Y |D=0,S=3]= 14−10. (6.16)

The left-hand portion of each term is then just a weight, exactly analogous to the
stratum-specific weights that were used for Matching Demonstration 1 to average
the stratum-specific causal effect estimates in various ways to obtain consistent and
unbiased estimates of the ATE, ATT, and ATC. But, rather than use the marginal
distribution of S, Pr[S], or the two conditional distributions of S, Pr[S|D = 1] and
Pr[S|D=0], a different set of weights is implicitly invoked by the least squares oper-
ation. In this case, the weights are composed of three pieces: (1) the variance of the
treatment variable within each stratum, Var[D|S= s], (2) the marginal probability of
S for each stratum, Pr[S= s], and (3) a summation of the product of these two terms
across S so that the three weights sum to 1.

Accordingly, the only new piece of this estimator that was not introduced and
examined for Matching Demonstration 1 is the conditional variance of the treatment,
Var[D|S = s]. Recall that the treatment variable is distributed within each stratum
solely as a function of the stratum-specific propensity score, Pr[D|S = s]. Thus, the
treatment variable is a Bernoulli distributed random variable within each stratum. As
can be found in any handbook of statistics, the variance of a Bernoulli distributed
random variable is p(1−p), where p is the Bernoulli probability of success (in this case
D equal to 1) instead of failure (in this case D equal to 0). Accordingly, the expected
variance of the within-stratum treatment variableD is (Pr[D|S= s]) (1−Pr[D|S = s]).

For this example, the conditional variances, Var[D|S= s], contribute to the numer-
ator of each weight as follows:

V ar[D|S =1]Pr[S =1]=

[(
.08

.08+ .36

)(
1− .08

.08+ .36

)]
(.08+ .36), (6.17)

V ar[D|S =2]Pr[S =2]=

[(
.12

.12+ .12

)(
1− .12

.12+ .12

)]
(.12+ .12), (6.18)

V ar[D|S =3]Pr[S =3]=

[(
.2

.2+ .12

)(
1− .2

.2+ .12

)]
(.2+ .12) . (6.19)

The terms in brackets on the right-hand sides of Equations (6.17)–(6.19) are Var[D|S=
1], Var[D|S = 2], and Var[D|S = 3]. The terms in the last set of parentheses on the
right-hand sides of Equations (6.17)–(6.19) are the marginal probability of S for each
stratum, Pr[S = 1], Pr[S = 2], and Pr[S = 3]. For example, for the stratum with S =

1, Var[D|S = 1] =
[(

.08
.08+.36

)(
1− .08

.08+.36

)]
and Pr[S = 1] = (.08+ .36). Finally, the

denominator of each of the three stratum-specific weights in Equation (6.13) for this
example is the sum of Equations (6.17)–(6.19). The denominator is constant across all
three weights and scales the weights so that they sum to 1.

With an understanding of the implicit stratum-specific weights of least squares
regression, the regression estimator can be seen clearly as an estimator for the ATE
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but with supplemental conditional-variance weighting. Weighting is indeed performed
with respect to the marginal distribution of individuals across strata, as for the ATE in
Matching Demonstration 1, but weighting is also performed with respect to the condi-
tional variance of the treatment variable across strata as well. Thus, net of the weight
given to stratum-specific effects solely as a function of Pr[S], the conditional-variance
terms give more weight to stratum-specific causal effects in strata with propensity
scores close to .5 (where Var[D|S] approaches its maximum of .5× .5) and less weight
to stratum-specific causal effects in strata with propensity scores close to either 0 or 1
(where Var[D|S] approaches its minimum of 0×1 or 1×0).

Why would the OLS estimator implicitly invoke conditional-variance weighting
as a supplement to weighting simply by the marginal distribution of S? OLS is a
minimum-variance-based estimator of the parameter of interest. As a result, it gives
more weight to stratum-specific effects with the lowest expected variance, and the
expected variance of each stratum-specific effect is an inverse function of the stratum-
specific variance of the treatment variable D. Thus, if the two pieces of the weight-
ing scheme are not aligned (i.e., the propensity score is close to 0 or 1 for strata
that have high total probability mass but close to .5 for strata with low probabil-
ity mass), then a regression estimator of this form, even under a fully flexible cod-
ing of S, can yield estimates that are far from the true ATE even in an infinite
sample.

To see the effects that supplemental weighting by the conditional variance of the
treatment can have on a regression estimate, we consider alternative joint distributions
for S and D, which we then impose on the setup for Matching Demonstration 1 and
Regression Demonstration 1. In particular, the values of E[Y 0|S,D], E[Y 1|S,D], and
E[Y |S,D] in the final three panels of Table 6.1 again obtain, such that S continues
to offer a perfect stratification of the data. Now, however, we assume two different
joint distributions of S and D in two variants reported in Table 6.6. For these two
alternative joint distributions of S and D, the marginal distribution of S remains the
same as for Table 6.1: Pr[S=1]= .44, Pr[S=2]= .24, and Pr[S=3]= .32. As a result,
the unconditional ATE is the same for both variants of the joint distribution of S
and D depicted in Table 6.6, and it matches the unconditional ATE for the original
demonstration represented fully in Table 6.1. In particular, the same distribution of
stratum-specific causal effects results in an unconditional ATE of 2.64. The difference
represented by each variant of the joint distributions in Table 6.6 is in the propensity
score for each stratum of S, which generates an alternative marginal distribution for
D and thus alternative true ATTs and ATCs (and, as we will soon see, alternative
regression estimates from the same specification).

For Variant I in Table 6.6, those with S equal to 1 or 2 are much less likely to be
in the treatment group, and those with S equal to 3 are now only equally likely to be
in the treatment group and the control group. As a result, the marginal distribution
of D is now different, with Pr[D=0]= .76 and Pr[D=1]= .24. The ATT is now 3.33
whereas the ATC is 2.42. Both of these effects are larger than was the case for Table
6.1 because (1) a greater proportion of those in the control group have S = 3 (i.e.,
.16
.76 > .12

.6 ), (2) a greater proportion of those in the treatment group have S = 3 (i.e.,
.16
.24 >

.2

.4 ), and (3) those with S=3 gain the most from the treatment.
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Table 6.6 The Joint Probability Distribution for Two
Variants of the Stratifying and Treatment Variables in
Prior Regression Demonstration 1

Joint probability distribution of S and D
Control group: D=0 Treatment group: D=1

Variant I

S=1 Pr[S=1,D=0]= .40 Pr[S =1,D=1]= .04
S=2 Pr[S=2,D=0]= .20 Pr[S =2,D=1]= .04
S=3 Pr[S=3,D=0]= .16 Pr[S =3,D=1]= .16

Variant II

S=1 Pr[S=1,D=0]= .40 Pr[S =1,D=1]= .04
S=2 Pr[S=2,D=0]= .12 Pr[S =2,D=1]= .12
S=3 Pr[S=3,D=0]= .03 Pr[S =3,D=1]= .29

For Variant II, those with S equal to 1 are still very unlikely to be in the treatment
group, but those with S equal to 2 are again equally likely to be in the treatment group.
In addition, those with S equal to 3 are now very likely to be in the treatment group.
As a result, the marginal distribution of D is now different again, with Pr[D=0]= .55
and Pr[D=1]= .45, and the ATT is now 3.29, whereas the ATC is 2.11. Both of these
are smaller than for Variant I because a smaller proportion of both the treatment
group and the control group have S =3.

For these two variants of the joint distribution of S and D, we have examples in
which the unconditional ATE is the same as it was for Regression Demonstration 1, but
the underlying ATT and ATC differ considerably. Does the reestimation of Equation
(6.12) for these variants of the example still generate an estimate for the coefficient
on D that is (1) relatively close to the true unconditional ATE and (2) closer to the
unconditional ATE than either the ATT or the ATC?

For Variant I, the regression model yields

Ŷ =1.90+3.07(D)+3.92(S2)+8.56(S3) (6.20)

for an infinite sample. In this case, the coefficient of 3.07 on D is not particularly close
to the unconditional ATE of 2.64, and in fact it is closer to the ATT of 3.33 (although
still not particularly close). For Variant II, the regression model yields

Ŷ =1.96+2.44(D)+3.82(S2)+9.45(S3). (6.21)

In this case, the coefficient of 2.44 on D is closer to the unconditional ATE of 2.64,
but not as close as was the case for Equation (6.12) when applied to the original data
specified for Regression Demonstration 1. It is now relatively closer to the ATC, which
is 2.11 (although, again, still not particularly close).

For Variant I, the regression estimator is weighted more toward the stratum with
S=3, for which the propensity score is .5. For this stratum, the causal effect is 4. For
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Variant II, the regression estimator is weighted more toward the stratum with S =2,
for which the propensity score is .5. And, for this stratum, the causal effect is 2.17

What is the implication of these alternative setups of the same basic demonstra-
tion? Given that the unconditional ATE is the same for all three joint distributions of
S and D, it would be unwise for the incautious researcher to believe that this sort of a
regression specification will provide a reliably close estimate to the unconditional ATE,
the ATT, or the ATC when there is reason to believe that these three average causal
effects differ because of individual-level heterogeneity. The regression estimate will be
weighted toward stratum-specific effects for which the propensity score is closest to .5,
net of all else.

In general, regression models do not offer consistent or unbiased estimates of the
ATE when causal effect heterogeneity is present, even when a fully flexible coding is
given to the only necessary adjustment variable(s). Regression estimators with fully
flexible codings of the adjustment variables do provide consistent and unbiased esti-
mates of the ATE if either (1) the true propensity score does not differ by strata or (2)
the average stratum-specific causal effect does not vary by strata.18 The first condition
would almost never be true (because, if it were, one would not even think to adjust
for S because it is already independent of D). And the second condition is probably
not true in most applications, because rarely are investigators willing to assert that
all consequential heterogeneity of a causal effect has been explicitly modeled.

Instead, for this type of a regression specification, in which all elements of a set of
perfect stratifying variables S are given fully flexible codings (i.e., a dummy variable
coding for all but one of the possible combinations of the values for the variables in
S), the OLS estimator δ̂OLS, multiple in Equation (6.9) is equal to

1

c

∑
s

VarN [di|si = s] PrN [si = s]{EN [yi|di =1,si = s]−EN [yi|di =0,si = s]} (6.22)

in a sample of size N . Here, c is a scaling constant equal to the sum (over all combi-
nations of values s of S) of the terms VarN [di|si = s]PrN [si = s].

There are two additional points to emphasize. First, the weighting scheme for strat-
ified estimates in Equation (6.22) applies only when the fully flexible parameterization
of S is specified. Under a constrained specification of S – e.g., in which some ele-
ments of S are constrained to have linear effects, as in Equation (6.1) – the weighting
scheme is more complex. The weights remain a function of the marginal distribution
of S and the stratum-specific conditional variance of D, but the specific form of each
of these components becomes conditional on the specification of the regression model

17Recall that, because by construction the marginal distribution of S is the same for all three joint
distributions of S and D, the Pr[S= s] pieces of the weights remain the same for all three alternatives.
Thus, the differences between the regression estimates are produced entirely by differences in the
Var[D|S= s] pieces of the weights.

18As a by-product of either condition, the ATE must be equal to the ATT and the ATC. Thus, the
regression estimator would be consistent and unbiased for both of these as well.



212 Chapter 6. Regression Estimators of Causal Effects

(see section 2.3.1 of Angrist and Krueger 1999). The basic intuition here is that a linear
constraint on a variable in S in a regression model entails an implicit assumption that
the underlying propensity scores are also linear in the values of S.19

Second, regression can make it all too easy to overlook the same sort of fundamental
overlap problems that were examined for Matching Demonstration 2 (see page 148).
Regression will implicitly drop strata for which the propensity score is either 0 or
1 in the course of forming its weighted average by Equation (6.22). As a result, a
researcher who interprets a regression result as a decent estimate of the ATE, but with
supplemental conditional-variance weighting, may be entirely wrong. No meaningful
average causal effect may exist in the population. This second point is best explained
by the following demonstration.

19For a binary causal variable D, a many-valued variable S that is treated as an interval-scaled
variable, and a regression equation

Ŷ = α̂+ δ̂(D)+ β̂(S) ,

the OLS estimator δ̂ is equal to

1

l

∑
s

ṼarN [d̂i|si = s] P̃rN [si = s]{EN [yi|di =1, si = s]−EN [yi|di =0, si = s]}

in a sample of size N , where l is a scaling constant equal to the sum of ṼarN [d̂i|si = s] P̃rN [si = s]
over all s of S.

The distinction between ṼarN [d̂i|si = s] P̃rN [si = s] and VarN [di|si = s] PrN [si = s] in the main
text results from a constraint on the propensity score that is implicit in the regression equation. In
specifying S as an interval-scaled variable, least squares implicitly assumes that the true propensity
score Pr[D|S] is linear in S. As a result, the first portion of the stratum-specific weight is

ṼarN [d̂i|si = s]≡ p̂s(1− p̂s),

where p̂s is equal to the predicted stratum-specific propensity score from a linear regression of di on
si: p̂s = ξ̂+ φ̂ss.

Perhaps somewhat less clear, the term P̃rN [si= s] is also a function of the constraint on S. P̃rN [si=
s] is not simply the marginal distribution of S in the sample, as PrN [si = s] is. Rather, one must use
Bayes’ rule to determine the implied marginal distribution of S, given the assumed linearity of the
propensity score across levels of S. Rearranging

Pr[di =1|si] = Pr[si|di =1]Pr[di =1]

Pr[si]

as

Pr[si] =
Pr[si|di =1]Pr[di =1]

Pr[di =1|si]
,

and then substituting p̂s for Pr[di =1|si], we then find that

P̃rN [si = s] =
PrN [si = s|di =1]PrN [di =1]

p̂s
.

The terms PrN [si = s|di =1] and PrN [di =1] are, however, unaffected by the linearity constraint on
the propensity score. They are simply the true conditional probability of S equal to s given D equal
to d as well as the marginal probability of D equal to d for a sample of size N .

Note that, if the true propensity score is linear in S, then the weighting scheme here is equivalent
to the one in the main text.
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Regression Demonstration 3

Reconsider the hypothetical example presented as Matching Demonstration 2 (see page
148), which is reproduced in Table 6.7. The assumed relationships that generate the
hypothetical data for this demonstration are very similar to those we have just consid-
ered. However, in this case no individual for whom S is equal to 1 in the population is
ever exposed to the treatment because Pr[S=1,D=1]=0 and Pr[S=1,D=0]= .4. As
a result, the population, and any sample from it, does not include an individual in the
treatment group with si =1.20 Because of this structural zero in the joint distribution
of S and D, the three conditional expectations, E[Y 0|S=1,D=0], E[Y 1|S=1,D=0],
and E[Y |S=1,D=0], are properly regarded as ill-defined and hence are omitted from
the last three panels of Table 6.7.

As shown for Matching Demonstration 2, the naive estimator can still be calculated
and will be equal to 8.05 in an infinite sample. Moreover, the ATT can be estimated

Table 6.7 The Joint Probability Distribution and
Conditional Population Expectations for Regression
Demonstration 3

Joint probability distribution of S and D
Control group: D=0 Treatment group: D=1

S=1 Pr[S =1,D=0]= .4 Pr[S =1,D=1]= 0
S=2 Pr[S =2,D=0]= .1 Pr[S =2,D=1]= .13
S=3 Pr[S =3,D=0]= .1 Pr[S =3,D=1]= .27

Potential outcomes under the control state

S=1 E[Y
0|S=1,D=0]= 2

S=2 E[Y
0|S=2,D=0]= 6 E[Y

0|S=2,D=1]= 6

S=3 E[Y
0|S=3,D=0]= 10 E[Y

0|S=3,D=1]= 10

Potential outcomes under the treatment state

S=1 E[Y 1|S=1,D=0]=4

S=2 E[Y
1|S=2,D=0]= 8 E[Y

1|S=2,D=1]= 8

S=3 E[Y
1|S=3,D=0]= 14 E[Y

1|S=3,D=1]= 14

Observed outcomes

S=1 E[Y |S=1,D=0]= 2
S=2 E[Y |S=2,D=0]= 6 E[Y |S=2,D=1]= 8
S=3 E[Y |S=3,D=0]= 10 E[Y |S=3,D=1]= 14

20Again, recall that we assume no measurement error in general in this book. In the presence of
measurement error, some individuals might be misclassified and therefore might show up in the data
with si =1 and di =1.
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consistently as 3.35 by considering only the values for those with S equal to 2 and 3.
But there is no way to consistently estimate the ATC, and hence no way to consistently
estimate the unconditional ATE.

Consider now the estimated values that would be obtained with data arising from
this joint distribution for a regression model specified equivalently as in Equations
(6.12), (6.20), and (6.21):

Ŷ =2.00+3.13(D)+3.36(S2)+8.64(S3). (6.23)

In this case, the OLS estimator is still equivalent to Equation (6.22), which in an infinite
sample would then be equal to Equation (6.13). But, with reference to Equation (6.13),
note that the weight for the first term,

Var[D|S=1]Pr[S=1]∑
S

V ar[D|S = s]Pr[S= s]
,

is equal to 0 because Var[D|S = 1] is equal to 0 in the population by construction.
Accordingly, the numerator of the stratum-specific weight is 0, and it enters into the
summation of the denominator of the other two stratum-specific weights as 0. As a
result, the regression estimator yields a coefficient on D that is 3.13, which is biased
downward as an estimate of the ATT and has no relationship with the ill-defined
ATE. If interpreted as an estimate of the ATT, but with supplemental conditional-
variance weighting, then the coefficient of 3.13 is interpretable. But it cannot be inter-
preted as a meaningful estimate of the ATE in the population once one commits to
the potential outcome framework and allows for individual-level heterogeneity of the
treatment effect.

The importance of this demonstration is only partly revealed in this way of pre-
senting the results. Imagine that a researcher simply observes {yi,di,si}Ni=1 and then
estimates the model in Equation (6.23) without first considering the joint distribution
of S and D as presented in Table 6.7. It would be entirely unclear to such a researcher
that there are no individuals in the sample (or in the population) whose values for both
D and S are 1. Such a researcher might therefore be led to believe that the coefficient
estimate for D is a meaningful estimate of the causal effect of D for all members of
the population.

All too often, regression modeling, at least as practiced in the social sciences, makes
it too easy for an analyst to overlook fundamental mismatches between treatment and
control cases. And, thus, one can obtain ATE estimates with regression techniques
even when no meaningful ATE exists.

6.4 Regression as an Implementation of a

Perfect Stratification

For completeness, in this section we make the (perhaps obvious) point that regression
can be used as a technique to execute a perfect stratification. If all cells of the implicit
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full cross-tabulation of the adjustment variables and the causal variable are uniquely
parameterized, using a saturated coding of all variables, regression can be used to
carry out a perfect stratification of the data.

Consider how the estimates presented in Matching Demonstration 1 (see page 145)
could have been generated by standard regression routines using a saturated coding
of the causal variable and all adjustment variables. Alternatively, one could effectively
estimate the ATE for Regression Demonstrations 1 and 2 (see pages 189 and 207,
respectively) by enriching the parameterization of the regression model that we showed
earlier does not generate a consistent and unbiased estimate of the ATE.

For the data common to these demonstrations, an analyst could specify S as two
dummy variables, D as one dummy variable, and include all two-way interactions
between S and D. In so doing, the analyst has enacted the same perfect stratification
of the data by fitting a model that is saturated in both S and D to all of the cells of
the first panel of Table 5.2:

Ŷ =2+2(D)+4(S2)+8(S3)+0(D×S2) +2(D×S3). (6.24)

The values of each of the six cells of the panel are unique functions of the six estimated
coefficients from the regression model.

With these coefficients, the analyst could then form differences within strata defined
by all values of S and then use the marginal distribution of S to generate a consistent
and unbiased estimate of the ATE (or use the conditional distribution of S given D
to obtain consistent and unbiased estimates of the ATT and ATC). Although this
last stratum-averaging step is not typically seen as part of a regression estimation
strategy, it is nonetheless compatible with it (and now quite easy to implement, using,
for example, the command margins after the command regress in Stata).

Nevertheless, for many applications, such a saturated model may not be possible,
and in some cases this impossibility may be misinterpreted. For Regression Demonstra-
tion 3 (see page 213), just presented in the last section, if one were to fit the seemingly
saturated model with the same six parameters as in Equation (6.24), the coefficient
on D would be dropped by standard software routines. One might then attribute this
to the size of the dataset and then instead use a more constrained parameterization,
that is, either enter S as a simple linear term interacted with D or instead specify
the model in Equation (6.23). These models must then be properly interpreted, and
in no case could they be interpreted as yielding consistent and unbiased estimates of
the ATE.

6.5 Regression as Supplemental Adjustment
When Matching

Although we have separated our presentation of matching and regression estimators
across two chapters for didactic purposes, we have been gradually working our way
toward Chapter 7 on weighted regression where we will show how matching and regres-
sion can be used together very effectively. It is appropriate at this point to note that
the matching literature has long recognized the utility of parametric regression as a
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supplemental adjustment technique that can be applied to traditional matching esti-
mators in attempts to eliminate remaining within-sample imbalance on the matching
variables. In this section, we offer a demonstration of how standard regression tech-
niques can be used to supplement matching estimators.

Regression Demonstration 4

Recall Matching Demonstration 4 (see page 171) and consider now how regression can
be used to supplement a matching algorithm. For Matching Demonstration 4, we pre-
sented matching estimates of the Catholic school effect on achievement for simulated
data. We offered matching estimators under two basic scenarios, first using an incom-
plete specification of treatment assignment and then using a complete specification
that includes a cognitive skills variable. Because both scenarios lack an adjustment for
the self-selection dynamic, in which individuals select into the treatment partly as a
function of their expected treatment effect, we only attempted to estimate the ATT.

In the columns labeled “Unadjusted,” Table 6.8 redisplays the average bias for
selected matching estimators from Table 5.7, under both specifications of the treatment

Table 6.8 Average Bias Comparisons for Selected Matching Estimates of the
ATT from Matching Demonstration 4, With and Without Supplemental
Regression Adjustment for the Assumed Determinants of Treatment
Assignment

Specification of treatment assignment variables:

Incomplete specification Complete specification

Method Unadjusted Adjusted Unadjusted Adjusted

Nearest-neighbor match:

1 without replacement (MI) 0.75 0.72 0.00 −0.10

1 with replacement (MI) 0.95 0.81 0.19 −0.12

1 with replacement and

caliper = .05 SD (MI) 0.98 0.86 0.07 −0.11

5 with replacement (MI) 1.17 0.83 0.50 −0.05

5 with replacement and

caliper = .05 SD (MI) 1.19 0.80 0.39 −0.13

Interval match:

10 fixed blocks (MI) 1.68 0.84 1.68 −0.11

Optimal match (MI-opt) 1.28 0.80 0.54 0.07

Genetic match (MI-gen) 0.96 0.80 0.23 −0.07

Coarsened exact match (cem) 1.28 0.86 0.35 −0.08

Notes: See notes to Table 5.6 for software details.
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assignment variables.21 For the two columns labeled “Adjusted,” the average bias is
reported for the same matching estimators across the same 10 datasets, but now using
a post-match regression adjustment for the matching variables.

Overall, Table 6.8 shows that supplemental regression adjustment reduces the aver-
age bias for nearly all of the matching estimators, which is consistent with the litera-
ture. The reductions occur for both the incomplete and complete specifications. This
does not imply that for any single sample a supplemental regression adjustment will
necessarily reduce bias, but on average such adjustments will reduce the bias that
would remain if matching alone were utilized.

The reason for the reductions in bias should be obvious. Any post-match imbalance
that remains in the matching variables is likely to have a component that exists as
differences in mean values of the matching variables across the treatment and con-
trol cases. If we then use a parametric regression model to adjust for the matching
variables in the matched datasets, the regression model yields a net estimate of the
ATT after a linear adjustment for these lingering mean differences. The conditional-
variance weighting property of least squares regression estimators remains, but the
consequences of this property for estimates is greatly diminished when regression is
used in this supplementary way, after the data have already been aligned in pursuit of
the ATT.

We will discuss in Chapter 7 a variety of perspectives that suggest when and why
matching and regression should be pursued together. Moving beyond regression as
a supplementary procedure, we will show how weighted regression can be used to
implement matching estimators, picking up on the weighting perspective on matching
already introduced in Section 5.3.2.

6.6 Extensions and Other Perspectives

In this chapter, we have focused almost exclusively on the estimation of the effect of a
binary cause on an interval-scaled outcome, and we have considered only least squares
adjustments. Before carrying on to discuss least squares estimation of the effects of
many-valued causes, we of course must concede what the reader is surely aware of: We
have considered only a tiny portion of what falls under the general topic of regression
modeling. We have not considered categorical outcome variables, time series analysis,
nested data structures, variance-component models, and so on. One can gain a full
perspective of the types of regression modeling used in just sociology and economics
by consulting Agresti (2002), Allison (2009), Arminger et al. (1995), Berk (2004), Fox
(2008), Hamilton (1994), Hayashi (2000), Hendry (1995), Long (1997), Powers and
Xie (2000), Raudenbush and Bryk (2002), Ruud (2000), Stock and Watson (2007),
Treiman (2009), and Wooldridge (2010).

In this section, we consider only one modest extension: least squares regression
models for many-valued causes. This presentation then leads naturally to a discussion

21We selected the subset of the matching estimates from Table 5.7 based on whether the software
allowed for supplemental regression adjustment.
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that follows of what might be labeled the “all-cause correct specification” tradition of
regression analysis. Informed by the demonstrations offered in this chapter, we discuss
the attractiveness of the promise of this alternative perspective but also the implau-
sibility of the perspective as a general guide for either causal analysis or regression
practice in the social sciences.

6.6.1 Regression Estimators for Many-Valued Causes

We suspect that the vast majority of published regression estimates of causal effects
in the social sciences are for causes with more than two values. Accordingly, as in
Section 5.5.4 on matching estimators for many-valued causes, we must discuss the
additional complexities of analogous regression estimators. We will again, however,
restrict attention to an interval-scaled outcome.

First, again recall the basic setup for many-valued causes from Section 2.9, in which
we have a set of J treatment states, a corresponding set of J causal exposure dummy
variables, {Dj}Jj=1, and a corresponding set of J potential outcome random variables,

{Y Dj}Jj=1. The treatment received by each individual is Dj′.
How would one estimate the causal effect of such a J-valued cause with regression

methods? The first answer should be clear from our presentation in the last section:
Because regression can be seen as a form of matching, one can use the same basic
strategies outlined for matching estimators of many-valued causes in Section 5.5.4.
One could form a series of two-way comparisons between the values of the cause and
then model each pairwise causal effect.

If the number of causal states is relatively large, then this general strategy is
infeasible. Some smoothing across pairwise comparisons would be necessary, either by
collapsing some of the J causal states or by imposing an ordering on the distribution of
the causal effect across the J causal states. The most common parametric restriction
would be to assume that the causal effect is linear in j for each individual i. For
example, for a set of causal states (such as years of schooling) enumerated by values

from 1, 2, 3, to J , the linearity assumption is the assumption that yDj
i =yD1

i +βi(j−1),
which requires that the difference yDj

i − yDj−1
i for each individual i be equal to a

constant βi. In this case, the individual-level causal effect is then a slope βi, rather
than the simple difference in potential outcomes, δi, specified earlier in Equation (2.1).
This setup is analogous to the dose-response models for matching estimators discussed
in Section 5.5.4, but it explicitly leaves open the possibility that the dose-response
relationship varies across individuals even though it remains linear.

Angrist and Krueger (1999) show in a very clear example how both a linearity
assumption on the individual-specific, dose-response relationship and a fully flexible
coding of adjustment variables results in an OLS weighting scheme for the average
value of βi in a sample that is even more complex than what we discussed earlier
for simple binary causes (see Regression Demonstration 2). A form of conditional-
variance weighting is present again, but now the weighting is in multiple dimensions
because least squares must calculate average derivatives across the linearly ordered
causal variable (see Angrist and Krueger 1999, equation 34). Because one cannot intu-
itively grasp how these weights balance out across all the dimensions of the implicit
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weighting scheme (at least we cannot do so), Angrist and Krueger help by offering a
familiar example: an OLS estimate of the average causal effect of an additional year of
schooling on labor market earnings, assuming linearity in years of schooling and using a
fully flexible coding of adjustment variables for age, race, and residence location. They
show that, for this example, OLS implicitly gives more weight to the causal effect of
shifting from 13 to 14 years of schooling and from 14 to 15 years of schooling than
for much more common differences, such as the shift from 11 to 12 years of schooling
(primarily because the net conditional unexplained variance of schooling is greatest for
the contrasts between 13 and 14 years and between 14 and 15 years). They also show
that, for this example, the piecewise increases in average earnings happen to be largest
for the years of schooling that OLS systematically weights downward. The result is
a least squares estimate under the linearity constraint of .094, which is smaller than
the weighted average estimate of .144 that one can calculate by dropping the linearity
constraint and then averaging year-specific estimates over the marginal distribution of
years of schooling.

For other examples, the weighting schemes may not generate sufficiently differ-
ent estimates because the overall weighting is a complex function of the relationship
between the unaccounted for variance of the causal variable within strata of the adjust-
ment variables and the level of nonlinearity of the conditional expectation function.
But the general point is clear and should be sobering: Linearity constraints across
causal states may lead OLS models to generate nonintuitive (and sometimes mislead-
ing) averages of otherwise easily interpretable stratum-specific causal effects.

6.6.2 The Challenge of Regression Specification

In this section, we discuss the considerable appeal of what can be called the all-cause,
complete-specification tradition of regression analysis. We argue that this orientation
is impractical for most of the social sciences, for which theory is too weak and the
disciplines too contentious to furnish perfect specifications that can be agreed on. At
the same time, we argue that inductive approaches to discovering flawless regression
models that represent all causes are mostly a form of self-deception, even though some
software routines now exist that can prevent the worst forms of abuse.

Consider first a scenario in which one has a theoretical model that one believes
is true. It suggests all of the inputs that determine the outcome of interest, as a set
of observable variables, and it is in the form of a specific function that relates all
inputs to the outcome. In this case, one can claim to have the correct specification
for a regression of the outcome on some function of the variables suggested by the
theoretical model. The only remaining challenges are then measurement, sampling,
and observation.

The weakness of this approach is that critics can claim that the model is not true
and hence that the entailed regression specification is wrong. Fighting off any such crit-
ics with empirical results can then be difficult, given that the regression specification
used to generate the empirical results has been called into question.

In general, if members of a community of competing researchers assert their own
true models and then offer up purportedly flawless regression models, the result may
be a war of attrition in which no scientific progress is possible. It is therefore natural to
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ask: Can the data generate an all-cause, complete-specification regression model that
all competing researchers can jointly adopt?

The first step in answering this question is to determine what an all-cause, complete
specification would be, which is sometimes simply labeled a “correct specification.”22

In his 1978 book Specification Searches: Ad Hoc Inference with Nonexperimental Data,
Edward Leamer lays out the following components of what he labels “The Axiom of
Correct Specification”:

(a) The set of explanatory variables that are thought to determine (linearly)
the dependent variable must be

(1) unique,
(2) complete,
(3) small in number, and
(4) observable.

(b) Other determinants of the dependent variable must have a probability
distribution with at most a few unknown parameters.

(c) All unknown parameters must be constant. (Leamer 1978:4)

But Leamer then immediately undermines the axiom as it applies to observational
data analysis in the social sciences:

If this axiom were, in fact, accepted, we would find one equation esti-
mated for every phenomenon, and we would have books that compiled
these estimates published with the same scientific fanfare that accompa-
nies estimates of the speed of light or the gravitational constant. Quite
the contrary, we are literally deluged with regression equations, all offering
to “explain” the same event, and instead of a book of findings we have
volumes of competing estimates. (Leamer 1978:4)

One can quibble with Leamer’s axiom (e.g., that component (a)(3) is not essential and
so on), but the literature seems to provide abundant support for his conclusion. Few
examples of flawless regression models suggested by true theoretical models can be
found in the social science literature. One might hope for such success in the future,
but the past 50 years of research do not give much reason for optimism.

Leamer instead argues that most regression models are produced by what he labels
a data-instigated specification search, which he characterizes as a Sherlock Holmes
form of inference wherein one refrains from developing a model or any firm hypotheses
before first considering extensively all the facts of a case. Leamer argues that this
approach to variable selection and specification is fraught with potential danger and
invalidates traditional notions of inference.

Consider the example of the Catholic school effect on learning, and in particular
the research of James Coleman and his colleagues. In seeking to estimate the effect of
Catholic schooling on achievement, Coleman did not draw a complete specification for

22The literature has never clearly settled on a definition that has achieved consensus, but Leamer’s
is as good as any. Part of the confusion arises from the recognition that a descriptively motivated
regression model can always be declared correct, no matter what its specification happens to be.
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his regression models from a specific theoretical model of human learning. This decision
was not because no such models existed, nor because Coleman had no appreciation for
the need for such models. He was, in contrast, well aware of classic behaviorist models
of learning (see Bush and Mosteller 1955, 1959) that specified complex alternative
mechanisms for sequences of responses to learning trials. Although he appreciated
these models, he recognized (see Coleman 1964:38) that they could not be deployed
effectively in the complex environments of secondary schooling in the United States,
the context of which he had already studied extensively (see Coleman 1961).

As a result, Coleman did not specify a learning model that justified the regression
models that he and his colleagues presented (see Sørensen 1998; Sørensen and Morgan
2000).23 Their basic specification strategy was instead to attempt to adjust for a
sufficient subset of other causes of learning so that, net of these effects, it could be
claimed that Catholic and public school students were sufficiently equivalent. The
specific variables that Coleman and his colleagues chose to include in their models
were based in part on Coleman’s deep knowledge of what predicts learning in high
school (and one could argue that Coleman was the most knowledgeable social scientist
on the topic in the world at the time). But he and his colleagues also adopted an
empirical approach, as indicated parenthetically at the end of the following account of
their selection of adjustment variables:

In order to minimize the effects of differences in initial selection masquerad-
ing as effects of differences in the sectors themselves, achievement subtests
were regressed, by sector and grade, on a larger number of background
variables that measure both objective and subjective differences in the
home. Some of these subjective differences may not be prior to the stu-
dent’s achievement, but may in part be consequences of it, so that there
may be an overcompensation for background differences. It was felt desir-
able to do this so as to compensate for possible unmeasured differences in
family background; but of course the results may be to artificially depress
the resulting levels of background-controlled achievement in Catholic and
other private schools. (A few additional background variables were ini-
tially included; those that showed no effects beyond the ones listed in the
following paragraph were eliminated from the analysis.) (Coleman et al.
1982:147)

Coleman and his colleagues then reported that the final list of variables included 10
they considered “clearly prior” to school sector – including family income, parents’

23When the 1982 data on seniors became available to supplement the 1980 data on sophomores,
Coleman and his colleagues did move toward a stronger foundation for their specifications, providing
an underlying model for the lagged achievement gain regression model that was an outgrowth of
Coleman’s early work on Markov chains and his proposals for longitudinal data analysis (Coleman
1964, 1981). In Hoffer et al. (1985:89–91), he and his colleagues showed that (subject to restrictions
on individual heterogeneity) the lagged test score model is a linearized reduced-form model of two
underlying rates (learning and forgetting) for the movement between two states (know and don’t
know) for each item on the cognitive test. Although the model is plausible, it is clearly constrained so
that it can be estimated with simple regression techniques (see Coleman 1981:8–9 for an explanation
of his modus operandi in such situations), and this is of course not the sort of constraint that one
must adopt if one is truly interested in laying out the correct theoretical model of learning.
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education, number of siblings, and number of rooms in the home – as well as 7 other
variables that they considered “not clearly prior” to school sector – including more
than 50 books in the home, owning a pocket calculator, and having a mother who
thinks the student should go to college after high school.

As so often occurs in causal controversies of public importance, critics found this
resulting list inadequate. From the perspective of their critics, Coleman and his col-
leagues had not provided a clear enough accounting of why some students were observed
in Catholic schools, whereas others were observed in public schools and why levels of
learning should be considered a linear function of background and the specific charac-
teristics selected. After arguing that more would be known when follow-up data were
collected and test score gains from sophomore to senior year could be analyzed, Alexan-
der and Pallas (1983) argued that Coleman and his colleagues should have searched
harder for additional adjustment variables:

Failing this [estimating models with pretest and posttest data], another
possibility would be to scout about for additional controls that might serve
as proxies for student input differences that remain after socioeconomic
adjustments. One candidate is the student’s curriculum placement in high
school. (Alexander and Pallas 1983:171)

Alexander and Pallas then laid out a rationale for this proxy approach, and they offered
models that showed that the differences between public and private schools are smaller
after conditioning on type of curriculum.

As this example shows, it is often simply unclear how one should go about selecting
a sufficient set of conditioning variables to include in a regression equation when adopt-
ing the “adjustment for all other causes” approach to causal inference. Coleman and
colleagues clearly included some variables that they believed that perhaps they should
not have included, and they presumably tossed out some variables that they thought
they should perhaps include but that proved to be insufficiently powerful predictors
of test scores. Even so, Alexander and Pallas criticized Coleman and his colleagues for
too little scouting.24

Leamer, as mentioned earlier, would characterize such scouting as a Sherlock Holmes–
style, data-driven specification search. Leamer argues that this search strategy turns
classical inference on its head:

if theories are constructed after having studied the data, it is difficult to
establish by how much, if at all, the data favor the data-instigated hypoth-
esis. For example, suppose I think that a certain coefficient ought to be
positive, and my reaction to the anomalous result of a negative estimate
is to find another variable to include in the equation so that the estimate
is positive. Have I found evidence that the coefficient is positive? (Leamer
1983:40)

24Contrary to the forecasts of Coleman and his critics, after the 1982 data were released, the specifi-
cation debate did not end. It simply moved on to new concerns, primarily how to adjust for sophomore
test scores (with or without a family background adjustment, with or without curriculum differences,
with only a subset of sophomore test scores, and with or without adjustment for attenuation that is
due to measurement error).
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Taken to its extreme, the Sherlock Holmes regression approach may discover relation-
ships between candidate independent variables and the outcome variable that are due
to sampling variability and nothing else. David Freedman showed this possibility in a
simple simulation exercise, in which he sought to demonstrate that “in a world with
a large number of unrelated variables and no clear a priori specifications, uncritical
use of standard [regression] methods will lead to models that appear to have a lot of
explanatory power” (Freedman 1983:152). To show the plausibility of this conclusion,
Freedman constructed an artificial dataset with 100 individuals, one outcome variable
Y , and 50 other variablesX1 through X50. The 100 values for each of these 51 variables
were then independent random draws from the standard normal distribution. Thus,
the data represent complete noise with only chance dependencies between the variables
that mimic what any real-world sampling procedure would produce. The data were
then subjected to regression analysis, with Y regressed on X1 through X50. For these
50 variables, 1 variable yielded a coefficient with a p value of less than .05 and another
14 had p values of less than .25. Freedman then ran a second regression of Y on the 15
variables that had p values of less than .25, and in this second pass, 14 of them again
turned up with p values of less than .25. Most troubling, 6 of them now had p values
of less than .05, and the model as a whole had an R2 of .36. From pure noise and sim-
ulated sampling variability, Freedman produced a regression model that looks similar
to any number of those published in social science articles. It had six coefficients that
passed conventional standards of statistical significance, and it explained a bit more
than one third of the variance of the outcome variable.25

The danger of data-driven specification searches is important to recognize, but not
all procedures are similarly in danger, especially given developments since Leamer first
presented his critique in the 1970s and 1980s. There is a new literature on data mining
and statistical learning that has devised techniques to avoid the problems highlighted
by Freedman’s simulation (see Hastie et al. 2001). For a very clear overview of these
methods, see Berk (2006, 2008). And, as we noted in Chapter 5, there are cases in
which a data-driven specification search is both permissive and potentially quite useful.
Consider again the causal graph in Figure 4.10 and suppose that one has a large
number of variables that may be associated with both D and Y in one’s dataset and
that one presumes may be members of either S or X . Accordingly, one has the choice
of conditioning on two different types of variables that lie along the back-door path
from D to Y : the variables in S that predict D or the variables in X that predict
Y . Engaging in a data-driven specification search for variables that predict Y will fall
prey to inferential difficulties about the causal effect of D on Y for exactly the reasons
just discussed. But a data-driven specification search for variables that predict D will
not fall prey to the same troubles, because in this search one does not use any direct
information about the outcome Y .

Even so, data-instigated specifications of regression equations remain a problem in
practice, because few applied social scientists use the fair and disciplined algorithms
in the statistical learning literature. The Catholic school example is surely a case in

25Raftery (1995) repeated Freedman’s simulation experiment and obtained even more dramatic
results.
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which scouting led to the inclusion of variables that may not have been selected by
a statistical learning algorithm. But, nonetheless, none of the scholars in the debate
dared to reason backwards from their regression models in order to declare that they
had inductively constructed a true model of learning. And, in general, it is hard to find
examples of complete inductive model building in the published literature; scholars are
usually driven by some theoretical predilections, and the results of mistaken induction
are often fragile enough to be uncovered in the peer review process.26 Milder forms of
misspecification are surely pervasive.

6.7 Conclusions

Regression models, in their many forms, remain one of the most popular techniques for
the evaluation of alternative explanations in the social sciences. In this chapter, we have
restricted most of our attention to OLS regression of an interval-scaled variable on a
binary causal variable. And, although we have considered how regression modeling can
be used as a descriptive data reduction tool, we have focused mostly on regression as
a parametric adjustment technique for estimating causal effects, while also presenting
some of the connections between regression and matching as complementary forms of a
more general conditioning estimation strategy. We conclude this chapter by discussing
the strengths and weaknesses of regression as a method for causal inference from
observational data.

The main strengths of regression analysis are clearly its computational simplic-
ity, its myriad forms, its familiarity to a wide range of social scientists, and the ease
with which one can induce computer software to generate point estimates and stan-
dard errors. These are all distinct advantages over the matching techniques that we
summarized in Chapter 5.

But, as we have shown in this chapter, regression models have some serious weak-
nesses. Their ease of estimation tends to suppress attention to features of the data
that matching techniques force researchers to consider, such as the potential hetero-
geneity of the causal effect and the alternative distributions of covariates across those
exposed to different levels of the cause. Moreover, the traditional exogeneity assump-
tion of regression (e.g., in the case of least squares regression that the independent
variables must be uncorrelated with the regression error term) often befuddles applied
researchers who can otherwise easily grasp the stratification and conditioning per-
spective that undergirds matching. As a result, regression practitioners can too easily
accept their hope that the specification of plausible control variables generates an as-if
randomized experiment.

Focusing more narrowly on least squares models, we have shown through several
demonstrations that they generate causal effect estimates that are both nonintuitive
and inappropriate when consequential heterogeneity has not been fully parameterized.
In this sense, the apparent simplicity of least squares regression belies the complexity

26However, predictions about the behavior of financial markets can come close. See Krueger and
Kennedy (1990) for discussion and interpretation of the apparent effect of Super Bowl victories on
the stock market indices in the United States.
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of how the data are reduced to a minimum mean-squared-error linear prediction. For
more complex regression models, the ways in which such heterogeneity is implicitly
averaged are currently unknown. But no one seems to suspect that the complications of
unparameterized heterogeneity are less consequential for fancier maximum-likelihood-
based regression models in the general linear modeling tradition.



Chapter 7

Weighted Regression
Estimators of Causal Effects

With an Extended Example of a Weighted

Regression Alternative to Matching

In the last chapter, we argued that traditional regression estimators of casual effects
have substantial weaknesses, especially when individual-level causal effects are hetero-
geneous in ways that are not explicitly parameterized. In this chapter, we will introduce
weighted regression estimators that solve these problems by appropriately averaging
individual-level heterogeneity across the treatment and control groups using estimated
propensity scores. In part because of this capacity, weighted regression estimators are
now at the frontier of causal effect estimation, alongside the latest matching estimators
that are also designed to properly handle such heterogeneity.

In the long run, we expect that weighted regression estimators will prove to be a
common choice among alternative conditioning procedures that are used to estimate
causal effects. In fact, we expect that weighted regression estimators will be used
more frequently than the matching estimators presented in Chapter 5 when there is
good overlap in the distributions of adjustment variables across the treatment and
control groups. We have four primary reasons for this prediction, each of which we
will explain in this chapter. First, weighted regression estimators allow the analyst
to adopt the spirit of matching, and the clear thinking that it promotes, within a
mode of data analysis that utilizes widely available software and that is familiar to
most social scientists. Second, in contrast to their traditional unweighted analogs,
weighted regression estimators can be used to generate direct estimates of the average
treatment effect, average treatment effect for the treated, and average treatment effect
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for the controls (ATE, ATT, and ATC) in the presence of individual-level heterogeneity.
Third, in contrast to matching estimators, the calculation of standard errors for average
causal effect estimates is straightforward. Fourth, weighted regression estimators can
be utilized when analyzing complex survey data of many types.

Nonetheless, caution is still warranted, and additional work is needed on a vari-
ety of crucial issues before our prediction can be evaluated. In addition to determin-
ing whether some advantages are real (e.g., the range of conditions under which the
straightforward standard errors are also correct), some special challenges remain for
determining the ultimate value of weighted regression estimators. Most importantly,
as we will explain in detail below, the estimation of the weights that are passed to the
regression routine is at least as difficult as the estimation of the propensity scores for
matching routines. And, at present, no consensus exists on how sensitive conclusions
are to variation in estimated weights, especially when some of the individual-specific
weights appear unduly large.

In the remainder of this chapter, we will first introduce weighted regression esti-
mators for the ATE, ATT, and ATC. We will then present “doubly robust” estimators
that use the conditioning variables twice – first to estimate the relevant weights and
then to adjust for remaining imbalance that is not eliminated by the weights. After a
discussion of practical issues, including the concern over estimated weights that appear
extreme, we will conclude the chapter with an extended demonstration that shows the
value of weighted regression for direct estimation of the ATT and ATC.

Before offering this material, we should clarify that we will be writing narrowly
about the usage of model-based weights to estimate average treatment effects. Weighted
regression as a data analysis procedure is a much more general topic, and it has been
used frequently for two other distinct purposes. First, regression equations can be
weighted by individual-specific estimates of the inverse variance of the regression error
term, which results in a weighted regression form of a feasible generalized least squares
(FGLS) estimator.1 The goal of the weighted estimator in this case is to promote
efficiency of estimation, relative to unweighted ordinary least squares (OLS), in the
presence of heteroscedasticity. Second, sampling weights, when not solely a function
of the observed variables in the regression model, are used to weight regression equa-
tions in order to generate coefficients that can be interpreted as consistent estimates
of population-level parameters. Although we will not consider FGLS estimators here,
we will consider how sampling weights can be used along with the propensity-score-
based weights that we will present in this chapter. Nonetheless, the justification for
using sampling weights is distinct from the goals of generating consistent and unbiased
estimates of the ATE, ATT, and ATC by using weights to adjust for confounding.

7.1 Weighted Regression Estimators of the ATE

In this section, we show how weighted regression estimators can be used to gener-
ate consistent and unbiased estimates of the ATE, as long as conditioning variables
that satisfy the back-door criterion have been observed and properly utilized. These

1For details, see any regression textbook, such as Draper and Smith (1998) or Greene (2000).
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methods have diverse and overlapping origins – inverse probability weighting in sur-
vey statistics (see Kish 1965, 1987; Thompson 2002), missing data imputation and
survey nonresponse adjustment via weighted complete-case analysis (see Little 1982;
Little and Rubin 2002), weighting procedures in multiple regression analysis for data
from stratified samples (see DuMouchel and Duncan 1983), propensity-score mod-
els and general methods for modeling the probability of treatment assignment (see
Rosenbaum and Rubin 1983b; Rubin 2006; Rubin and Thomas 2000), direct adjust-
ment estimators (see Rosenbaum 1987, 2002), econometric evaluation estimators
(Imbens 2004; Imbens and Wooldridge 2009), and inverse probability of treatment
weighting in epidemiology (see Robins and Hernn 2009; Robins and Ritov 1997; van
der Laan and Robins 2003).

Recall first the hypothetical example in Matching Demonstration 3 (see page 153),
where matching was considered a method to weight the data in order to balance
predictors of treatment assignment and thereby calculate contrasts that can be given
causal interpretations. In this section and the next, we show that the three propensity-
score-weighting estimators presented there as Equations (5.12) through (5.14) can be
specified as three weighted regression estimators.

To estimate the ATE with weighted regression, one first must estimate the pre-
dicted probability of treatment, p̂i, for units in the sample, which is again the esti-
mated propensity score. All of the methods discussed so far can be used to obtain
these estimated values. Once the values for p̂i are obtained, weights for the ATE are
constructed as

For di =1: wi, ATE =
1

p̂i
,

(7.1)

For di =0: wi, ATE =
1

1− p̂i
.

These weights are equivalent in structure to survey weights that must be used to
weight complex samples so that they are representative of their respective target pop-
ulations. Here, the weights, wi, ATE, can be used to weight those in the treatment
group and those in the control group so that both of these groups have the same
weighted distribution on (observed) determinants of treatment assignment as the full
population (where, in this case, the full population of interest is composed of both the
population-level treatment group and the population-level control group).

To then estimate the ATE, a weighted bivariate regression model is estimated,
where yi are the values for the outcome, di are the values for the sole predictor variable,
and wi, ATE are the weights. No specialized software is required, and the weights are
treated exactly as if they are survey weights (even though they are not survey weights,
but instead weights based on estimated propensity scores that are relevant only for
the estimation of the ATE).

For those accustomed to matrix representations of regression estimates, note first
that the naive estimator in Equation (2.9) can be written as an OLS estimator,
(Q′Q)−1Q′y, where (1) Q is an n× 2 matrix that contains a vector of 1s in its first
column and a vector of the values of di for each individual in its second column and
(2) y is an n × 1 column vector containing values of yi for each individual. To estimate
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the ATE, a weighted regression estimator is utilized,

δ̂OLS, weighted≡ (Q′PQ)−1Q′Py, (7.2)

where P is an n × n diagonal matrix with the corresponding value of wi, ATE on the
diagonal for each individual and zero elsewhere. Consider the following demonstration,
which builds directly on the prior presentation of matching as weighting in Section 5.3.

Weighted Regression Demonstration 1

For Matching Demonstration 3 (see page 153), consistent and unbiased estimates of
the ATE were generated from averages of estimates of the ATT and the ATC. These
estimates of the ATT and ATC were differences in weighted averages of the values of
yi, constructed using weights defined by p̂i. In the demonstration we offer here, we
will show how the same estimates of the ATE can be generated directly by weighted
regression. We will dispense with the Monte Carlo setup from Matching Demonstra-
tion 3, which offers little additional insight, and we will instead shift to the simpler
scenario we have used elsewhere in demonstrations, where we assume an infinite sam-
ple. We will, however, vary the setup for the potential outcomes in order to show how
weighted regression can easily handle nonlinearities in the relationships that generate
the propensity scores and the potential outcomes.

As shown for Matching Demonstration 3 in Equations (5.8) and (5.9), the potential
outcomes were specified as functions of individual values for A and B:

y1i =102+6ai+4bi+υ1
i , (7.3)

y0i =100+3ai+2bi+υ0
i , (7.4)

where A and B are distributed as independent uniform random variables with a mini-
mum of .1 and a maximum of 1, and where υ1

i and υ0
i are independent random draws

from a normal distribution with expectation 0 and a standard deviation of 5. For each
individual, yi is then equal to y1i (di)+ (1−di)y

0
i , where the value of di is determined

by a Bernoulli distribution with the probability of 1 rather than 0 as the nonlinear
function in A and B that is presented in Figure 5.1 on page 154.

The first panel of Table 7.1 reproduces the true ATE for this example from the prior
Table 5.5, which is 4.53. The second panel of Table 7.1 introduces a second variant on
the basic setup for Matching Demonstration 3. For this variant, Equations (7.3) and
(7.4) are replaced with

y1i =102+3ai+2bi+6(ai× bi)+υ1
i , (7.5)

y0i =100+2ai+1bi−2(ai× bi)+υ0
i , (7.6)

but everything else remains the same. These alternative potential outcome definitions
result in a slightly more dramatic pattern for the average treatment effects (in partic-
ular, for the ATT and ATC, as will be discussed in the next demonstration where we
will estimate these directly). For now, this second variant generates a slightly different
value for the true ATE, which is 5.05 rather than 4.53.

For each variant of this hypothetical example, we first offer three coefficients on
D from unweighted OLS regression models using three different specifications: (1) Y
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Table 7.1 Weighted Regression Estimates of the
ATE, Using and Extending the Data Setup for
Matching Demonstration 3

ATE

Variant I: Y 1and Y 0 linear in A and B

True treatment effect 4.53

OLS regression estimates:

Y regressed on D 5.39

Y regressed on D and linear A and B 4.75

Y regressed on D and quadratic A and B 4.74

ATE-weighted regression of Y on D 4.53

Variant II: Y 1and Y 0 nonlinear in A and B

True treatment effect 5.05

OLS regression estimates:

Y regressed on D 5.88

Y regressed on D and linear A and B 5.47

Y regressed on D and quadratic A and B 5.44

ATE-weighted regression of Y on D 5.05

regressed on D, (2) Y regressed on D, A, and B, and (3) Y regressed on D, A, A2, B,
and B2. None of these unweighted OLS estimates is particularly close to its respective
true ATE for either variant, and the quadratic specifications of A and B help only very
little. Unweighted regression has invoked the form of implicit weighting explained in
Section 6.3, and as a result even in an infinite sample the estimated parameter would
not equal to the true ATE, only a variant of it that invokes supplementary weighting
by the conditional variances of A and B.

For the last row of each panel, we then implemented the weighted regression models
specified earlier in Equation (7.2). For these estimates, we take the estimated propen-
sity scores from the row labeled “Perfectly specified propensity score estimates” in
Table 5.5, form wi, ATE, as in Equation (7.1), and estimate a weighted bivariate regres-
sion model, where we implicitly assemble P by declaring the values for wi, ATE as sur-
vey weights in the weighted regression routine. Both resulting estimates land exactly
on the target true ATE, as will always be the case in a sufficiently large dataset if
the propensity scores are estimated flawlessly. No supplemental conditional-variance
weighting is introduced into the estimator because the information on A and B enters
the model only through the values of p̂i that then structure the weights.

Several caveats should be mentioned before we proceed. First, as with nearly all
other estimators we have considered so far, these results hold only in expectation over
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repeated samples or in the probability limit as a single sample increases to infinity. Sec-
ond, for the results to emerge as cleanly as in this demonstration, the propensity scores
must be estimated flawlessly. Misspecification of the propensity-score-estimating equa-
tion will push the point estimate off of the target ATE parameter. Although the litera-
ture has not yet systematically explored how sensitive point estimates are to different
types and degrees of misspecification, it is clear that a misspecified propensity-score-
estimating equation will not generate weights that will balance the underlying deter-
minants of treatment assignment for the same arguments discussed already in Chapter
5. Third, even if the weights are correct because the propensity scores are flawlessly
estimated, the point estimates will be imprecise across hypothetical repeated sampling
for finite datasets if large weights result after estimated propensity scores are passed
to Equation (7.1).2 Large values for wi, ATE will be present if the estimated propensity
score, p̂i, is either very close to 0 or very close to 1, for treatment or control cases,
respectively. Nonetheless, Imbens and Wooldridge (2009:35) offer the somewhat com-
forting position that “these concerns are less serious than those regarding [unweighted]
regression estimators because at least the . . . [weighted regression] estimates will accu-
rately reflect uncertainty.” In Section 7.4 on practical issues that confront weighted
regression analysis, we will discuss a literature that considers the consequences of large
weights and that advocates truncation of the distribution of the weights in some situ-
ations. Next, however, we will present equivalent estimators for the ATT and ATC.

7.2 Weighted Regression Estimators of the ATT
and the ATC

To estimate the ATT and ATC, a similar procedure can be adopted after constructing
appropriate weights, which are again functions of the estimated propensity scores, p̂i.
In particular, two sets of weights wi, ATT and wi, ATC are formed as

For di =1: wi, ATT =1, (7.7)

For di =0: wi, ATT =
p̂i

1− p̂i
,

and

For di =1: wi, ATC =
1− p̂i
p̂i

, (7.8)

For di =0: wi, ATC =1.

Again, these weights are analogs to survey weights, but the target population is no
longer the total population comprising the population-level treatment and control
groups together.3 Instead, when using the weight wi, ATT, the population-level treat-
ment group becomes the target population. Accordingly, the weight leaves the sampled

2In this case, the estimates can still be regarded as consistent for the ATE. But, for any single finite
sample, the point estimate of the ATE may not be close to the true ATE because of consequential
sampling variability in the tails of the distribution of the propensity score.

3However, they are not the same analogs. The weight wi, ATE is analogous to a survey weight, and
in particular the survey weights known as Horvitz-Thompson (HT) weights. HT weights are equal to
1/πi, where πi is the probability that individual i from the population will be included in the sample
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treatment group unaltered (because wi, ATT =1 for those in the treatment group), but
it attempts to turn the control group into a representative sample of the population-
level treatment group (because wi, ATT = p̂i

1−p̂i
for those in the control group). More

specifically, there are two distinct pieces of the weight that is applied to the control
group. The denominator of wi, ATT, is the same as for wi, ATE, 1− p̂i, and it therefore
weights the distribution of the control cases toward the full population, giving rela-
tively more weight to cases with larger propensity scores. The numerator of wi, ATT,
p̂i, then accentuates the relative weighting induced by the denominator so that the
control cases are properly weighted toward the target treatment group, not the full
population.4 The weight wi, ATC works in the opposite direction.

As with the ATE, to estimate point values for the ATT and ATC, one estimates a
weighted bivariate regression model of Y on D, specifying the corresponding weight for
the parameter of interest. The same weighted estimator in Equation (7.2) is utilized,
but now the n × n diagonal matrix P is specified with either wi, ATT or wi, ATC

on its diagonal, as we show now for a continuation of the same weighted regression
demonstration.

Weighted Regression Demonstration 1 (Continued)

This demonstration is a continuation of Weighted Regression Demonstration 1 (see
page 229) because the same setup is utilized, and the models differ only in the weights
that are specified. However, the two variants of the data setup show their differences
more clearly in this continuation, because they were designed to yield different patterns
of true values for the ATT and ATC.

As shown in the first panel of Table 7.2, the true ATT and ATC are 4.89 and
4.40, respectively, for Variant I. But, as shown in the second panel, the true ATT and
ATC are 5.77 and 4.79 for Variant II. For this second variant, the opposite-signed
parameters specified for the cross-product interactions of A and B in Equations (7.5)

(also known as the sampling probability for individual i). For the ATE weights in Equation (7.1), the
values for p̂i and 1− p̂i are each treated as if they are the HT inclusion probabilities, and two HT
weights are used to standardize the treatment and control groups to the full population (as if the
treatment and control groups are samples from the population based on different designs that must
then be weighted in different ways to be representative of the same original target population). In
contrast, the ATT and ATC weights, wi, ATT and wi, ATC in Equations (7.7) and (7.8), are either
equal to 1 or are the odds of values that correspond to HT sampling probabilities. The latter align
the treatment or control group with the group that receives uniform weights of 1 for each target
parameter. As such, the analog for the odds embedded within the weights wi, ATT and wi, ATC are
ratio adjustments to base weights (either base weights equal to 1 for simple random samples or equal to
HT survey weights or their generalizations for more complex designs). Accordingly, it is quite natural
to multiply the weights wi, ATT and wi, ATC by any survey weights that adjust for an underlying
survey design, as we will do later in this chapter when analyzing data from the 2002 and 2004 waves
of the Education Longitudinal Study. For the general reasoning behind the multiplication of weights,
see Levy, Lemeshow, Biemer, and Christ (2008) and Valliant, Dever, and Kreuter (2013, chapter 13).

4In other words, for a control case with a low propensity score, the numerator further decreases the
weight because the case is unlikely to reflect the characteristics of the treatment group. For example,

for p̂i = .2, wi, ATE = 1
1−p̂i

= 1
1−.2

=1.25 while wi, ATT = p̂i
1−p̂i

= .2
1−.2

= .25. For a control case with a

high propensity score, the numerator still decreases the weight, but it does so relatively less because
the case is more likely to reflect the characteristics of the treatment group. For example, for p̂i = .8,

wi, ATE = 1
1−p̂i

= 1
1−.8

=5 while wi, ATT = p̂i
1−p̂i

= .8
1−.8

=4.
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Table 7.2 Weighted Regression Estimates of the ATT and
ATC, Using and Extending the Data Setup for Matching
Demonstration 3

ATT ATC

Variant I: Y 1and Y 0 linear in A and B

True treatment effects 4.89 4.40

OLS regression estimates:

Y regressed on D 5.39 5.39

Y regressed on D and linear A and B 4.75 4.75

Y regressed on D and quadratic A and B 4.74 4.74

ATT or ATC weighted regression of Y on D 4.89 4.40

Variant II: Y 1and Y 0 nonlinear in A and B

True treatment effects 5.77 4.79

OLS regression estimates:

Y regressed on D 5.88 5.88

Y regressed on D and linear A and B 5.47 5.47

Y regressed on D and quadratic A and B 5.44 5.44

ATT or ATC weighted regression of Y on D 5.77 4.79

and (7.6) ensure that those with high levels of A and B together have much larger
individual-level treatment effects than others. For Variant I, the differential sizes of
the treatment effects are separable into simple linear pieces that can be independently
attributed to A and B, as shown in Equations (7.3) and (7.4).

For each panel of Table 7.2, the same three unweighted OLS regression estimates
already reported for Table 7.1 are reported again. Now, they are placed in both columns
because standard unweighted OLS regression estimators do not differentiate between
the ATE, ATT, or the ATC. The estimator is the same for each target parameter
because it is often regarded as an estimator of an implicit constant structural effect of
D on Y , which would render the ATE, ATT, and ATC equal if the constant-coefficient
assumption were true.

For the last row of each panel, we then implemented the weighted regression models
specified earlier in Equation (7.2). For these estimates, we again took the estimated
propensity scores from the row labeled “Perfectly specified propensity score estimates”
in Table 5.5, but now we formed the weights wi, ATT or wi, ATC in Equations (7.7)
and (7.8). Unlike the unweighted regression estimates, the ATT-weighted and ATC-
weighted regression estimates land exactly on their respective target parameters for
each variant. In addition, they effectively undo the complex pattern of nonlinearity for
Variant II, where the propensity scores and the potential outcomes are both nonlinear
in A and B.
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As for the weighted regression estimates of the ATE, these results only hold over
repeated samples from the same population or in the probability limit as a single sam-
ple approaches infinity. And the same caveats introduced in Section 7.1 still obtain. If
the equation that estimates the propensity scores is misspecified, then the estimates
of the ATT and ATC will be inconsistent and biased because the weights will not
fully balance the underlying determinants of treatment assignment. In addition, dis-
proportionately small or large weights may still emerge even if the propensity scores
are estimated flawlessly, and in these cases the estimates may be imprecise (i.e., still
consistent but not necessarily close to the true ATT or ATC in the single finite sample
under analysis).

7.3 Doubly Robust Weighted Regression
Estimators

Many perspectives exist on how matching and regression can be combined. In Section
6.5, we demonstrated how parametric regression can be used to provide supplemen-
tal adjustment for matching estimators, following several decades of practice in the
applied matching literature. The rationale for this type of adjustment is that the cho-
sen matching routine has almost certainly not eliminated all of the imbalance in the
observed treatment assignment variables, and a post-match parametric regression that
adjusts for the same variables while also estimating the treatment effect may eliminate
at least some of the lingering imbalance.

An alternative but related perspective has also been discussed at several points,
and it has more recent origins. Rather than consider regression as a supplement to
an imperfect matching routine, one can consider matching as a remedy to artifac-
tual regression results that have been produced by incautious data mining. Ho et al.
(2007) suggest that the general procedure one should carry out in any multivariate
analysis that aspires to generate causal inferences is to first balance one’s data as
much as possible with a matching routine and then estimate a regression model on
the matched data. From this perspective, matching is a preprocessor, which can be
used to prepare the data for subsequent analysis with something such as a regression
model.

Both of these perspectives are motivated by the goal of giving the analyst two
chances to “get it right,” first with a matching routine and second with a parametric
regression model. In this section, we present the most influential version of this encom-
passing strategy. For the estimators presented in Sections 7.1 and 7.2, the observed
determinants of treatment assignment were used only to estimate the propensity scores.
In this section, we present a related set of estimators that use these same variables a
second time, as part of the regression model that generates the point estimates. Recall
Equation (7.2),

δ̂OLS, weighted≡ (Q′PQ)−1Q′Py,

where we defined theQmatrix as containing a column of 1s and a column of individual-
level values di for the treatment variable, along with a diagonal matrix P that
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represents a set of weights specific to the target parameter. For this estimator, as
used up until this section, treatment assignment variables are presumed to have been
used only in a first stage to estimate the values of p̂i, which then structure the appro-
priate weights in P. The estimators that we present and demonstrate in this section
use the same variables a second time as supplementary adjustment variables. The esti-
mator in Equation (7.2) is still used, but these variables are included in additional
columns in Q.

The idea is to offer what James Robins and his colleagues refer to as a “doubly
robust” or “doubly protected” estimator (see Bang and Robins 2005; Robins and Rot-
nitzky 2001). Robins and Rotnitzky reflect on the fallibility of both standard regression
methods, as presented in Chapter 6, as well as propensity-score-based weighting esti-
mators, as presented in Sections 7.1 and 7.2:

There has been considerable debate as to which approach to confounder
control is to be preferred, as the first is biased if the outcome regression
model is misspecified while the second approach is biased if the treatment
regression, i.e., propensity, model is misspecified. This controversy could be
resolved if an estimator were available that was guaranteed to be consis-
tent . . .whenever at least one of the two models was correct. . . .We refer to
such combined methods as doubly-robust or doubly-protected as they can
protect against misspecification of either the outcome or treatment model,
although not against simultaneous misspecification of both. (Robins and
Rotnitzky 2001:922)

The basic motivation is to give the analyst two chances to “get it right,” in hopes that
misspecifications of the propensity-score-estimating equation and the final regression
equation will neutralize each other. And, although Robins is credited with developing
the recent asymptotic justification for a variety of specific procedures (see Robins and
Hernn 2009; Robins and Ritov 1997; Robins, Rotnitzky, and Zhao 1994; Scharfstein,
Rotnitzky, and Robins 1999; and van der Laan and Robins 2003), the idea of using
matching and regression together is quite general and has a long legacy in applied
work, as we noted earlier in Section 6.5 (see Cochran and Rubin 1973; Gelman and
King 1990; Heckman, Ichimura, and Todd 1998; Hirano and Imbens 2001; and Rubin
and Thomas 1996, 2000).

Because we used flawlessly estimated propensity scores for an infinite sample in
Weighted Regression Demonstration 1, there would be no value in demonstrating the
doubly robust estimation strategy for the same setup. We do not need a second chance
to “get it right.” Instead, we next offer a demonstration with doubly robust estimators,
where we use simulated data and vary our capacity to “get it right” when estimating
the propensity scores.

Weighted Regression Demonstration 2

For this demonstration, we revisit Matching Demonstration 4 and Regression Demon-
stration 4 (see pages 171 and 216, respectively). We will use the same 10 simulated
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datasets for the Catholic school effect on learning, modeled on the National Edu-
cation Longitudinal Study (NELS) data analyzed in Morgan (2001). Recall that for
this hypothetical substantive example, we have concluded that only the ATT can be
estimated with any degree of confidence because we have not observed variables that
would allow us to directly model self-selection on the individual-level effect of Catholic
schooling.

We already showed in Regression Demonstration 4 that matching performs well
when the complete specification of treatment assignment is used, along with a sup-
plementary regression adjustment. The reason for this result is precisely the double
protection argument outlined above. The varying level of imbalance that remains for
each matching estimator can be seen as slight misspecification of the matching model,
which is produced either because the propensity score model has not been respecified to
remove as much imbalance as possible or because the matching algorithm has features
that render it suboptimal for the particular application. The supplemental regression
adjustments, as shown in Table 6.8, reduce the average bias in the matching estimates
because they further adjust for remaining imbalance in the means of the matching
variables. As such, the matching and supplementary adjustment are working together
to minimize bias in the estimates of the ATT, using the double protection reasoning
introduced above.

In the demonstration we offer here, we will present doubly robust estimates from
ATT-weighted regression models for the same 10 simulated datasets. As shown in
Table 7.3, we again use estimated propensity scores from two scenarios, where for
the incomplete specification we omit the crucial cognitive skills variable as well as
additional higher-order and interaction terms. We then estimate the ATT, using these
two sets of propensity scores in two ways, first as simple weighted ATT estimators as
for Weighted Regression Demonstration 1 but also now as doubly robust estimators
as defined in this section.

For the first row of Table 7.3, we report the minimum, maximum, and average
bias of ATT-weighted regression estimates under both specifications of the models
that generate the values of p̂i across all 10 simulated datasets. These bias values are
directly comparable to those of the 19 matching estimators reported earlier in Table 5.7
for Matching Demonstration 4. As shown here, the bias is substantial for the weighted
regression estimates that use the incomplete specification to estimate the propensity
scores. This result is the same as for the matching estimators reported in Table 5.7,
and the bias is produced mostly because of the exclusion of the variable for cognitive
skills. In contrast, the average bias for the weighted regression estimates that use the
complete specification to estimate the propensity score is small. In fact, the average
bias of the ATT-weighted regression is in the middle of the distribution of average bias
of all 19 matching estimators reported in the final column of Table 5.7.

For the second row of Table 7.3, the equivalent bias values are reported for the
doubly robust estimators, where the assumed treatment assignment/selection variables
are used a second time in the outcome regression equations. Perhaps surprisingly, the
double protection of supplementary regression adjustment does not narrow the aver-
age bias further (and, in fact, may even increase it for these 10 samples). This result
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Table 7.3 Bias for Weighted Regression Estimates of the ATT, Catholic
Schooling on Achievement Across 10 Simulated Datasets Utilized for Matching
Demonstration 4 and Regression Demonstration 4

Specification of treatment assignment variables:

Incomplete specification Complete specification

Method Min, Max Average Min, Max Average

Weighted regression estimate of

the ATT −0.08, 2.17 0.82 −0.87, 1.11 −0.09

Doubly robust weighted

regression estimate

of the ATT −0.05, 2.19 0.83 −0.87, 1.08 −0.10

departs from what we showed in Table 6.8 for the same 10 datasets when supplemental
regression was used to eliminate some of the remaining bias. There, as opposed to here,
one can see clear evidence of double protection.

The reason that the bias is relatively unchanged, for this demonstration, and hence
little evidence of double protection seems to emerge, is that the ATT and ATC weights
are already very well estimated in the sense that they leave very little imbalance in the
data on the observed values that generate them. In particular, the logit estimation of
the propensity scores matches the assumed logistic distribution for the true propen-
sity scores. As such, no unusual weights emerge because, on average, the parametric
structure of the estimated logit model does not force an unwarranted distribution onto
the values of p̂i.

Is this result typical for weighted regression estimators? If the weights are estimated
very well in the sense that they effectively represent all of the relevant information in
the determinants of treatment assignment on which they are based (as can usually be
discerned by an examination of balance), then supplementary adjustment by the treat-
ment assignment/selection variables will have little or no effect on the estimates. None
of the virtuous effects of double protection would be evident because the supplemental
adjustment is redundant. In many cases, especially for small datasets, these condi-
tions will not be present, and the supplementary adjustment will offer clear double
protection.

As this demonstration and the last show, propensity scores can be used effectively
within a weighted regression framework to estimate average causal effects. The caveats
noted in Section 7.1 continue to apply, and in the next section we will discuss these.
In the section that follows the next, we will offer an extended and realistic example
with genuine data, which demonstrates how effective weighted regression estimates of
the ATT and ATC can be, but also how carefully they must be interpreted, just like
all other estimators considered in Chapters 5 through 7.
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7.4 Remaining Practical Issues in Weighted

Regression Analysis

In this section, we bridge the simulated results for this chapter with a related but real
application. We first discuss the need to consider the consequences of having estimated
weights that may appear to be unreasonably large. We then discuss how and why
weighted regression estimates have a distinct advantage over matching methods in
their ability to handle survey data, which is rarely generated by a simple random
sample. Finally, we consider alternatives for estimating standard errors.

We will not discuss here some issues that are common to both matching and
weighted regression estimators. Our prior discussions of estimation when treatment
assignment is nonignorable (Section 5.5.1), estimation on the region of common sup-
port (Section 5.5.2), and estimation for many-valued treatments (Section 5.5.4) apply
to weighted regression estimators as well in only slightly modified ways that should be
obvious.

7.4.1 The Concern Over Extreme Weights

As we noted when introducing weighted regression estimators of the ATE, it is pos-
sible to generate large weights if the estimated propensity score, p̂, is close to 0 or 1.
Similarly, for the weights used to estimate the ATT and ATC, values of p̂ close to 0 or
1 will generate either small or large weights. The literature on propensity-score-based
weighting includes a number of decidedly skeptical pieces (e.g., Freedman and Berk
2008), some of which focus on the consequences of such weights (e.g., Lee, Lessler,
and Stuart 2011). In some pieces, which we will not cite, manifestly poor weights
have been used to demonstrate the obvious point that estimated propensity scores
will not necessarily balance the data or warrant a causal inference. The more revela-
tory work demonstrates why one should proceed with caution when the estimation of
the propensity scores generates disproportionately large weights, which may then give
undue influence to only a very few members of a given sample. Yet, the literature has
not determined precisely when small and large weights should be regarded as extreme
or, more deeply, when extreme weights should be regarded as problematic.

To approach the key issues, first consider three scenarios in which extreme weights
might emerge:

1. The weights are based on an empirical model of treatment assignment that uses
observed variables as predictors that do not collectively sustain the relevant
ignorability assumption.

2. The weights are based on an empirical model of treatment assignment that uses
observed variables as predictors that sustain the relevant ignorability assumption,
but the model is nonetheless misspecified so that the estimated distribution of
the propensity score departs systematically from the distribution of the true
propensity score.

3. The weights are based on an empirical model of treatment assignment that uses
observed variables as predictors that sustain the relevant ignorability assumption,
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and the model is thought to be well specified, after an inspection of covariate
overlap and indices of balance. As a result, extreme weights must reflect either (a)
a strong treatment assignment/selection regime for which some true propensity
scores are very close to either 0 or 1 and/or (b) very unusual cases sampled at
random from the population.

Scenario 1 is a weak position from which to estimate a causal effect, and it does not rep-
resent a unique threat to weighted regression estimators. Analogous to the discussion
on matching in Chapter 5, for weighted regression estimators in this situation the ana-
lyst will necessarily pass on to the regression routine some poorly constructed weights
and thereby generate estimates that are inconsistent and biased for the true treatment
effects of interest. Although scenario 1 might generate extreme weights (especially if
some of the misspecification issues we will discuss for the next scenario emerge), it
has comparatively low probability of doing so. If back-door paths remain unblocked,
it is more likely than not that the range of the estimated propensity score will be too
narrow.

Scenarios 2 and 3, however, raise particular issues for weighted regression estima-
tors. For scenario 2, the model may, for example, “overfit” the data in the specific sense
that the model has been too heavily parameterized so that cases appear artificially
overdetermined. Imagine the extreme (but preposterous) scenario where a researcher
includes one or more individual-identifying indicator variables (e.g., a dummy variable
for “individual number 566 in the dataset” based on an assumption that this person is,
for reasons deeply felt by the investigator, perfectly predisposed to be in the treatment
group). Any such variable will lead to a perfect prediction for the relevant case, and
most software packages will happily deliver (if the relevant switch is turned on) a pre-
dicted probability of treatment assignment that is set arbitrarily close to either 0 or 1.
Milder forms of overfitting can also generate estimated propensity scores that are too
dispersed (see Hill et al. 2011).5 The solution here, however, is straightforward. One
should not overfit, and the protection against overfitting is to (1) ground a condition-
ing strategy in defendable assumptions about back-door paths and then (2) conduct
balance checking while specifying the equation for propensity-score estimation.6

For scenario 3, everything has been done correctly. Instead, it is simply an empirical
fact, as best can be discerned, that the true propensity scores are either very large or
very small for some members of the population (even though they are not structural

5Matching estimators of some types may escape from some of the consequences of over-dispersed
estimated propensity scores. One-to-one nearest-neighbor matching without replacement, for example,
pairs up treatment and control respondents and then calculates mean differences, ignoring the scale
of the propensity score. All cases are then given the same weight in the analysis. If calipers are used,
however, then cases with propensity scores very near to 0 or 1 may be cast aside as unmatchable. The
resulting matching estimator is then implicitly replacing unduly large weights with weights of zero,
which could be deemed worthwhile under an appropriate consideration of expected mean-squared
error.

6Another remedy, following the double protection strategy, would be to estimate weights based
on an incomplete propensity-score model, where the variable that generates the extreme weights
is removed from the propensity-score-estimating equation. This variable would then be used in the
weighted regression model that estimates the effect. A downside of this strategy is that conditional-
variance-based weighting with respect to this variable could then push the estimated effect off of its
target parameter. Accordingly, this remedy should be avoided if one has reason to believe that the
individual-level effect of interest varies in the levels of the variable in question.
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constants equal to 0 or 1, as for Matching Demonstration 2; see page 148). What are
the consequences of such very large weights, and what can be done to mitigate any
negative consequences?

We noted above that the ATE, ATT, and ATC weights can be interpreted as
analogs to survey weights. In the survey methodology literature, it is commonplace
to evaluate the distribution of constructed survey weights and to consider procedures
that may mitigate the consequences of using large weights. There are two common
positions.

First, one can regard the weights as correct, even though extreme, and simply carry
on (mindful that an appropriate variance estimator must, however, be utilized, as we
discuss below). Levy et al. (2008) describe the distribution of weights constructed for
the National Survey of Child and Adolescent Well-Being (NSCAW). These weights
were constructed to adjust for the stratified sampling design and also patterns of
nonresponse. They show that the constructed weights for the NSCAW had a minimum
of 2 and a maximum of 8,175 and write:

The distribution is highly skewed to the right, which is not atypical for
unequal probability sample designs. This is because the units in the popu-
lation that have higher probabilities of selection, and consequently smaller
base weights, will dominate the sample. Some units with very small selec-
tion probabilities will still be selected in large samples . . . and the weights
for these units can be quite large. (Levy et al. 2008:511)

In this situation, analysis can proceed even though most sample members have weights
less than 50, but a few have weights greater than 4,000, with one at 8,175.

Second, one can trim the weights back so that one does not have to assume that
the extreme weights are correct, as might be appropriate if one had a lack of confi-
dence in the model that generates them. Valliant et al. (2013) consider the procedure
that is used to trim the weights for the National Assessment of Educational Progress
(NAEP). Here, estimated weights that are greater than 3.5 times the median weight
are trimmed back to 3.5 times the median weight (and the aggregate trimmed-away
weight is then redistributed equally across cases beneath the upper bound for trim-
ming). This procedure was adopted by the data contractors with the expectation that
the trimmed weights would likely impart some bias to estimated parameters of interest
but would also lower the expected variance for each of them. Valliant et al. (2013:388)
note that “these methods are ad hoc and largely theoretical,” suggesting that in gen-
eral mean-squared-error calculations are less influential than “agency preference or
historical precedence.”7

The same two positions are applicable to weights used to estimate the ATE, ATT,
and ATC. First, an analyst who has confidence, perhaps after sufficient inspection of
overlap and a specification produced by careful balance checking (as in the extended
example we will offer below in Section 7.5), may choose to assert that the weights are

7A third possibility would be to smooth the weights nonparametrically across strata defined by
the initial set of estimated propensity scores, pulling in the extreme values in the tails and reducing
the dependence of all weight values on the particular specification of the propensity score estimating
equation. See Hong (2010, 2012) for a marginal mean weighting estimator that is based on such
smoothed weights.
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indeed correct and worth using, regardless of their distribution. Or, second, an analyst
can trim back the weights by truncating their distribution by progressively recoding
them to interior percentiles of the initial estimated distribution (i.e., perhaps first back
to the 1st and 99th percentiles, then the 5th and 95th percentiles, and so on).

Finally, a third option is also available, which is to focus the parameter of interest
on a subset of the population. Often referred to colloquially as “moving the goalposts,”
one changes the parameter of interest to something for which the seemingly extreme
weights are irrelevant. Rather than estimate the ATE, ATT, or ATC, one instead
estimates an average effect over a specific range of the estimated propensity score.
Although it would likely be hard to defend in a principled fashion, one could argue
that the average treatment effect for those whose propensity scores are ≥ .1 and ≤ .9
is a well-defined parameter of interest. A more common strategy would be to restrict
the analysis to the common support or region of overlap in the propensity score across
the treatment and control groups (see Section 5.5.2 for a description of this strategy
when offering matching estimates). In this case, one could, for example, still offer an
estimate of the ATT that may still apply to most members of the treatment group
and yet does not draw the cases with extreme weights into the analysis. The prudent
approach may be to take all three of these strategies and develop conclusions that do
not depend on adopting only one or another.

7.4.2 Survey Data

Relatively few of the surveys that are routinely analyzed by social scientists have
simple sample designs. As explained in survey methodology texts such as Thompson
(2002), most survey samples have multistage, stratified designs that entail unequal
probabilities of inclusion across members of the population. Accordingly, most of the
datasets from these surveys that are delivered to the desktops of observational analysts
come with survey weights that have been constructed to account for their design
features. Most also include weights that adjust for patterns of nonresponse, typically
constructed in a series of nested steps (see Valliant et al. 2013).

Weighted regression estimators of the ATE, ATT, and ATC can incorporate these
weights without difficulty. In contrast, there is no consensus position on how matching
algorithms should be deployed for complex survey data. Most matching routines were
designed for the analysis of simple random samples or nonsampled collections of units
that can be treated as equally representative pieces of information. For the weights
used for regression estimation of the ATE, ATT, and ATC, all one needs to do is
(1) weight the propensity-score-estimating equation by the appropriate survey weight
suggested by the data distributor and then (2) multiply the constructed weights for
the ATE, ATT, and/or ATC by the same survey weight. In so doing, the analyst then
passes to the regression routine a model-based weight for the relevant parameter that
is modified by the probability of inclusion in the analysis sample that is being utilized.
For example, the ATE weights can be formed as

For di =1: wi, ATE, complex=surveyweight × 1

p̂i
,

(7.9)

For di =0: wi, ATE, complex=surveyweight × 1

1− p̂i
.
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The survey weights will alter the distribution of the weights that are passed to the
regression routine, but they will not necessarily inflate the variance of the weight.
Cases with relatively low or high estimated propensity scores may have probabilities
of inclusion that place them near the mean of the constructed survey weights.8

7.4.3 Expected Sampling Variance and Estimated
Standard Errors

For all weighted regression estimators of the type considered here, no convincing ratio-
nale exists for assuming homoscedasticity when calculating standard errors. We rec-
ommend that researchers routinely report heteroscedasticity-consistent standard errors
(e.g., the robust option in Stata, which will be called automatically if the weights are
specified as pweights).9 These estimated standard errors are more likely to reflect
the true expected sampling variability of weighted regression estimates, although the
degree to which robust variance estimation is fully effective in finite samples (especially
small ones) has not been clearly established in the literature.

In our own simulation work, we have found that heteroscedasticity-consistent stan-
dard errors have performed quite well for larger samples and the estimation of param-
eters that are identified. Consider the following results. Following up on Weighted
Regression Demonstration 2 (see page 235), we performed the following Monte Carlo
simulation. Rather than analyze the 10 simulated datasets already produced for the
prior simulations (see the explanation of their generation in the introduction to Match-
ing Demonstration 4 on page 171), we generated 10,000 new datasets, each of which
included 10,000 simulated individuals. On average across all of these datasets, 1,049
cases were assigned to the treatment, and the average value for the true ATT was 6.93.

For each dataset, we then estimated the weighted regression and doubly robust
weighted regression estimates of the ATT, equivalent to those labeled as the “com-
plete specification” for Table 7.3. Across all 10,000 datasets, the average bias for each
estimator was <.01 (and we assume that the average bias of each would approach
0 in the limit if the number of simulated datasets was increased from 10,000 to
infinity). The standard deviations of the distributions of these estimates were .47
and .46, respectively, across all 10,000 datasets. These two values of .47 and .46 are
Monte Carlo benchmarks for the true standard errors of the corresponding weighted
regression estimates of the ATT.

To evaluate alternative methods for estimating standard errors for the point esti-
mates of the ATT, we also calculated two estimated standard errors, a classical stan-
dard error that assumes homoscedasticity and a heteroscedasticity-consistent standard
error (the latter using the “sandwich” package for R; see Lumley and Zeileis 2013).10

8The rationale for ratio multipliers to base survey weights is very general, and an analyst can
further multiply ATE, ATT, and ATC weights by model-based weights of any type (such as attrition-
adjustment weights in a longitudinal model, as for the demonstration in the next section based on
Morgan and Todd 2008).

9These estimated standard errors are also sometimes referred to as Huber-White standard errors,
robust standard errors, sandwich standard errors, and other variants; see Angrist and Pischke (2009,
chapter 8) as well as Long and Ervin (2000).

10The sandwich routine for R calls a version of the estimator that is known as “HC3” and that
corrects for finite sample bias in the estimated variance of the residuals (see Angrist and Pischke
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The classical standard errors were too small by a wide margin, at .26 and .24 on aver-
age, respectively. However, the heteroscedasticity-consistent standard errors were close
to the simulated true standard errors, at .50 and .46 on average.

As with matching estimators, more work is needed to determine when
heteroscedasticity-consistent standard errors are valid. However, we are confident that
they are more reasonable than the classical standard errors that are produced as
defaults by most software packages. For all types of regression modeling, Angrist and
Pischke (2009:307) recommend a conservative rule of thumb: For the parameter of
interest, calculate both classical and heteroscedasticity-consistent standard errors and
then use whichever one is larger.

7.5 An Extended Example

In this section, we offer a full analysis of the estimation of the ATT and the ATC from
a weighted regression perspective, using real data where we do not know either the
true treatment effects or the form of whatever underlying equation generates the true
propensity scores. The substance of the demonstration is again the Catholic school
effect on learning in high school.

Weighted Regression Demonstration 3

For this demonstration, we draw on Morgan and Todd (2008) and present the analysis
in the steps in which it was undertaken. In particular, we will first model the effect
of Catholic schooling on the math test scores of high school students in the tenth
and twelfth grade in 2002 and 2004 using standard OLS regression models typical of
the original research on the Catholic school effect. We will then offer weighted regres-
sion estimates of the ATT and ATC, under provisional acceptance of the identifying
Assumptions 1-S and 2-S in Equations (5.1) and (5.2). However, we will conclude the
demonstration with an extended set of interpretations that critically reevaluate these
assumptions, wherein we will argue that, at best, only the ATT is identified. Nonethe-
less, we aim to convince the reader that provisional estimation of the ATC helps to
explain why neither the ATC nor the ATE is identified and promotes a substantive
consideration of how best to interpret the estimate of the ATT.

Data and Measures. The data for this demonstration were drawn from the 2002
base-year and 2004 follow-up waves of the Education Longitudinal Study (ELS), col-
lected by the National Center for Education Statistics (NCES) of the United States
Department of Education. The ELS is a nationally representative sample of students
in public and private high schools, based on a two-stage sampling design that first

2009, chapter 8). Although available in Stata as well, the default that Stata calls with the commonly
used vce(robust) option (or the default that is automatically called in the background when pweights
are specified) is the original “HC0” that is biased for the variance of the residuals in finite samples.
Long and Ervin (2000) offer a Monte Carlo simulation that suggests that for linear regression and
samples of less than 500, the HC3 formula outperforms the HC0 formula. For their large sample size,
the differences were trivial in the simulation, as we expect they would be for our simulation too.
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draws a random sample of public and private high schools and then draws random
within-school samples of tenth graders (typically aged 16). For the first follow-up in
2004, respondents were tracked to alternative destinations, and most respondents were
twelfth graders (typically aged 18).

From among all base-year ELS participants, we restricted the analysis to respon-
dents who were enrolled in either a Catholic school or a public school during the
2001–2002 academic school year. Table 7.4 presents means and standard deviations
for the variables we will analyze on the 1,918 students who were enrolled in Catholic
schools and the 12,025 students who were enrolled in public schools (for a total of
13,943 students).

Several practical features of our subsequent analysis, which have their sources in
the complex nature of the ELS survey data, require detailed explanation. Because
these details are not essential for understanding the main contours of the demonstra-
tion, we will provide this supplementary information in footnotes (and they are more
completely specified in the appendix to Morgan and Todd 2008). Readers who are
contemplating using these estimators for a project with a similar data structure –
where a complex sampling design necessitates the use of a post-stratification weight
that corrects for unit-level nonresponse and where some models are estimated with
an adjustment for panel attrition – should consult this supplementary material for
specific practical advice. In short, the weights we utilize for the ATT and ATC estima-
tors are multiplied by additional weights that account for design features of the data.
In addition, we use heteroscedasticity-consistent estimated standard errors, with an
adjustment for clustering in schools, for both the ATT and ATC estimates reported
below.

Step 1: Estimate a Bivariate Regression Model. To initiate the analysis with
naive estimators, we first estimate three bivariate regression equations with ordinary
least squares,

Y = α̂+ δ̂OLS, bivariateD+ ε, (7.10)

where Y is one of three interval-scaled outcome variables and D is an indicator variable
equal to 1 for those who attend Catholic high schools (and equal to 0 for those who

attend public high schools). The estimated coefficient δ̂OLS, bivariate is the estimated
effect of D on Y . If regarded as a structural constant, this coefficient is an estimate of
the ATE, ATT, and ATC.

The bivariate regression estimates for the Catholic school effect on achievement are
presented in the first row of each panel of Table 7.5. The three panels offer analogous
results for three related outcome variables: tenth grade math test scores, twelfth grade
math test scores, and math gains between the tenth and twelfth grades. The estimates
of δ̂OLS, bivariate in Equation (7.10) are 7.31, 8.45, and 2.00 for these three different
outcome variables. Each of these estimates suggests that Catholic school students
have higher levels of achievement on standardized tests and on growth in achievement
between the tenth and twelfth grades, matching results from research since the 1980s
(see Section 1.3.2, page 22).
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Table 7.4 Means and Standard Deviations of the Primary Variables Used in the
Demonstration

Public Catholic

Variable Mean SD Mean SD

Math Test Scores

IRT estimated number right (10th grade) 41.68 13.97 48.99 12.02
IRT estimated number right (12th grade) 47.64 15.05 56.08 12.80
Math gain (12th grade −10th grade) 4.66 6.49 6.66 6.06

Female .50 .48
Race (White is the reference category)

Black .15 .06
Hispanic .17 .11
Asian .04 .04
Native American .01 <.01
Multiracial .04 .04

Urbanicity (Suburban is the reference category)

Urban .28 .58
Rural .21 .01

Region (Midwest is the reference category)

Northeast .18 .31
South .34 .23
West .23 .17

Family Background

Mother’s education (in years) 13.46 2.32 14.77 2.22
Father’s education (in years) 13.59 2.59 15.25 2.57
SEI score of mother’s occupation 44.98 12.87 50.55 12.85
SEI score of father’s occupation 44.15 11.70 49.81 11.71
Family income (natural log) 10.60 1.09 11.23 .90
Family income (natural log) squared 113.61 19.83 126.99 17.04
Family income (natural log) cubed 1225.64 295.46 1441.33 267.98
Two-parent family .75 .84

Past History (as reported by parent)

Learning disability .13 .07
Ever held back .13 .05
Repeated 4th grade .01 <.01
Years parents lived in current neighborhood 10.56 8.00 12.90 8.21

Source: Education Longitudinal Study, 2002 and 2004.

Step 2: Estimate a Multiple Regression Model by Introducing Adjustment
Variables. We next estimate three multiple regression equations with ordinary least
squares,

Y = α̂+ δ̂OLS, multipleD+Xβ̂+ ε, (7.11)



246 Chapter 7. Weighted Regression Estimators of Causal Effects

Table 7.5 Catholic School Coefficients from Baseline Regression
Models Predicting Tenth Grade Math Test Scores, Twelfth Grade Math
Test Scores, and Math Test Gains

Outcome Variable:
Predictor Variables 10th Grade Math Test Score

Model 1: Dummy for Catholic school 7.31
(.66)

Model 2: Model 1 + family background, 1.48
demographics, and past history (.52)

Outcome Variable:
12th Grade Math Test Score

Model 1: Dummy for Catholic school 8.45
(.74)

Model 2: Model 1 + family background, 2.13
demographics, and past history (.60)

Outcome Variable:
Math Gain (12th−10th)

Model 1: Dummy for Catholic school 2.00
(.23)

Model 2: Model 1 + family background, 1.27
demographics, and past history (.26)

Note: Heteroscedasticity-consistent standard errors in parentheses.

where X represents observed variables thought to determine D and Y (because they

lie on back-door paths from D to Y , as in Figure 5.2), δ̂OLS, multiple is the estimated

causal effect of D on Y adjusted for X , and β̂ is a conformable vector of estimated
coefficients that correspond to the variables in X .

Descriptive statistics for the 23 variables specified as X in Equation (7.11) are
presented above in Table 7.4. The variables in X represent the most common family
background, demographic, and educational history variables utilized in school effects
research. The multiple regression estimates for the Catholic school effect on achieve-
ment are presented in the second row of each panel of Table 7.5. The coefficients for
δ̂OLS, multiple are 1.48, 2.13, and 1.27 in the three panels, each of which is considerably

smaller than the corresponding values of δ̂OLS, bivariate from the estimation of Equation

(7.10). Nonetheless, the values of δ̂OLS, multiple suggest that Catholic school students
outperform public school students even after adjustments for the variables in X , again
matching results of past research since the 1980s.

Step 3: Estimate Propensity Scores and Form Weights to Estimate the
ATT and ATC. In this step we iteratively estimate propensity scores in pursuit of
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maximum achievable balance on the variables in X and then form weights based on the
final set of estimates. We first estimated a model of treatment selection/assignment
using the variables in X as predictors, and using the same simple linear specification
as for the multiple regression models estimated for Table 7.5.

In particular, we estimated a logit model where the variables specified as X are
the same 23 variables specified as X for the multiple regression models. The estimated
logit model fit the data reasonably well and delivered a chi-squared test statistic of
404 with 23 degrees of freedom. Predicted values for the estimated propensity scores,
p̂i, were then calculated. The estimated propensity scores had a mean of .0440 and a
standard deviation of .0688. The distribution was heavily skewed with a minimum of
.0000182 but a maximum of .857.

We then took these estimated propensity scores and formed two sets of weights,
wi, ATT and wi, ATC, using the expressions in Equations (7.7) and (7.8). We next
checked how effective this first set of estimated weights was in balancing the data.
Again, perfect balance requires that all moments of the joint distributions of the vari-
ables in X be exactly the same in the treatment and control groups.

In this case, the raw data are substantially imbalanced, as was shown in the means
and standard deviations that were reported above in Table 7.4. In general, public
school students are less advantaged and are more heterogeneous with respect to the
characteristics measured as X . For example, the mean of mother’s education in years
is 13.46 for those in public schools but 14.77 for those in Catholic schools. The mean
of the log of family income is 10.60 for those in public schools but 11.23 for those in
Catholic schools. Moreover, the dispersion of the log of family income is substantially
different as well; its standard deviation is 1.09 for those in public schools but only .90
for those in Catholic schools.

To assess the degree of balance achieved by the weights formed in this first step, a
balance criteria must be chosen. The first metric we use is the average of standardized
mean differences across treatment and control groups (see Rubin 1973a, 1973b). The
standardized difference of the mean for each variable in X is calculated as

|EN [xi|di =1]−EN [xi|di =0]|√
1
2VarN [xi|di =1]+ 1

2VarN [xi|di =0]
, (7.12)

which we introduced earlier as Equation (5.20). Equation (7.12) yields a scaled abso-
lute difference in the mean of a variable in X across the treatment and control groups.
These values can be combined across all variables in X in order to construct an average
standardized difference of means. The average standardized difference of means can be
calculated under different weighting schemes in order to compare the relative perfor-
mance of alternative weights in achieving balance with respect to the target parameter
(e.g., the balance of means on average for estimation of the ATT).

Because balance is not just a property of the means of variables but also of higher
moments of the distributions, we used a second metric of balance for variables that
are not two-valued indicator/dummy variables. For this metric, we change Equation
(7.12) slightly, substituting standard deviations in the treatment and control groups
for EN [xi|di = 1] and EN [xi|di = 0]. The modified version of Equation (7.12) then
yields a scaled absolute difference in the standard deviation of a variable in X across
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the treatment and control groups. Because these values are standardized, they can also
be combined across alternative variables in X in order to construct an estimate of the
average standardized difference in standard deviations.11

To set a baseline against which to measure improvements in balance, we first cal-
culated a baseline level of imbalance for the raw data by estimating the average stan-
dardized difference of means and standard deviations for the variables in X . The
means of the variables (as well as the corresponding standard deviations for variables
that take on more than two values) were already reported in Table 7.4, separately
for those in Catholic and public schools. To assess how much imbalance the weights
eliminate, we then calculated the balance after using the two separate weights wi, ATT

and wi, ATC. The results showed that the weights succeeded in producing substantial
balance, reducing the average standardized difference of means from .350 to .00634
when using wi, ATT and to .111 when using wi, ATC. The average standardized dif-
ference of standard deviations also fell substantially from .0715 to .0391 when using
wi, ATT and to .0287 when using wi, ATC. The increase in balance that results from
employing wi, ATT and wi, ATC is substantial, but some minor imbalance remains.

The remaining imbalance suggests that respecifying the model of treatment assign-
ment may be worthwhile. The initial specification of the model of treatment assignment
was borrowed from the simple default linear specification of the adjustment variables in
X for the multiple regressionmodels reported in Table 7.5, which is based on the typical
specifications offered in the early literature. The goal is now to enrich the parameter-
ization of the treatment assignment model in order to construct weights that further
improve the balance on the variables in X when the weights are deployed. Accord-
ingly, interactions between the variables in X not already included in the regression
specification, as well as transformations of the original variables, should be considered.

Although various data mining procedures can be wedded to balancing metrics in
pursuit of a best possible model (see Section 5.4.2), we chose the traditional strategy of
controlled trial-and-error respecification of the propensity-score-estimating equation.
We used a forward selection procedure where interactions that have some justification
in theory and past research were added progressively until improvements in balance
ceased to arise. We ignored the size and statistical significance of logit coefficients and
only inspected improvements in balance using our chosen criteria.

As we explained just above, the original logit model fit the data reasonably well
and also provided good balance by the standards of the matching literature. However,
a better fit was available that also yielded weights that provided even better balance.
We added 75 interaction terms to the initial logit model that predicted Catholic school
attendance. The estimated propensity scores, p̂i, from this new model have a mean of
.0440, a standard deviation of .0756, a minimum of 0, and a maximum of .892.12

11In principle, and as discussed in detail in Section 5.4.2, one could move on to higher moments of
the distributions, assessing skewness next or beginning to consider interactions and other features of
the joint distribution of X. We stop at the second moment of each variable in X. Note, however, that
we consider the mean and standard deviation of log family income, its square, and its cube. Thus, for
this variable, we attempt to match far more than just its expectation and variance.

12The model was so predictive that a number of cases were completely determined. In particu-
lar, 2,406 public school students were given predictive values arbitrarily close to 0 by the software
(although no Catholic schools students were deemed completely determined and given values arbi-
trarily close to 1). These public school students were mostly low-SES rural students.
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Figure 7.1 Kernel density estimates of the estimated propensity score, calculated
separately for public school students (black solid line) and Catholic school students
(gray dashed line).

Figure 7.1 presents kernel density estimates of these estimated propensity scores,
separately for those in Catholic schools and public schools. There is substantial overlap
in the estimated propensity scores, but there are no public school students with p̂i
greater than .738 and no Catholic school students with p̂i less than .00115. If we
focused in very closely on the cases within the tails of these densities, we would be
able to see that there are 6 Catholic school students with .738< p̂i ≤ .892 who have
no counterparts among public school students as well as 2,739 public school students
with 0≤ p̂i < .00115 who have no counterparts among Catholic school students.

By the common support standards that prevail in observational data analysis,
these data would be regarded as characterized by sufficient overlap for analysis to be
worthwhile, since 1,912 of the 1,918 treatment cases have p̂i within the range of p̂i for
the control cases. However, there is enough of a lack of overlap that some caution is
in order, especially when making inferences about how public school students would
fare if they were instead enrolled in Catholic schools. We will discuss these concerns in
more detail later when offering estimates restricted to the region of overlap (i.e., the
common support) where .00115≤ p̂i ≤ .738.

As just mentioned, the revised weights yielded slightly better balance when applied
to the data. In particular, the average standardized difference of means fell further to
.00437 when using wi, ATT and to .0899 when using wi, ATC. Likewise, the average
standardized difference of standard deviations also fell to .0166 when using wi, ATT

and to .0229 when using wi, ATC.
To give a better sense of how well these weights have succeeded in producing bal-

ance on a variable-by-variable basis (and for two different weighting schemes), we
present the weighted means (and standard deviations where appropriate) of each of
the variables in X for Catholic and public school students in Tables 7.6 and 7.7.
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Table 7.6 Means and Standard Deviations of Primary Variables, Weighted by the
ATT Weight from the Final Estimation of the Treatment Assignment Model

Public Catholic

Variable Mean SD Mean SD

Female .48 .48
Race (White is the reference category)

Black .06 .06
Hispanic .11 .11
Asian .04 .04
Native American <.01 <.01
Multiracial .04 .04

Urbanicity (Suburban is the reference category)

Urban .58 .58
Rural .01 .01

Region (Midwest is the reference category)

Northeast .31 .31
South .23 .23
West .16 .17

Family Background

Mother’s education (in years) 14.77 2.22 14.77 2.22
Father’s education (in years) 15.25 2.57 15.25 2.57
SEI score of mother’s occupation 50.56 12.77 50.55 12.85
SEI score of father’s occupation 49.67 11.68 49.81 11.71
Family income (natural log) 11.24 .84 11.23 .90
Family income (natural log) squared 127.07 16.50 126.99 17.04
Family income (natural log) cubed 1441.92 261.94 1441.33 267.98
Two-parent family .83 .84

Past History (as reported by parent)

Learning disability .07 .07
Ever held back .05 .05
Repeated 4th grade <.01 <.01
Years parents lived in current neighborhood 12.93 8.96 12.90 8.21

The differences between the columns in each of these two tables can be directly com-
pared to the raw differences reported above in Table 7.4. For example, the unbalanced
raw difference in mother’s education between Catholic and public school students is
1.31 years (i.e., |14.77− 13.46| from Table 7.4), whereas the difference is reduced to
.00 years (after rounding) when using wi, ATT (i.e., |14.77− 14.77| from Table 7.6) and
to .12 years when using wi, ATC (i.e., |13.58− 13.46| from Table 7.7).

By our readings of applications of these sorts of models, the balance achieved by
these weights is impressive. Some imbalance remains, and more so for the weights,
wi, ATC, that are designed to enable estimation of the ATC. The variables that proved
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Table 7.7 Means and Standard Deviations of Primary Variables, Weighted by the
ATC Weight from the Final Estimation of the Treatment Assignment Model

Public Catholic

Variable Mean SD Mean SD

Female .50 .53
Race (White is the reference category)

Black .15 .20
Hispanic .17 .13
Asian .04 .06
Native American .01 .01
Multiracial .04 .05

Urbanicity (Suburban is the reference category)

Urban .28 .33
Rural .21 .05

Region (Midwest is the reference category)

Northeast .18 .28
South .34 .29
West .23 .16

Family Background

Mother’s education (in years) 13.46 2.32 13.58 2.35
Father’s education (in years) 13.59 2.59 13.80 2.68
SEI score of mother’s occupation 44.98 12.87 45.88 13.10
SEI score of father’s occupation 44.15 11.70 44.05 11.71
Family income (natural log) 10.60 1.09 10.62 1.03
Family income (natural log) squared 113.61 19.83 113.87 19.36
Family income (natural log) cubed 1225.64 295.46 1228.94 292.93
Two-parent family .75 .71

Past History (as reported by parent)

Learning disability .13 .14
Ever held back .13 .12
Repeated 4th grade .01 <.01
Years parents lived in current neighborhood 10.56 8.00 10.72 6.89

most difficult to balance were some of the categorical variables, especially urbanicity
and region because of the more limited geographic distribution of Catholic schools.

Are there general standards for how good the balance must be for analysis to
proceed? Of course, perfect balance for the full distribution of X is the standard for
which an analyst should strive. Even with abundant data, as in this application, the
standard cannot be met. Rubin (2006) discusses the general predicament analysts will
encounter, and he concludes with this advice:

Of course, at some point, this sort of [perfect balance] assessment must
terminate, because no matter how large the samples, the investigator will
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almost certainly not be able to achieve this balance for all covariates and
their interactions simultaneously, and higher order terms in prognostically
minor covariates are clearly less important than prognostically important
ones, and so scientific judgment must enter the process, just as it does
when designing a randomized experiment. (Rubin 2006:462)

As discussed already, remaining imbalance can be addressed by supplemental para-
metric adjustment within a weighted regression framework, and we will offer such
estimates later. And typically the weakness of an estimate arises not from lingering
imbalance on observed variables, but rather the imbalance on unobserved variables
that makes the maintenance of ignorability assumptions unreasonable. We will discuss
this issue in detail later in this demonstration, when we interpret our estimates of the
ATT and ATC.

Step 4: Estimate Weighted Bivariate Regression Models Using the Weights
for the ATT and ATC. ATT-weighted and ATC-weighted variants of δ̂OLS, bivariate

are reported in the three panels of Table 7.8. Notice that for all three outcome vari-
ables, the point estimate of the ATC is considerably larger than the point estimate for
the ATT. Past research on the Catholic school effect has tended to show, by fitting
interaction terms, that the estimated Catholic school effect is largest for low-SES and
non-white students (see Bryk, Lee, and Holland 1993; Hoffer, Greeley, and Coleman
1985; Neal 1997). The results presented in Table 7.8 are consistent with this pattern.
In particular, a comparison of Tables 7.6 and 7.7 shows that Catholic school students
who have the profile of the treatment group have higher levels of socioeconomic status
and are less likely to be black or Hispanic.

Having shown how to estimate the weights and produce point estimates for the
ATT and ATC with the ELS data, we will not yet give a full interpretation to these
estimates or to the common pattern of difference between the estimates of the ATT
and ATC for all three outcome measures. We will save that discussion until after we
have presented a series of models that assess whether this pattern of difference is robust
to alternative analysis decisions.

The first issue we consider is whether allowing the models to use data off the
common support of the treatment and control cases may have contributed to the
difference between the estimates of the ATT and the ATC. For the estimation of the
weighted regression models just reported, we used all sample members, recognizing,
however, that with respect to p̂i, there are 6 Catholic school students who have no
counterparts among public school students and 2,739 public school students who have
no counterparts among Catholic school students.

Table 7.9 presents all of the models from Table 7.8 again, but this time the estima-
tion sample is restricted to the region of overlap on the estimated propensity scores,
.00115≤ p̂i ≤ .738. For the tenth grade math test score models, the sample size is
reduced from 13,943 to 11,198. For the twelfth grade math test score and math gains
models, the sample size is reduced from 10,502 to 8,469. A comparison of the results
in Table 7.9 to those reported earlier in Table 7.8 shows that the point estimates of
the respective average causal effects change slightly, with the ATC estimates coming in
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Table 7.8 Catholic School Coefficients from ATT-Weighted and
ATC-Weighted Regression Models Predicting Tenth Grade Math
Test Scores, Twelfth Grade Math Test Scores, and Math Test Gains

Outcome Variable:
10th Grade Math Test Score

Predictor Variables ATT Weight ATC Weight

Model 1: Dummy for Catholic school 1.08 2.44
(.77) (1.17)

Outcome Variable:
12th Grade Math Test Score

ATT Weight ATC Weight

Model 1: Dummy for Catholic school 1.42 3.29
(.89) (1.36)

Outcome Variable:
Math Gain (12th−10th)

ATT Weight ATC Weight

Model 1: Dummy for Catholic school 1.02 1.98
(.31) (.37)

a bit smaller. But, in general, the same pattern holds with ATT estimates remaining
about the same and considerably smaller than the ATC estimates.

Step 5: Estimate Doubly RobustWeighted Regression Estimates. To demon-
strate doubly robust weighted regression estimators, Table 7.10 presents weighted
regression estimators analogous to those in Table 7.8 but with further regression
adjustment for the 23 covariates used in Model 2 for Table 7.5. Beyond the weighted
regression models presented in Table 7.8, these models are designed to adjust for any
remaining imbalance in X due to misspecification of the model that was used to esti-
mate the weights. Again, across all three outcome variables, the point estimate of the
ATC is considerably larger than the point estimate for the ATT.

Given the consistency of the pattern shown in these last three tables, the next step
is to ask the simple statistical question: Are the point estimates of the ATT and ATC
sufficiently different that it makes sense to consider whether they support the claim
that students who have the typical profile of public school students are more likely to
benefit from Catholic schooling than students who have the typical profile of Catholic
school students?

To answer this question, we must consider some thorny issues in statistical infer-
ence. Consider first the weighted multiple regression model for the Catholic school
effect on the tenth grade math test. The estimated coefficient is 1.08 with a standard
error of .56 when the wi, ATT weight is utilized. In contrast, when the wi, ATC weight
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Table 7.9 Catholic School Coefficients from Weighted Regression
Models Restricted to the Region of Overlap in the Estimated
Propensity Scores

Outcome Variable:
10th Grade Math Test Score

Predictor Variables ATT Weight ATC Weight

Model 1: Dummy for Catholic school 1.02 2.18
(.77) (1.17)

Outcome Variable:
12th Grade Math Test Score

ATT Weight ATC Weight

Model 1: Dummy for Catholic school 1.38 2.85
(.89) (1.36)

Outcome Variable:
Math Gain (12th−10th)

ATT Weight ATC Weight

Model 1: Dummy for Catholic school 1.03 1.82
(.31) (.37)

is utilized, the coefficient increases to 2.42 with a standard error of .59. Are differences
such as these large enough to be considered meaningful?

A comparison of the 95 percent confidence intervals for each estimate may suggest
not. Consider the regression model for the Catholic school effect on the tenth grade
math test. Here, the 95-percent confidence interval is (−.01, 2.17) for the estimate using
wi, ATT and (1.26,3.58) for the estimate using wi, ATC. Clearly, these intervals overlap.
Scientific judgment, however, suggests that this overlap should not lead researchers to
conclude that there are no substantive differences of importance, as we now explain.

First, the difference between the two point estimates is substantively large at 1.34;
this difference suggests that the average effect of Catholic schooling is 124% larger for
those who typically attend public schools than for those who typically attend Catholic
schools (i.e., 2.42−1.08

1.08 = 1.24). The 95 percent confidence interval for the difference,
based on a standard error of .81, is (−.26,2.92). This confidence interval is dominated
by positive probability mass and suggests that values for the difference ≥ 2.66 are just
as likely as values ≤ 0.13

13Moreover, the estimated standard error on which this confidence interval is based does not take
into account that the two estimates were generated from the same sample. The confidence interval
(−.26,2.92) is, in fact, a bit too wide (but not by much given the size of the available sample). In
other applications, a same-sample correction may be more consequential.
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Table 7.10 Catholic School Coefficients from Doubly Robust Weighted
Regression Models

Outcome Variable:
10th Grade Math Test Score

Predictor Variables ATT Weight ATC Weight

Model 2: Model 1 + family background, 1.08 2.42
demographics, and past history (.56) (.59)

Outcome Variable:
12th Grade Math Test Score

ATT Weight ATC Weight

Model 2: Model 1 + family background, 1.60 4.01
demographics, and past history (.66) (.71)

Outcome Variable:
Math Gain (12th−10th)

ATT Weight ATC Weight

Model 2: Model 1 + family background, 1.05 2.06
demographics, and past history (.29) (.45)

Second, as noted just above, the difference of 1.34 is consistent with much past work
on this substantive question. Evolving interpretive standards in statistical inference
demand that such prior information be considered. If a full Bayesian posterior were
generated, the lower end of the frequentist confidence interval, −.26, would be judged
too negative as guidance for further research.

For these two reasons, we judge the difference between the doubly robust weighted
regression estimates of the ATT and the ATC to be large enough to be meaningful.
Before attaching meaning to this difference, we need to consider assumptions about
the extent to which the observed determinants of treatment assignment can sustain
alternative types of ignorability. Before offering such interpretations, we have one final
type of analysis to perform, which will assess the extent to which the apparent differ-
ences between the point estimates of the ATT and the ATC are robust even to further
conditioning.

Step 6: Further Assess the Robustness of the Difference Between the Esti-
mates of the ATT and the ATC. In Step 4, we showed that the vast majority
of the difference between the ATT-weighted and ATC-weighted regression estimates
held when the data were restricted to the region of overlap on the estimated propensity
score. The same result could also be shown for the doubly robust estimates of the same
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parameters. For now, we consider a different type of robustness check: whether the dif-
ference between the point estimates continues to hold after additional supplemental
parametric adjustment for variables that other researchers might instead regard as
essential determinants of treatment assignment/selection.

Some of the earliest literature on the Catholic school effect considered slightly dif-
ferent variables for regression adjustment than the variables that we included in X for
this demonstration. As we discussed in Section 6.6.2 (beginning on page 219), regres-
sion adjustments were often performed with variables such as students’ educational
expectations and parental involvement. The original researchers, James Coleman and
his colleagues, recognized that these variables were not clearly “prior to” Catholic
school attendance and thus were likely influenced by the posited causal effect itself.
Yet they wanted to show that, even adjusting for these variables, the apparent effects
of Catholic schooling persisted in their models.

In our case, we are not primarily interested in determining how much the estimated
causal effects are reduced when additional adjustment variables are entered into the
various regression models (although were they to change in unexpected ways, such
as vanishing entirely, one of a number of reasonable interpretations would need to
be advanced). Rather, we are most interested in determining whether the inclusion
of additional adjustment variables in the doubly robust weighted regressions models
would cause us to revisit our preliminary decision that the difference between the
estimates of the ATT and ATC is robust and deserving of interpretation.

With this goal in mind, we consider additional variables for educational expec-
tations and parental involvement in school. As shown in Morgan and Todd (2008),
students attending Catholic schools are expected to obtain more years of postsec-
ondary schooling (nearly a year in students’ own expectations and almost as much in
parents’ expectations). In addition, more than half of all parents of Catholic school
students volunteer at their schools, which is twice as high as the rate for the parents
of public school students.

Table 7.11 presents weighted regression models that utilize variables for expecta-
tions and parental involvement as supplemental adjustment variables (i.e., as variables
only in the outcome regression equations, not as variables also in the propensity score
estimating equation). The results in Table 7.11 show that these variables reduce the
estimates of the ATT and ATC by a substantial amount. However, the coefficients
remain positive and in the same pattern. Moreover, the relative difference between the
estimates of the ATT and the ATC is larger for Model 3 in Table 7.11 than for Model
2 in Table 7.8.

In sum, the main pattern of results is supported by the analyses reported in Tables
7.9 through 7.11. Alternative decisions about overlap issues and supplemental regres-
sion adjustment did not alter the relative sizes of the weighted regression estimates
of the ATT and ATC. As a consequence, we conclude that there is compelling evi-
dence that these estimates differ. The deeper question is whether this pattern can be
interpreted as evidence that true ATT and ATC differ, which is the issue we consider
next.14

14Another strategy that could be adopted to extend the analysis we report here is to attempt to
model the underlying heterogeneity in a more fine-grained way. We see the comparison of estimates of
the ATT and ATC as only a first step, and other methods may be a useful next step. If one believed
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Table 7.11 Catholic School Coefficients from Weighted
Regression Models, Including Additional Covariates

Outcome Variable:
10th Grade Math Test Score

Predictor Variables ATT Weight ATC Weight

Model 3: Model 2 + expectations .22 1.26
and parental involvement (.54) (.62)

Outcome Variable:
12th Grade Math Test Score

ATT Weight ATC Weight

Model 3: Model 2 + expectations .82 2.77
and parental involvement (.63) (.74)

Outcome Variable:
Math Gain (12th−10th)

ATT Weight ATC Weight

Model 3: Model 2 + expectations .98 1.94
and parental involvement (.29) (.44)

Interpretation of Results. We have generated estimates of the ATT and ATC
using a treatment assignment model that includes variables we have labeled X . Recall
that in the counterfactual tradition, treatment assignment patterns are represented by
the propensity score, Pr[D = 1|S], where S denotes all variables that systematically
determine treatment assignment. Complete observation of S allows a researcher to
assert that treatment assignment is ignorable and then consistently estimate the ATT
and ATC, and, as a result, the ATE or any other average treatment effect that can
be formed by weighting across the marginal distribution of the observed variables in
S (see Section 4.3).

Are the ATT and ATC both identified? The crucial question for identification
is whether the variables we have declared asX for our estimators in this demonstration
are sufficiently complete to be regarded as equivalent to S, which we have previously
labeled the perfect stratification set. To approach this question, it is useful to first
reconsider the same substantive example modeled for our simulated data in Matching

that the estimated propensity score in a particular application has a clear interpretation (and hence
is more than a tool for balancing the determinants of treatment assignment), then one could analyze
directly the association between conditional average treatment effects and the estimated propensity
score. Xie, Brand, and Jann (2012) and Brand and Thomas (2013) offer guidance for this sort of
analysis, including a Stata add-on program. Alternatively, one could move toward direct examination
of the separate response surfaces of the treatment and control groups, using a general nonparametric
regression framework. Hill (2011) offers a compelling demonstration of the value of this alternative
approach. Finally, as we will explain in Chapters 9 and 12, one could attempt to model some of the
local average treatment effects and marginal treatment effects that constitute the ATT and ATC,
although only if appropriate instrumental variables are available.
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Demonstration 4, where identification of the ATT but not the ATC is clear because it
was guaranteed by construction.

In the subsection on identification for that demonstration (beginning on page 173;
see especially Figure 5.2), we explained why self-selection on the individual-level causal
effect renders the ATC and ATE unidentified. In particular, with reference to the
equations that defined the simulated data, we noted that we did not create observed
variables that were sufficient to sustain an assumption of full ignorability, as defined by
Equation (4.4). However, we showed that we could nonetheless consistently estimate
the ATT because we created observed variables that allowed us to assert what is
labeled Assumption 2-S in Equation (5.2),

E[Y 0|D=1,S] =E[Y 0|D=0,S].

Assumption 2-S is implied by a stronger assumption of partial ignorability with respect
to S, such that

Y 0⊥⊥D |S, (7.13)

which we introduced in Section 4.3. The basic idea is that, on average within strata
defined by S, the values of yi among those in the control group can be used to effectively
estimate the counterfactual values of y0i for those in the treatment group. We know by
the setup of Matching Demonstration 4 that this assumption holds for the simulated
data, in particular because all of the variables on the right-hand side of Equation (5.21)
were declared observed variables. For the remainder of that demonstration, we then
explained why the ATC is not identified, which is the same explanation for why the
ATE is not identified.

Now return to the current demonstration. Because we did not simulate these data,
we cannot assert that the ATT is identified with full confidence. We think it is rea-
sonable to assert that Assumption 2-S is valid, treating X as equivalent to S for this
assumption. However, it is possible that, for the cases observed in the ELS, those
students most likely to benefit from public schools are those students who are least
likely to attend Catholic schools, in which case Assumption 2-S does not obtain for
the conditioning set X because

E[Y 0|D=1,X ]<E[Y 0|D=0,X ]. (7.14)

This would have been the case for Matching Demonstration 4 if we had included a term
such as −.5(δ′′i ) on the right-hand side of of Equation (5.21). We do not know of any
research that suggests that the inequality in Equation (7.14) is true for the Catholic
school effect, as would be the case if we had evidence that those who are most likely
to do well in public schools are those with an aversion to educational institutions
with religious foundations. On balance, it seems reasonable to assume that the ATT
is identified in this demonstration.

The ATC is another matter entirely. Based on past research that maintains that
self-selection is present, and the fact that we do not have any variables in the ELS
that could plausibly measure students’ (and their parents’) own expectations for the
benefits they might obtain from attending a Catholic school, we cannot accept what
is labeled Assumption 1-S in Equation (5.1),

E[Y 1|D=1,S] =E[Y 1|D=0,S],
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or the stronger assumption of partial ignorability,

Y 1⊥⊥D |S, (7.15)

that implies it. In other words, we do not believe that for the ATC the variables inX are
equivalent to the more encompassing set of variables in S that defines this assumption.
Operationally, we do not believe that for the ELS data we can use the values of yi
among those in the treatment group to effectively estimate the counterfactual values
of y1i for those in the control group, on average within strata defined by X . Sufficient
evidence exists to suggest that some Catholic school students attend Catholic schools
because they expect to gain from doing so. As such, we do not see any basis for
regarding the ATC estimates as consistent or unbiased for the true ATC. Instead,
these estimates are very likely too large because

E[Y 1|D=1,X ]>E[Y 1|D=0,X ]. (7.16)

Although this reasoning is sufficient to convince us that the ATC is not identified,
it also bears mentioning that the common support models show that 23 percent of
public school students (i.e., 2,739 out of 12,025) have estimated propensity scores
lower than the lowest estimated propensity score of any Catholic school student. Our
comparison of the results in Tables 7.8 and 7.9 suggested that this lack of overlap is
relatively inconsequential for the empirical results in this demonstration, and yet this
provides only modest reassurance that the data can inform us at all about the likely
benefit that students such as these 23 percent of public school students would obtain
from attending a Catholic school.

Based on this reasoning, the ATC estimate is larger than the ATT estimate because
the former is inconsistent and upwardly biased while the latter is either consistent and
unbiased, or still inconsistent but far less upwardly biased. Nonetheless, we cannot
know for sure that this reasoning is correct because it is contingent on the validity of
Equations (7.14) and (7.16), and these are assumptions that cannot be tested.

Why might the true ATC still be larger than the true ATT? Because the
reasoning just offered could be wrong, we will conclude this section by considering
alternative interpretations that would hold under the most plausible alternative pat-
terning of results where (1) the true ATC is larger than the true ATT and (2) the
estimates we have reported are sufficiently unbiased to convey this basic ordering of
the underlying effects.

Based on past research, there are two possible explanations for why one might
expect that the true ATC would be larger than the true ATT for the effect of Catholic
schooling:

1. The common school explanation: Catholic schools distribute opportunities for
learning, such as advanced course-taking, more equitably than do public schools.
This explanation was stressed by Coleman and his colleagues in their initial
research and was then more comprehensively developed by Bryk, Lee, and Hol-
land (1993). It suggests that variables such as parental education and non-
minority status have positive relationships with D but negative relationships
with the variation in δ among Catholic schools students. The explanation is
based on the implicit claim that

E[Y 1−Y 0|D=1,CSE =1]>E[Y 1−Y 0|D=1,CSE=0], (7.17)
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where CSE is a “common school effect” dummy variable that indicates which
particular students receive a “boost” in their individual-level treatment effect
because of the comparatively egalitarian nature of Catholic schooling. Low-SES,
black, and Hispanic students are more likely to receive the CSE boost. Accord-
ingly, when the average of individual-level treatment effects is weighted to the
distribution of S that characterizes the control group, the resulting average treat-
ment effect is larger because this synthetic group of Catholic school students has
more members with CSE=1. (The same is also true when the weighting is per-
formed only with respect to the observed variables in X because the relationship
between S and CSE is generated by the relationship betweenX and CSE, which
does not depend in any way on the determinants of self-selection in S that are
not among the observed variables in X .)

2. The better alternatives explanation: Catholic schooling is particularly beneficial
to those students who have poor public schooling alternatives, in particular those
students from families who are not able to afford to live in school districts with
the best public schools. This explanation was first fully developed by Neal (1997),
and it suggests that variables such as family income and wealth have positive
relationships with D but negative relationships with the variation in δ among
Catholic school students. The explanation is based on an implicit claim, of the
same basic structure as Equation (7.17), that

E[Y 1−Y 0|D=1,WAP =1]>E[Y 1−Y 0|D=1,WAP =0], (7.18)

where WAP is a “worse alternative public school” indicator variable equal to 1
for those Catholic school students who have particularly poor public schooling
alternatives, and which is assumed for this explanation to be a function in S.
However, here the claim is implicitly in two separable pieces, which makes it
qualitatively different than the common school explanation. This explanation is
composed of two assumptions,

E[Y 1|D=1,WAP =1]=E[Y 1|D=1,WAP =0]

and

E[Y 0|D=1,WAP =1]<E[Y 0|D=1,WAP =0],

which together imply Equation (7.18).15 In this case, when the average of
individual-level treatment effects is weighted to the distribution of S that charac-
terizes the control group, the resulting average treatment effect is larger because
this synthetic group of Catholic school students has more members with
WAP =1.

If either the common school explanation or the better alternatives explanation is true,
then the true ATC would be larger than the true ATT, and this might also be true
for the estimated ATC and ATT if the bias in the estimates is small enough not to

15We assume for simplicity of notation that the linearity of the expectations at the population level
applies also at the individual level. This assumption will hold for the third explanation introduced
below as well.
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obscure the true difference between the target parameters (as usual, assuming that
sampling error is zero).

We favor an alternative third explanation, which we think is more compatible with
the underlying claim that the estimated ATC is larger than the estimated ATT in part
because self-selection is very likely present and cannot be adjusted away because X is
only a subset of S:

3. The binding constraint explanation: Differential responsiveness exists to accurate
perceptions of students’ likely benefits from Catholic schooling. For low-income
families for whom tuition at a Catholic school represents a genuine financial
sacrifice, the students who enroll in Catholic schools are much more likely to be
students who are likely to benefit from enrolling. In contrast, among high-income
families for whom tuition is not a substantial financial sacrifice, even students
who are not likely to benefit from attending Catholic schooling instead of public
schooling may enroll in Catholic schools. This explanation is discussed in Morgan
(2001), and it is based on the assumption that it takes a larger individual-level
value of δ to induce low-income students to enroll in Catholic schooling. As
a result, variables that capture resource availability have positive relationships
with D but negative relationships with the variation in δ among those who enter
Catholic schooling. The implicit claim here is that

E[Y 1−Y 0|D=1,BC =1]>E[Y 1−Y 0|D=1,BC =0], (7.19)

where BC is an indicator variable equal to 1 for those students from families
for whom Catholic school tuition is a genuine financial sacrifice, and which is
therefore a function in S. Here, as with the better alternatives explanation, the
claim is implicitly in two separable pieces,

E[Y 1|D=1,BC =1]>E[Y 1|D=1,BC =0]

and

E[Y 0|D=1,BC =1]=E[Y 0|D=1,BC =0],

which together imply Equation (7.19). In this case, when the average of individual-
level treatment effects is weighted to the distribution of S that characterizes the
control group, the resulting average treatment effect is larger because this syn-
thetic group of Catholic school students has more members with BC =1.

Having laid out these alternative explanations, there is no reason to assume that only
one of them holds. One reasonable blended explanation would combine the better
alternatives and binding constraint explanations by asserting both

E[Y 1|D=1,BC =1]>E[Y 1|D=1,BC =0]

and

E[Y 0|D=1,WAP =1]<E[Y 0|D=1,WAP =0],

and then noting that there is likely to be a strong positive association between BC
and WAP in the population, conditional on S (and its typical observed subset X).
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These assertions could then be combined with the claim that the difference between the
estimated ATC and the estimated ATT is further increased because these assertions
also lend indirect support to the claim that the estimated ATC is inconsistent and
upwardly biased for the true ATC because

E[Y 1|D=1,X ]>E[Y 1|D=0,X ].

Other blended explanations are also possible, and we cannot rule out the possi-
bility that Coleman and his colleagues had it correct all along: Catholic schools and
public schools do have differences in their instructional practices, which at least for
Coleman had deeper sources in alternative ideological beliefs about the capacities of
children. These instructional differences may be particularly beneficial to students who
are systematically disadvantaged in public schools.

Overall, was it worth offering provisional estimates of the ATC? Of course, we knew
from the outset which assumptions likely held, and it would have been reasonable to
estimate and report only the ATT. Nonetheless, we think it is clear that what are most
likely inconsistent and biased estimates of the ATC still give us a valuable perspective
on why the ATC is not identified, and hence enhance our explanation of why, at best,
only the ATT is identified by conditioning on the observed data. In addition, the
reasoning that was motivated by the need to interpret the estimated ATC may also
explain why the common school explanation of Coleman and his colleagues also may
reflect underlying heterogeneity that is produced by individual-level selection on the
treatment effect.

7.6 Conclusions

In this chapter, we have presented weighted regression estimators of the ATE, ATT,
and ATC, and we have argued that they have enough comparative advantages that
they are likely to continue to grow in prominence in the coming years. We have shown
how weighted regression estimators allow the analyst to adopt a matching orientation
and thereby take advantage of the clarity that a matching perspective provides. We
have also shown that weighted regression estimators require no specialized software
and can be utilized when analyzing complex survey data of many types.

These advantages notwithstanding, it should also be clear that weighted regression
estimators are no panacea, especially if practitioners fall back too casually into stan-
dard regression thinking. Instead, analysts must carefully consider the estimation of
the propensity scores that generate the weights, checking balance and then examining
the consequences of large weights. Only thereafter should one calculate point estimates
of the average treatment effects of interest.

The ultimate value of weighted regression estimators in comparison to other types
of conditioning estimators has not yet been fully determined. As with the matching
estimators presented Chapter 5, this is an area of active methodological scholarship,
and it is not easy to predict the developments of the coming years. Our current pre-
diction is that weighted regression will be at the center of an emergent consensus, but
our prediction is accompanied by substantial uncertainty.
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With this chapter, we have concluded our presentation of techniques that estimate
causal effects by conditioning on variables that block back-door paths. In the next
section of the book, we present techniques that can be used effectively when simple
conditioning will not identify causal effects because crucial variables that lie along
back-door paths have not been observed. We will consider general strategies first,
elaborating on the causal graphs we have used so far in this book. Thereafter, we will
present instrumental variable estimators, front-door conditioning estimators grounded
in assumptions about causal mechanisms, and approaches that utilize over-time obser-
vations of the outcome variable.





Part IV: Estimating Causal Effects
When Back-Door Conditioning

Is Ineffective





Chapter 8

Self-Selection, Heterogeneity,
and Causal Graphs

In this chapter, we will lay the groundwork for our presentation of three strategies
to estimate causal effects when simple conditioning on observed variables that lie
along back-door paths will not suffice. These strategies will be taken up in Chap-
ters 9, 10, and 11, where we will explain instrumental variable estimators, front-door
identification with causal mechanisms, and conditioning estimators that use data on
pretreatment values of the outcome variable. Under very specific assumptions, these
three strategies will identify average causal effects of interest, even though selection is
on the unobservables and treatment assignment is nonignorable.

In this chapter, we will first review the related concepts of nonignorable treatment
assignment and selection on the unobservables, using the directed graphs presented in
prior chapters. To deepen the understanding of these concepts, we will then demon-
strate why the usage of additional posttreatment data on the outcome of interest is
unlikely to aid in the point identification of the treatment effects of most central con-
cern. One indirect goal of this demonstration is to convince the reader that oft-heard
claims such as “I would be able to establish that this association is causal if I had
longitudinal data” are nearly always untrue if the longed-for longitudinal data are
additional measurements taken only after treatment exposure. Instead, longitudinal
data are most useful, as we will later explain in detail in Chapter 11, when pretreat-
ment measures are available for those who are subsequently exposed to the treatment.

The extended example we will use to make this point involves simple confounding
(stable unobserved common causes of the treatment variable and the outcome vari-
able) and more subtle confounding (direct self-selection into the treatment based on
accurate perceptions of the individual-level treatment effect). Accordingly, this exam-
ple will serve as a bridge to the second half of this chapter, where we will expand
upon our introduction to causal graph methodology in order to explain how hetero-
geneity of effects can be accommodated. In Chapter 2, we introduced the potential
outcome model while taking the position that individual-level heterogeneity of treat-
ment effects is pervasive. In particular, we have implicitly assumed, and often explicitly
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stated, that, in general, individual-level treatment effects do not all equal the average
treatment effect (ATE) (i.e., δi �=E[δ] for all i). We have offered many examples where
individual-level treatment effects are patterned in consequential nonrandom ways, and
we have explained the consequences of such heterogeneity for conditioning estimators
in Chapters 5, 6, and 7.

From this chapter onward, we will consider the interconnections between self-
selection and individual-level heterogeneity of treatment effects more directly, as these
patterns combine to generate selection on the unobservables. We ended our presenta-
tion of conditioning by considering these complications, especially for the interpreta-
tion of the results for Weighted Regression Demonstration 3 (see pages 257–262). In
this chapter, we approach these complications more directly by first showing how to use
causal graphs with latent class variables to jointly represent patterns of self-selection
and heterogeneity.

8.1 Nonignorability and Selection on the

Unobservables Revisited

As demonstrated in Sections 4.3.1 and 4.3.2, the concept of ignorable treatment assign-
ment is closely related to the concept of selection on the observables. In many cases,
they can both be represented by the same directed graph. Recall Figure 4.8(a), in
which there are two types of paths between D and Y : the causal effect of D on Y
represented by D → Y and an unspecified set of back-door paths represented col-
lectively by the bidirected edge in D ������ Y . If this graph can be elaborated, as
in Figure 4.8(b), by replacing D ������ Y with a fully articulated back-door path
D← S→ Y , then the graph becomes a full causal model. Observation of S ensures
that the conditioning strategies of the prior three chapters can be used to generate
consistent estimates of the causal effect of D on Y . In this scenario, selection is on the
observables – the variables in S – and the remaining treatment assignment mechanism
is composed only of random variation that is ignorable.

If, in contrast, as shown in Figure 4.9(b) rather than Figure 4.8(b), only a subset Z
of the variables in S is observed, then selection is on the unobservables because some
components of S are now embedded in U . Conditioning on Z in this graph leaves
unblocked back-door paths represented by D ← U ������ Y untouched. And, as a
result, any observed association between D and Y within strata defined by Z cannot
be separated into the genuine causal effect of D on Y and the back-door noncausal
association between D and Y that is generated by the unobserved determinants of
selection, U .

As explained in Chapter 4, and then as shown in demonstrations in Chapters 5
through 7, the concepts of ignorability and selection on the observables are a bit more
subtle when potential outcomes are introduced. Weaker forms of conditional indepen-
dence can be asserted about the joint distribution of Y 1, Y 0, D, and S than can
be easily conveyed as in Figures 4.8 and 4.9, in which the observable variable Y is
depicted instead of the underlying potential outcome variables Y 1 and Y 0. For exam-
ple, the average treatment effect for the treated (ATT) can be estimated consistently
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(b) Coleman’s approach(a) The identification puzzle
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Figure 8.1 Coleman’s strategy for the identification of the causal effect of Catholic
schooling on achievement.

by asserting only that Y 0 is independent of D conditional on S, even though full ignor-
ability does not hold; see the discussion of Equation (4.4) and Section 4.3.3.1 These
possibilities are not fully revealed by conventional directed graphs, given that for these
graphs potential outcome variables are typically not represented (see the discussion of
Figure 3.9).

8.2 Selection on the Unobservables and
the Utility of Additional Posttreatment

Measures of the Outcome

In this section, we present the challenges of modeling causal effects when selection
is on unobservables, using as an example the regression equations offered by James
Coleman and his colleagues for the estimation of the causal effect of Catholic schooling
on high school achievement. The basic estimation challenge that Coleman and his
colleagues confronted is depicted in Figure 8.1(a). Although somewhat simplified, the
graph represents the basic types of causal variables that Coleman and his colleagues
contemplated in their original analyses and then in debate with their critics (Coleman
et al. 1982; see also our prior discussion in Section 6.6.2). For Figure 8.1(a), Y10 is an
observed score on a standardized achievement test given in the tenth grade to second-
year high school students. The variable D is again an observed dichotomous causal
variable equal to 1 for those who attend Catholic schools and 0 for those who attend
public schools. A primary goal of the original research was to estimate the causal
effect of D on Y10, conceptualized as the average causal effect of Catholic schooling on
achievement.

The remaining variables in the graph represent the basic types of variables that
Coleman and his colleagues decided should be specified as adjustment variables in

1Furthermore, as discussed in Section 5.2.1 in the presentation of matching techniques, one need
not assume full conditional independence of Y 0 in order to offer consistent and unbiased estimates
of the ATT. An equality of the two conditional expectations, E[Y 0|D= 1,S] =E[Y 0|D= 0,S], will
suffice; see discussion of Assumption 2-S in Equation (5.2).
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their regression equations. The variables in X are determinants of achievement test
scores that have no direct causal effects on school sector selection. The variables in
O are ultimate background factors that determine all other variables in the graph
(i.e., X , U , D, and Y10). Coleman and his colleagues designated many variables that
they believed were contained in O and X , although they were unsure of whether
to consider them as members of O or X . Finally, the variables in U are the crucial
variables that Coleman and his colleagues recognized were probably unobserved. These
variables – intrinsic motivation to learn, subtle features of the home environment, and
anticipation of the causal effect itself – were thought to determine both school sector
choice and achievement. Because these variables were assumed to be unobserved, they
are represented collectively in Figure 8.1(a) by the variable U with a node that is a
hollow circle ◦.

In the initial research, the analysis strategy of Coleman and his colleagues was to
condition on observed variables in O and X in order to attempt to remove as much of
the confounding of D→Y10 as possible. Reinterpreted with the aid of directed graphs,
to identify the causal effect they needed to block five separate back-door paths from
D to Y10:

1. D←U→Y10,

2. D←U←O→ Y10,

3. D←U←O→X→Y10,

4. D←O→Y10, and

5. D←O→X→ Y10.

According to the back-door criterion, conditioning on the variables in O and X would
block paths 2, 3, 4, and 5 but would leave path 1 unblocked. Coleman and his colleagues
recognized that the variables in U rendered the causal effect of D on Y formally
unidentified, and they could not convince their critics that their estimates from models
that conditioned only on O and X were sufficiently close to the ATE (or the ATT) to
offer the conclusion that they did.

Their solution to this predicament is presented in Figure 8.1(b), which became pos-
sible when the second round of survey data was released two years later (see Coleman
and Hoffer 1987; Hoffer et al. 1985). Rather than focus on explaining variation in the
tenth grade test score variable, Y10, they reclassified it as a conditioning variable and
instead designated the new twelfth grade test score variable, Y12, as the outcome of
interest. They then argued that Y10 could serve to screen off the effects of the variables
in U on Y12. In particular, their strategy was equivalent to asserting that conditioning
on O, X , and Y10 blocks all five of the back-door paths between D and Y12 in Figure
8.1(b):

1. D←U→Y10→ Y12,

2. D←U←O→ Y10→ Y12,

3. D←U←O→X→Y10→ Y12,
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4. D←O→ Y10→ Y12, and

5. D←O→X→ Y10→ Y12.

Indeed, all of these back-door paths are blocked by conditioning on Y10, and four of
them are blocked by supplemental but unnecessary conditioning on O and X as well.2

However, notice that Y10 does not satisfy Condition 2 of the back-door criterion.
It lies on a directed path that begins at the causal variable and reaches the outcome
variable, D→ Y10→ Y12. Conditioning on Y10 adjusts away some of the total causal
effect of Catholic schooling on achievement measured in the twelfth grade. As a result,
by adopting this analysis strategy, Coleman and his colleagues changed the average
causal effect of interest from the total effect of Catholic schooling on achievement
to a net direct effect, D→ Y12. This effect is best thought of as the average gain in
achievement between the tenth and twelfth grades attributable to Catholic schooling,
although the specific interpretation depends on the model that is estimated.

Holding aside the fundamental issue of whether narrowing the focus to this particu-
lar net direct effect is helpful for the research questions at hand, consider now the graph
presented in Figure 8.2, which suggests two more basic criticisms of this approach. The
first was seized on by their critics: the variables in U that confound the causal effect
of D on Y12 are not effectively screened off by Y10. More generally, Figure 8.2 should
be seen as more plausible than Figure 8.1(b) because it is unreasonable to rule out
three direct effects: O→ Y12, X→ Y12, and U → Y12 (or, as Coleman and colleagues
asserted, that these effect are indirect and transmitted through Y10→ Y12). Because
O and X are observed, the claims that O→ Y12 and X → Y12 should be included
in the graph can be accommodated in subsequent analysis. However, the inclusion of
U → Y12 renders back-door adjustment with the observed variables ineffective. The
rationale for the inclusion of U → Y12 in the graph is the following. If the parents
of highly motivated students were more likely to pay tuition to enroll in Catholic
schools, then enhanced motivation would contribute directly to learning in both the
tenth grade and the twelfth grade. Similarly, it is unreasonable to assume that the
motivation that is correlated with willingness to pay tuition would exert only a one-
time boost early in the Catholic school careers of students, which would then structure
subsequent achievement only by way of a twelfth grade knock-on effect from the initial
boost in achievement in the tenth grade. Taken together, the critics argued, in effect,
that Coleman and his colleagues mistakenly ignored a back-door path, D←U→ Y12,
that remains unblocked after conditioning on O, X , and Y10 because they failed to
acknowledge that U causes Y12 directly.

The second criticism is more subtle. For Figure 8.2, we have omitted the effect
Y10→ Y12 that Coleman and his colleagues seem to have asserted for their models,
and which we depicted in Figure 8.1(b). Whether this effect should be included in the
graph depends on the richness of the variables in O, X , and U . If these variables, when
combined with D, constitute full models of achievement for public and Catholic school
students, then no direct relationship between Y10 and Y12 needs to be represented in

2Coleman and his colleagues sometimes wrote as if they allowed for effects such as O→ Y12 and
X→ Y12. The back-door paths generated by these additional direct effects would all be blocked by
conditioning on O, X, and Y10. The key assumption is their implicit claim that U does not have an
effect on Y12, except through Y10.
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Figure 8.2 Criticism of Coleman’s estimates of the effect of Catholic schooling on
learning.

the graph. The critics did not take a position on this issue, but we suspect that they
would not have been willing to maintain that the measured variables in O and X were
rich enough to eliminate the need for including Y10→Y12 in such a graph. Instead, they
would have likely allowed for such an effect so that the causes embedded in eY10 are
allowed to contribute to Y12 via Y10. The critics only emphasized the implausibility of
interpreting models under the faulty assumption that D←U→Y12 does not exist, and
this point of criticism stands regardless of what position one takes on the plausibility
of Y10→ Y12.

Yet, once one begins to think about the relationship between Y10 and Y12, it may
seem implausible to assume that these variables are only associated because of their
common dependence on O, X , U , and D. Is it reasonable to assume that the structural
error terms eY10 and eY12 , which are viewable only under magnification, are indepen-
dent of each other? For Figure 8.1(b), they were assumed to be so. For Figure 8.2,
instead it is assumed that they are only independent of each other after we allow for
unobserved common direct causes of both Y10 and Y12, which are represented by E in
Figure 8.2. Although the common cause relationship Y10←E→ Y12 is quite general,
for now consider E to be an unobserved and completely random characteristic of stu-
dents that measures their taste for tests. Independent of all else, some students enjoy
taking tests and perform well on them.3 If such a common cause of Y10 and Y12 exists,
it creates four new back-door paths from D to Y12 through E:

1. D←U→Y10←E→ Y12,

2. D←O→Y10←E→ Y12,

3. D←U←O→X→Y10←E→ Y12,

4. D←O→X→ Y10←E→ Y12.

For these back-door paths, Y10 is a collider. In the absence of conditioning, all four of
these paths are blocked and do not create additional noncausal associations between
D and Y12. But, when O, X , and Y10 are used as adjustment variables, the first path

3Of course, if this particular variable in E exists, it is unlikely to be independent of both O and
X. Were we to add edges to also specify O→E or X→E as additional causal effects in Figure 8.2,
all of what is written in the main text would be the same. These additional back-door paths would
be blocked by conditioning on O and X, but the same back-door path, D←U→Y10←E→Y12, that
is unblocked after conditioning on Y10 would remain.
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becomes unblocked because conditioning on Y10 induces an association between U and
E (see Chapter 4). The second and third back-door paths remain blocked by the simul-
taneous conditioning on the observed variables O and X , even though conditioning on
Y10 induces an association between O and E as well as between X and E. In short,
if Figure 8.2 is the appropriate representation of the causal system, Coleman and his
colleagues unblocked an already blocked back-door path, thereby creating a new net
association between D and Y12. This induced noncausal association is then mixed in
with the noncausal association generated by D←U → Y12 , which critics argued had
been mistakenly assumed not to exist. The following demonstration, which considers
the simplest possible causal model consistent with Figure 8.2, explains these complica-
tions together, while also leading into the explicit consideration of heterogeneity that
we will take up in the section that follows it.

Panel Data Demonstration 1

For this simulated example of the analysis of Catholic school effects by Coleman and his
colleagues, we will use the panel data notation introduced in Section 2.8. Nonetheless,
because we will consider only posttreatment data on the outcome and because our
other variables are fixed in time, we can suppress some of the subscripting and other
fine distinctions introduced there.4 In order to focus on the essential identification
issues, we consider only linear specifications and, except when noted otherwise, restrict
all causal effects to be constants or to vary across individuals in completely random
ways independent of all else in the models. These conditions are consistent with the
original research by Coleman and his colleagues, even though they are inconsistent
with our extensive treatment of this research question using the more recent literature
(as shown in Chapters 5 through 7, where nonlinearities and heterogeneity of effects
were both shown to be vital considerations when modeling the Catholic school effect
on achievement).

For this demonstration, the potential outcome variables are Y 1
t and Y 0

t , where
t= {10,11,12} for the three grades that occur during the observation window from
the tenth grade through the twelfth grade. Because treatment selection occurs before
t = 10, we have observed data only for posttreatment time periods. The treatment
indicator variable, D, is equal to 1 if a student is enrolled in a Catholic school and 0
if enrolled in a public school. (We again ignore other types of private schools.) The
observed outcome variable, Yt, is defined as DY 1

t +(1−D)Y 0
t for t= {10,11,12}.

For simplicity, our other variables O, X , and U should be interpreted as indices
of many underlying variables, which we will scale as normally distributed composite
variables. Consistent with our discussion of Figures 8.1 and 8.2, X is a composite
determinant of achievement test scores, Yt, that has no direct effect on whether stu-
dents select Catholic schooling, D. U is a composite variable of unobserved factors
that determines both D and Yt. And O is a composite variable of ultimate background

4Most importantly, for this demonstration we do not need to make a distinction between Dit

(the treatment exposure indicator) and D∗
i (the treatment group indicator). Because we have no

pretreatment observations and we ignore (as did Coleman and his colleagues) students who switch
between public and Catholic schools between the tenth and twelfth grade, Dit = D∗

i for all t. We
therefore use our customary D without subscripts for either i or t.
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factors that determines U , X , D, and Yt. To give these composite variables distribu-
tions that are familiar, O is a standard normal random variable with mean of 0 and
variance of 1. Having defined O as an exogenous root variable, we then set X=O+eX
and U =O+eU , where eX and eU are independent standard normal random variables
with mean of 0 and variance of 1.

We consider four data setup scenarios, defined as a cross-classification of two binary
conditions: (1) the presence of self-selection on accurate expectations of individual-level
effects of Catholic schooling and (2) the presence of supplemental dependence between
the potential outcomes that is produced by an exogenous variable E (see Figure 8.2).
For all scenarios, the probability of Catholic school enrollment is specified as a logistic
distribution

Pr[D=1|O,U ] =
exp(−3.8+O+U)

1+exp(−3.8+O+U)
, (8.1)

where O and U are as defined above. The probabilities defined by Equation (8.1)
are then specified as the parameters for draws from a binomial distribution, yielding
the indicator variable D for Catholic schooling defined above. As explained below,
we introduce self-selection into two of the four scenarios by allowing U to structure
the potential outcomes, such that those with higher values for U have higher average
individual-level treatment effects. Because of the presence of U in Equation (8.1),
students with higher values for U are then more likely to enter Catholic schooling and
more likely to benefit from doing so.

For the scenarios without supplemental dependence on E, Y 0
t is defined as

Y 0
10 =100+O+U +X+υ0

10,

Y 0
11 =101+O+U +X+υ0

11, (8.2)

Y 0
12 =102+O+U +X+υ0

12,

where the υ0
t are independent normal random variables with mean of 0. For the sce-

narios with supplemental dependence, Y 0
t is instead defined as

Y 0
10 =100+O+U +X+E+υ0

10,

Y 0
11 =101+O+U +X+E+υ0

11, (8.3)

Y 0
12 =102+O+U +X+E+υ0

12,

where E is also a normal random variable with mean of 0.5 On average, Y 0
t follows a

linear time path as determined by the intercept values of 100, 101, and 102. However,
the levels of these potential outcomes for individuals are set by the time-invariant
values of O, U , X , and E as well as by time-specific shocks to their outcomes, υ0

t .

5To yield a covariance structure similar to real test score data, for Equation (8.2) we specify
υ0
t as time-period-specific standard normal random variables multiplied by 10. For Equation (8.3),

we specify E as a standard normal random variable multiplied by 5 and υ0
t as time-period-specific

standard normal random variables multiplied by 8.6.
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To specify a treatment effect that increases linearly in time, Y 1
t is defined as

Y 1
10 = Y 0

10+ δ′+ δ′′,
Y 1
11 = Y 0

11+(1+ δ′)+ δ′′, (8.4)

Y 1
12 = Y 0

12+(2+ δ′)+ δ′′,

where δ′ is a baseline individual-level causal effect, specified as a normal random
variable with mean of 10 and variance of 1. The constitution of δ′′ depends on whether
self-selection is present. In the no-self-selection scenarios, δ′′ is additional random
individual-level variation, specified as a standard normal random variable with mean
of 0 and variance of 1. In the self-selection scenarios, δ′′ varies systematically over
individuals. The values of δ′′ are set as single draws from individual-specific standard
normal random variables with expectation equal to each individual’s realized value ui

of U .
The first panel of Table 8.1 presents the ATE, ATT, and ATC for the effect of

Catholic schooling on test scores in the tenth and twelfth grades, as implied by the
data setup just detailed. For the first two columns, students do not self-select into
Catholic schooling based on accurate expectations of the individual-level gains from
doing so. Accordingly, the ATE, ATT, and ATC are all the same, and they all increase
from 10.00 to 12.00 between the tenth and twelfth grades, as determined by Equation
(8.4). For the last two columns, students self-select on the causal effect, as explained
above. The ATT is larger than the ATE and the ATC. But, again, the average gain is
2.00 for the ATE, ATT, and ATC.

The second panel of Table 8.1 presents estimates for the coefficient on D from a
series of regression models, first for cross-sectional estimators that use outcome data
from only one point in time and then, as in the research of Coleman and colleagues,
for panel data models that use outcome data from two posttreatment points in time.
These latter regression models, as we will explain in Chapter 11, are labeled panel data
analysis of covariance models. We use generic ordinary least squares (OLS) regression
estimation, as in the original research of Coleman and his colleagues, but we have
given OLS estimation a best case data setup where linear specifications are reasonable
and the pattern of individual-level heterogeneity is simple.

Consider first the results for the regression models in the no-self-selection scenarios.
For the first column, we also do not assume that E is a common cause of both Y10

and Y12, which does not render Y10 a collider on any back-door paths from D to Y12.
For the second column, E is a common cause. This distinction for the data setup
produces no differences for the cross-sectional regression estimates of the coefficient on
D because Y10 is not in the conditioning set for these models.

For both sets of cross-sectional estimators in the no-self-selection scenarios, the
same pattern of results is present for models that have Y10 as the outcome variable
and for models that have Y12 as the outcome variables. The naive estimator is too
large, and adjustment for O and X eliminates only some of the confounding.6

6Additional adjustment for U would yield estimates that are equal to the ATE, ATT, and ATC.
This last result is merely a benchmark, given that we have assumed that U is unobserved, as in the
research of Coleman and his colleagues.
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Table 8.1 Simulated Results for the Identification Approach Adopted by
Coleman and Colleagues

Setup conditions:

Self-selection on the causal effect No No Yes Yes

E is a common a cause of Y 0
t No Yes No Yes

True average treatment effects:

ATE, tenth grade 10.00 10.00 10.00 10.00

ATT, tenth grade 10.00 10.00 11.85 11.85

ATC, tenth grade 10.00 10.00 9.81 9.81

ATE, twelfth grade 12.00 12.00 12.00 12.00

ATT, twelfth grade 12.00 12.00 13.85 13.85

ATC, twelfth grade 12.00 12.00 11.81 11.81

Estimated Coefficient on D

Cross-sectional estimators:

Regression of Y10 on D 14.75 14.75 16.60 16.60

Regression of Y10 on O, X, and D 10.80 10.80 12.58 12.58

Regression of Y12 on D 16.75 16.75 18.60 18.60

Regression of Y12 on O, X, and D 12.80 12.80 14.58 14.58

Panel data analysis of covariance estimators:

Regression of Y12 on Y10, O, X, and D 12.68 9.98 14.41 11.27

For the analysis of covariance models with Y12 as the outcome variable, the coeffi-
cient estimates on D do not equal the ATE, ATT, or ATC for the twelfth grade, which
are all 12.00. The coefficient estimate of 12.68 is too large when E is not a common
cause because the unblocked back-door path through U biases the coefficient upward.
The estimate is then too small when E is a common cause because the upward bias
from the unblocked back-door path through U is then joined by a larger downward bias
produced by conditioning on Y10, which is a collider along the new back-door paths
through E (see the discussion that precedes the demonstration for an accounting of
these back-door paths).

As shown in the third and fourth columns, the basic pattern for the estimated
models changes only modestly when self-selection is present. The last two columns
are analogous to the first two, after allowing the self-selection term, δ′′, to vary with
U , as explained above for Equation (8.4). For these last two scenarios, none of the
cross-sectional estimators yield estimates equal to any of the average causal effects,
either in the tenth grade or the twelfth grade.7 The analysis of covariance models have

7Even models that adjust for U would not suffice. For the self-selection scenarios, the individual-
level effect of Catholic schooling varies with U , such that those with higher average values of U have
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the same pattern as in the no-self-selection scenarios. When E is not a common cause
of Y10 and Y12, the estimate is larger than the ATE, ATT, and ATC. When E is a
common cause, rendering Y10 a collider, the estimate is smaller than the ATE, ATT,
and ATC.

Finally, notice also that the analysis of covariance estimates are nowhere near to the
average gain in achievement between the tenth and twelfth grades, which is equal to
2.00, and which by construction is equal for both Catholic and public school students
and does not depend on whether self-selection is present. As such, under this setup,
which is consistent with Figure 8.2, the analysis of covariance models do not estimate
a net direct effect of Catholic schooling on achievement in the twelfth grade that can
be given an interpretation as an estimate of an average gain in achievement.

Many analysis puzzles and ensuing causal controversies in the social science lit-
erature have the same basic features as this demonstration. The plausibility of the
criticism in Figure 8.2 should serve as a caution because it demonstrates how addi-
tional posttreatment observations of the outcome variable are unlikely to resolve the
fundamental identification challenge created by selection on unobservables and non-
ignorability of treatment assignment. We consider models of this type in detail in
Chapter 11, including a more complete discussion of the sorts of processes that gen-
erate over-time dependencies, such as the one produced by E in Figure 8.2. However,
we also have some more encouraging results to offer in Chapter 11. If, as was the case
for this demonstration, the causal effect is evolving in time, such that the trajectory
for the outcome in the absence of treatment has the same time path before and after
treatment exposure, then it is possible to obtain consistent estimates of some average
treatment effects of interest.

Before offering a full explanation of analysis strategies when data are available
from pretreatment time periods, we will consider two other types of estimators –
instrumental variable estimators in Chapter 9 and mechanism-based estimators in
Chapter 10. To motivate our presentation of these methods in subsequent chapters,
we conclude this chapter in the next section by enriching our presentation of directed
graph methodology, explaining how graphs can be used to represent full patterns of
self-selection and heterogeneity using latent class variables.

larger treatment effects. As a by-product, the individual-level causal effect also varies with O and
X, given that these variables are positively associated with U because of the common-cause path
U ← O→ X. The conditional-variance weighting that is implicit in OLS regression averages these
heterogeneous individual-level effects, giving more weight to those whose implicit propensity scores
are near to .5. Given the data setup, where only 9 percent of students end up enrolled in Catholic
schools – because of the intercept of −3.8 for the logistic distribution in Equation (8.1) – the implicit
weighting would move the estimated average effects toward the ATT relative to the ATC. Yet, the
coefficient estimates would not equal the ATT. As explained in Section 6.3, these coefficients are best
interpreted as estimates of the ATE with supplemental conditional-variance-based weighting, which,
for this demonstration, would push the estimates toward the ATT because of the distribution of D
and the positive association between U and D. In practice, of course, the variable U would not be
available for analysis in the first place.
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8.3 Causal Graphs for Complex Patterns of

Self-Selection and Heterogeneity

We conclude this chapter with a presentation of how patterns of self-selection and het-
erogeneity can be represented with directed graphs.8 We have two goals in this section.
First, we want to demonstrate and explain the generality of the graphical approach
to the representation of causal relationships, which we will utilize in subsequent chap-
ters. Second, we want to make the following obvious (but frequently forgotten) point:
The best solution to an unobserved variable problem is to develop and deploy addi-
tional new measures. Too often, the literature implies that self-selection patterns are
so complex that estimation in their presence will forever remain infeasible. We see
more promise in developing methods to directly confront the limitations of available
data than the literature often implies, and we want to make this case explicitly before
offering explanations in the next three chapters of estimation strategies that may be
feasible while the limitations of available data remain unaddressed.

In this section, we use the charter school effect on learning as the focal example,
which we introduced in Section 1.3.2 (see page 24). This example shares some of the
same complications as the example of the Catholic school effect that we have considered
extensively already, but it offers some new complications as well (and serves as a
bridge to the school voucher instrumental variable example that will be considered in
Chapter 9). In the material that follows, we start with a simple latent class model
of heterogeneity that allows families of different types to differ in their likelihood of
choosing charter schools. We then build toward a full directed graph that shows the
estimation challenge clearly, at which point we will then elaborate the back-door paths
in order to discuss feasible estimation strategies that would be possible if new measures
were constructed that would enable direct modeling of choice behavior. We conclude
with a graph-aided interpretation of extant empirical research on charter school effects.

8.3.1 A Starting Point: Separate Graphs for Separate
Latent Classes

Consider the two causal graphs in Figure 8.3, and suppose that the population is
partitioned into two latent classes, each of which has its own graph in panel (a) or
panel (b). Suppose that P is a family’s parental background, D is charter school
attendance, and Y is a score on a standardized test given to all fifth graders in a
large metropolitan school district. For these two graphs, the subscripts refer to latent
classes, which are also indicated by a latent class membership variable G that takes
on values of 1 and 2.9

Although surely a gross oversimplification, suppose nonetheless that the population
is composed of fifth graders who have been raised in two types of families. Families
with G=1 choose schools predominantly for lifestyle reasons, such as proximity to the
home and tastes for particular school cultures, assuming that all schools are similar

8This section draws on material previously published in Morgan and Winship (2012).
9The lower case values x, d, and y for the two causal graphs are meant to connote that these are

realized values of X, D, and Y that may differ in their distributions across the two latent classes.
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Figure 8.3 Separate causal graphs for two groups of individuals (G= 1 and G= 2)
where the effects of parental background (P ) and charter schools (D) on test scores
(Y ) may differ for the two groups.

in instructional impact because achievement is largely a function of individual effort.
Families with G=2 choose elementary schools for their children by selecting the school,
subject to constraints, that they feel will maximize the achievement of their children,
assuming that schools differ in quality and that their children may learn more in some
schools than in others. Accordingly, these families are attentive to the national press
coverage of educational policy, in which many policymakers have argued for increasing
the number of charter schools in the country because some research has claimed that
charter schools are more effective than traditional public schools. As a consequence,
the second group of families is more likely to send their children to charter schools,
such that the mean of D is higher for those families with G=2 than G=1.

Finally, suppose that parents with higher levels of education are more likely to value
distinctive forms of education, and as a result are more likely to send their children
to charter schools (independent of whether or not highly educated parents are more
likely to be found in the latent class for whom G = 2, which we will discuss later).
They are also more likely to be able to support children in completing homework and
otherwise making the most of the educational opportunities that are offered to their
children. Accordingly, suppose that in both groups the causal effects P → D and
P → Y are positive and substantial (i.e., that α1, β1, α2, and β2 in Figure 8.3 are
positive and substantial).

The question for investigation is whether the effect of D on Y is positive for both
groups and, if so, whether it is the same size for both groups. If one is willing to
assume, as some of the literature suggests, that the second group of families is correct
in the sense that school quality does matter for student learning, and further that
charter schools are higher quality, then we should expect that both δ1 and δ2 are
more likely positive than not. And, if one believes that parents with G=2 have some
sense that this is correct, then not only will more of them send their children to
charter schools, they will also sort their children more effectively into charter and non-
charter schools. In other words, they will also be more likely to continue to enroll their
children in regular public schools if they feel that their children will not benefit from the
distinctive characteristics of available charter schools (e.g., if the charter schools that
have openings have instructional themes that their children find distasteful). Because
both of these self-selection effects are reinforcing, is it likely that δ2 >δ1.

10

10These target parameters, δ2 and δ1, are defined implicitly as the average effect of charter schooling
for all students from families with G=2 and G=1, respectively.
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If this plausible scenario is true in reality, what would happen if a researcher
ignored the latent classes (either by mistake or, more realistically, because the mem-
bership variable G is unobserved) and simply assumed that a single graph prevailed?
In this case, a researcher might estimate the effect of D on Y for each value of P
and then average these effects over the distribution of P , yielding a population-level
estimate δ. At best, this estimate would be uninformative about the underlying pat-
tern of heterogeneity that suggests that δ2 > δ1. At worst, this estimate would be
completely wrong as an estimate of the average causal effect of D on Y , which we
have referred to as the ATE in prior chapters. For example, if P predicts latent class
membership G, and G predicts the size of the effect of D on Y , then P -stratum-specific
effects mix together individual-level causal effects that vary with the conditional dis-
tribution of G within the strata of P . Combining P -stratum-specific effects by cal-
culating an average effect across only the distribution of P does not properly weight
the G-stratum-specific effects that are embedded in differential patterns within the
strata of P .

In order to consider these possibilities, we need to have a model of selection into
D that is informed by a model of the traits of families that would cause them to be
found in underlying latent classes. It is most natural to pursue such a model in a single
causal graph that explicitly represents the latent classes by including the variable G
as a node within it.

8.3.2 A Single Graph That Represents All Latent Classes

Consider Figure 8.4, which contains a standard causal triangle where D has an effect
on Y but where both D and Y share a common cause P . To this triangle, the latent
class membership variable G is introduced as an explicit cause of D. The variable G
is given a hollow node, ◦, to indicate that it is unobserved.11

The arrow from G to D is present because there are alternative groups of families,
coded by the alternative values of the unobserved variable G, that approach differently
the decision of whether to send their children to charter schools. As a result, G predicts
charter school attendance, D. Although we will continue to write as if G only takes
on two values that identify two latent classes, this restriction is no longer necessary.
G may take on as many values as there are alternative groups of families who differ
systematically in how they approach and enact the decision of whether to send their
children to a charter school. (We considered only two values for G in Figure 8.3 to
limit the number of G-specific graphs that needed to be drawn.)

The corresponding structural equations for the graph in Figure 8.4 are then

P = fP (eP ), (8.5)

G= fG(eG), (8.6)

D= fD(P,G,eD), (8.7)

Y = fY (P,D,eY ). (8.8)

11Here, we follow Elwert and Winship (2010) and introduce a latent class variable G to represent
effect heterogeneity.
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D

P Y

G

Figure 8.4 A graph where groups are represented by an unobserved latent class vari-
able (G) in a single graph.

The latent class membership variable G only enters these structural equations in two
places, on its own in Equation (8.6) and then as an input to fD(.) in Equation (8.7).
Recall also that the unspecified structure of the functions such as fY (.) permits the
sort of interactions discussed in the last subsection, where, for example, the effect of
D depends on the level of P . (See Section 3.3.2 for a full discussion.)

To accept Figure 8.4 as a full representation of the causal relationships between G
and the other variables P , D, and Y , we must be able to assume that G shares no
common causes with P , D, or Y that have been mistakenly suppressed. The necessary
assumptions are that students who have parents with higher levels of education are
no more likely to know of the educational policy dialogue that claims that charter
schools have advantages and also are no more likely to think that school quality has
any effects on achievement. We must also be willing to assume that, within values of P
andD, G has no causal effect on Y , which with our example is tantamount to assuming
that those who attempt to maximize the learning of their children by selecting optimal
schools (1) do not manage to do so well enough so that the obtained effect is any larger
on average, conditional on other factors, for their own children than for those who do
not attempt to select on the causal effect of schooling and (2) do not do anything else
that helps their children to benefit from the learning opportunities provided to them
in school or in the home that is not already captured by the direct effect P →Y . This
would require that the impulse to select into charter schools based on beliefs about the
size of the charter school effect for one’s own child is a completely ignorable process,
since it does not result in any actual selection on the variation in the causal effect nor
generate any reinforcing behavior that might complement the charter school effect.
None of the literature on charter school effects supports such a dismissal of the power
of self-selection.

Accordingly, for Figures 8.5(a) and 8.5(b), we add an arrow from G to Y to the
graph presented earlier in Figure 8.4. For Figure 8.5(a), which includes only this one
additional arrow, the structural equations are

P = fP (eP ), (8.9)

G= fG(eG), (8.10)

D= fD(P,G,eD), (8.11)

Y = fY (P,D,G,eY ). (8.12)
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Figure 8.5 Two graphs where selection into charter schools (D) is determined by
group (G) and where selection renders the effect of D on Y unidentified as long as G
remains unobserved.

For Figure 8.5(b), we drop the assumption that G is independent of P . This elabo-
rated graph now includes an arrow from P to G. As a result, fG(eG) is no longer the
appropriate function for G. Equation (8.10) must be replaced by

G= fG(P,eG) (8.13)

so that family background is an explicit cause of latent class membership. It is likely
that parents with high socioeconomic status are more likely to select on the possible
causal effect of charter schooling, which is how the latent classes were discussed for
Figure 8.3. Still, how these latent classes emerge is not sufficiently transparent in
Figure 8.5. A more explicit causal model that gives structure to the causal pathway
from P to G may help to clarify the self-selection dynamic, as we show next.12

8.3.3 Self-Selection into the Latent Classes

Suppose that the latent class membership variable G is determined at least in part by
a variable that measures a family’s subjective expectation of their child’s likely benefit
from attending a charter school instead of a regular public school. Although we could
enter this variable into a graph with a single letter, such as S or E, for Figure 8.6 we
use a full mnemonic representation as a variable labeled Exp(D→Y ), which represents
“the family’s subjective expectation of the specific effect of D on Y for their particular
child.” For Figure 8.6(a), which is a direct analog to Figure 8.5(a), this subjective

12In some work, latent class membership variables such as G are not regarded as causal variables.
We regard G as a nominal causal variable because we can conceive of an intervention that could move
a family from one value of G to another. The goal of introducing G into this graph is to provide
a representation of consequential individual-level heterogeneity, and accordingly we allow G to have
nominal causal effects on the outcome of interest through G→ Y . We will explain later why a fully
elaborated graph that locates the sources of all such heterogeneity in structural variables that lie on
directed paths that reach G would thereby render G as a redundant carrier of these fully specified
determinants of heterogeneity. In this case, G could then be removed from the graph, as there would
be no need for a nominal causal variable to transmit the heterogeneity produced by its genuine
determinants.
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Figure 8.6 Two graphs where selection on the unobservables is given an explicit rep-
resentation as self-selection on subjective expectations of variation in the causal effect
of D on Y. For panel (b), these expectations are determined by information (I) that
is differentially available to families with particular parental backgrounds (P ).

expectation is the sole determinant of G. The structural equations are then

P = fP (eP ), (8.14)

Exp(D→Y ) = fExp(eExp), (8.15)

G= fG[Exp(D→ Y ), eG], (8.16)

D= fD(P,G,eD), (8.17)

Y = fY (P,D,G,eY ). (8.18)

Note that Exp(D→ Y ) is determined solely by eExp in Equation (8.15). Thus, the
graph in Figure 8.6(a) would be an accurate representation of the system of causal
relationships if subjective expectations were either completely random or instead based
solely on characteristics of families that are independent of the family background
variables in P .

Given what we have written about the likelihood that families with different pat-
terns of P will end up in different latent classes represented by G, it seems clear
that Figure 8.6(a) is not the proper representation for the research scenario we have
already specified. Accordingly, in Figure 8.6(b), eExp is joined by an unspecified addi-
tional input I into the subjective expectation of the child-specific causal effect of D
on Y , which is then presumed to be caused, in part, by family background. As a result,
there is now a path from P to G through I and Exp(D→Y ). The structural equations
are now augmented as

P = fP (eP ), (8.19)

I = fI(P,eI), (8.20)

Exp(D→Y ) = fExp(I,eExp), (8.21)

G= fG[Exp(D→ Y ), eG], (8.22)

D= fD(P,G,eD), (8.23)

Y = fY (P,D,G,eY ). (8.24)

In sociology, the causal effect of P on Exp(D→Y ) via I follows from the position that
privileged positions in social structure are occupied by advantaged families. From these
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positions, individuals acquire information I that allows them to recognize benefits that
are available to them.13

The directed path P → I → Exp(D→ Y )→ G carries one important systematic
source of self-selection through to the latent class variable G. However, this path is
not the only directed path that is present, as could be seen under magnification.
The differences in information about the charter school effect that are independent
of parental background have their effect on G through eI → I → Exp(D→ Y )→G.
Likewise, differences in expectation formation processes that are not based on infor-
mation and are independent of parental background have their effects on G through
eExp→Exp(D→ Y )→G.

By building the full graph progressively from Figures 8.4 through 8.6(b), we have
explicitly elaborated what is often presumed in models that incorporate self-selection.
Background variables in P are related to the cause D by way of a set of latent classes in
G that encode subjective evaluations of the individual-specific causal effect of D on Y .
These expectations are functions, in part, of characteristics in P by way of the infor-
mation I that is differentially available to families that differ on P . Yet, even though
we now have an elaborate representation of self-selection, we still have not brought
what some would label “contextual effects” into the model, such as neighborhood of
residence. We consider this complication next, which is clearly important to consider
when modeling the effects of charter schools on learning.

8.3.4 Self-Selection into the Treatment and a
Complementary Context

How hard is the task of allowing for contextual effects? Consider Figure 8.7, which
incorporates a contextual variable N into the causal graph in Figure 8.6(b). N repre-
sents all causes of student achievement that can be conceptualized as either features of
a student’s residential neighborhood or features of a charter school’s surrounding neigh-
borhood. The component variables in N might be access to resources not measured
by P or specific local cultures that may or may not promote student achievement.14

13In addition, it may be that there are also additional common causes of P and I, which could
be represented by a bidirected edge between P and I in the graph. This would be reasonable if
informational advantages that structure expectations for optimal school choices are determined by
deeper structural factors that also confer socioeconomic advantages on parents before they arrive at
the decision point of whether or not to send their children to charter schools. It is also possible that
parental background determines expectation formation processes to some degree, such that different
families process information differently, as would be case if the directed path P →Exp(D→ Y )→G
were added to the graph. We do not include these additional causal pathways in the graph because
they would add additional back-door paths to the subsequent discussion without changing the core
identification results.

14If the latter are only diffuse cultural understandings that only weakly shape local norms about
the appropriateness of enacting the role of achievement-oriented student, then such variables may be
difficult to observe. In this case, N might then be coded as a series of neighborhood dummy identifier
variables. Analysis of these effects would then only be possible if there were sufficient numbers of
students to analyze from within each neighborhood studied. Without such variation, the potential
effects of N could not be separated from individual characteristics of students and their families. And,
if modeled in this way, only the total effects of N would be identified, since the dummy variables
for N would not contain any information on the underlying explanatory factors that structure the
neighborhood effects that they identify.



8.3. Causal Graphs for Complex Patterns of Self-Selection and Heterogeneity 285

D

P Y

G

I

N

Exp(D Y )

Figure 8.7 A graph where self-selection on the causal effect of charter schooling also
triggers self-selection into consequential and interactive neighborhood contexts (N).

With the addition of N , the function for Y is now fY (P,D,G,N,eY ). Recall, again,
that N is not restricted by any functional form assumption for fY (.). As a result, the
causal effect of N can modify or interact with the effects of G, D, and P on Y .15

Figure 8.7 also allows for even more powerful effects of self-selection. Suppose that
self-selection into the latent classes in G is associated with self-selection into N as well.
We see two separate and countervailing tendencies. Parents attuned to the potential
benefits of charter schooling are also more likely to choose neighborhood contexts that
best allow them to encourage their children to study hard in school. At the same time,
after obtaining an attendance offer from a charter school, a family may also decide to
move to an alternative neighborhood in the catchment area of a suboptimal regular
public school, since attendance at such a school may no longer be a consideration in
the family’s residential decision. If either effect is present, then the function for N is
equal to fN (G,eN ), and we then have seven structural equations as

P = fP (eP ), (8.25)

I = fI(P,eI), (8.26)

Exp(D→Y ) = fExp(I,eExp), (8.27)

G= fG[Exp(D→ Y ), eG], (8.28)

D= fD(P,G,eD), (8.29)

N = fN (G,eN ), (8.30)

Y = fY (P,D,G,N,eY ). (8.31)

The nonparametric nature of these structural equations allows for fully interactive
effects. Most importantly, the function for Y , fY (P,D,G,N,eY ), allows for the effects
of D and N to vary within each distinct combination of values between them, as
would be the case if the charter school effect varied based on the neighborhood within
which students lived. We should also note that we could enrich the causal model
further by drawing from the literature that posits deeper causal narratives for the
joint determination of P and N , as well as other causal pathways that link P to N .
We see the graph in Figure 8.7 as sufficiently rich to motivate the discussion we have
offered so far as well as for the analysis of the extant empirical research to which we
turn next.

15See VanderWeele (2009b) for an incisive analysis of the difference between an interaction and an
effect modification. Our interest, conceptually at least, is in instances of genuine causal interaction,
although much of what we write would hold under simpler structures of only effect modification.
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8.3.5 A Graph-Aided Interpretation of Extant Empirical
Models of Charter School Effects

There are two basic goals of writing down a causal graph: (1) to represent the set
of causal relationships implied by the available state of knowledge and (2) to assess
the feasibility of alternative estimation strategies. Figure 8.7 represents a causal graph
that is a reasonable representation of the causal structure that generates the charter
school effect. This is a matter of judgment, and one might contend, for example, that
the claim that self-selection on the charter school effect generates movement between
neighborhoods is overly complex.

Suppose that one has access to observational data, such as the National Assessment
of Education Progress (NAEP) data analyzed by Lubienski and Lubienski (2003), that
provide information on standardized test scores, school type, and some family back-
ground characteristics. For the sake of our exposition, suppose further that these NAEP
data had even better measures of family background and neighborhood characteristics,
so that we could conclude that high-quality data are available for all of the variables
in Figure 8.7 with solid nodes: Y , D, N , and P . Yet, no data are available for the
variables with hollow nodes: I, Exp(D→ Y ), and G. The primary goal of analysis
is to estimate the average causal effect of D on Y , as this effect interacts with the
complementary causal effect of N on Y . Can one adjust for confounding in order to
estimate these effects?

The first question to consider is the following: Is there a set of observed variables
in Figure 8.7 that satisfies the back-door criterion with the respect the causal effect of
D on Y and the causal effect of N on Y ? The relevant back-door paths are,

for D,

1. D←P →Y,
2. D←P → I→Exp(D→ Y )→G→Y,
3. D←P → I→Exp(D→ Y )→G→N→ Y ,
4. D←G→N→ Y ,
5. D←G→ Y ;

and

for N ,

6. N←G→Y ,
7. N←G→D→ Y ,
8. N←G←Exp(D→ Y )← I←P → Y ,
9. N←G←Exp(D→ Y )← I←P →D→ Y ,
10. N←G←Exp(D→ Y )← I←P →D←G→Y .

How many of these paths can be blocked by conditioning on the observed data?
For models that estimate the effect of D on Y , paths 1 through 4 can be blocked
by conditioning on P and N . However, path 5 remains unblocked. Likewise, paths
7 through 10 can be blocked by conditioning on P and D, but path 6 remains
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unblocked. For the two unblocked paths, the same problematic effect is present: G→Y .
This effect transmits the effects of exogenous causal determinants of I and
Exp(D→ Y ), which are eI and eExp, through the directed path I → Exp(D→ Y )
→G→Y . Thus, if there is selection on the causal effect itself, independent of parental
background, then it enters the model through G and confounds the conditional asso-
ciations between D and Y and between N and Y . This confounding cannot be elimi-
nated by conditioning on the observed data, and therefore back-door conditioning for
the effects of D and N on Y is infeasible.

This conclusion is hardly revelatory for readers who already know the literature on
self-selection bias and/or the empirical literature on charter school effects. Nonetheless,
we would argue that there is substantial didactic and communicative value in seeing
this result expressed with a causal graph to which the back-door criterion is then
applied. To effectively use back-door conditioning to identify all average causal effects
of primary interest – the ATC, ATT, and ATE – we would need to specify a more
elaborate set of causes of G, which would generate G through and/or alongside the
structural equations that determine I and Exp(D→Y ). It would be sufficient to have
a model for G, fG(.), where all inputs other than eG are observed and where these
inputs are sufficiently rich such that eG can be regarded as a constant that applies
to everyone. Equivalently, we would need a set of observed measures as variables that
point to G in the graph that would allow us to declare that there are no more latent
classes precisely because G is a deterministic function of the observed variables in the
graph. In this case, all sources of the noncausal association between D and Y and
between N and Y would be indexed by the observed variables that determine G, and
we could safely remove G from the graph and allow those variables to point directly
to D, N , and Y .

Without access to such observed variables, which prevent us from explaining away
the existence of the latent classes indexed by G, how can analysis proceed? There are
two main choices. First, the analyst can concede that self-selection on the causal effect
is present (because G cannot be eliminated from the graph), which may even generate
neighborhood-based selection as a by-product. In these circumstances, the presence of
the causal relationship G→Y renders estimates of D and N on Y unidentified, either
in interactive fashion or when averaging one over the other. In this case, analysis
must then be scaled back, and we would recommend that set identification results be
pursued, as we will explain later in Chapter 12. The new goal would be to estimate
an interval within which the average causal effect of interest must fall.

In the actual empirical literature on the charter school effect, this humble option
has not been pursued by any of the main combatants in the debates. Instead, this
research is a good example of what Manski (2013b) has labeled “policy analysis with
incredible certitude.” The desire to provide point estimates of causal effects has been
too strong, even though it would seem clear to many outside readers that the debate
over charter school effects persists simply because the point estimate of the ATE is
unidentified. Consider the two dominant positions in the extant literature.

One group of researchers has used the lottery-induced structure of charter school
enrollments in order to estimate effects. In cities where the number of charter schools is
insufficient to meet demand, most schools are required by their chartering authorities to
perform random lotteries and offer admission first to those who win their lotteries. This
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admissions mechanism delivers two comparable groups: lottery winners and lottery
losers. If the lottery winners attend charter schools and the lottery losers do not,
then observation of achievement trajectories following the lottery enables estimation
of average treatment effects for those who participate in the lottery.16

The researchers who use this research design typically define the charter school
effect of interest as solely the ATT: the effect of charter schooling among those who
would self-select into charter schooling by applying for the lottery. This is entirely
appropriate for the interpretation of lottery-based results. The problem is that these
same scholars too frequently forget the bounded nature of their conclusions. For exam-
ple, in their study of charter schools in New York City, Hoxby, Murarka, and Kang
(2009:vii) introduce their results in their “Executive Summary” with three bullet
points:

• “Lottery-based analysis of charter schools’ effects on achievement is, by far, the
most reliable method of evaluation. It is the only method that reliably eliminates
‘selection biases’ which occur if students who apply to charter schools are more
disadvantaged, more motivated, or different in any other way than students who
do not apply.”

• “On average, a student who attended a charter school for all of grades kinder-
garten through eight would close about 86 percent of the ‘Scarsdale-Harlem
achievement gap’ in math and 66 percent of the achievement gap in English. A
student who attended fewer grades would improve by a commensurately smaller
amount.”

• “On average, a lotteried-out student who stayed in the traditional public schools
for all of grades kindergarten through eight would stay on grade level but would
not close the ‘Scarsdale-Harlem achievement gap’ by much. However, the lotteried-
out students’ performance does improve and is better than the norm in the U.S.
where, as a rule, disadvantaged students fall further behind as they age.”

Nowhere in their “Executive Summary” is it stated that these comparisons across
lotteried-in and lotteried-out students are only informative about those who self-select
into the relevant charter school lottery. Selection bias is not eliminated, as claimed in
the first bullet point; the lottery-generated data simply provide a reasonable compar-
ison among those who self-select into the charter school lottery.

More generally, it is not conceded that the results are uninformative about two
first-order policy questions:

1. What is the expected charter school effect for a randomly chosen student from
New York City, assuming the supply of charter schools is held constant?

2. What is the expected charter school effect for the subset of students in public
schools who would be induced to apply to charter schools if a policy intervention
were implemented to expand the supply of charter schools?

16For simplicity, in this discussion we ignore non-comparability generated by random variation,
initial compliance with the lottery, and selective attrition over the observation window following the
lottery. In most cases, the researchers who have modeled these effects have carefully adjusted their
data to neutralize these threats to inference.
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To answer these questions, the authors would need a full model of the charter school
effect for students who never applied to charter schools, and lottery-based studies use
no data on these students. The ATT is the appropriate parameter to estimate only
when addressing a second-order policy question that is not the focus of the debate:
“Should charter schools in New York City continue to receive support because those
students who have chosen to attend them have learned more than they would have
if they had attended regular public schools?” The answer to this question appears to
be yes, and yet Hoxby et al. (2009) chose not to limit their conclusions only to this
supportable position, at least when putting forward their primary conclusions.

If this were not troubling enough, the alternative is worse. One can simply assume
away the unblocked paths that include G→ Y , which is tantamount to assuming
that self-selection does not exist. The study of the Center for Research on Education
Outcomes (2009) is closer to this position. Its authors offer a complex set of conclusions
based on national results where charter school students are matched to students from
traditional public schools based on observed characteristics. Their overall conclusion
is that charter schools are generally ineffective for a majority of students, even though
charter schools may be effective for a minority of students who are not well served by
regular public schools:

In our nationally pooled sample, two subgroups fare better in charters
than in the traditional system: students in poverty and ELL [English Lan-
guage Learner] students. . . .These findings are particularly heartening for
the charter advocates who target the most challenging educational popu-
lations or strive to improve education options in the most difficult commu-
nities. Charter schools that are organized around a mission to teach the
most economically disadvantaged students in particular seem to have devel-
oped expertise in serving these communities. . . .The flip-side of this insight
should not be ignored either. Students not in poverty and students who are
not English language learners on average do notably worse than the same
students who remain in the traditional public school system. Additional
work is needed to determine the reasons underlying this phenomenon. Per-
haps these students are “off-mission” in the schools they attend. (Center
for Research on Education Outcomes 2009:7)

These conclusions are offered based on models that match students on observable
characteristics, leaving unobserved selection on the causal effect unaccounted for and
almost entirely ignored in the write-up of the results. The report is written as if
variation in the average treatment effect for different types of students is the central
interest, and that matching justifies estimation of all such conditional average effects.

It bears noting that the pattern presented in this study by CREO is consistent
with the one that we favored for the extended example that concluded Chapter 7,
which we see more generally as the signature of an underlying pattern of self-selection.
In this case, students from families who are living in poverty but who make their way
into charter schools are fleeing poor alternatives in their own neighborhood schools
and, furthermore, have extra amounts of motivation to succeed in school. At the same
time, it is likely that students from more advantaged families are more likely to be
attending charter schools solely for lifestyle reasons. In fact, they may be trading off
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academic opportunities in high-quality schools that they have found distasteful for
medium-quality charter schools with peer cultures or instructional programs that are
more appealing.

8.4 Conclusions

In this chapter, we have made the transition from “easy” to “hard” instances of causal
effect estimation. No longer does simple conditioning on the observed determinants of
the cause or all other direct causes of the outcome allow for identification and consis-
tent estimation of the causal effect of interest. Instead, we have considered examples
in which important variables that might have been used to mount an effective con-
ditioning strategy are unobserved. Thus, selection of the treatment of interest is on
unobserved characteristics of individuals that have unknown but suspected relation-
ships to the outcome. We have also expanded our usage of directed graphs to show
how patterns of self-selection and heterogeneity can be given explicit representations,
and we have made the implicit case that omitted variable problems are best addressed,
in the long run, by developing and deploying new measures.

We turn in the next three chapters to a presentation of additional methods to iden-
tify causal effects with observed variables when one cannot move beyond the available
data: instrumental variable estimators in Chapter 9, causal mechanisms in Chapter
10, and panel data models that utilize pretreatment measures of the outcome variable
in Chapter 11. We will explain these strategies in detail, discussing their strengths and
weaknesses along the way.



Chapter 9

Instrumental Variable
Estimators of Causal Effects

If a perfect stratification cannot be enacted with the available data, and thus neither
matching nor regression nor any other type of basic conditioning technique can be
used to effectively estimate a causal effect of D on Y , one possible solution is to find
an exogenous source of variation that determines Y only by way of the causal variable
D. The causal effect is then estimated by measuring how Y varies with the portion of
the total variation in D that is attributable to the exogenous variation. The variable
that indexes this variation in D is an instrumental variable (IV).

In this chapter, we orient the reader by first presenting IV estimation with a binary
instrument and a simple demonstration. We then return to the origins of IV techniques,
and we contrast this estimation strategy with the perspective on regression that was
presented in Chapter 6. We then develop the same ideas using the potential outcome
model, showing how the counterfactual perspective has led to a new literature on how
to interpret IV estimates. This new literature suggests that IV techniques are more
effective for estimating narrowly defined local average causal effects than for estimating
more general average causal effects, such as the average treatment effect (ATE) and
the average treatment effect for the treated (ATT). We also consider causal graphs
that can represent this recent literature and conclude with a discussion of marginal
treatment effects identified by local IVs.

9.1 Causal Effect Estimation with a Binary IV

We begin our presentation with the simplest scenario in which an instrumental variable
can be used to effectively estimate a causal effect. Recall the causal regression setup
in Equation (6.3):

Y =α+ δD+ ε, (9.1)

where Y is the outcome variable, D is a binary causal exposure variable, α is an
intercept, δ is the causal effect of D on Y , and ε is a summary random variable
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(a) Z is a valid instrumental
variable for D

(b) Z is not a valid instrumental
variable for D

Z

D Y

ε Z

D Y

ε

Figure 9.1 Two graphs in which Z is a potential instrumental variable.

that represents all other causes of Y . As noted above, when Equation (9.1) is used
to represent the causal effect of D on Y , the parameter δ is usually considered an
invariant, structural causal effect that applies to all members of the population of
interest. We will maintain this traditional assumption in this section.1

Suppose that the probability that D is equal to 1 rather than 0 is a function of a
binary variable Z that takes on values of 0 and 1. Figure 9.1 presents two possible ways
in which the variable Z could be related to both D and Y . Note first that, for both
graphs, the back-door paths represented by D ������ ε→ Y prevent a least squares
regression of Y on D from generating a consistent or unbiased estimate of the effect
of D on Y . More generally, no conditioning estimator would effectively estimate the
causal effect of D on Y for these graphs because no observed variables satisfy the
back-door criterion.

Now consider how Z, which we have labeled a “potential instrumental variable,”
is related to the outcome variable Y according to the alternative structures of these
two graphs. For both Figures 9.1(a) and 9.1(b), Z has an association with Y because
of the directed path Z →D→ Y . In addition, the paths collectively represented by
Z→D ������ ε→ Y do not contribute to the association between Z and Y because
D is a collider variable along all of them. However, for Figure 9.1(b), the additional
paths represented by Z ������ ε→ Y contribute to the association between Z and Y
because of the common causes that determine both Z and ε.2 This last difference is
the reason that Z can be used to estimate the causal effect of D on Y for Figure 9.1(a)
but not for Figure 9.1(b), as we will now explain.

If we continue to maintain the assumption that the effect of D on Y is a constant
structural effect δ, then it is not necessary to relate all of the variation in D to all of
the variation in Y in order to obtain a consistent estimate of the causal effect. Under
this assumption, if we can find a way of isolating the covariation in D and Y that is
causal, then we can ignore the other covariation in D and Y that is noncausal because
it is generated by the common causes of D and ε. For Figure 9.1(a), the variable
Z represents an isolated source of variation across which the analyst can examine
the covariation in D and Y that is causal. In this sense, Z is an “instrument” for

1In Pearl’s framework, we are assuming that fY (D,eY ) is defined as the linear function α+δD+ε
and where α and β are scalar constants.

2We have drawn the two bidirected edges separately for Figure 9.1(b) for simplicity. The same
reasoning holds when some of the common causes of Z and ε are also causes of D (and so on).
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examining an isolated slice of the covariation in D and Y . For Figure 9.1(b), Z does
not provide an isolated source of variation. The analyst can still examine the portion of
the covariation in D and Y that can be calculated across levels of Z, but some of this
covariation must be noncausal because D and Y are dependent on common causes
embedded in the bidirected edge in the back-door paths collectively represented by
D←Z ������ ε→ Y .

To see this result without reference to graphs, take the population-level expectation
of Equation (9.1), E[Y ]=E[α+δD+ε]=α+δE[D]+E[ε], and rewrite it as a difference
equation in Z:

E[Y |Z =1]−E[Y |Z =0] (9.2)

= δ(E[D|Z =1]−E[D|Z =0])+ (E[ε|Z =1]−E[ε|Z =0]).

Equation (9.2) is now focused narrowly on the variation in Y, D, and ε that exists
across levels of Z.3 Now, take Equation (9.2) and divide both sides by E[D|Z = 1]
−E[D|Z =0], yielding

E[Y |Z =1]−E[Y |Z =0]

E[D|Z =1]−E[D|Z=0]
(9.3)

=
δ(E[D|Z =1]−E[D|Z =0])+ (E[ε|Z =1]−E[ε|Z =0])

E[D|Z =1]−E[D|Z =0]
.

If the data are generated by the set of causal relationships depicted in Figure 9.1(a),
then Z has no linear association with ε, and E[ε|Z=1]−E[ε|Z=0] in Equation (9.3)
is equal to 0. Consequently, the right-hand side of Equation (9.3) simplifies to δ:

E[Y |Z =1]−E[Y |Z =0]

E[D|Z =1]−E[D|Z =0]
= δ. (9.4)

Under these conditions, the ratio of the population-level linear association between
Y and Z and between D and Z is equal to the causal effect of D on Y . This result
suggests that, if Z is in fact associated with D but not associated with ε (or with
Y, except through D), then the following sample-based estimator will equal δ in an
infinite sample:

δ̂IV,WALD≡ EN [yi|zi =1]−EN [yi|zi =0]

EN [di|zi =1]−EN [di|zi =0]
. (9.5)

As suggested by its subscript, this is the IV estimator, which is known as the Wald
estimator when the instrument is binary. Although the Wald estimator is consistent for
δ in this scenario, the assumption that δ is an invariant structural effect is crucial for
this result.4 From a potential outcomes perspective, in which we generally assume that

3Equation (9.2) is generated in the following way. First, write E[Y ] = α + δE[D] + E[ε] con-
ditional on the two values of Z, yielding E[Y |Z = 1] = α+ δE[D|Z = 1] + E[ε|Z = 1] and E[Y |
Z = 0] = α+ δE[D|Z = 0] +E[ε|Z = 0]. Note that, because α and δ are considered constant struc-
tural effects for this traditional motivation of IV estimation, they do not vary with Z. Now, subtract
E[Y |Z = 0] = α+ δE[D|Z = 0] +E[ε|Z = 0] from E[Y |Z = 1] = α+ δE[D|Z = 1] +E[ε|Z = 1]. The
parameter α is eliminated by the subtraction, and δ can be factored out of its two terms, resulting in
Equation (9.2).

4As for the origin of the Wald estimator, it is customarily traced to Wald (1940) by authors such
as Angrist and Krueger (1999). As we discuss later, the Wald estimator is not generally unbiased in
a finite sample and instead is only consistent.
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causal effects vary meaningfully across individuals, this assumption is very limiting and
quite likely unreasonable. Explaining when and how this assumption can be relaxed is
one of the main goals of this chapter.

For completeness, return to consideration of Figure 9.1(b), in which Z has a nonzero
association with ε. In this case, E[ε|Z = 1]−E[ε|Z = 0] in Equations (9.2) and (9.3)
cannot be equal to 0, and thus Equation (9.3) does not reduce further to Equation
(9.4). Rather, it reduces only to

E[Y |Z =1]−E[Y |Z =0]

E[D|Z =1]−E[D|Z =0]
= δ+

E[ε|Z =1]−E[ε|Z =0]

E[D|Z =1]−E[D|Z =0]
. (9.6)

In this case, the ratio of the population-level linear association between Y and Z and
between D and Z does not equal the causal effect of D on Y but rather the causal
effect of D on Y plus the last term on the right-hand side of Equation (9.6). The Wald
estimator in Equation (9.5) is not consistent for δ in this case. Instead, it converges
to the right-hand side of Equation (9.6), which is equal to δ plus a bias term that is a
function of the net association between Z and ε.

More generally, an IV estimator is a ratio that is a joint projection of Y and D
onto a third dimension Z. In this sense, an IV estimator isolates a specific portion of
the covariation in D and Y . For that selected covariation to be the basis of a valid
causal inference for the effect of D on Y , it cannot be attributable to any extraneous
common causes that determine both Z and Y . And, to justify the causal effect estimate
generated by a subset of the covariation in D and Y as a consistent estimate of the
population-level causal effect of D on Y , it is typically assumed in this tradition that
δ is a constant for all members of the population.5 Consider the following hypothetical
demonstration, which is based on the school voucher example introduced in Section
1.3.2 (see page 23).

IV Demonstration 1

Suppose that a state education department wishes to determine whether private high
schools outperform public high schools in a given metropolitan area, as measured by
the achievement of ninth graders on a standardized test. For context, suppose that
a school voucher program is operating in the city and that the state is considering
whether to introduce the program in other areas in order to shift students out of
public schools and into private schools.

To answer this policy question, the state department of education uses a census
of the population in the metropolitan area to select a random sample of 10,000 ninth
graders. They then give a standardized test to each sampled ninth grader at the end of
the year, and they collect data as {yi,di}10,000i=1 , where Y is the score on the standardized

5There is one trivial way around this assumption. If the naive estimator of D on Y is consistent for
the average causal effect of D on Y , then D is its own IV. The subset of the covariation in D and Y
that is projected onto Z is then the full set of covariation in D and Y because Z is equal to D. In this
case, no extrapolation is needed and the constant treatment effect assumption can be avoided. As we
will discuss later, there are slightly less trivial ways to avoid the assumption as well. One alternative
is to assert that δ is a constant among the treated and then stipulate instead that the IV identifies
only the ATT. Although plausible, there are better ways to handle heterogeneity, as we will discuss
as this chapter unfolds.
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Table 9.1 The Distribution of Voucher Winners by
School Sector for IV Demonstration 1

Public school Private school
di=0 di=1

Voucher loser zi=0 8000 1000

Voucher winner zi=1 800 200

test and D is equal to 1 for students who attend private high schools and equal to 0
for students who attend public high schools.

After the data are collected, suppose that the values of yi are regressed on the
values of di and that a predicted regression surface is obtained:

Ŷ =50.0+9.67(D) . (9.7)

The state officials recognize that private school students typically have more highly
educated parents and therefore are more likely to have higher test scores no matter
what curriculum and school culture they have been exposed to. Accordingly, they
surmise that 9.67 is likely a poor causal effect estimate, or at least not one that they
would want to defend in public as equal to the ATE.

The state officials therefore decide to merge the data with administrative records
on the school voucher program in the area. For this program, all eighth graders in the
city (both in public and private schools) are entered into a random lottery for $3,000
school vouchers that are redeemable at a private high school. By mandate, 10 percent
of all eligible students win the voucher lottery.

After merging the data, the state officials cross-tabulate eighth grade lottery win-
ners (where zi = 1 for those who won the lottery and zi = 0 for those who did not)
by school sector attendance in the ninth grade, di. As shown in Table 9.1, 1,000 of
the 10,000 sampled students were voucher lottery winners.6 Of these 1,000 students,
200 were observed in private schools in the ninth grade. In comparison, of the 9,000
sampled students who were not voucher lottery winners, only 1,000 were observed in
private schools.

The researchers assume that the dummy variable Z for winning the voucher lottery
is a valid IV forD because they believe that (1) the randomization of the lottery renders
Z independent of ε in the population-level causal regression equation Y =α+ δD+ ε
and that (2) Z has a causal effect on Y only through Z.. They therefore estimate

δ̂IV,WALD in Equation (9.5) as

EN [yi|zi =1]−EN [yi|zi =0]

EN [di|zi =1]−EN [di|zi =0]
=

51.600− 51.111

.200− .111
= 5.5, (9.8)

and conclude that the true causal effect of private schooling on ninth grade achieve-
ment is 5.5 rather than 9.67. Operationally, the Wald estimator takes the average

6For simplicity, we have assumed that the sample percentage of lottery winners is the same as the
population percentage. Of course, some random variation would be expected in any sample.
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difference in test scores among those students who have won a voucher and those who
have not won a voucher and divides that difference by a corresponding difference in
the proportion of high school students who attend private schools among those who
have won a voucher and the proportion of high school students who attend private
schools among those who have not won a voucher. The numerator of Equation (9.8)
is equal to 51.600− 51.111 by an assumed construction of the outcome Y , which we
will present later when we repeat this demonstration in more detail in Section 9.3.1
(as IV Demonstration 2, beginning on page 309). The denominator, however, can be
calculated directly from Table 9.1. In particular, EN [di = 1|zi = 1]= 200/1000= .200,
whereas EN [di =1|zi=0]= 1000/9000= .111.

For this demonstration, Z is a valid instrument by the traditional assumptions
maintained in this section of the chapter; it is randomly assigned to students and has
no association with Y except for the one produced by the directed path Z→D→ Y .
The resulting estimator yields a point estimate that can be given a traditional causal
interpretation based on the position that the casual effect of interest is a constant
structural effect. However, as we will show later in this chapter when we reintroduce
this demonstration as IV Demonstration 2, the particular causal effect that this IV
identifies is quite a bit different when individual-level causal effect heterogeneity is not
assumed away. The IV does not identify the ATE or the ATT. Instead, it identifies
only the average causal effect for the subset of all students who would attend a private
school if given a voucher but who would not attend a private school in the absence
of a voucher. This means, for example, that the IV estimate is uninformative about
the average causal effect among those who would enroll in private high schools in the
absence of a voucher. This group of students represents the vast majority of private
school students (in this example 1,000/1,200 or 83 percent). The potential outcome
literature has provided the insight that allows such a precise causal interpretation
and clarifies what a valid IV estimate does not inform. Before presenting that newer
material, we return to a more complete accounting of the traditional IV literature.

9.2 Traditional IV Estimators

As detailed by Goldberger (1972), Bowden and Turkington (1984), Heckman (2000),
and Bollen (2012), IV estimators were developed first in the 1920s by biologists and
economists analyzing equilibrium price determination in market exchange (see E.
Working 1927; H. Working 1925; and Wright 1921, 1925). After subsequent devel-
opment in the 1930s and 1940s (e.g., Wright 1934; Schultz 1938; Reiersl 1941; and
Haavelmo 1943), IV estimators were brought into widespread use in economics by
researchers associated with the Cowles commission (see Hood and Koopmans 1953;
Koopmans and Reiersl 1950).7 The structural equation tradition in sociology shares

7The canonical example for this early development was the estimation of price determination in
markets. For a market in equilibrium, only one price and one quantity of goods sold is observable at
any point in time. To make prospective predictions about the potential effects of exogenous supply-
and-demand shocks on prices and quantities for a new market equilibrium, the shape of latent supply-
and-demand curves must be determined. To estimate points on such curves, separate variables are
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similar origins to that of the IV literature (see Duncan 1975). The most familiar deploy-
ment of IV estimation in the extant sociological research is as the order condition for
identification of a system of structural equations (see Bollen 1989, 1995, 1996a, 1996b,
2001, 2012; Fox 1984).

9.2.1 The Linear Structural Equation IV Estimator

Consider the same basic ideas presented earlier for the Wald estimator in Equation
(9.5). Again, recall the causal regression setup in Equation (9.1):

Y =α+ δD+ ε, (9.9)

and again assume that we are in the traditional setup where δ is an invariant, structural
causal effect that applies to all members of the population of interest. The ordinary
least squares (OLS) estimator of the regression coefficient on D is

δ̂OLS, bivariate≡ CovN (yi,di)

VarN (di)
, (9.10)

where CovN (.) and VarN (.) denote unbiased, sample-based estimates from a sample
of size N of the population-level covariance and variance.

Now, again suppose that the back-door association between D and ε renders the
least squares estimator biased and inconsistent for δ in Equation (9.9). If least squares
cannot be used to effectively estimate δ, an alternative IV estimator can be attempted,
with an IV Z, as in

δ̂IV ≡ CovN (yi,zi)

CovN (di,zi)
, (9.11)

where Z can now take on more than two values. If the instrument Z is linearly asso-
ciated with D but unassociated with ε, then the IV estimator in Equation (9.11) is
consistent for δ in Equation (9.9).8

One way to see why IV estimators yield consistent estimates is to again consider
the population-level relationships between Y , D, and Z, as in Equations (9.1)–(9.4).
Manipulating Equation (9.1) as before, the covariance between the outcome Y and the
instrument Z can be written as

Cov(Y,Z) = δCov(D,Z)+Cov(ε,Z), (9.12)

again assuming that δ is a constant structural effect. Dividing by Cov(D,Z) then yields

Cov(Y,Z)

Cov(D,Z)
=

δCov(D,Z)+Cov(ε,Z)

Cov(D,Z)
, (9.13)

needed that uniquely index separate supply-and-demand shocks. Usually based on data from a set
of exchangeable markets or alternative well-chosen equilibria for the same market from past time
periods, these IVs are then used to identify different points of intersection between a shifted linear
supply/demand curve and a fixed linear demand/supply curve.

8Notice that substituting di for zi in Equation (9.11) results in the least squares regression esti-
mator in Equation (9.10). Thus, the least squares regression estimator implicitly treats D as an
instrument for itself.
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Figure 9.2 Two graphs in which Z is a valid IV.

which is directly analogous to Equation (9.3). When Cov(ε,Z) is equal to 0 in the
population, then the right-hand side of Equation (9.13) simplifies to δ. This suggests
that

CovN (yi,zi)

CovN (di,zi)

p−→ δ (9.14)

if Cov(ε,Z) = 0 in the population and if Cov(D,Z) �= 0. This would be the case for
the causal diagram in Figure 9.1(a). But here the claim is more general and holds for
cases in which Z is many-valued (and, in fact, for cases in which D is many-valued
as well, assuming that the linear, constant-coefficient specification in Equation (9.9)
is appropriate).

Our prior graphical presentation was also more restricted than it needed to be. As
we discussed above, if Z is related to D and Y as in Figure 9.1(a), then IV estimation
with Z is feasible.9 Figure 9.2(a) presents another graph in which Z can be used as
a valid instrumental variable for the effect of D on Y . In this case, the instrument V
is unobserved. What we have instead is a surrogate instrumental variable, Z, which
is not a direct cause of D but which has an association with D because both Z and
D mutually depend on the unobserved instrument V . A complication, which we will
discuss below, is that the association between Z and D may be very weak in this case,
creating a particular set of statistical problems.10

Figure 9.2(b) represents perhaps the most common setup in the traditional applied
literature. In this case, Z is not a “clean” instrument that has no association with
Y other than the association that is generated by a directed path that begins at the
instrument and ends at the outcome. Nonetheless, all of the additional associations
between Z and Y are generated by back-door paths from the instrument Z to the
outcome Y that can be blocked by simultaneous conditioning on observed variables,
such as W in Figure 9.2(b). In this case, Z is sometimes referred to as a conditional

9The only difference in this section is that we are now allowing Z to take on more than two values.
Because of this relaxation, in order for the graph to be compatible with the traditional setup, we
need to make the further assumption that Z has a linear causal effect on D, which neither varies over
individuals nor in any piecewise fashion across the levels of Z.

10As elsewhere up until this point in the chapter, in order to stay within the traditional setup we
must now assume that linearity holds throughout, so that the effect of V on Z generates a linear
relationship between Z and D.
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instrumental variable, and estimation must proceed with a conditional version of Equa-
tion (9.11), usually the two-stage least squares estimator that we will discuss below.
Consider the following examples of IV estimation from the applied literature.

9.2.2 Examples of IV Estimation

Among social scientists, demographic, and health researchers, economists are the most
prone to the adoption of IV estimation.11 Consider the causal effect of education on
labor market earnings, as introduced earlier in Section 1.3.1 and as used as a focal
example in prior chapters. As reviewed in pieces such as Card (1999) and Angrist and
Krueger (2001), the causal effect of years of schooling on subsequent earnings has been
estimated with a variety of IVs, including proximity to college, regional and temporal
variation in school construction, tuition at local colleges, temporal variation in the
minimum school-leaving age, and quarter of birth. The argument in these applications
is that the IVs predict educational attainment but have no direct effects on earnings.
For the quarter-of-birth instrument, which is one of the most widely discussed IVs in
the literature, Angrist and Krueger (1991:981–82) reason:

If the fraction of students who desire to leave school before they reach the
legal dropout age is constant across birthdays, a student’s birthday should
be expected to influence his or her ultimate educational attainment. This
relationship would be expected because, in the absence of rolling admis-
sions to school, students born in different months of the year start school
at different ages. This fact, in conjunction with compulsory schooling laws,
which require students to attend school until they reach a specified birth-
day, produces a correlation between date of birth and years of schooling. . . .
Students who are born early in the calendar year are typically older when
they enter school than children born late in the year. . . . Hence, if a fixed
fraction of students is constrained by the compulsory attendance law, those
born in the beginning of the year will have less schooling, on average, than
those born near the end of the year.

The results of Angrist and Krueger (1991) were sufficiently persuasive that many
additional researchers have since been convinced to use related IVs. Braakmann (2011),
for example, uses an IV based on month of birth to estimate the effect of education
on health-related behaviors. Other researchers have used IVs that index over-time
variation in compulsory schooling laws, such as Oreopoulos (2006) for the effect of
education on earnings, Machin, Marie, and Vuji (2011) for the effect of education
on crime, and Kemptner, Jürges, and Reinhold (2011) for the effect of education on
health.12

11Some of the examples we introduce in this section adopt the traditional setup presented above,
wherein the causal effect of interest is a structural constant. Many of the more recent examples
adopt the alternative setup that we will introduce later in the chapter, where it is assumed as a first
principle that treatment effects vary at the individual level. For now, we offer these examples only to
demonstrate the typical identifying assumptions presented in Figures 9.1(a) and 9.2.

12And, in turn, each of these effects has been modeled with alternative IVs. For example, in the case
of health and health behaviors, Lindahl (2005) used lottery winnings as an IV for the effect of income



300 Chapter 9. Instrumental Variable Estimators of Causal Effects

For another example, consider the literature on the effects of military service on
subsequent labor market outcomes, a topic that both economists and sociologists have
studied for several decades. Some have argued that military service can serve as an
effective quasi-job-training program for young men likely to otherwise experience low
earnings because of weak attachment to more traditional forms of education (Brown-
ing, Lopreato, and Poston 1973) or as a more general productivity signal that generates
a veteran premium (De Tray 1982). In one of the earliest studies, which focused pri-
marily on veterans who served around the time of the Korean War, Cutright (1974)
concluded that

two years in the military environment, coupled with the extensive benefits
awarded to veterans, do not result in a clear cut, large net positive effect of
service. . . . Therefore, one may question the likely utility of social programs
that offer minority men and whites likely to have low earnings a career
contingency in a bridging environment similar to that provided by military
service. (Cutright 1974:326)

Following the war in Vietnam, attention then focused on whether any military service
premium had declined (see Rosen and Taubman 1982; Schwartz 1986; see also Berger
and Hirsch 1983). Angrist (1990) used the randomization created by the Vietnam-era
draft lottery to estimate the veteran effect. Here, the draft lottery turns date of birth
into an IV, in much the same way that compulsory school entry and school-leaving
laws turn date of birth into an IV for years of education. Angrist determined that
veteran status had a negative effect on earnings, which he attributed to a loss of labor
market experience.13

The quarter-of-birth and draft-lottery IVs are widely discussed because they are
determined by processes that are very unlikely to be structured by any of the unob-
served determinants of the outcome of interest. Many IVs in the economics literature
do not have this feature. As discussed in Section 1.3.2, much of the early debate on
the effectiveness of private schooling relative to its alternatives was carried out with
observational survey data on high school students from national samples of public
and Catholic high schools. In attempts to resolve the concerns over selection bias,
Evans and Schwab (1995), Hoxby (1996), and Neal (1997) introduced plausible IVs for

on health and mortality, while Cawley, Moran, and Simon (2010) used an over-time discontinuity in
Social Security benefits as an IV for the effect of income on the obesity of the elderly.

13We do not mean to imply that Angrist’s work on this issue ended in 1990. Not only was his
work very important for understanding what IV estimators accomplish in the presence of causal
effect heterogeneity (see next section), but he also continued with subsequent substantive work on
the military service effect. Angrist and Krueger (1994) estimated the World War II veteran effect,
and, in an attempt to reconcile past estimates, concluded: “Empirical results using the 1960, 1970,
and 1980 censuses support a conclusion that World War II veterans earn no more than comparable
nonveterans, and may well earn less. These findings suggest that the answer to the question ‘Why
do World War II veterans earn more than nonveterans?’ appears to be that World War II veterans
would have earned more than nonveterans even had they not served in the military. Military service,
in fact, may have reduced World War II veterans’ earnings from what they otherwise would have
been” (Angrist and Krueger 1994:92). Then, Angrist (1998) assessed the effects of voluntary service
in the military in the 1980s, and he found mixed evidence. In Angrist and Chen (2011), he revisited
the Vietnam-era veteran effect, analyzing 2000 census data, arguing that the effect on education is
positive because of the GI bill but is nonetheless close to zero for earnings.
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Catholic school attendance. Hoxby and Neal argued that the share of the local popu-
lation that is Catholic is a valid IV for Catholic school attendance, maintaining that
exogenous differences in population composition influence the likelihood of attending
a Catholic school (by lowering the costs of opening such schools, which then lowers the
tuition that schools need to charge and to which parents respond when making school
sector selection decisions). Variation in the number of Catholics in each county was
attributed to lagged effects from past immigration patterns and was therefore assumed
to have no direct effect on learning.14

These examples of IV estimation in economics are but the tip of an iceberg of
applications. Some economists have argued that the attention given to IV estimation in
the applied literature in the past two decades has been excessive, and a thriving debate
is now under way on the future direction of observational research in economics, as
revealed by a comparison of Angrist and Pischke (2010) and Imbens (2010) to Deaton
(2010), Heckman and Urzua (2010), and Leamer (2010). We will discuss this debate
at several points in this chapter and the next.

Moving beyond research in economics, examples of IV estimation follow more var-
ied patterns. For political science, Dunning (2012), Sekhon and Titiunik (2012), and
Sovey and Green (2011) review the growing list of applications that draw on “natural
experiments,” some of which are instrumental variable designs. In sociology, Bollen
(2012) shows that IV estimation is uncommon but still utilized in models with a
structural equations foundation.15 Finally, epidemiologists and health researchers have
not utilized instrumental variables with substantial frequency, to some extent heeding
the warning of Hernán and Robins (2006b:364) about the “risk [of] transforming the
methodologic dream of avoiding unmeasured confounding into a nightmare of conflict-
ing biased estimates.”

9.2.3 The IV Identifying Assumption Cannot Be Tested

The basic identification assumption underlying all of the studies just summarized –
that Z has no net association with Y except for the one generated by the directed
path Z→D→ Y – is a strong and untestable assumption. Some researchers believe
mistakenly that this assumption is empirically testable. In particular, they believe that
the assumption that Z has no direct effect on Y implies that there is no association

14Evans and Schwab (1995) used a student’s religious identification as an IV. This IV has proven
to be rather unconvincing to many scholars (see Altonji, Elder, and Taber 2005a, 2005b) because the
assumed exclusion restriction appears unreasonable. Neal (1997) also used this IV but only selectively
in his analysis.

15As noted, IV estimation is an inherent part of structural equation modeling because point esti-
mates of coefficients are not infrequently generated by IV-based order identification in this tradition
of analysis. For example, Messner, Baumer, and Rosenfeld (2004) estimate a two-equation model,
with communities as the unit of analysis, where (1) the effect of community-level social trust on
the homicide rate is identified by an instrument for community-level subjective alienation and (2)
the effect of community-level social activism on the homicide rate is identified by instruments for
the community-level average amount of television watched and extreme political attitudes. This type
of application relies quite heavily on the theoretical rationale for instrument selection, more so than
for the “natural experiment” instruments prized in economics where the prima facie case for the
independence of the instrument Z from causes of Y other than D is stronger.
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Figure 9.3 A graph with an unblocked back-door path and a valid IV.

between Z and Y conditional onD. Thus, if an association between Z and Y is detected
after conditioning on D, then the assumption must be incorrect.

Causal graphs show clearly why individuals might believe that the identifying
assumption can be tested in this way and also why it cannot. Consider the sim-
plest possible causal graph, presented in Figure 9.3, in which (1) an unblocked back-
door path between D and Y exists because of the unobserved common cause U , but
(2) Z is a valid IV that identifies the causal effect of D on Y .16 Here, the instrument
Z is valid because it causes D, has no causal effect on Y other than through D, and is
unconditionally unassociated with U .

Why is the suggested test faulty? Again, the rationale for the test is that condition-
ing on D will block the indirect relationship between Z and Y through D. Accordingly,
if the only association between Z and Y is indirect through D, then it is thought that
there should be no association between Z and Y after conditioning on D. If such a net
association is detected, then it may seem reasonable to conclude that the IV identifying
assumption must be false.

Although this rationale feels convincing, it is incorrect. It is certainly true that
if the IV assumption is invalid, then Z and Y will be associated after conditioning
on D. But the converse is not true. In fact, Z and Y will always be associated after
conditioning on D when the IV assumption is valid. The explanation follows from
the fact that D in Figure 9.3 is a collider that is mutually caused by both Z and
U . As discussed extensively in this book, conditioning on a collider variable creates
dependence between the variables that cause it. Accordingly, conditioning on D in this
graph creates dependence between Z and U , even though the IV identifying assumption
is valid. And, as a result, Z and Y will always be associated within at least one stratum
of D even if the IV is valid. The faulty test yields an association between Z and Y
when conditioning on D regardless of whether the IV identifying assumption is valid.17

16For our purposes here, this graph is isomorphic with Figure 9.1(a). We have replaced the bidirected
edge from D to ε by representing the association between D and ε as a single back-door path between
D and Y generated by an unobserved common cause U . We have then eliminated the remainder of
the distribution of ε from the graph because it is unconditionally unassociated with Z and D (and is,
in Pearl’s framework, now the usual error term eY that comes into view only under magnification).

17For completeness, consider what the faulty test reveals when the IV assumption is invalid. Suppose
that Figure 9.3 is augmented by an unobserved cause E and then two edges E→ Z and E→U . In
this case, Z and Y would be associated within levels of D for two reasons: (1) conditioning on the
collider D generates a net association between Z and U (and hence Z and Y ) and (2) the common
cause E of Z and U generates an unconditional association between Z and Y .
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9.2.4 Recognized Pitfalls of Traditional IV Estimation

The traditional IV literature suggests that, as long as there is an instrument that pre-
dicts the causal variable of interest but is linearly unrelated to the outcome variable
except by way of the causal variable, then an IV estimator will effectively estimate
the causal effect. Even within this traditional setup, however, there are some recog-
nized pitfalls of an IV estimation strategy. First, the assumption that an IV does not
have a net direct effect on the outcome variable is often hard to defend. Second, even
when an IV does not have a net direct effect on the outcome variable, IV estimators
are biased in finite samples. Moreover, this bias can be substantial when an instru-
ment only weakly predicts the causal variable. We discuss each of these weaknesses
here.

Even “natural experiments” that generate compelling IVs are not immune from
criticism. Consider date of birth as an instrument for veteran status in estimating the
effect of military service in Vietnam on subsequent earnings (Angrist 1990). The case
for excluding date of birth from the earnings equation that is the primary interest of the
study is the randomization of the draft lottery, in which draft numbers were assigned
at random to different dates of birth. Even though a type of randomization generates
the IV, this does not necessarily imply that date of birth has no net direct effect on
earnings. After the randomization occurs and the lottery outcomes are known, employ-
ers may behave differently with respect to individuals with different lottery numbers,
investing more heavily in individuals who are less likely to be drafted. As a result,
lottery number may be a direct, though probably weak, determinant of future earn-
ings (see Heckman 1997; Moffitt 1996). IVs that are not generated by randomization
are even more susceptible to causal narratives that challenge the assumption that the
purported IV does not have a net direct effect on the outcome of interest.

Even in the absence of this complication, there are well-recognized statistical pit-
falls. By using only a portion of the covariation in the causal variable and the outcome
variable, IV estimators use only a portion of the information in the data. This repre-
sents a direct loss in statistical power, and as a result IV estimators tend to exhibit
substantially more expected sampling variance than other estimators. By the criterion
of mean-squared error, a consistent and asymptotically unbiased IV estimator can be
outperformed by a biased and inconsistent regression estimator.

The problem can be especially acute in some cases. It has been shown that instru-
ments that only weakly predict the causal variable of interest should be avoided
entirely, even if they generate point estimates with acceptably small estimated stan-
dard errors (see Bound, Jaeger, and Baker 1995). In brief, the argument here is four-
fold: (1) in finite samples, IV point estimates can always be computed because sample
covariances are never exactly equal to zero; (2) as a result, an IV point estimate can
be computed even for an instrument that is invalid because it does not predict the
endogenous variable in the population (i.e., even if Cov(D,Z) = 0 in the population,
rendering Equation (9.13) undefined because its denominator is equal to 0); (3) at the
same time, the formulas for calculating the standard errors of IV estimates fail in such
situations, giving artificially small standard errors (when in fact the true standard
error for the undefined parameter is infinity); and (4) the bias imparted by a small
violation of the assumption that the IV affects the outcome variable only by way of
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the causal variable can explode if the instrument is weak.18 To see this last result,
consider Equation (9.6), which depicts the expected bias in the Wald estimator for a
binary IV as the term

E[ε|Z =1]−E[ε|Z=0]

E[D|Z =1]−E[D|Z =0]
. (9.15)

When the identifying assumption is violated, the numerator of Equation (9.15) is
nonzero because Z is associated with Y through ε. The bias is then an inverse func-
tion of the strength of the instrument; the weaker the instrument, the smaller the
denominator and the larger the bias. If the denominator is close to zero, even a tiny
violation of the identifying assumption can generate a large amount of bias. And, unfor-
tunately, this relationship is independent of the sample size. Thus, even though a weak
instrument may suggest a reasonable (or perhaps even intriguing) point estimate, and
one with an acceptably small estimated standard error, the IV estimate may contain
no genuine information whatsoever about the true causal effect of interest (see Hahn
and Hausman 2003; Small and Rosenbaum 2008; Staiger and Stock 1997; Wooldridge
2010).19

Beyond these widely recognized pitfalls of standard IV estimation in economics, a
third criticism is emerging of current practice, especially in economics. As explained
by Angrist and Krueger (2001) and Angrist and Pischke (2009, 2010), the ways in
which IVs are used has changed in the past 40 years. Because it has been hard to
achieve consensus that particular no-net-direct-effect assumptions are credible, IVs
that arise from naturally occurring variation have become more popular. Genuine “gifts
of nature,” such as variation in the weather and natural boundaries, have become the
most prized sources of IVs (see Dunning 2012 and Rosenzweig and Wolpin 2000 for
lists of such instruments).

Not all economists see this shift in IV estimation techniques toward naturally occur-
ring IVs as necessarily a step in the right direction. Rosenzweig and Wolpin (2000)
offer one of the most cogent critiques (but see also Deaton 2010; Heckman 2000, 2005;
Heckman and Urzua 2010). Rosenzweig and Wolpin make three main points. First,
the variation on which naturally occurring IVs capitalize is often poorly explained
and/or does not reflect the variation that maintained theories posit should be impor-
tant. As a result, IV estimates from natural experiments have a black-box character
that lessens their appeal as informative estimates for the development of theory or
policy guidance. Second, the random variation created by a naturally occurring exper-
iment does not necessarily ensure that an IV has no net direct effect on the outcome.
Other causes of the outcome can respond to the natural event that generates the IV as
well. Third, naturally occurring IVs typically do not estimate structural parameters

18Complications (1), (2), (3), and (4) are all closely related. Situation (4) can be considered a less
extreme version of the three-part predicament depicted in (1)–(3).

19There are no clear guidelines on how large an association between an IV and a treatment variable
must be before analysis can proceed safely. Most everyone agrees that an IV is too weak if it does
not yield a test statistic that rejects a null hypotheses of no association between Z and D. However,
a main point of this literature is that the converse is not true. If a dataset is large enough, the small
association between Z and D generated by a weak IV can still yield a test statistic that rejects a null
hypotheses of no association. Even so, the problems in the main text are not vitiated, especially the
explosion of the bias generated by a small violation of the identifying assumption.
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of fundamental interest, which can and should be defined in advance of estimation
based on criteria other than whether a naturally occurring IV is available. Rosenzweig
and Wolpin contend that natural experiments tend to lead analysts to ignore these
issues because natural experiments appear falsely infallible. Reflecting on the same
set of issues, Deaton (2010:432) writes, “The general lesson is once again the ultimate
futility of trying to avoid thinking about how and why things work.”

We will explain these points further in this chapter, after introducing IV estimation
in the presence of causal effect heterogeneity. (We will also then revisit this critique
in the next chapter on mechanisms.) The new IV literature, to be discussed next,
addresses complications of the constant coefficient assumption implied by the stipu-
lated constant value of δ in Equations (9.1) and (9.9). The issues are similar to those
presented for regression estimators in Chapter 6, in that heterogeneity invalidates tra-
ditional causal inference from IV estimates. But IV estimators do identify specific
narrow slices of average causal effects that may be of distinct interest, and as a result
they represent a narrowly targeted estimation strategy with considerable appeal.

9.3 Instrumental Variable Estimators in the
Presence of Individual-Level

Heterogeneity

Following the adoption of a counterfactual perspective, a group of econometricians
and statisticians has clarified what IVs identify when individual-level causal effects
are heterogeneous. In this section, we will emphasize the work that has developed the
connections between traditional IV estimators and potential-outcome-defined treat-
ment effects (Angrist and Imbens 1995; Angrist, Imbens, and Rubin 1996; Imbens
and Angrist 1994; Imbens and Rubin 1997). The key innovation here is the defini-
tion of a new treatment effect parameter: the local average treatment effect (LATE).
We will also discuss other important work that has further clarified these issues, and
some of this literature is more general than the LATE literature that we introduce
first (see Heckman 1996, 1997, 2000, 2010; Heckman, Tobias, and Vytlacil 2003; Heck-
man, Urzua, and Vytlacil 2006; Heckman and Vytlacil 1999, 2000, 2005; Manski 2003;
Vytlacil 2002).20

9.3.1 IV Estimation as LATE Estimation

Consider the following motivation of the Wald estimator in Equation (9.5), and recall
the definition of Y presented in Equation (4.5):

Y = Y 0+(Y 1−Y 0)D (9.16)

= Y 0+ δD

=μ0+ δD+υ0,

20Given the rapidity of these developments in the IV literature, some disagreement on the origins
of these ideas pervades the literature. Heckman and Robb (1985, 1986) did provide extensive analysis
of what IV estimators identify in the presence of heterogeneity. Subsequent work by others, as we
discuss in this section, has clarified and extended these ideas, even while Heckman and his colleagues
continued to refine their ideas.
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where μ0≡E[Y 0] and υ0≡Y 0−E[Y 0]. Note that δ is now defined as Y 1−Y 0, unlike its
structural representation in Equations (9.1) and (9.9) where δ was implicitly assumed
to be constant across all individuals.

To understand when an IV estimator can be interpreted as an average causal effect
estimator, Imbens and Angrist (1994) developed a framework to classify individuals
into those who respond positively to an instrument, those who remain unaffected by an
instrument, and those who rebel against an instrument. Their innovation was to define
potential treatment assignment variables, DZ=z , for each state z of the instrument Z.
When D and Z are binary variables, there are four possible groups of individuals in
the population.21 These can be summarized by a four-category latent variable C for
compliance status:

Compliers (C = c) : DZ=0 =0 and DZ=1 =1,

Defiers (C = d) : DZ=0 =1 and DZ=1 =0,

Always takers (C = a) : DZ=0 =1 and DZ=1 =1,

Never takers (C =n) : DZ=0 =0 and DZ=1 =0.

Consider the private schooling example presented earlier in IV Demonstration 1 (see
page 294). Students who would enroll in private schools only if offered the voucher
are compliers (C = c). Students who would enroll in private schools only if not offered
the voucher are defiers (C = d). Students who would always enroll in private schools,
regardless of whether they are offered the voucher, are always takers (C = a). And,
finally, students who would never enroll in private schools are never takers (C = n).

Analogous to the definition of the observed outcome, Y , the observed treatment
indicator variable D can then be defined as

D=DZ=0+(DZ=1−DZ=0)Z (9.17)

=DZ=0+κZ,

where κ≡DZ=1−DZ=0.22 The parameter κ in Equation (9.17) is the individual-level
causal effect of the instrument on D, and it varies across individuals if DZ=1−DZ=0

varies across individuals (i.e., if observed treatment status varies as the instrument is
switched from “off” to “on” for each individual). If the instrument represents encour-
agement to take the treatment, such as the randomly assigned school voucher in IV
Demonstration 1, then κ can be interpreted as the individual-level compliance induce-
ment effect of the instrument. Accordingly, κ=1 for compliers and κ=−1 for defiers.
For always takers and never takers, κ= 0 because none of these individuals respond
to the instrument.

21These four groups are considered principal strata in the framework of Frangakis and Rubin (2002).
22Note also that D has now been counterfactually defined with reference to DZ . Accordingly, the

definition of Y in Equation (9.16) is conditional on the definition of D in Equation (9.17). Furthermore,
although there is little benefit in doing so, it bears noting that this definition of D could be structured
analogously to the definition of Y in Equation (9.16) so that the last line would become D= ζ+κZ+ι,
where ζ≡E[DZ=0] and ι≡DZ=0−E[DZ=0]. The parameter ζ would then be the expected probability
of being in the treatment if all individuals were assigned to the state “instrument switched off,” and
ι would be the individual-level departure from this expected value, taking on values 1−E[DZ=0] and
−E[DZ=0] to balance the right-hand side of Equation (9.17) so that D is equal to either 1 or 0.



9.3. Individual-Level Heterogeneity 307

Given these definitions of potential outcome variables and potential treatment vari-
ables, a valid instrument Z for the causal effect of D on Y must satisfy three assump-
tions in order to identify a LATE:

Independence assumption: (Y 1,Y 0,DZ=1,DZ=0) ⊥⊥ Z, (9.18)

Nonzero effect of instrument assumption: κ �=0 for all i, (9.19)

Monotonicity assumption: either κ≥ 0 for all i or κ≤ 0 for all i. (9.20)

The independence assumption in Equation (9.18) is analogous to the assumption that
Cov(Z,ε) = 0 in the traditional IV literature; see the earlier discussion of Equation
(9.13).23 It stipulates that the instrument must be independent of the potential out-
comes and potential treatments. Knowing the value of the instrument for individual i
must not yield any information about the potential outcome of individual i under either
treatment state. Moreover, knowing the realized value of the instrument for individual
i must not yield any information about the probability of being in the treatment under
alternative hypothetical values of the instrument. This latter point may well appear
confusing, but it is exactly analogous to the independence assumption of potential
outcomes from observed treatment status, discussed earlier for Equation (2.6). A valid
instrument predicts observed treatment status (D), but it does not predict potential
treatment status (DZ=z).

The assumptions in Equations (9.19) and (9.20) are assumptions about individual
responses to shifts in the instrument. The assumption of a nonzero effect of Z on D is
a stipulation that the instrument must predict treatment assignment for at least some
individuals. There must be at least some compliers or some defiers in the population
of interest. The monotonicity assumption then further specifies that the effect of Z on
D must be either weakly positive or weakly negative for all individuals i. Thus, there
may be either defiers or compliers in the population but not both.24

If these three assumptions obtain, then an instrument Z identifies the LATE: the
average treatment effect for the subset of the population whose treatment selection is
induced by the instrument.25 If κ≥ 0 for all i, then the Wald estimator from Equation

23The stable unit treatment value assumption (SUTVA) must continue to hold, and now it must
apply to potential treatments as well. In addition, as we noted earlier, our presentation here follows
Imbens and Angrist (1994), Angrist and Imbens (1995), and Angrist et al. (1996). As we note later, IVs
can be defined in slightly different (in some cases more general) ways. But for now, we restrict attention
to the LATE literature, in which assumptions such as complete independence of the instrument are
utilized.

24Manski defines this assumption as a monotone treatment selection (MTS) assumption in order to
distinguish it from his monotone treatment response (MTR) assumption (see Manski 1997; Manski
and Pepper 2000). Vytlacil (2002) establishes its connections to the index structure model laid out
in Heckman and Vytlacil (1999), as we discuss in Section 9.3.4. Heckman (2000, 2010), Heckman
and Vytlacil (2005, 2007), Heckman et al. (2006), and Heckman and Urzua (2010) provide a broad
accounting of the relationships between alternative IV estimators.

25The LATE is often referred to as the “complier average causal effect” to signify that the descriptor
local is really defined by the restricted applicability of the LATE estimate to the average causal effect
of compliers. The following example does not use the compliance language explicitly, except insofar
as those who respond to the voucher are labeled compliers. The LATE literature that we cite provides
the explicit connections between LATE and the large literature on noncompliance in randomized
experiments (see in particular Imbens and Rubin 1997 and citations therein).
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(9.5) converges to a particular LATE:

δ̂IV,WALD
p−→E[δ|C = c], (9.21)

which is equal to E[Y 1−Y 0|DZ=1=1,DZ=0=0] and is therefore the average treatment
effect among compliers. In contrast, if κ≤ 0 for all i, then the Wald estimator from
Equation (9.5) converges to the opposite LATE:

δ̂IV,WALD
p−→E[δ|C = d], (9.22)

which is equal to E[Y 1−Y 0|DZ=1=0,DZ=0=1] and is therefore the average treatment
effect among defiers. In either case, the treatment effects of always takers and never
takers are not informed in any way by the IV estimate.

In the next section, we will explain the claims in Equations (9.21) and (9.22)
in considerable detail through a more elaborate version of IV Demonstration 1. But
the basic intuition is straightforward. A valid IV is nothing more than an exogenous
dimension across which the treatment and outcome variables are analyzed jointly. For
a binary instrument, this dimension is a simple contrast, which is the ratio presented
earlier; see Equations (9.5) and (9.8):

EN [yi|zi =1]−EN [yi|zi =0]

EN [di|zi =1]−EN [di|zi =0]
.

The numerator is the naive estimate of the effect of Z on Y , and the denominator is
the naive estimate of the effect of Z on D.

To give a causal interpretation to this ratio of differences across the third dimension
indexed by Z, a model of individual treatment response must be specified and then
used to interpret the causal effect estimate. The model of individual response adopted
for a LATE analysis with a binary IV is the fourfold typology of compliance, captured
by the latent variable C defined earlier for always takers, never takers, compliers, and
defiers. Within this model, the always takers and never takers do not respond to the
instrument (i.e., they did not choose to take part in the “experiment” created by the
IV, and thus their treatment assignment is not determined by Z). This means that
they are distributed in the same proportion within alternative values of the instrument
Z. And, as a result, differences in the average value of Y , when examined across Z,
are not a function of the outcomes of always takers and never takers.26

In contrast, defiers and compliers contribute all of the variation that generates the
IV estimate because only their behavior is responsive to the instrument. For this rea-
son, any differences in the average value of Y , when examined across Z, must result
from treatment effects for those who move into and out of the causal states repre-
sented by D. If compliers are present but defiers are not, then the estimate offered by
the ratio is interpretable as the average treatment effect for compliers. If defiers are
present but compliers are not, then the estimate offered by the ratio is interpretable
as the average treatment effect for defiers. If both compliers and defiers are present,
then the estimate generated by the ratio does not have a well-defined causal interpre-
tation. In the following demonstration, we will consider the most common case in the

26In a sense, the outcomes of always takers and never takers represent a type of background noise
that is ignored by the IV estimator. More precisely, always takers and never takers have a distribution
of outcomes, but the distribution of these outcomes is balanced across the values of the instrument.
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LATE literature for which the monotonicity condition holds in the direction such that
compliers exist in the population but defiers do not.

IV Demonstration 2

Recall the setup for IV Demonstration 1 (see page 294). In an attempt to determine
whether private high schools outperform public high schools, a state education depart-
ment assembles a dataset on a random sample of 10,000 ninth graders, {yi,di,zi}10,000i=1 ,
where Y is a standardized test, and D is equal to 1 for students who attend private
high schools and 0 for students who attend public high schools. Likewise, Z is equal
to 1 for those who win a lottery for a $3,000 school voucher and 0 for those who do
not.

As noted for IV Demonstration 1, a bivariate regression of the values of yi on
di yielded a treatment effect estimate of 9.67; see discussion of Equation (9.7). An
alternative IV estimate with Z as an instrument for D yielded an estimate of 5.5; see
Equation (9.8). The hypothetical state officials relied on the IV estimate rather than
on the regression estimate because they recognized that private school students have
more advantaged social backgrounds. And they assumed that the randomization of
the voucher lottery, in combination with the relationship between D and Z shown in
Table 9.1, established the voucher lottery outcome as a valid IV.

We stated just after our discussion of IV Demonstration 1 that the estimate of 5.5
is properly interpreted as a particular LATE: the average causal effect for the subset
of all students who would attend a private school if given a voucher but would not
attend a private school in the absence of a voucher. To explain the reasoning behind
this conclusion, we will first explain how the observed values for D and Y are generated
as a consequence of variation in Z. Then we will introduce potential outcomes and use
the treatment response model in order to explain why the IV estimate is interpretable
as the average treatment effect for compliers.

We reported the frequency distribution of D and Z in Table 9.1. The same infor-
mation is presented again in Table 9.2, but now also as probability values (where,
for example, the term PrN [., .] in the upper left cell is equal to PrN [di =0,zi =0] by
plugging the row and column headings into the joint probability statement). We also
now report the expectations of the outcome variable Y , conditional on D and Z.

First, consider how the least squares and IV estimates are calculated. The coefficient
of 9.67 onD in Equation (9.7) is equal to the naive estimator,EN [yi|di=1]−EN [yi|di=
0]. One can calculate these two conditional expectations from the elements of Table
9.2 by forming weighted averages within columns:

EN [yi|di =1]=
.1

.1+ .02
60+

.02

.1+ .02
58= 59.667,

EN [yi|di =0]=
.8

.8+ .08
50+

.08

.8+ .08
50= 50.0.

As shown earlier in Equation (9.8), the IV estimate of 5.5 is the ratio of two specific
contrasts:

EN [yi|zi =1]−EN [yi|zi =0]

EN [di|zi =1]−EN [di|zi =0]
=

51.6− 51.111

.2− .111
= 5.5. (9.23)
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Table 9.2 The Joint Probability Distribution and
Conditional Expectations of the Test Score for Voucher
Winner by School Sector for IV Demonstrations 1 and 2

Public school Private school
di=0 di=1

Voucher loser zi=0 N =8000 N =1000

PrN [., .] = .8 PrN [., .] = .1

EN [yi|., .] = 50 EN [yi|., .] = 60

Voucher winner zi=1 N =800 N =200

PrN [., .] = .08 PrN [., .] = .02

EN [yi|., .] = 50 EN [yi|., .] = 58

Both of these contrasts are calculated within the rows of Table 9.2 rather than the
columns. The contrast in the numerator is the naive estimate of the effect of Z on Y .
It is calculated as the difference between

EN [yi|zi =1]=
.08

.08+ .02
50+

.02

.08+ .02
58= 51.6 and

EN [yi|zi =0]=
.8

.8+ .1
50+

.1

.8+ .1
60= 51.111.

The contrast in the denominator is the naive estimate of the effect of Z on D. It is
calculated as the difference between

EN [di =1|zi =1]=
.02

.08+ .02
= .2 and

EN [di =1|zi =0]=
.1

.8+ .1
= .111.

Thus, calculating the IV estimate in this case is quite simple and does not require any
consideration of the underlying potential outcomes or potential treatments.

But, to interpret the IV estimate when causal effect heterogeneity is present, the
potential outcome and potential treatment framework are needed. Consider the three
identifying assumptions in Equations (9.18) through (9.20). Because the voucher lot-
tery is completely random, the voucher instrument Z is independent of the potential
outcome and potential treatment variables. Also, as just shown, Z predicts D, thereby
sustaining the nonzero effect assumption. Thus, the first two assumptions are satisfied
as explained for IV Demonstration 1.

Only the monotonicity assumption in Equation (9.20) requires a new justification.
Fortunately, there is no evidence in the school choice literature that students and their
parents rebel against vouchers, changing their behavior to avoid private schooling only
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Table 9.3 The Distribution of Never Takers, Compliers, and
Always Takers for IV Demonstration 2

Public school Private school
di=0 di=1

Voucher loser zi=0 7200 Never takers 1000 Always takers

800 Compliers

Voucher winner zi=1 800 Never takers 111 Always takers

89 Compliers

when offered a voucher.27 Accordingly, it seems reasonable to assume that there are
no defiers in this hypothetical population and hence that the monotonicity assumption
obtains.

The joint implications of independence and monotonicity for the four groups of
individuals in the cells of Table 9.2 should be clear. Monotonicity allows us to stipulate
that defiers do not exist, while independence ensures that the same distribution of never
takers, always takers, and compliers is present among those who win the voucher lottery
and those who do not. As a result, the proportion of always takers can be estimated
consistently from the first row of Table 9.2 and the proportion of never takers can be
estimated consistently from the second row of Table 9.2 as

PrN [di =1,zi =0]

PrN [zi =0]

p−→Pr[C = a], (9.24)

PrN [di =0,zi =1]

PrN [zi =1]

p−→Pr[C = n]. (9.25)

For this example, the proportion of always takers is 1,000/9,000= .111, and the pro-
portion of never takers is 800/1,000= .8. Because no defiers exist in the population
with regard to this instrument, these two estimated proportions can be subtracted
from 1 in order to obtain the proportion of compliers:

1− PrN [di =1,zi =0]

PrN [zi =0]
− PrN [di =0,zi=1]

PrN [zi =1]

p−→Pr[C = c]. (9.26)

For this example, the proportion of compliers in the population is 1− .111− .8= .089.
Applying this distribution of always takers, never takers, and compliers (and a bit
of rounding) to the frequencies from Table 9.2 yields the joint frequency distribution
presented in Table 9.3.

For Table 9.3, notice the symmetry across rows that is generated by the indepen-
dence of the instrument: 1,000/7,200≈111/800 (subject to rounding) and 800/9,000≈
89/1,000 (again, subject to rounding). Of course, there is one major difference between

27Some parents might reason that private schooling is no longer as attractive if it is to be flooded
with an army of voucher-funded children. Thus, defiers might emerge if the vouchers were widely
distributed, and the monotonicity condition would then fail. In this case, however, SUTVA would
also fail, necessitating deeper analysis in any case.
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the two rows: The compliers are in private schools among voucher winners but in public
schools among voucher losers.

Before continuing, two important points should be noted. First, it is important
to recognize that the calculations that give rise to the distribution of never takers,
always takers, and compliers in Table 9.3 are not determined solely by the data. In
a deeper sense, they are entailed by maintenance of the monotonicity assumption. In
the absence of that assumption, an unspecified number of defiers would be in the table
as well, making the calculation of these proportions impossible.

Second, not all students in the dataset can be individually identified as always tak-
ers, never takers, or compliers. Consider the private school students for this example.
Of these 1,200 students, 1,000 students are known to be always takers, as they have
observed values of di = 1 and zi = 0. The remaining 200 private school students are
observationally equivalent, with observed values of di =1 and zi =1. We know, based
on the maintenance of the monotonicity and independence assumptions, that these 200
students include 111 always takers and 89 compliers. But it is impossible to determine
which of these 200 students are among the 111 always takers and which are among
the 89 compliers. The same pattern prevails for public school students. Here, we can
definitively identify 800 students as never takers, but the 8,000 public school students
who are voucher losers cannot be definitively partitioned into the specific 7,200 never
takers and the 800 compliers.

Now, consider why the IV estimator yields 5.5 for this example, and then why 5.5
is interpretable as the average effect of private schooling for those who are induced to
enroll in private schools because they have won vouchers. As noted already, because
Z is independent of Y 1 and Y 0, the same proportion of always takers and never
takers is present among both voucher winners and voucher losers. The difference in
the expectation of Y across the two rows of Table 9.2 must arise from (1) the existence
of compliers only in public schools in the first row and only in private schools in the
second row and (2) the existence of a nonzero average treatment effect for compliers.

To see this claim more formally, recall Equation (9.21), in which this particular
LATE is defined. By the linearity of expectations and the definition of an individual-
level causal effect as a linear difference between y1i and y0i , the average causal effect
among compliers, E[δ|C= c], is equal to the expectation E[Y 1|C= c] minus the expec-
tation E[Y 0|C = c]. To obtain a consistent estimate of the average causal effect for
compliers, it is sufficient to obtain consistent estimates of E[Y 1|C= c] and E[Y 0|C= c]
separately and then to subtract the latter from the former.

Fortunately, this strategy is feasible because the contribution of these two condi-
tional expectations to the observed data can be written out in two equations and then
solved. In particular, E[Y 1|C = c] and E[Y 0|C = c] contribute to the expectations of
the observed outcome Y , conditional on D and Z, in the following two equations:

E[Y |D=1,Z =1]=
Pr[C = c]

Pr[C = c]+Pr[C = a]
E[Y 1|C = c]

(9.27)

+
Pr[C = a]

Pr[C = c]+Pr[C = a]
E[Y 1|C = a],



9.3. Individual-Level Heterogeneity 313

E[Y |D=0,Z =0]=
Pr[C = c]

Pr[C = c]+Pr[C =n]
E[Y 0|C = c]

(9.28)

+
Pr[C =n]

Pr[C = c]+Pr[C =n]
E[Y 0|C =n].

These two equations are population-level decompositions of the conditional expecta-
tions for the observed data that correspond to the two cells of the diagonal of Table
9.2. These are the only two cells in which compliers are present, and thus the only two
cells in which the observed data are affected by the outcomes of compliers.

How can we plug values into Equations (9.27) and (9.28) in order to solve for
E[Y 1|C = c] and E[Y 0|C = c] and thereby obtain all of the ingredients of a consistent
estimate of E[δ|C = c]? We have already shown from applying the convergence asser-
tions in Equations (9.24)–(9.26) that the terms Pr[C= c], Pr[C=a], and Pr[C=n] can
be consistently estimated. And, in fact, these are given earlier for the example data as
.089, .8, and .111. Thus, to solve these equations for E[Y 1|C = c] and E[Y 0|C= c], the
only remaining pieces that need to be estimated are E[Y 1|C = a] and E[Y 0|C = n],
which are the average outcome under the treatment for the always takers and the
average outcome under the control for the never takers. Fortunately, the independence
and monotonicity assumptions guarantee that voucher losers in private schools repre-
sent a random sample of always takers. Thus, E[Y 1|C=a] is estimated consistently by
EN [yi|di=1,zi=0], which is 60 for this example (see the upper right-hand cell in Table
9.2). Similarly, because voucher winners in public schools represent a random sample
of never takers, E[Y 0|C = n] is estimated consistently by EN [yi|di = 0,zi = 1], which
is equal to 50 for this example (see the lower left-hand cell in Table 9.2). Plugging all
of these values into Equations (9.27) and (9.28) then yields

58=
.089

.089+ .111
E[Y 1|C = c]+

.111

.089+ .111
60, (9.29)

50=
.089

.089+ .8
E[Y 0|C = c]+

.8

.089+ .8
50. (9.30)

Solving Equation (9.29) for E[Y 1|C = c] results in 55.5, whereas solving Equation
(9.30) for E[Y 0|C = c] results in 50. The difference between these values is 5.5, which
is the average causal effect for the subset of all students who would attend a private
school if given a voucher but would not attend a private school in the absence of a
voucher.28 The value of 5.5 yields no information whatsoever about the effect of private
schooling for the always takers and the never takers.29

28For completeness, consider how the naive estimate and the LATE would differ if all remained
the same except the stipulated value of 50 for EN [di = 0, zi = 0] in Table 9.2. If EN [di = 0, zi = 0]
were instead 50.25, then the naive estimate would be 9.44 and the LATE estimate would be 3.00.
And, if EN [di = 0, zi = 0] were instead 50.5, then the naive estimate would be 9.21 and the LATE
estimate would be .5. Thus, for the example in the main text, compliers on average do no worse in
public schools than never takers. But, for these two variants of the example, compliers on average do
slightly better in public schools than never takers. As a result, the calculations in Equation (9.29)
remain the same, but the values of Equation (9.30) change such that E[Y 0|C= c] is equal to 52.5 and
55.0, respectively. The LATE estimate is therefore smaller in both cases because the performance of
compliers in public schools is higher (whereas the performance of compliers in private schools remains
the same).

29We can estimate E[Y 1|C = a] and E[Y 0|C = n] consistently with EN [yi|di = 1, zi = 0] and
EN [yi|di = 0, zi = 1]. But we have no way to effectively estimate their counterfactual analogs: the
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Of course, the Wald estimate is also 5.5, as shown in Equations (9.8) and (9.23).
And thus, in one sense, the Wald estimator can be thought of as a quick alternative
method for calculating all of the steps just presented to solve exactly for E[δ|C = c].
Even so, this correspondence does not explain when and how the Wald estimator can
be interpreted as the average causal effect for compliers. For this example, the cor-
respondence arises precisely because we have assumed that there are no defiers in
the population, based on the substance of the application and the treatment response
model that we adopted. As a result, the Wald estimate can be interpreted as a consis-
tent estimate of the average effect of private schooling for those who comply with the
instrument because it is equal to that value under the assumed model of treatment
response we are willing to adopt.30

LATE estimators have been criticized because the identified effect is defined by
the instrument under consideration. As a result, different instruments define different
average treatment effects for the same group of treated individuals. And, when this is
possible, the meanings of the labels for the latent compliance variable C depend on
the instrument, such that some individuals can be never takers for one instrument and
compliers for another. Deaton writes:

Without explicit prior consideration of the effect of the instrument choice
on the parameter being estimated, such a procedure is effectively the oppo-
site of standard statistical practice in which a parameter of interest is
defined first, followed by an estimator that delivers that parameter. Instead,
we have a procedure in which the choice of the instrument . . . is implic-
itly allowed to determine the parameter of interest. This goes beyond the
old story of looking for an object where the light is strong enough to see;
rather, we have at least some control over the light but choose to let if fall
where it may and then proclaim that whatever it illuminates is what we
were looking for all along. (Deaton 2010:429)

Although from one perspective the instrument-dependent nature of the LATE is a
weakness, from another perspective it is the most attractive feature of the LATE.
For IV Demonstration 2, the IV estimate does not provide any information about the
average effect for individuals who would attend private schooling anyway (i.e., the
always takers) or for those who would still not attend the private schools if given a
voucher (i.e., the never takers). Instead, the IV estimate is an estimate of a narrowly
defined average effect only among those induced to take the treatment by the voucher
policy intervention. But, for IV Demonstration 2, this is precisely what should be of
interest to the state officials. If the policy question is “What is the effect of vouchers

mean outcome in public schools for always takers and the mean outcome in privates schools for never
takers.

30In other words, the Wald estimate of 5.5 is also a quick method for calculating an entirely
different causal effect under a different set of assumptions. If monotonicity cannot be defended, then
the IV estimate can be given a traditional structural interpretation, under the assumption that the
causal effect is constant for all individuals. In this sense, because the Wald estimate has more than
one possible causal interpretation, merely understanding how it is calculated does not furnish an
explanation for how it can be interpreted.
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on school performance?” then they presumably care most about the average effect for
compliers.

The limited power of the LATE interpretation of an IV estimate is thus, in some
contexts, beneficial because of its targeted clarity. Moreover, when supplemented by a
range of additional IV estimates (i.e., different voucher sizes and so on), complemen-
tary LATE estimates may collectively represent an extremely useful set of parameters
that describe variation in the causal effect of interest for different groups of individ-
uals exposed to the cause for alternative (but related) reasons. Before summarizing
the marginal treatment effect literature that more completely specifies the interre-
lationships among all types of average causal effect estimators, we first lay out the
implications of the LATE perspective for traditional IV estimation and consider the
relevant graphs for representing IVs that identify LATEs.

9.3.2 Implications of the LATE Perspective for
Traditional IV Estimation

The LATE literature specifies a set of assumptions under which it is permissible to give
IV estimates an average causal effect interpretation using the potential outcome model.
In this sense, the new framework is mostly a set of guidelines for how to interpret IV
estimates. As such, the LATE perspective has direct implications for traditional IV
estimation, as introduced earlier in this chapter.

Monotonicity and Assumptions of Homogeneous Response

An important implication of the LATE framework is that many conventional IV esti-
mates lack a justifiable average causal effect interpretation if the IV does not satisfy
a monotonicity condition. In the presence of causal effect heterogeneity and in the
absence of monotonicity of response to the instrument, a conventional IV estimator
yields a parameter estimate that has no clear interpretation, as it is likely an uniden-
tifiable mixture of the treatment effects of compliers and defiers.

For IV Demonstration 2, we showed that the estimate of 5.5 is applicable to students
whose families would change their child’s enrollment choice from a public school to a
private school for a $3,000 voucher. Can an assumption be introduced that allows the
estimate of 5.5 to be be interpreted as informative about other students who do (or
who would) attend private schools?

Two variants of the same homogeneity assumption allow for such extrapolated
inference: the assumption that the causal effect is a structural effect that is (1) con-
stant across all members of the population or (2) constant across all members of the
population who typically take the treatment.31 In its stronger form (1), the assumption
simply asserts that the causal effect estimate is equally valid for all members of the
population, regardless of whether or not the group of students whose enrollment status
would change in response to the voucher is representative of the population of students
as a whole. In its weaker form (2), the assumption pushes the assumed constancy of
the effect only half as far, stipulating that the IV estimate is valid as an estimate

31 These assumptions are known as constant-coefficient assumptions, homogeneous response
assumptions, or shifted outcome assumptions (see Angrist and Pischke 2009; Manski 1995, 2003).
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of the ATT only. For IV Demonstration 2, the weaker variant of the homogeneity
assumption is equivalent to asserting that the IV estimate provides information only
about the achievement gains obtained by private school students. Although weaker,
the homogeneity assumption (2) is still quite strong, in that all individuals in private
schools are considered homogeneous with respect to the size of the treatment effect.
In examples such as IV Demonstration 2, it is clear that there are two distinct groups
within the treated: always takers and compliers. And there is little reason to expect
that both groups respond in exactly the same way to private schooling. Thus, for
examples such as this one, Manski (1995:44) argues that this homogeneity assumption
“strains credibility” because there is almost certainly patterned heterogeneity in the
effect among treated individuals.

One traditional way to bolster a homogeneity assumption is to condition on vari-
ables in a vector X that can account for all such heterogeneity and then assert a
conditional homogeneity of response assumption. To do so, the Wald estimator must
be abandoned in favor of a two-stage least squares (2SLS) estimator. As shown in any
econometrics textbook (e.g., Greene 2000; Wooldridge 2010), the endogenous regres-
sors D and X are embedded in an encompassing X matrix, which is n × k, where n is
the number of respondents and k is the number of variables in X plus 2 (one for the
constant and one for the treatment variable D). Then, a matrix Z is constructed that
is equivalent to X , except that the column in X that includes the treatment variable
D is replaced with its instrument Z. The 2SLS estimator is then

δ̂IV,2SLS≡ (Z′X)−1Z′y, (9.31)

where y is an n × 1 vector containing the outcomes yi. The strategy is to attempt
to condition out all of the systematic variability in the observed response and then to
simultaneously use the instrument Z to identify a pure net structural effect that can
be regarded as an invariant constant.

Is this strategy a feasible solution? Probably not. If good measures of all of the
necessary variables in X are available, a simple OLS estimator probably would have
been feasible in the first place. Rarely would all possible necessary variables be avail-
able, except for a single variable that has a net additive constant effect on the outcome
that can then be estimated consistently by an available IV.

Other Challenges for Interpretation

IV estimates are hard, and sometimes impossible, to interpret as LATE estimates when
the instrument measures something other than an incentive to which individuals can
consciously respond by complying or defying. Instruments based on exogenous field
variation (as championed in Angrist and Krueger 2001 but criticized in Rosenzweig
and Wolpin 2000 and Deaton 2010) can be particularly hard to interpret, because the
shifts in costs and benefits that the natural variation is supposed to induce generally
remain unspecified, thereby weakening a main link in the narrative that explains why
some individuals take the treatment in response to the instrument.

Moreover, if two or more IVs are available, then the traditional econometric liter-
ature suggests that they should both be used to “overidentify” the model and obtain
a more precise treatment effect estimate by the 2SLS estimator in Equation (9.31).
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Overidentified models, in which more than one instrument is used to identify the same
treatment effect, generate a mixture-of-LATEs challenge.

Consider the Catholic school example discussed earlier. Suppose that two IVs are
used: the share of the county that identifies as Catholic and a student’s religious
identification (as in Neal 1997). Even if these potential IVs have no net direct effects
on test scores (and, further, that the weak instrument problem discussed earlier is
not applicable), can a theoretically meaningful LATE interpretation be given to the
effect that the two instruments in this example jointly identify? For the religious
identification instrument, the implied LATE is the average effect of Catholic schooling
among those who are likely to attend Catholic schools only because they are Catholic.
When overidentified with the IV represented by the share of the local population
that is Catholic, this first LATE is mixed in with a second LATE: the average effect
of Catholic schooling among those who attend Catholic schools only because of the
small difference in tuition that a high proportion of Catholics in the local population
tends to generate. As a result, the overidentified causal effect that is estimated by the
2SLS estimator would be an average across two very different groups of hypothetical
individuals, both of which likely deserve separate attention.32

It is sometimes possible to deconstruct 2SLS estimates into component LATEs
when multiple IVs are used, but explaining how to do so is beyond the scope of
this book. We advise readers who are in this situation to first consult Angrist and
Pischke (2009, section 4.5) and the work cited therein. Our position is that there is
comparatively little value in estimating a single treatment effect parameter using a
2SLS model in these cases. Usually, if more than one LATE is identified, then these
can and should be estimated separately.

In sum, if causal effect heterogeneity is present, then a constant-coefficient inter-
pretation of an IV estimate is implausible. However, if the instrument satisfies a mono-
tonicity condition and can be conceptualized as a proximate inducement to take the
treatment, then IV estimates can be given LATE interpretations. These fine-grained
interpretations can be very illuminating about particular groups of individuals, even
though they may provide no information whatsoever about other groups of individuals
in the population (including other individuals who typically choose to take the treat-
ment). Thus, the limited nature of IV estimators when interpreted as LATE estimators
shows both the potential strengths and weaknesses of IV estimation in general.

9.3.3 Graphs for IVs That Identify LATEs

In this section, we will explain how to represent instrumental variables that identify
LATEs as observed variables in directed graphs. The primary complication is that
compliance with the instrumental variable is a latent class variable, across which it

32There is also the possibility that, contra the justification of Hoxby (1996), the individuals who
are induced to attend Catholic schooling because a greater share of the population is Catholic are
not at all the same as those who are supposedly at the margin of a tuition-based cost calculation.
There may be another mechanism that generates any observed association between Z and D, such as
the possibility that the Catholic schools are simply better in these communities and hence are more
attractive in general. This is one basic criticism that Rosenzweig and Wolpin (2000) level against all
such naturally occurring IVs: There is often no evidence that the IV is inducing a group of individuals
to take the treatment according to an assumed cost-benefit set of choices.
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Z
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Figure 9.4 Instrumental variable identification of the causal effect of charter schools
(D) on test scores (Y ), where Z is the instrument.

must be assumed that heterogeneity of effects is present. Recall the charter schools
example, as introduced in Section 1.3.2 and then as analyzed at length in Section 8.3.
In that prior discussion, we showed how causal graphs can be used to represent complex
patterns of self-selection and heterogeneity using a latent class variable. In particular,
reconsider Figure 8.6(b), which we used to explain why back-door conditioning for the
effect of charter schooling D on educational achievement Y was infeasible because of
back-door paths through G.33

For simplicity, suppose now that the parental background confounder P is also
unobserved. As a result, the analyst is left with no way to even begin to enact a back-
door conditioning strategy for the effect of charter schools. Suppose, instead, that an
instrumental variable Z is observed, as in Figure 9.4.

Are there any plausible instrumental variables for charter school attendance? The
geographic distance between the student’s residence and the charter school site is
similar to the sorts of potential IVs used in the traditional economics literature. The
rationale would be that the location of the treatment site is arbitrary but has an
effect on enrollment propensity because of the implicit costs of traveling to the site,
which are typically borne by the parents, not by the school district. For the charter
school example, it is unclear whether such an instrument would have any chance of
satisfying the relevant assumptions, and it would depend crucially on the extent to
which charter schools are located in arbitrary places. Our reading of the literature is
that charter schools tend to be located nearer to students most likely to benefit from
charter schooling, both because many have missions to serve disadvantaged students
who are thought to benefit most from having a charter school opportunity and also
because parents may then move to neighborhoods that are closer to the charter schools
that they select for their children. It is possible that these threats to the identifying
assumption could be mitigated by conditioning on other determinants of the location
of charter schools within the district and also obtaining family residence data before
students entered charter schools.

For the sake of methodological clarity in our presentation, we will use as our exam-
ple a more convincing but unlikely instrumental variable, in the sense that it has never

33For a real example with a structure that is not too dissimilar from ours, Jin and Rubin (2009)
eschew graphs and adopt an alternative principal stratification approach to represent latent classes
for types of compliance as well as average effects within these classes. By omission, they demonstrate
that graphs are not needed in order to offer a sensible representation of underlying heterogeneity and
to focus on compliance types of particular interest. The utility of the principal stratification approach
for compliance latent classes, first laid out in Frangakis and Rubin (2002), is unrelated to a more
recent debate on its utility for interpreting direct and indirect causal effects (see Joffe 2011; Pearl
2011; VanderWeele 2008, 2011a).
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yet become available and is unlikely to become available in the future. Suppose that
in New York City conditional cash transfers are offered to families that send their
children to charter schools. Suppose that this program is modeled on New York City’s
recent Opportunity NYC program, which was justified by the position that families
should be given incentives to make decisions that promote their children’s futures.

Suppose that for the new hypothetical program $3,000 in cash is offered each year
to families for each child that they enroll in a charter school. Since charter schools
do not charge tuition, families can spend the $3,000 per child however they see fit.
Suppose further that, because of a budget constraint, cash transfers cannot be extended
to all eligible families. For fairness, it is decided that families should be drawn at
random from among all families resident in New York City with school-age children.
Accordingly, a fixed number of letters is sent out notifying a set of winning families.

It is later determined that 10 percent of students in charter schools received cash
transfers. A dataset is then compiled with performance data on all students in the
school district, and the cash transfer offer is coded as a variable Z, which is equal to 1
for those who were offered a cash transfer and 0 for those who were not. A quick analysis
of the data shows that some families who received offers of cash transfers turned them
down and chose to send their children to regular public schools. Moreover, it is then
assumed that at least some of the charter school students who received cash transfers
would have attended charter schools anyway, and they were simply lucky to have also
received a cash transfer.

By the standards typical of IV applications, Z would be considered a valid instru-
ment. It is randomly assigned in the population, and it is reasonable to assume that
it has a direct causal effect on D because it is an effective incentive for charter school
attendance. (We have also assumed in the setup that the data show that Z predicts D.)
Again, the crucial assumption is that the entire association between Z and Y is
attributable solely to the directed path, Z → D→ Y . As we will discuss below in
this section, this assumption is debatable in this case because the subsidy is cash and,
without further restrictions, could be used by families of charter school students to pur-
chase other goods that have effects on Y . Any such alternative uses of the cash transfer
would open up additional causal pathways from Z to Y that are not intercepted by
D. For now, however, we will provisionally accept this identification assumption.

What parameter does Z identify? Suppose that a monotonicity assumption is valid
whereby the cash transfers do not create a disincentive for anyone to enter charter
schools (i.e., defiers with respect to Z do not exist in the population). This assumption
allows us to abandon the constant coefficient assumption and instead assert that Z
identifies the following LATE: the average effect of charter schooling among those who
enter charter schools in response to the offer of a conditional cash transfer.

Figure 9.5 shows one way to represent estimators of this type. For these two graphs,
the population can be partitioned into two mutually exclusive groups, compliers and
noncompliers (as explained in Section 9.3, and assuming defiers do not exist). Fig-
ure 9.5(a) is the graph for compliers. No back-door paths connect D to Y in this
graph because compliers, by definition, decide to enter charter schools solely based on
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(a) Compliers (b) Always takers
and never takers

Z

D Y

Z

D Y

Figure 9.5 Instrumental variable identification of the causal effect of charter
schools (D) on test scores (Y ), where separate graphs are drawn for compliers and
noncompliers.

whether they are offered the conditional cash transfer.34 Analogous to the distribu-
tion calculated for Table 9.3, compliers are present in both regular public schools and
charter schools.

Figure 9.5(b) is the graph for noncompliers. Always takers enter charter schools
regardless of whether they receive the offer of a cash transfer, and never takers do not
enter charter schools regardless of whether they receive the offer of a cash transfer.
As a result, Z does not cause D for either always takers or never takers. The analyst
can therefore place Z within the graph, but the causal effect Z→D must be omitted.
Instead, the analyst includes D ������ Y to represent the unobserved joint causes of
D and Y , as it is these factors that suggest why identification via an instrumental
variable is needed.

Given that a central theme of this book is the power of graphs to represent causal
relationships, we will conclude by addressing a final question: Can the clarity of Figure
9.5 be represented in a single causal graph, akin to the move from Figure 8.3 to Figure
8.4 in Section 8.3? Yes, but readers may not agree that the clarity is preserved.

Figure 9.6 is a combined representation of Figure 9.5, which now applies to the full
population. The representation of compliance-based heterogeneity is accomplished by
augmenting the graph with a latent class variable, C, which signifies whether an indi-
vidual is a complier or not.35 In particular, C takes on three values, one for compliers,
one for always takers, and one for never takers (and we assume that defiers do not
exist in the population). Most importantly, C interacts with Z in determining D, and
then C interacts with D in determining Y .36

Now, to make the connection to the fully elaborated Figure 8.7 (see page 285),
consider Figure 9.7, which includes all of the relevant back-door paths between D

34We thank Peter Steiner for pointing out to us that, contrary to figure A2 in Morgan and Winship
(2012), Figure 9.5(a) should not include D ������ Y . None of the common causes of D and Y among
noncompliers have analogous effects for compliers because D is determined solely by Z for compliers.

35An alternative and more compact graph could be used for Figure 9.6. Because C is unobserved,
one could simply declare that it is a member of the set of variables that generate the bidirected edge
in Figure 9.6 (or as a member of the set of variables in V that will be introduced below for Figure
9.7). We give C its own pair of explicit causal effects on D and Y for clarity, even though it makes
the graph more complex than it needs to be.

36It is possible that one could assume that C does not determine Y . This would be the case, for
example, if one had reason to believe that the LATE is equal to the ATE, which would seem to be
very unlikely in social science applications.
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Figure 9.6 A combined graph for Figures 9.5(a)–(b), where Z is the instrument and
compliance is represented as an unobserved latent class variable (C).

and Y represented as D ������Y for Figure 9.6. Still, for simplicity we have replaced
the path I → Exp(D→ Y )→ G from Figure 8.7 with the single variable V .37 The
conditional cash transfer is then represented as an instrumental variable Z, which has
a sole causal effect in the graph on D because we have assumed that the cash transfer
offer does not have other effects on Y . Finally, we then add the additional back-door
path from D to Y through their new common cause C.

With the addition of D←C→Y to the graph, two sources of confusion may arise
for some readers. First, it remains true that we cannot use back-door conditioning
to estimate the effect of D on Y because of the unblockable back-door path through
D←V →Y . However, it is important to remember that the similarly structured back-
door path D←C→Y does not present any problems for an IV estimator because it is
not a back-door path from Z to Y , nor part of a directed path that carries the effect
of Z to Y . It only represents an additional unblocked back-door path from D to Y .
Second, nothing in the causal graph itself explains why a resulting IV estimator delivers
an average causal effect that applies only to compliers. To understand this point, it
may be more helpful to draw two separate causal graphs, as in Figure 9.5. The single
causal graph does not reveal that there is an implicit interaction between Z and C as
causes of D. In particular, the instrument Z does not cause D for noncompliers, and
C does not cause D for those who do not receive the offer of a cash transfer. Only
the co-occurrence of Z and C switches some members of the population from D = 0
to D=1.

Now, to conclude the discussion of the estimation of the charter school effect,
consider two final points. It is likely that Figure 9.7 improperly omits the likely causal
effect P → C. The parental background variable P implicitly includes within it a
variable for family income. Students from families with high incomes should be less
likely to switch from regular public schools to charter schools because of an offer of a
modest conditional cash transfer to their parents. Adding such a path, however, would
not harm the feasibility of the IV estimator, since it does not generate an unblockable
path from Z to Y . In fact, the effect P → C helps to explain who compliers likely
are, because it suggests that they are more likely to be lower income families. In this
sense, recognizing the likely presence of this effect helps to interpret the LATE that
the IV identifies.38 In addition, this type of effect reveals a distinct advantage of a

37This simplification is permissible under the assumption that an implicit error term eV contains
all of the information in the error terms eI , eExp, and eG in the causal graph in Figure 8.7.

38For situations such as these, Angrist and Fernandez-Val (2013) propose alternative methods for
using multiple IVs and covariate information to put forward estimates of broader parameters based
on identified LATEs (see also Aronow and Carnegie 2013).
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Figure 9.7 Identification of the LATE using an instrument (Z) for the charter school
graph presented earlier in Figure 8.7. The unobserved variable V is a composite for
the causal chain that generates self-selection in Figure 8.7 through information access
and selection on the subjective evaluation of the individual-level causal effect.

single population-level graph that represents compliance as a node within it. Separate
graphs for compliance classes do not permit a representation of the effect of P on
compliance.

But, of course, not all additional causal effects will help to clarify the IV estimator.
Suppose, for example, that Z generates an effect on N because the cash transfer is used
to pay higher rent in another neighborhood for some families. As a result, a direct effect
from Z to N is opened up. Conditioning on the observed variable N will block the new
directed path Z → N → Y. But, because N is a collider on another path, Z → N←
V → Y , conditioning on N opens up this pathway by inducing a relationship between
Z and V . Thus, conditioning away self-selection into neighborhoods then allows self-
selection on the causal effect of charter schooling to confound the IV estimate of the
LATE.

9.3.4 Local IVs and Marginal Treatment Effects

In this final section, we discuss one additional perspective on the identifying power
of IVs in the presence of individual-level heterogeneity, which shows how a perfect
instrument can help to identify a full pattern of causal effect heterogeneity. Heckman
and Vytlacil (1999, 2000, 2005, 2007), building upon Heckman (1997), have shown that
LATEs and many other average treatment effects can be seen as weighted averages
of more fundamental marginal treatment effects.39 Although the generality of their
perspective is captivating, and the methodological content of the perspective unifies
many strands of the literature in causal effect estimation, we summarize it only briefly
here because the demands on data are quite substantial. The all-powerful IV that is
needed to estimate a full schedule of marginal treatment effects will rarely be available
to researchers.

The marginal treatment effect (MTE) perspective can be easily grasped with only
a slight modification to the setup of IV Demonstration 2. Instead of 10 percent of
students receiving a voucher that is exactly equal to $3,000, suppose instead that

39See also Heckman et al. (2006) and Heckman and Urzua (2010).
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these 10 percent receive a voucher that is a random draw from a uniform distribution
with a minimum of $1 and a maximum equal to the tuition charged by the most
expensive private school in the area.

For Heckman and his coauthors, the size of each student’s voucher is a valid
instrument Z, maintaining the same assumptions as we did for IV Demonstration
2 (i.e., Z is randomly assigned, Z has a nonzero effect on D, and the effect of Z
on D is monotonic). The monotonicity assumption is a little more complex than
before, but it stipulates that the true probability of taking the treatment is higher
for all individuals with values of Z equal to z′′ rather than z′ if z′′ > z′. This fits
cleanly into the notation introduced earlier in this chapter by simply allowing Z to be
many-valued.

Heckman and his coauthors then define two related concepts: a local instrumental
variable (LIV) and an MTE. An LIV is the limiting case of a component binary IV
drawn from Z in which z′′ approaches z′ for any two values of Z such that z′′ > z′.
Each LIV then defines a marginal treatment effect, which is the limiting form of a
LATE, in which the IV is an LIV.

Consider the more elaborate version of IV Demonstration 2 just introduced here.
One could form LIVs from Z by stratifying the data by the values of Z and then
considering adjacent strata. Given a large enough sample for a large enough voucher
program, LIVs could be constructed for each dollar increase in the voucher. Each LIV
could then be used to estimate a LATE, and these LIV-identified LATEs could then
be considered MTEs.

Heckman and Vytlacil (2005) show that most average causal effect estimates can
be represented as weighted averages of MTEs, identified by LIVs. But the weight-
ing schemes differ based on the parameter of interest, some of which, as was the
case in our regression chapter, may have no inherent interest. Heckman and Vyt-
lacil therefore propose a more general strategy. They argue that researchers should
define the policy-relevant treatment effect (PRTE) based on an assessment of how
a contemplated policy would affect treatment selection. Then, MTEs should be esti-
mated with LIVs and weighted appropriately to obtain the PRTE that is of primary
interest.

There is much to recommend in this approach, and in fact it should not be con-
sidered an approach relevant only to policy research. The approach is quite easily
extended to targeted theory-relevant causal effects, for which one wishes to weight
marginal causal effects according to a foundational theoretical model. But, in spite
of this appeal, the entire approach may well come to represent a gold standard for
what ought to be done rather than what actually can be done in practice. If it is
generally recognized that IVs satisfying the LATE assumptions are hard to find,
then those that satisfy LIV assumptions for all MTEs of interest must be harder
still.40

40Partly for this reason, Carneiro, Heckman, and Vytlacil (2010) elaborate the PRTE perspective
and focus attention on a limiting form of the PRTE that they label marginal policy-relevant treatment
effects (MPRTEs). They argue that it is easier to estimate MPRTEs and that these may be all that
are needed to evaluate proposed policy changes.
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9.4 Conclusions

The impressive development of the IV literature in econometrics and statistics in the
past two decades suggests a variety of recommendations for practice that differ from
those found in the older IV literature:

1. Weak instruments yield estimates that are especially susceptible to finite sample
bias. Consequently, natural experiments should be avoided if the implied IVs only
very weakly predict the causal variable of interest. No matter how seductive their
claims to satisfy identification assumptions may be, resulting point estimates and
standard errors may be very misleading.

2. If individual-level causal effect heterogeneity is present, a potential IV should be
used only if it satisfies a monotonicity condition. IV estimates should then be
interpreted as LATE estimates defined by the instrument.

3. If individual-level causal effect heterogeneity is present, IVs should probably not
be combined in a 2SLS model (except in the rare cases in which measures of all
of the variables that account for the causal effect heterogeneity are available).
Instead, IV estimates should be offered for those IVs that satisfy monotonic-
ity conditions. These alternative estimates should then be interpreted as LATE
estimates and reconciled with each other based on a narrative about why the
causal effect varies for different types of individuals who are exposed to the
cause (and/or different levels of the cause) for different reasons.

4. When possible, IVs should be used to examine general patterns of causal effect
heterogeneity. Using IVs to estimate only the ATE or ATT is too narrow of a
purpose because there is likely a good deal of variation in the treatment effect
that is amenable to analysis with complementary IVs. The possibilities for this
type of analysis are most clearly developed in the literature on the identification
of MTEs using LIVs.

Properly handled, there is much to recommend in the IV estimation strategy for causal
analysis. But, of course, IVs may not be available. We now turn to other techniques that
may allow for the point identification and estimation of a causal effect when a complete
model of causal exposure cannot be formulated because selection is determined by
relevant unobserved variables.



Chapter 10

Mechanisms and Causal
Explanation

Social scientists have recognized for decades that the best explanations for how causes
bring about their effects must specify in empirically verifiable ways the causal pathways
between causes and their outcomes. This valuation of depth of causal explanation
applies to the counterfactual tradition as well. Accordingly, it is widely recognized
that a consistent estimate of a counterfactually defined causal effect of D on Y may
not qualify as a sufficiently deep causal account of how D effects Y , based on the
standards that prevail in a particular field of study.

In this chapter, we first discuss the dangers of insufficiently deep explanations
of causal effects, reconsidering the weak explanatory power of some of the natural
experiments discussed already in Chapter 9. We then consider the older literature
on intervening variables in the social sciences as a way to introduce the mechanism-
based estimation strategy proposed by Pearl (2009). In some respects, Pearl’s approach
is completely new, and it shows in a novel and sophisticated way how intervening
variables can be used to identify causal effects, even when unblocked back-door paths
between a causal variable and an outcome variable are present. In other respects,
however, Pearl’s approach is refreshingly familiar, as it helps to clarify the appropriate
usage of intervening variables when attempting to deepen the explanation of a causal
claim.

Independent of Pearl’s important work, a diverse group of social scientists has
appealed recently for the importance of mechanisms to all explanation in social sci-
ence research. Although some of these appeals are not inconsistent with the basic
counterfactual approach to observational data analysis, some of the more extended
appeals argue against the utility of the counterfactual model. After presenting these
positions, we argue instead that there is no incompatibility between the elaboration of
generative causal mechanisms and the counterfactual approach to observational data
analysis. Finally, we draw on Machamer, Darden, and Craver (2000) and introduce
their concepts of mechanism sketch, mechanism schema, and the process of bottoming
out in mechanistic explanation. This terminology helps to frame our final discussion of
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how mechanisms can be used to sustain and deepen causal explanation, which draws
together Pearl’s front-door identification strategy with standards for sufficient causal
depth.

10.1 The Dangers of Insufficiently Deep

Explanations

Before considering how mechanisms can be used to identify causal effects, we first
discuss the importance of explanatory depth in causal analysis. To do so, we return
to the critical work of Rosenzweig and Wolpin (2000) on the limited appeal of many
natural experiments. As discussed in Chapter 9, the natural experiment literature
in economics uses naturally occurring forms of randomness as instrumental variables
(IVs) in order to identify and then estimate causal effects of long-standing interest.
Initially, this literature was heralded as the arrival of a new age of econometric analysis,
in which it appeared possible to consistently estimate some of the causal effects of
greatest interest to economists, such as the effect of human capital investments in
education on earnings. Looking back on these bold claims, Rosenzweig and Wolpin
(2000:829–30) conclude, “The impression left by this literature is that if one accepts
that the instruments are perfectly random and plausibly affect the variable whose
effect is of interest, then the instrumental-variables estimates are conclusive.” They
then argue that these estimates are far from conclusive and, in fact, are far more
shallow than typically recognized.

To somewhat overstate the case, the initial overconfidence of the natural experi-
ment movement was based on the mistaken belief that the randomness of a natural
experiment allows one to offer valid causal inference in the absence of any explicit the-
ory. One might say that some econometricians had been seduced by a position implicit
in some writing in statistics: We do not need explicit theories in order to perform
data analysis. Rosenzweig and Wolpin (2000) counter this position by arguing that
the theory that underlies any model specification is critical to the interpretation of an
estimate of a causal effect, and almost all examples of estimation by natural experi-
ments have model specifications that make implicit theoretical claims (see also Deaton
2010 and our prior discussion in Section 9.3).

Here, we provide an informal presentation of two of the examples analyzed by
Rosenzweig and Wolpin – the effect of education on earnings and the effect of military
service on earnings – each of which was already introduced and discussed briefly in
Chapter 9. We will use directed graphs here in order to demonstrate the issues involved.

Angrist and Krueger (1991, 1992) address the ability-bias concern for the estima-
tion of the causal effect of schooling on subsequent labor market earnings. They assert
that the quarter in which one is born is random but nonetheless predicts one’s level of
education because of compulsory school entry and dropout laws (see the quotation in
Section 9.2 that gives the rationale). Angrist and Krueger’s estimates of the increase
in log earnings for each year of education fall between .072 and .102, values that are
consistent with those found by others using different methods (see Card 1999).

As discussed already in Chapter 9, the first limitation of their results is that their
IV estimates apply to only a narrow segment of the population: those individuals whose
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Figure 10.1 A directed graph for compliers with quarter of birth as an IV for
years of schooling.

schooling would have changed if their birthdate was in a different quarter. Again, this
is a local average treatment effect (LATE) estimate that applies to those individuals
whose years of schooling are responsive to school entry and dropout laws. No one
maintains that this narrow subpopulation is simply a random sample of all individuals
in the population of interest, and most would argue that Angrist and Krueger estimated
the returns to schooling only for disadvantaged youth prone to dropping out of high
school for other reasons. There are, however, complications of how to interpret their
estimates even for this subpopulation.

Consider the directed graph in Figure 10.1, which is based loosely on the critique
offered by Rosenzweig and Wolpin (2000) and is a summary of the debate that unfolded
in the years following the publication of Angrist and Krueger (1991). The graph is not
meant to represent a full causal account of how education determines wages, and it
is restricted only to the causal effect among compliers. As discussed in Chapter 9, for
this example, compliers are those members of the population whose education is (or
would be) responsive to a switch in their quarter of birth. Thus, this graph takes it
for granted that this particular LATE is the only parameter that is informed by this
analysis.1

For Figure 10.1, schooling has both direct and indirect effects on wages. Most
important, as is maintained in the human capital literature, schooling is thought to
have a negative indirect effect on wages through work experience; going to school longer
reduces the amount of work experience one acquires by any particular age. Accordingly,
there is a causal pathway from schooling to wages via work experience. The quarter-
of-birth IV does not provide a separate estimate of this distinct pathway because
a change in schooling in response to one’s birthdate also changes work experience.
Instead, the quarter-of-birth IV estimates only the total effect of schooling on wages,
not its direct effect.2 The IV yields a LATE estimate that likely mixes together two

1This position is equivalent to assuming that a more encompassing graph exists that is applicable
to the entire population and that Figure 10.1 applies only to compliers. See our prior discussion of
Figure 9.5(a).

2Angrist and Krueger could deal with this problem by conditioning on a measure of work expe-
rience, but in their data no such variable is available. The only alternative with their data, which
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Figure 10.2 A directed graph for compliers with the Vietnam draft lottery as
an IV for military service.

distinct and countervailing causal pathways: a positive direct effect of schooling on
wages and a negative indirect effect via work experience. Given the long-standing
interest of economists in the interaction between investments in formal schooling and
the provision of on-the-job training, this total effect estimate can be regarded as an
insufficiently deep causal account of the effect of education on earnings (even if one is
convinced, as we are, that learning about compliers in this case is still illuminating).

For a second example, consider the effect of military service on lifetime earnings, as
analyzed by Angrist (1990) and introduced in Section 9.2. The question of interest here
is whether military service provides important training that increases later earnings in
civilian life or rather whether military service is simply a period of lost civilian work
experience. Military service, however, is not random. On the one hand, individuals
must pass a mental ability test and a health examination in order to enlist. On the other
hand, individuals with attractive schooling opportunities and civilian labor market
opportunities are less likely to enlist. To deal with the problem of nonrandom selection
into the military, Angrist (1990) considers individuals who were potentially eligible to
be drafted into the military by a lottery during the later stages of the Vietnam War.
To ensure that the draft was fair, the government decided to draft individuals based
on a lottery that selected birthdates (see our earlier discussion in Section 9.2).

Consider now the directed graph in Figure 10.2, again based on the summary of
critiques of the study compiled by Rosenzweig and Wolpin (2000). Here, there are three
issues to consider. First, as we noted for the last example, the draft lottery identifies
a LATE, and thus it is not applicable to the causal effect for always takers (those who
voluntarily enlisted) and never takers (those who were draft dodgers, those who failed
the mental ability test, and those who failed the physical examination). Accordingly,
as for Figure 10.1, the graph in Figure 10.2 also applies to compliers only.

Second, note that there is a potential path from the draft lottery to civilian expe-
rience/training. If this path exists, then the draft lottery is not a valid IV for military

is common in the literature, is to attempt to untangle the effects by conditioning on the number of
years since the respondent completed his or her highest level of education. However, this form of con-
ditioning does not completely explain away the association between schooling and work experience,
as is widely recognized (see Card 1999).
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service. As we noted in Chapter 9, Heckman (1997) argued that employers would be
likely to invest less in individuals with unfavorable lottery numbers. For example, it is
plausible that employers may have given less on-the-job training to those most likely
to be drafted and/or may have assigned such individuals to short-run tasks that did
not require the accumulation of skill to master. If this effect exists, then the draft
lottery would be an invalid instrument for military service.

Third, and most important for our consideration here, there are four separate causal
pathways between military service and wages. In addition to the direct causal effect
of military service on wages, there are two directed paths solely mediated by civilian
experience and schooling, respectively. Here, it is generally thought that military ser-
vice reduces civilian labor force experience and schooling, both of which then reduce
wages. But there is then a countervailing effect of military service that snakes through
the graph via a fourth directed path: Military service reduces schooling, which then
increases work experience, and which then increases wages. Because all four of these
pathways are activated by the shock induced by the draft lottery, Angrist’s only resort
is to assert that his estimates are for the total effect of military service on wages. But,
given the inherent interest in untangling how the military service effect interacts with
both schooling and the accumulation of civilian work experience, a total effect estimate
is insufficiently deep to end all future research, even though this natural experiment
was informative and a very important contribution to the literature.

Rosenzweig and Wolpin (2000) consider many other examples, all of which empha-
size the same basic points as these two examples. IV analyses typically provide total
causal effect estimates, often in substantive areas in which scholars have an inherent
interest in the separable causal pathways that generate the outcome in response to the
cause. Understanding the separable causal pathways that make up these total effects
requires an explicit specification of additional intervening and mediating variables,
which together compose the full causal mechanism of interest.

Now consider these two issues more generally, moving away from IV estimates
toward more general estimates of average causal effects. Consider an optimistic scenario
for which one obtains what all agree is a consistent estimate of the average treatment
effect (ATE) for the effect of D on Y (as warranted, for example, by a consensus
that one has conditioned on all variables that block all back-door paths from D to
Y ). Even in this scenario, in which the causal claim is valid by the standards of the
counterfactual model, there are two related ways in which such an estimate can be
regarded as insufficiently deep.

First, the ATE may not be a parameter of any fundamental interest. This point
has been made most forcefully by Heckman (2000, 2005, 2010). If treatment effects
are heterogeneous, which often is the case, as we have noted in prior chapters, then
what is of fundamental interest are conditional average treatment effects of some form
(perhaps even just the average treatment effect for the treated (ATT) and the average
treatment effect for the controls (ATC)). The overall ATE is simply a weighted average
of any such underlying effects. Heckman and many others have noted that the ATE
may be of limited use for predicting the outcomes of policy interventions, either for
new populations or in different contexts, because the ATE is tied to the current con-
figuration of the population and prevailing pattern of causal exposure. Often, social
scientists desire explanations for outcomes that can be modified in straightforward
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ways when populations shift or contexts change in ways that are separable from condi-
tional average causal effects (especially if there is reason to believe that the conditional
average casual effects are more fundamental in the sense that they can be expected to
remain invariant under any such shifts and changes).

The second issue, which is our primary focus in the remainder of this chapter, is
that a consistent estimate of the ATE, or any other average causal effect, does not
necessarily entail any particular mechanism that explains how D brings about Y . If a
theory suggests why and how D brings about Y , then merely providing evidence of the
amount that Y can be expected to change in response to an intervention on D does not
then provide any support for the underlying theory. If an assessment of the support
for the underlying theory is desired, which is often a primary goal of social science
research, then a more narrowly focused analysis of the putative causal pathways that
relate D to Y must be undertaken.

In the next section, we present Pearl’s approach to this type of analysis. We will
make the case that his approach is consistent with decades of prior research in the
social sciences and, furthermore, that it provides a particularly clear guide for future
research in the same mode of analysis. To set the stage for Pearl’s perspective, we first
bring this long history of practice to the foreground, presenting the classic literature
on the importance of intervening variables in causal explanation.

10.2 The Front-Door Criterion and Identification of

Causal Effects by Mechanisms

For decades, social scientists have considered the explication of mechanisms through
the introduction of intervening and mediating variables to be essential to sound explana-
tory practice in causal analysis. Duncan and his colleagues wrote in their 1972 book,
Socioeconomic Background and Achievement :

much of the scientific quest is concerned with the search for intervening
variables that will serve to interpret or explain gross associations presumed
to reflect a causal relationship. (Duncan, Featherman, and Duncan 1972:12)

The words “interpret” and “explain” are implicit references to the language of social
research that is usually associated with Paul Lazarsfeld. More than two decades earlier,
Kendall and Lazarsfeld (1950) distinguished between alternative types of elaboration
that can be carried out when investigating an association between a causal variable X
and an outcome variable Y .3 Each type of elaboration involves the introduction of a

3The citations in the text are for a retrospective discussion of Samuel Stouffer’s research in The
American Soldier (which we also discussed in Chapter 1). Patricia Kendall was the lead author for the
1950 piece we cite, and yet she is almost never credited in the derivative literature as a contributor to
this language. Because it is often written that Lazarsfeld presented and discussed this basic typology
in many places, it is possible that it is fair to credit him disproportionately for these ideas. Our reading
of the literature, however, does not yield a clear interpretation. It does suggest to us that Kendall
has received less credit than she deserved. Indeed, in the version of these ideas published in Hyman’s
widely read text Survey Design and Analysis, Hyman (1955:275) notes only in a footnote, “The major
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test factor (or test variable) T , after which the association between the causal variable
X and the outcome variable Y is calculated for each value of T.

Kendall and Lazarsfeld considered two types of M -elaboration, which arise when
the partial association between X and Y within strata defined by T is smaller than
the original total association between X and Y .4 Assuming that both Xand T precede
Y in time, the two types of M -elaboration are determined by whether T also precedes
X in time:

1. If T follows X in time, then an M -type elaboration can be represented by a
chain of mediation, X→ T → Y (Kendall and Lazarsfeld 1950:157). They refer
to this type of elaboration as an interpretation of the association between X and
Y , using a test factor that is an “intervening” variable.

2. If T precedesX in time, then an M -type elaboration can be represented by a fork
of mutual dependence, X ← T → Y (Kendall and Lazarsfeld 1950:157). They
refer to this type of elaboration as an explanation of the association between X
and Y , using a test factor that is an “antecedent” variable.

Although Kendall and Lazarsfeld did not argue that causality can be established by
what they call “interpretation,” and although they use the word “explanation” in a
rather limited sense (and with a different usage than Duncan and colleagues, as just
quoted), Kendall and Lazarsfeld were clearly interested in mechanistic accounts that
reveal how causes bring about their effects. For example, they wrote:

When we interpret a result we try to determine the process through which
the assumed cause is related to what we take to be its effect. How did
the result come about? What are the “links” between the two variables?
Answers to these questions are provided in the interpretation of the result.
(Kendall and Lazarsfeld 1950:148)

A long tradition of empirical social science exists that follows these basic ideas, in which
a central goal of investigation is the search for variables – intervening, mediating, or
processual variables – that can account for an association that is thought to be causal
(see MacKinnon 2008; Winship and Harding 2008). Even so, as we noted in Chapter
6, applications of the all-cause regression specification approach gradually obscured
this goal, leading from the 1970s through the 1990s to more frequent attempts to
offer single-equation models in which all effects of all observed putative causes of an
outcome are estimated simultaneously.

Fortunately, Pearl (2009) has developed an “inside-out” perspective on the identi-
fying power of mechanisms that can help the social sciences recapture the inclination to
pursue mechanistic explanation of causal effects in empirical research. Pearl’s approach

sections of this chapter have been written by Patricia Kendall and represent an enlargement of an
earlier analytic schema.”

4They also lay out a third form of elaboration, referred to as P-type elaboration (or specification).
Here, the goal is to focus “on the relative size of the partial relationship [between X and Y within
strata of the test factor T ] in order to specify the circumstances under which the original relation is
more or less pronounced” (Kendall and Lazarsfeld 1950:157). This type of elaboration is appropriate
when the test factor is related to either X or Y but not both. We ignore this form of elaboration here,
as we focus on variables that are related to both the causal and outcome variables.
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Figure 10.3 A directed graph in which M and N represent an exhaustive and isolated
identifying mechanism for the causal effect of D on Y .

goes well beyond Lazarsfeldian elaboration. Instead, he shows how one can consistently
estimate the effect of a causal variable on an outcome variable by estimating the effect
as it propagates through an exhaustive and isolated mechanism. He labels this strategy
the “front-door” identification of a causal effect (see Pearl 2009:81–85).

Consider Figure 10.3, where an unblockable back-door path D←U→Y exists from
D and Y because the variable U is unobserved. As a result, identification using Pearl’s
back-door criterion, as presented in Chapter 4, is infeasible. Nonetheless, the variables
M and N intercept the full causal effect of D on Y , and for Pearl these two variables
represent an identifying mechanism for the effect of D on Y . (Again, recall that there
is no assumption of linearity in a directed graph of this type, and thus this model is
consistent with any nonlinear structural equations for the generation of D, M , N , and
Y .)

For this graph, observation of M and N identifies the causal effect of D on Y by
a two-part consideration of the back-door criterion:

1. For D→M and D→ N , two back-door paths exist: D←U→Y ←M and D←
U → Y ←N , respectively.5 Because Y is a collider variable along both of these
back-door paths, each path is blocked by Y in the absence of any conditioning.
Accordingly, these back-door paths do not contribute to the observed associations
between D and either M or N . And, as a result, the causal effects D →M and
D→ N can be estimated consistently by their simple unconditional associations.

2. For M → Y and N → Y , two back-door paths exist for each causal effect. For
M → Y , they are M ←D← U → Y and M ←D→N → Y . For N → Y , they
are N ←D←U → Y and N ←D→M → Y . All four of these back-door paths
generate noncausal associations between M and Y and also between N and Y

5Both D← U → Y ←M and D← U → Y ←N satisfy the definition of a back-door path, even
though they do not end with →M and →N , respectively. They are both paths between pairs of
causally ordered variables (D and M , on the one hand, and D and N , on the other), and they both
begin with an arrow pointing to the first variable (i.e., D←). As such, they are back-door paths for
D→M and D→N , respectively, even though they do not resemble most of the other examples of
back-door paths presented in this book. We have focused our earlier examples on back-door paths
that must be blocked by conditioning. However, see our discussion of Figure 4.12 in the appendix to
Chapter 4, where we discuss a similar back-door path.
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because none of these paths includes collider variables that block them in the
absence of any conditioning. Fortunately, all four of these back-door paths can
be blocked by conditioning on D. And, as a result, the casual effects M → Y
and N → Y can be estimated consistently after conditioning on the observed
variable D.

In short, for this graph the unblocked back-door path D←U → Y does not prevent
consistent estimation of the effect of D on Y as long as both M and N are observed.
Because one can obtain consistent estimates of the casual effects of D on both M and
N and, in turn, of both M and N on Y , one can calculate the full causal effect of
D on Y by combining these causal effect estimates. Pearl (2009:83) gives the general
estimation formula in the underlying probability distributions. For the ATE, the sim-
plest case that is also consistent with the structure of Figure 10.3 is one where (1) D
is a binary variable, (2) M , N , and Y are interval-scaled variables, (3) all structural
equations are linear and additive, e.g., Y = fY (M,N,eY )=aY +bMM+bNN+eY , and
(4) all individual-level causal effects do not vary in the levels of the variables in the
mechanism. In this case, the ATE can be estimated consistently by a sum of products,(

b̂D→M × b̂M→Y

)
+
(
b̂D→N × b̂N→Y

)
,

where b̂D→M is the estimated coefficient for M in a bivariate regression of Y on M ,
b̂D→N is the estimated coefficient for N in a bivariate regression of Y on N , and b̂M→Y

and b̂N→Y are the estimated coefficients for M and N for a multiple regression of Y
on M , N , and D.6

As shown by this example, the front-door identification strategy can be very simple,
as it involves nothing more than a straightforward two-step consideration of the back-
door criterion introduced in Chapter 4 (see our presentation beginning on page 109).
Pearl formalizes this identification strategy by offering a complement to his back-door
criterion, which he labels the front-door criterion (Pearl 2009:82):

Front-Door Criterion

If one or more unblocked back-door paths connect a causal variable to an
outcome variable, the causal effect is identified by conditioning on a set of
observed variables, {M}, that make up an identifying mechanism if

Condition 1 (exhaustiveness). The variables in the set {M} inter-
cept all directed paths from the causal variable to the outcome
variable;

and

6In this case, Pearl’s front-door adjustment formula reduces to this sum of products for the causal
contrast he would label E(Y |do(D = 1)−E(Y |do(D = 0). When conditions (1) through (3) do not
obtain, the computation is more complex because one needs to propagate the effects through the
probability distributions of the mechanistic variables, conditional on the causal variable, and then
calculate average effects for the chosen contrast (see Pearl 2009). We omit these details because we
are focusing in this chapter on the essential identification issues.



334 Chapter 10. Mechanisms and Causal Explanation

Condition 2 (isolation). No unblocked back-door paths connect
the causal variable to the variables in the set {M}, and all back-
door paths from the variables in the set {M} to the outcome
variable can be blocked by conditioning on the causal variable.7

Notice that the front-door criterion does not give direct guidance on how deep an iden-
tifying mechanism must be in order to qualify as a sufficiently deep causal explanation.
It only specifies the features that a mechanism must have in order to be used to iden-
tify an average effect of a causal variable on an outcome variable. Any such identifying
mechanism can be considered shallow by the standards of a particular research group
or field of interest. Before addressing this issue, we clarify in the remainder of this
section what the requirements of exhaustiveness and isolation entail.

The Assumptions That the Mechanism Is Exhaustive and Isolated

The crucial assumptions of this approach, as we have noted already, are that the iden-
tifying mechanism is exhaustive and isolated. To see the importance of isolation first,
consider the alternative graph presented in Figure 10.4. Here, the variable U is again
unobserved, and thus the back-door path D←U→Y cannot be blocked by condition-
ing on any observed variables in the graph. In this case, the variable M intercepts the
full causal effect of D on Y , and therefore the identifying mechanism is exhaustive,
satisfying Condition 1 of Pearl’s front-door criterion. However, the identifying mech-
anism M is not isolated because U has a direct causal effect on M . Corresponding
to both components of Condition 2 of the front-door criterion, two problems arise.
The causal effect U →M generates a new back-door path from M to Y , which is
M←U→ Y , as well as a new back-door path from D and M , which is D←U→M .
Neither of the effects that compose the casual pathway D→M→Y can be estimated
consistently because no observed variables are available to block these new back-door
paths by conditioning. With reference to the structure of Pearl’s front-door criterion,
the problems are that (1) an unblocked back-door path connects the causal variable
to M (D← U →M) and (2) a back-door path from M to Y cannot be blocked by
conditioning on D (M←U→ Y ).

This example also shows what is crucial in the criterion of isolation. The mech-
anistic variables must be isolated from otherwise unblocked back-door paths so that
the back-door criterion can be applied in order to recover the full causal effect from
the data. For Figure 10.4, if U were an observed variable, then the back-door paths
D←U→M and M←U→Y could be blocked by conditioning on U . In this case, we
could then use the front-door criterion in a conditional variant, estimating the effect
of D on Y by estimating the effects D→M and then M → Y while conditioning
on U .

More generally, isolation comes in strong and weak forms, both of which are suffi-
cient. For the strong form, none of the variables that lie on back-door paths from D

7In our accounting of Pearl’s front-door criterion, we label his (i) as our Condition 1, which we
then characterize as an exhaustiveness condition. We also combine his (ii) and (iii) into our Condition
2, which we characterize as isolation.
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Figure 10.4 A directed graph in which M is not an isolated mechanism for the causal
effect of D on Y .

to Y can have causal effects on the mechanistic variables, except indirectly through
directed paths that pass through D. For Figure 10.3, the only directed paths from U
that terminate at M and N pass through D. In this case, conditioning on D alone is
sufficient. For the weak form, some of the variables that lie along back-door paths from
D to Y can have causal effects on the mechanistic variables through directed paths
that do not pass through D, but it must still be possible to block any relevant back-
door paths by conditioning on D and other observed variables in the graph. The weak
form of isolation makes it clear that one must be concerned only about the dependence
of the variables in the mechanism on components of back-door paths between D and
Y that cannot be blocked by conditioning on observed variables.

An implication of the necessity of assuming isolation is that a very good under-
standing of the back-door paths between the causal variable and the outcome variable
is needed. If the isolation assumption cannot be maintained, then the mechanistic
variables are similarly affected by the same set of dependencies that invalidate basic
back-door conditioning as a strategy to identify the causal effect.

Now return to Condition 1 of the front-door criterion, which requires that the
identifying mechanism is exhaustive. For Figure 10.5(a), suppose, again, that there
is an unblocked back-door path and also two distinct causal pathways from D to Y ,
which are represented by the two variables M and N . Finally, unlike for Figure 10.3,
suppose that N is unobserved.

In this case, the causal effects D→N and N→ Y cannot be estimated, and thus
the full causal effect of D on Y cannot be estimated by front-door conditioning. If one
were to assert a mistaken assumption that M is an identifying causal mechanism (for
example, by substituting a back-door path D←N→Y for the genuine causal pathway
D→N → Y ), then one can obtain a causal effect estimate. But the causal effect of
D on Y will then be underestimated (assuming all causal effects are linear, positive,
etc.) because the part of the causal effect generated by the pathway D→N → Y is
attributed to a mistakenly asserted back-door path D←N→Y .

Relaxing the Assumption That the Mechanism Is Exhaustive

For the example depicted in Figure 10.5(a), a mechanism-based empirical analysis may
still be useful because an isolated piece of the causal effect can still be estimated. Even
though N is unobserved, the causal effect of D on M is identified by their observed
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identified even though N is

unobserved 

(b) The causal pathway via M is
not identified

Figure 10.5 Directed graphs in which one pathway in an exhaustive and isolated
mechanism is unobserved.

association because the back-door path from D to M , which is D←U → Y ←M , is
blocked by the collider Y in the absence of any conditioning. And, as before, the causal
effect of M on Y is identified because both back-door paths from M to Y , which are
M←D←U→Y and M←D→N→Y , can be blocked by conditioning on D. One can
thereby obtain a consistent estimate of the causal effect of M on Y by conditioning on
D, which guarantees that the part of the causal effect that travels through the pathway
D→M→Y can be estimated consistently. This is an important result, especially for
practice, because identifying and consistently estimating a distinct causal pathway can
be very useful, even if one cannot in the end offer a causal effect estimate of the full
effect of the causal variable on the outcome variable.8

Knight and Winship (2013:290–91) consider an example with the structure of Fig-
ure 10.5(a) and where the population of interest is women in the paid labor force. For
their example, D is whether or not women have children, M is the number of hours
per week worked in a paid job, N is the amount of bias in compensation practices
against women with children, and Y is wages paid to women. Even if one cannot esti-
mate the effect of bias against women with children on wages received, being able to
estimate the wage differences that are attributable to the reduction of work hours that
often results from having children may be important to establish the case for providing
better childcare to support working women.

8Note, further, that one can then assess the portion of the total variation in D and Y that can
be attributed to the pathway through M . This calculation can be useful, but it does not identify the
amount of the causal effect that is explained by M . The problem is that the association between D and
Y that is not attributable to M cannot be apportioned across the two unblocked paths D←U→ Y
and D→N → Y . In addition, if the underlying structural equations are nonlinear, then additional
complications arise because of the possibility of inherent interactions between the causal variable and
mechanistic identifying variables in the production of the outcome variables. For full explanations of
these complications, see Pearl (2012a, 2012b), VanderWeele (2009b, 2012, in press), and Wang and
Sobel (2013). We also discuss these complications in the appendix to chapter 11, where we introduce
a framework for defining and estimating net direct effects.
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But, even though this partial estimation result is very useful, there is an important
implicit assumption that is hidden by this example: Variables on the unobserved causal
pathways cannot have direct or indirect causal effects on any of the variables that lie
along the observed causal pathways. To see the complications that such dependence
could produce, consider the graph in Figure 10.5(b). For this graph, the mechanism
is isolated, but the unobserved variable N has a causal effect on M . In this situation,
the effect of M on Y is not identified. Three back-door paths between M and Y are
still blocked by D: M←D←U→ Y , M←D→N→ Y , and M←N ←D←U → Y .
However, a fourth back-door path, M ←N → Y , cannot be blocked by conditioning
on D or any other observed variable. This path remains unblocked because its only
intermediate variable N is unobserved and is not a collider. Not only is it impossible to
estimate the effect ofD on the unobserved variableN , but the variableN may transmit
to both M and Y its own exogenous variation that is completely unrelated to D and U .
Without recognition of this outside source of dependence, one could mistakenly infer
that the causal pathway D→M→ Y is much more powerful than it is (assuming all
causal effects are linear, positive, etc.). Knight and Winship (2013:293) elaborate their
example, summarized above, to show this result as well. They allow unobserved bias N
to affect work hours M . In this case, the analyst can no longer advocate for increased
childcare support by building support for the causal pathway D→M → Y because
the reductions in wages may all result from the direct effect of bias on wages and the
indirect effect of bias on wages through work hours (which could result either from
differential work assignments from biased supervisors or the protective withdrawal on
the part of working women who confront a hostile workplace).

As these simple graphs show, if one wants to use a mechanism-based strategy
to identify the full effect of a causal variable on an outcome variable, one must put
forward an identifying mechanism that is exhaustive and isolated. The exhaustiveness
requirement can be relaxed if one is satisfied with identifying only part of the causal
effect of interest. But, to secure partial estimation of this form, one must be willing
to assume that the observed portion of the mechanism is not affected by any of the
variables in the unobserved portion of the mechanism. And, to assert this assumption,
one typically needs to have a very specific theoretical model of the complete identifying
mechanism, even though parts of it remain unobserved.

In sum, Pearl’s front-door criterion represents a powerful and original set of ideas
that clarifies the extent to which a mechanism, composed of one or more intervening
variables, can be used to identify and estimate a causal effect. And, by approaching
the causal inference predicament from the inside out, the approach helps to shape the
question of whether a causal claim qualifies as a sufficiently deep explanation. Rather
than estimating a causal effect by back-door conditioning or with a naturally occurring
experiment and then wondering whether a mechanism can be elaborated to show how
the effect comes about, Pearl instead shows that, if we can agree on the variables that
constitute an exhaustive and isolated mechanism, then we can estimate the causal
effect from its component causal pathways.

The approach cannot be taken out of context, though, lest one claim too much
explanatory power for a nonexhaustive and/or nonisolated mechanism. And, at the
same time, it must be acknowledged that even a front-door-identified causal effect
may not be explained deeply enough by the exhaustive and isolated mechanism that
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identifies it, for any such mechanism may still be too shallow for a particular sub-
stantive area. To consider these issues further, we now turn to recent social scientific
writing on mechanisms, wherein the connections among theory construction, genera-
tive mechanisms, and modes of explanation have been carefully examined.

10.3 The Appeal for Generative Mechanisms

To some extent inspired by the work of Jon Elster (e.g., Elster 1989), but more gener-
ally by their reading of past successes and failures in explanatory inquiry in the social
sciences since the 1940s, Peter Hedström and Richard Swedberg convened a group of
leading scholars to discuss a reorientation of explanatory practices in the social sci-
ences. A collection of papers was then published in 1998 as Social Mechanisms: An
Analytical Approach to Social Theory. At the same time, John Goldthorpe developed
his case for grounding all causal modeling in the social sciences on the elaboration of
generative mechanisms. His proposal was published in 2001 as “Causation, Statistics,
and Sociology,” which then received comments from a variety of scholars, including the
statisticians David Cox and Nanny Wermuth (whose response we will discuss below).9

Subsequently, Peter Hedström laid out in considerable detail his full program for a
mechanism-based social science in his 2005 book, Dissecting the Social: On the Princi-
ples of Analytical Sociology. Along with Peter Bearman, Hedström then compiled The
Oxford Handbook on Analytical Sociology, which is a collective effort to demonstrate
the power of this approach (Hedström and Bearman 2009). To orient the reader to
this push for mechanism-based social science, we will first present the slightly different
proposals of Goldthorpe (2001) and then Hedström (2005).10

9Goldthorpe’s argument was republished as a chapter in both the first and second editions of his
programmatic collection, On Sociology (e.g., Goldthorpe 2007, vol 1., ch. 9). Our citations are to the
original 2001 journal article.

10We will not trace the full history of mechanistic theorizing in the social sciences, as the pieces just
cited cover much of the same territory (see also Hedström and Ylikoski 2010; Knight and Winship
2013). However, it does seem to us that the novelty of recent mechanism-based theorizing has been
oversold at least a bit. At the same time that Kendall and Lazarsfeld were directing researchers to
build mechanistic interpretations of causal effects in empirical research, while holding up Stouffer as
a successful practitioner, mechanism-based modes of conjecturing were widespread among theorists.
Hedström and Udehn (2009) lionize Robert Merton’s proposal for the pursuit of middle-range theory,
which they argue is implicitly mechanism-based. Like many others, they contrast Merton’s work with
the “grand” system-level theoretical program of Talcott Parsons. But even Parsons wrote frequently of
mechanisms, including those for socialization, social control, and the equilibration of the social system
(see Parsons 1951, chapters 6 and 7). As an example, Parsons (1951:206) wrote, “A mechanism
of social control, then, is a motivational process in one or more individual actors which tends to
counteract a tendency to deviance from the fulfillment of role-expectations, in himself or in one or more
alters. It is a re-equilibrating mechanism.” Explaining his usage of the term “mechanism,” Parsons
(1951:22) wrote, “Motivational dynamics in sociological theory, then, must take the form in the first
instance of the formulation of mechanisms which ‘account for’ the functioning of social systems, for
the maintenance or breakdown of given structural patterns, for a typical process of transition from
one structural pattern to another. Such a mechanism is always an empirical generalization about
the operation of motivational ‘forces’ under the conditions stated.” It is clear from this work that
Parsons saw mechanistic theorizing as a way to develop the sort of conjectures that Craver (2007)
would regard as “how-possible” or “how-plausible” models and that Hedström and Bearman (2009:7)
label “semigeneral mechanisms.” It is also clear that Parsons’ mechanisms came to be regarded as
insufficiently deep by subsequent sociologists. Indeed, a great deal of the empirical work that has been



10.3. The Appeal for Generative Mechanisms 339

Goldthorpe develops his proposal by first attempting to drive a wedge between the
counterfactual model, which he labels “causation as consequential manipulation,” and
his alternative mechanistic model of causality. To develop his argument, he advances
the claim that the counterfactual model is irretrievably tied to actual experimental
manipulations of causal variables. Goldthorpe (2001:6) writes, “the crux of the matter
is of course the insistence of Rubin, Holland, and others that causes must be manipu-
lable, and their unwillingness to allow causal significance to be accorded to variables
that are not manipulable, at least in principle.”11 (See our discussion of this issue in
Chapter 13, in which we present the positions of Woodward (2003) and others that
this argument is incorrect.) Goldthorpe also argues, citing the work of statisticians
Cox and Wermuth (1996; also Cox 1992), that the counterfactual model too easily
settles for causal claims of insufficient depth that do not account for how causes bring
about their effects (a point that is clearly supported by our presentation of the natural
experiment literature discussed earlier in this chapter).

With this criticism of the counterfactual model in mind, Goldthorpe writes:

The approach to causal analysis that is here proposed . . . is presented in
the form of a three phase sequence: (i) establishing the phenomena that
form the explananda; (ii) hypothesizing generative processes at the level of
social action; and (iii) testing the hypotheses. (Goldthorpe 2001:10)

Goldthorpe then proceeds to lay out the basic contours of the first two steps, arguing
that the most useful mechanisms in the social sciences are those that are based on ratio-
nal choice theory (because these are sufficiently microscopic and focus on the actions
and beliefs of individuals). He then explicates the third step of his approach, which is
his requirement that one must test hypotheses suggested by the generative mechanism
that one has proposed.12 And here, he takes the position that generative processes
of the sort that he prefers, which are “specified at a ‘deeper,’ or ‘more microscopic’
level, than that of the data that constitute the explananda” (15), can almost never be
directly evaluated. Instead, Goldthorpe advises that analysts spend their effort deter-
mining whether the hypothesized generative mechanisms can be indirectly supported
through repeated validation of entailed hypotheses. These entailed hypotheses may be
at the level of the “microscopic” mechanism, as would be the case for conjectured pat-
terns among correlates of the unobserved true preferences and micro-interactions that,

published since the 1950s can be interpreted as attempts to deepen the mechanistic claims that were
overly abundant in the work of Parsons, Merton, and other scholars of their era.

11It is unclear from this passage what Goldthorpe means by “in principle.” However, on the next
page of the article, he offers an example that reveals that his conception of a manipulation can
be very narrow. Following an example of Holland (1986), he introduces mechanistic variables and
argues that in so doing he has produced a causal narrative that has nothing to do with hypothetical
manipulations/interventions and hence cannot be represented in a counterfactual framework. The
argument seems to be that the mechanistic variables are nonmanipulable because they are typically
voluntary decisions of an individual.

12By our reading, Goldthorpe ends up back at the counterfactual model at this point. His defense
against such a reading is this: “while it might seem that, at this stage, attention does after all come to
focus on the effects of – given – causes rather than on the causes of effects, this is within the context
not of randomized experimental design but of (what should be) a theoretically informed account of a
generative process that is subject to ongoing evaluation.” (Goldthorpe 2001:13)
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according to the hypothesized generative mechanism, determine the action that gener-
ates the outcome. More realistically, these entailed hypotheses would be at the higher
level where data are available on the outcome of interest, as would be the case when
analyzing conjectured patterns of the outcome itself at the population level (based on
further assumptions about how the generative mechanism produces a distribution of
outcomes across subgroups that can be identified by their measured characteristics).13

Consider now the more extended appeal for mechanism-based social science offered
by Peter Hedström (2005). Unlike Goldthorpe, Hedström does not confront the coun-
terfactual causality literature directly. He instead develops an argument that suggests
the following orienting principle: “The core idea behind the mechanism approach is
that we explain not by evoking universal laws, or by identifying statistically relevant
factors, but by specifying mechanisms that show how phenomena are brought about”
(Hedström 2005:24). Hedström arrives at this position from two different directions.
First, he signs on to the dominant position in the philosophy of science that the
best explanation of how a phenomenon is brought about must necessarily be a causal
account of some form that does not rely on unrealistic presuppositions of the existence
of invariant general (or covering) laws (see Hedström 2005:15–20). But he also jus-
tifies the principle by criticizing regression-based causal models in social science (see
Hedström 2005:20–23):

Such statistical analysis is often described as a form of “causal analysis.” If
a factor appears to be systematically related to the expected value or the
conditional probability of the outcome, then the factor is often referred to
as a (probabilistic) “cause” of the outcome. Although it makes little sense
to quibble over words, I would like to reserve the word cause for a less
casual notion of causality. (Hedström 2005:23)

Like Goldthorpe, Hedström also lays out a script for the construction of mecha-
nisms, which is similar in its appeal to the principles of methodological individualism
(although he steps back from Goldthorpe’s stronger preference for forms of rational
choice theory). Most importantly, Hedström does not advocate the testing of mecha-
nisms in the way that Goldthorpe does. Instead, he defends the explanatory utility of
mechanisms in a much more general way:

Mechanisms should be seen as theoretical propositions about causal tenden-
cies, not as statements about actualities. An explanation may be perfectly

13Blossfeld (2009) aims to build on Goldthorpe’s orienting program and argues for the centrality
of event history processes in generating relationships that can be interpreted as causal. Blossfeld
(2009:101) writes, “We can only hope to make sensible causal statements about how a given or
(hypothesized) change in variable Y A

t (e.g., pregnancy/birth) in the past affects the probability of
a change in variable Y B

t′ (e.g., marriage) in the future. Correspondingly, the basic causal relation

becomes: ΔY A
t →ΔPr(Y B

t′ ), (t<t′). In other words, a change in the time-dependent covariate Y A
t will

change the probability that the dependent variable Y B
t′ will change in the future (t< t′).” If Blossfeld’s

“given or (hypothesized)” distinction can be interpreted as consistent with potential outcomes tied
to the states A and not-A, then this is simply a restatement of the potential outcome definition of
a causal effect. If not, and this definition is meant to dispense with counterfactual dependence, then
the only “causal relations” that are well defined for Blossfeld are those between values of observed
variables that change in time during the observation window. If it is the latter, then this is just the sort
of robust dependence relationship rejected by Goldthorpe (and Blossfeld), although now expressed as
a robust-dependence-in-time perspective.
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correct if understood as a proposition about a causal tendency, and yet
it may be inadequate for predicting actual outcomes if other processes are
also at work. . . . Since it is the rule rather than the exception that concretely
observed phenomena are influenced by several different processes, testing
a theory by examining the accuracy of its predictions is likely to conflate
the truth or relevance of the postulated mechanism with the importance of
other processes, and this may lead us to mistakenly reject perfectly appro-
priate causal accounts. (Hedström 2005:108)

What, then, is the explanatory status of mechanisms that are “theoretical propositions
about causal tendencies”? Here, Hedström seems to argue three basic points: (1) The
best explanations are causal accounts; (2) causal accounts must include mechanisms;
(3) mechanisms may or may not explain actualities. The direct implication of this
position is that the best explanations in social science do not necessarily have to
explain actualities, but they must explain causal tendencies.14

In our view, Goldthorpe and Hedström have developed a wonderful appeal for the
need to construct sufficiently deep theories of social processes. Their work is filled
with much insight on a variety of promising ways to formulate plausible theoretical
mechanisms. And they have helped to further convince many social scientists that
specifying the social processes that account for how causes bring about their effects is
a central goal of analysis. It is therefore unsurprising that this new wave of scholarship
has inspired a scholarly movement of sorts, which we and many others regard as both
promising and very healthy for theory construction in the social sciences.15

But, to be seen as blueprints for explanatory causal analysis, both of these par-
ticular perspectives need to be augmented. And we would argue that they can be
usefully extended by embracing the counterfactual model of causality more directly.16

We explain this position in the remainder of this section, first by offering a slightly

14It is unclear from the foregoing passage what the problematic “other processes” are meant to be.
Clearly, they must come in two different forms: (1) other mechanisms that are completely independent
of the postulated mechanism of primary interest and (2) other mechanisms that interact with the
postulated mechanism of primary interest. If one is estimating the effects of a cause, it is only the
latter that are problematic for the evaluation of mechanisms, and hence for the evaluation of causal
accounts based on mechanisms. See our earlier discussion of partial identification by the front-door
criterion.

15But we are somewhat more traditional in favoring mechanisms that are formal models, as we are
less convinced of the utility of many simulation-based methods of theory construction; see Hedström
(2005:76–87, 131–36, 149) on the appeal of such techniques. We agree with Humphreys’ (2004:132)
caution: “Agent-based models are a powerful addition to the armory of social scientists, but as with
any black-box computational procedures, the illusion of understanding is all too easy to generate.”
Scholars such as Manzo (2011) disagree sharply with this position, and we welcome efforts that will
convince us to change our position.

16In more recent work, Hedström and Udehn (2009:42) write that the mechanism-based approach
to social science “should not necessarily be seen as an alternative to the counterfactual approach,
but rather as adding further requirements. As emphasized by Woodward (2002) and Morgan and
Winship (2007) there is nothing in the counterfactual approach as such which guarantees sufficient
causal depth, because perceptions of sufficient depth are discipline-specific while the counterfactual
approach is not.” We assume that the reference here is to the argument that we offered in this chapter
in the first edition of this book.
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different reading of recent developments in the philosophy of science and then by rais-
ing the issue of how social scientists can retain the capacity to adjudicate between
competing mechanistic accounts of causal effects.

Philosophy of Science and Explanation by Mechanisms

As we noted at the beginning of this chapter, the appeal to mechanisms as elaborations
of causal claims has been entrenched in the sociological literature for many decades,
and we suspect that this emphasis is true of all of the social sciences. Where perhaps
the focus on generative mechanisms is new is in the proposed elevation of their status to
the object of primary investigation. This elevation is not unrelated to shifting currents
in the philosophy of science.

Some proponents of a mechanism-based social science have drawn inspiration from
the demise of covering law models of explanation in the philosophy of science (e.g.,
Gorski 2004; Hedström 2005). The covering law model, as most famously explicated
by Carl Hempel, maintains that all valid explanations can be formulated as logico-
deductive entailment from invariant general laws.17 Since 1970 at least, the covering
law model has received near-continuous challenges to its basic premises (see Godfrey-
Smith 2003; Salmon 1989; and Woodward 2003). The presupposition that general
and exceptionless laws exist and that they can be used to warrant all valid causal
claims cannot be sustained in most scientific disciplines, and certainly not in the social
sciences.

In response, a variety of alternative models of scientific explanation have arisen,
with realist models attracting the largest number of adherents (see Psillos 1999). In
general, realist models grant ontological status to unobserved quantities (sometimes
conferring provisional truth status on them). Most realist models reject causal nihilism
and affirm that valid scientific explanation must necessarily be grounded in causal
accounts of some form. Especially when invoked for the social sciences, realist models
admit the possibility of inherent heterogeneity of causal relationships – in time, space,
and within populations. But the depth of the appeal to unobservables varies across
types of realist models, as does the level of provisional truth status conferred upon
unobservables.

What we wish to emphasize in this section is how uneasily the focus on generative
mechanisms sits within this new terrain, especially when seen as a call for the con-
struction of mechanisms that explain only causal tendencies rather than observable
actualities. As we have just noted, the appeal for mechanistic explanation in the social
sciences is attractive partly because it is claimed that it does not rest on the exis-
tence of general laws. But some philosophers who endorse the mechanisms position
disagree with this claim, arguing that laws are still essential, perhaps even consti-
tuting the defining characteristic of what a mechanism is. For example, after having
written on the role of mechanisms in scientific explanation for several decades, Mario

17We do not attempt to give a full summary of the fall of covering law models, as many accessible
texts exist in philosophy (see citations in the main text) and others that are written for social scientists
alone (e.g., Gorski 2004; Hedström 2005). Nor do we give a full explication of the variety of positions
that have replaced the covering law model, as these too are well summarized elsewhere (see citations
in the main text for realist models in particular, as well as the variety of naturalist positions that
contend with them).
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Bunge (2004:207) concluded, “No law, no possible mechanism; and no mechanism, no
explanation.”18

Hedström (2005) considers this complication carefully, and he emphasizes that his
mechanism-based approach to explanation is less reliant on invariant laws than the
covering law models that he rejects. This position is certainly correct, but one must
still consider how to grapple with what seem to be three fairly common declarative
statements on the relationships between laws and mechanisms: (1) invariant covering
laws do not exist, (2) mechanisms depend to some degree on the existence of laws
that are weaker than general, invariant laws, (3) mechanisms are nested within each
other. Accepting all three statements seems to delimit laws to the smallest possible
configuration within each level of a set of nested mechanisms.

If a mechanism is designed to explain how an actuality comes about, then all seems
to be fine with this perspective.19 But if one instead maintains, as does Hedström
(2005), that mechanisms are the key to the explanation of causal tendencies only –
such that the validity of a mechanism cannot be undermined by its inability to explain
anything in particular – then this line of thought leads all too easily to the critical
realist perspective on mechanisms. We suspect that most empirical social scientists
would find critical realism uninspiring. Critical realism’s pioneer, Roy Bhaskar, writes
with regard to mechanisms:

The world consists of mechanisms not events. Such mechanisms combine to
generate the flux of phenomena that constitute the actual states and hap-
penings of the world. They may be said to be real, though it is rarely that
they are actually manifest and rarer still that they are empirically identi-
fied by men. They are the intransitive objects of scientific theory. They
are quite independent of men – as thinkers, causal agents and perceivers.
They are not unknowable though knowledge of them depends upon a rare
blending of intellectual, practico-technical and perceptual skills. They are
not artificial constructs. But neither are they Platonic forms. For they can
become manifest to men in experience. Thus we are not imprisoned in
caves, either of our own or of nature’s making. We are not doomed to igno-
rance. But neither are we spontaneously free. This is the arduous task of
science: the production of the knowledge of those enduring and continually
active mechanisms of nature that produce the phenomena of the world.
(Bhaskar 1998[1997]:34–35)

If the social sciences sign on to the idea that mechanisms are general and transcen-
dentally valid explanations that may not explain any actualities or particularities, we
will be led inevitably to a fundamental premise of critical realism: The mechanisms
that constitute causal explanations are irreducible, even if they are nested in each

18Given Bunge’s position, one then necessarily wonders, How does one discover these crucial
explanatory mechanisms? Bunge’s (2004:200) guidance is this: “There is no method, let alone logic,
for conjecturing mechanisms. True, Peirce wrote about the ‘method of abduction,’ but ‘abduction’
is synonymous with ‘conjecturing,’ and this – as Peirce himself warned – is an art, not a technique.
One reason is that, typically, mechanisms are unobservable, and therefore their description is bound
to contain concepts that do not occur in empirical data.”

19As best we can tell, Woodward (2003, section 4.6) takes this position, noting the need for only a
rather limited “backing” relationship between causal claims and laws.
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other. This position is summarized by Andrew Collier (2005:335): “Critical realism
defends the idea that reality is many-layered, and each level has its own kind of laws,
irreducible to those of any other layer.”

For the social sciences, one might argue that such an irreducibility presumption
could be unifying in offering protection against incursions from biology and physics.20

But, if accepted, it would undermine the work of social scientists who have at least
some interest in developing causal claims that unite levels of analysis. If irreducibility
were accepted, how then could methodological individualists such as Goldthorpe criti-
cize those who seek to develop macrolevel causal claims with only minimally sufficient
reliance on proximate actors and institutions (e.g., Alexander 2003)?21 Gorski (2004),
for example, lays out a constructive realist model of explanation, built up from the
causal process perspective of Wesley Salmon’s early work, that is completely at odds
with the perspective of Goldthorpe (2007).22 But Goldthorpe (2007, chapter 2) ques-
tions the explanatory utility of all secondhand historical analysis, in essence rejecting
the capacity of historical analysis, as practiced in sociology, to sustain causal claims
of any form. If Goldthorpe were to sign on to irreducibility, which we doubt he would,
he could not thereby criticize macrosocial claims of causal relationships.

Given that these extreme positions on mechanisms in the philosophy of science are
likely to be unhelpful to practicing social scientists, and given that Hedström and others
in the generative mechanisms movement seem to agree (see Hedström 2005:70–74),
which type of philosophy of science gives the appropriate backing for causal analysis?
If anything, it is the philosophical writing on the counterfactual model that provides a
solid and pragmatic foundation, as best represented for the causal modeling tradition
by Woodward (2003). The key to understanding why this is the case is to consider
alternative ways to adjudicate between the rival mechanisms proposed by alternative
investigators, which we turn to next.

Adjudication Between Rival Mechanisms

Imagine that social scientist A and social scientist B have proposed distinct mecha-
nisms for how X brings about Y . How do they determine whose mechanism is sup-
ported? According to Goldthorpe (2001, 2007), each scholar is expected to derive
entailed hypotheses, typically indirect, and test them with data. One might hope that
scholars A and B will be able to agree on a clear critical test that could tip the scales
in favor of one mechanism or the other. Unfortunately, the mechanisms of the two

20Of course, nontranscendental protection is available as well, as we explain below when discussing
the notion of “bottoming out” in mechanistic explanation. Even Strevens (2008:472), while defending
reducibility to fundamental physics, can concede that many lower-level details may be suppressed
when they play no role in producing the outcome of interest.

21Methodological individualism is the basic position of Goldthorpe (2001, 2007) and Hedström
(2005), as influenced heavily by the scholarship of Raymond Boudon (see Boudon 1998 and citations
therein).

22Gorski (2004) endorses the causal process model of Wesley Salmon, as developed in Salmon’s
work from the 1970s and early 1980s (see Salmon 1984). Given the ways in which Salmon’s work
developed later in his career, turning completely toward causal mechanical ideas based on the notion
of conserved quantities, his updated ideas seem completely irrelevant to what we take to be Gorski’s
main position: “Social science is ‘nothing but history.’ The real error was ever to think it could be
anything more” (Gorski 2004:30; emphasis in original).
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scholars may be so different that no such critical test can be derived and agreed on (as
would often be the case if scholar A is a sociologist and scholar B is an economist, for
example). If no such agreement can be found, the two scholars may end up expending
effort seeking to affirm their own entailed indirect hypotheses, producing results that
are then regarded as irrelevant by each other.

Consider the reaction that Goldthorpe’s proposal elicited from the statisticians
David Cox and Nanny Wermuth, whose prior work Goldthorpe had used to develop
his proposal:

Goldthorpe (2001) has argued for this . . . view of causality as the appro-
priate one for sociology with explanation via rational choice theory as an
important route for interpretation. To be satisfactory there needs to be evi-
dence, typically arising from studies of different kinds, that such generating
processes are not merely hypothesized. Causality is not to be established
by merely calling a statistical model causal. (Cox and Wermuth 2001:69)

By our interpretation, Cox and Wermuth take the position that generative mecha-
nisms must be directly evaluated, not evaluated only by indirect entailed hypotheses.
Anything short of this analysis strategy could result in a flourishing of mechanisms in
the social sciences, without an attendant sense of which ones have sufficient empirical
support to command attention.

The alternative to any such mechanism anarchy could be even worse: mechanism
warlordism. The mechanisms of the most industrious scholars – those who can dream
up the largest number of hypotheses to affirm, who can recruit the largest number
of students to do the same, and who can attract the largest amount of funding to
collect the data on their hypotheses – could receive the most affirmation. The only
defense for out-of-favor mechanisms might then be to appeal to the hidden structures
of alternative mechanisms, which one would be tempted to claim cannot be evaluated
because of a lack of data.

In sum, the generative mechanisms movement in the social sciences is an admirable
call for theory construction.23 The appeal for finely articulated “semigeneral” mech-
anisms to fill the toolkit of social theory (see Hedström and Bearman 2009:6–7) is
consistent with the appeal to forms of abduction that generate what Craver (2007)
has labeled “how-possibly” and “how-plausibly” models:

How-possibly models are often heuristically useful in constructing and explor-
ing the space of possible mechanisms, but they are not adequate explana-
tions. How-actually models, in contrast, describe real components, activi-
ties, and organizational features of the mechanism that in fact produces
the phenomenon. Between these extremes is a range of how-plausibly mod-
els that are more or less consistent with the known constraints on the
components, their activities, and their organization. (Craver 2007:111–12).

We see the generative mechanisms movement as a call for the construction of how-
possible and how-plausible models. Such activity is worthwhile in its own right, and it

23In fact, the first author found it convincing and inspiring when writing Morgan (2005).
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may help to inform empirical research. We see causal analysis, in contrast, as a directed
effort to evaluate the support for specific claims implied by how-actually models.

Finally, as long as the generative mechanisms movement does not verge into critical-
realist transcendentalism in the future, it will remain a very useful call for the pursuit
of sufficiently deep causal accounts. An elegant mechanism, if how-plausible, may be
a crucial step forward in convincing a field that an accepted causal claim is supported
by an underlying mechanistic account that should be seen as too shallow. Thus, even
though theory construction is not causal analysis, theory construction may help to
establish our goals for explanatory depth. We take the position that genuine causal
depth must be secured by empirical analysis, and that such analysis is often best
grounded on the counterfactual model. In the next section, we work our way back
to Pearl’s front-door criterion, after introducing a language of mechanism sketches
and mechanism schemas that is helpful for classifying alternative representations of
mechanisms.

10.4 The Pursuit of Explanation with
Mechanisms That Bottom Out

Amid the resurgence of writing on mechanisms, we find one statement more help-
ful than many others, the 2000 article “Thinking About Mechanisms” written by
Machamer, Darden, and Craver and published in Philosophy of Science. In their arti-
cle, Machamer, Darden, and Craver develop two particularly helpful lines of thought:
(1) the distinctions between a fully articulated mechanism, a mechanism sketch, and
a mechanism schema, and (2) the process of “bottoming out” in mechanistic model
building and subsequent explanation. To develop these concepts, Machamer et al.
(2000:12) first note that “in a complete description of [a] mechanism, there are no
gaps that leave specific steps unintelligible; the process as a whole is rendered intelligi-
ble in terms of entities and activities that are acceptable to a field at a time.” But they
then explain that explanatory inquiry using mechanisms is not an all-or-nothing affair,
in which every step is always specified. Variability in the representation of mechanisms
is possible because

mechanisms occur in nested hierarchies. . . . The levels in these hierarchies
should be thought of as part-whole hierarchies with the additional restric-
tion that lower level entities, properties, and activities are components in
mechanisms that produce higher level phenomena. . . .” (Machamer et al.
2000:13)

In spite of such nesting, there is a natural bottoming out of mechanism-based expla-
nations:

Nested hierarchical descriptions of mechanisms typically bottom out in low-
est level mechanisms. These are the components that are accepted as rela-
tively fundamental or taken to be unproblematic for the purposes of a given
scientist, research group, or field. Bottoming out is relative: Different types
of entities and activities are where a given field stops when constructing
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mechanisms. The explanation comes to an end, and description of lower-
level mechanisms would be irrelevant to their interests. (Machamer et al.
2000:13)

Then, by thinking through the complexity of the nesting of mechanisms, and how
scholars represent mechanisms to each other, they develop two related concepts. A
mechanism schema is a representation of a mechanism in which some known details
(or known nested levels) are suppressed for the sake of simplicity. Or, as Machamer
et al. (2000:15) state, “a mechanism schema is a truncated abstract description of a
mechanism that can be filled with descriptions of known component parts and activi-
ties.” In contrast, a mechanism sketch is quite different:

A sketch is an abstraction for which bottom out entities and activities
cannot (yet) be supplied or which contains gaps in its stages. The produc-
tive continuity from one stage to the next has missing pieces, black boxes,
which we do not yet know how to fill in. A sketch thus serves to indicate
what further work needs to be done in order to have a mechanism schema.
Sometimes a sketch has to be abandoned in the light of new findings. In
other cases it may become a schema, serving as an abstraction that can be
instantiated as needed. (Machamer et al. 2000:18)

Within this framework, one can conceive of causal analysis in the social sciences as
the pursuit of explanations that bottom out.24 Although there will inevitably be dif-
ferences of opinion on how deep an explanation must be to bottom out, it would
seem uncontroversial to state that a valid explanation that invokes a mechanism must
bottom out at least as far as the observables in the data at hand.25

This position, although we think it uncontroversial, is still not specific enough
for our tastes. In the remainder of this section, we discuss two entangled issues:
(1) when deep accounts cannot be provided because nominal causal states are too
coarsely defined and (2) how the pursuit of deep causal accounts should proceed when
the specification of causal states will allow it.

Coarse Causal States Impede the Pursuit of Causal Depth. When we
introduced in Section 2.1 the causal states that define potential outcomes, we took
the position that causal states should be finely articulated and motivate comparisons
that are local and reasonable. We also noted, in the subsection beginning on page 39,

24See also the discussions of modularity in Woodward (2003, chapter 7) and Knight and Winship
(2013).

25A critical realist could escape from this position in a variety of ways: asserting irreducibility and
transcendentalism and then, more specifically, by arguing in the end that the data that one is forced
to consider are but a poor reflection of the phenomena that the mechanism truly does explain. For
all of these reasons, the lack of observed explanatory power for observed events would then be argued
to be untroubling. This position, however, then becomes a variant of an appeal to a hidden but pre-
supposed valid underlying structure, which Woodward convincingly argues cannot be an acceptable
explanatory strategy for any field that hopes to resolve its explanatory controversies because “the
appeal to hidden structure makes it too easy to protect one’s favored theory of explanation from gen-
uine counterexamples” (Woodward 2003:175). Moreover, if the particularities in the data are merely
a poor reflection of the phenomenon that the mechanism is supposed to explain, then presumably
whatever generates the mismatch can be encoded in the mechanism that explains both the genuine
phenomenon of interest and the process that generates the misleading data.
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that we see value in regarding each state of each treatment as a nominal state with
constitutive features (e.g., entities, activities, and relations) that are jointly capable of
producing the outcome of interest. We then provided examples where the causal states
are composed of constitutive features. For example, the types of schools that define
the causal states for many of the examples in this book are composed of teachers,
classrooms, curricula, administrators, normative environments, affiliated institutions,
and networks of peers and parents. We maintained that causal effects can still be
defined with reference to these nominal states because we can conceive of differences
in outcomes that would result from alternative exposure in toto to the constitutive
features of each nominal state.

We will not repeat the pragmatism-based argument of Section 2.1 here, but the
discussion there ends on a crucial question relevant here. After presenting, as an exam-
ple, the literature that has focused on the particular features that may give Catholic
schools an advantage in the production of learning, we asked what should be made
of any such lower-level causal claims. More generally, we asked: When should nom-
inal causal states be decomposed into component causal states in pursuit of more
finely articulated causal explanations? If Catholic schools and public schools are to be
regarded as alternative nominal causal states relative to each other, and yet one has
some basis for claiming that Catholic schools produce a learning advantage because of
a greater endowment of one particular constitutive feature – dense parental networks,
for example – then should we dispense with the nominal causal states and redefine the
research question solely to enable an examination of this particular feature?

If interest exists in understanding what really would happen if we exposed individu-
als to alternative nominal causal states, then this interest alone is sufficient justification
for not doing so. Many policy evaluation studies take this position. Investigators may
not be able to discern which particular features of an intervention program are effec-
tive, but they still want to know whether the program, altogether, has an effect on
average, and, furthermore, whether that effect varies across types of individuals who
could be exposed to it. More generally, when nominal causal states are composed of
many constitutive features, only some of which contribute to the production of the
outcome, the relevant scholarly community may recognize that only shallow effects are
feasible to estimate. If data are not available to analyze all of the constitutive features
– either to assess their autonomous causal capacities or the processes that imbue them
with joint and interactive causal capacities – then the causal claims based on the nom-
inal states alone may be regarded as insufficiently deep and yet still be as deep as can
be sustained by an empirical analysis.

Overall, when these challenges arise in practice, we see inherent tensions, and hence
can offer no general guidance, on whether one should (1) preserve the nominal causal
states as originally defined and settle for a shallow account of how the cause produces
its effect, (2) preserve the nominal causal states as originally defined but then also
attempt to deepen the shallow account by specifying a full mechanism for how the
cause produces its effect, or (3) decompose the original nominal causal states into
component causal states and then specify separable mechanisms that can account for
the partial effects attributable to particular constitutive features, now redefined as
lower-level nominal states. Making this choice surely depends on the state of relevant
theory about the process under analysis, whether the constitutive features can be
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meaningfully separated and then measured, whether data with such measures are
available, and what standards prevail in the field for which the study is intended.

The Pursuit of Causal Depth by Investigation of Nested Mechanisms. As
we noted at the beginning of this chapter with illustrative quotations from Duncan et
al. (1972) and Kendall and Lazarsfeld (1950), for many decades social scientists have
used intervening variables in empirical analysis in attempts to explain how causes bring
about their effects. In this section, we will apply the language of Machamer et al. (2000)
to this tradition of analysis, using causal graphs and making explicit connections to
our presentation of Pearl’s front-door criterion.

Recall that for Machamer et al. (2000) the difference between a mechanism sketch
and a mechanism schema is the source of the abstraction in each. For a schema, all
of the parts of the mechanism are known, and the abstraction from them is enacted
for presentation purposes. For a sketch, some of the parts are unknown, and thus the
abstraction is a representation of the analyst’s epistemic limitations.

Before considering directed graphs of the sort utilized in this book, we should note
how easy it is to find arrow-based figurative representations that can be interpreted as
mechanism abstractions. Here are five examples from widely regarded work in sociology
where →’s are utilized liberally:

1. In Foundations of Social Theory, Coleman (1990:637, see figure 23.4) offers a
representation of a feedback process for social policy research where five actors
and activities – “Government,” “Intermediaries,” “Policy recipients,” “Research
on social policy,” and “Political representation” – are connected by eight →’s
and five ���’s.

2. In Class Counts, Wright (1997:262, see figure 10.1) offers a model for the effects of
class location on class identity where “Direct class location” and “Mediated class
location” are connected to “Class identity” through seven→’s that are connected
to “Patterns of daily work interaction,” “Material class interests,” “Production-
centered class experiences,” and “Consumption-centered class experiences.”

3. In “A Plea for Mechanisms,” Elster (1998:63, see figure 3.1) offers mechanisms
for the interaction of democracy and religion where “Democracy,” “Religion,”
“Irreligion,” “Desires,” “Opportunities,” and “Action” are connected by six→’s.

4. In Interaction Ritual Chains, Collins (2004:48, see figure 2.1) offers a representa-
tion where Durkheimian “Collective effervescence” converts four “Ritual ingre-
dients” (group assembly, barrier to outsiders, mutual focus of attention, and
shared mood) into four “Ritual outcomes” (group solidarity, emotional energy
in the individual, symbols of social relationship, and standards of morality), via
a relation ]→ [.

5. In A Theory of Fields, Fligstein and McAdam (2012:20, see figure 1.1) offer a
representation of “three linked mechanisms” for episodes of contention where
two types of actors “Incumbent” and “Challenger” respond to “Destabilizing
changes” and “Escalation of perceived uncertainty” by enacting “Attribution of
threat/opportunity,” which leads to “Social appropriation,” and then to “Inno-
vative collective action.” These mechanisms of action are connected by 12 →’s,
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Many more examples exist.26 Our point in offering these five examples is to highlight
the revealed presentation value of mechanism abstractions that use arrows.

Now, consider the sort of finely structured causal graphs we have considered exten-
sively in this book. Suppose that one uses some form of back-door conditioning to
identify a causal effect of D on Y . Suppose, furthermore, that one has done so from
within the counterfactual framework, settling on the ATE as the parameter of first-
order interest. One then necessarily confronts the question that we raised in the
beginning of this chapter: Does a counterfactually defined and consistent estimate
of the causal effect of D on Y by itself meet the standard of an explanation that
bottoms out?

The answer to this question is clear: It depends on what D and Y are, who is
conducting the study, and for what purposes. If one wishes to know only how a hypo-
thetical intervention on D would shift Y , and hence has no interest in anything else
whatsoever, then bottoming out has been achieved in some minimalist way, as we
noted above. The analysis yields up a consistent estimate of the average causal effect
of D on Y that holds for the population within which both are observed. In this case,
the model D→Y is then regarded as merely a mechanism sketch, which suffices to be
treated as a sufficiently deep explanation for the purposes at hand.

However, it will often be the case that an estimate of a warranted causal effect of D
on Y , grounded in the potential outcomes framework, is properly considered to be an
insufficiently deep explanation of how D brings about Y . Such a judgment would be
appropriate when the interest of the field is in understanding both how interventions
on D and interventions on the mechanistic intervening variables that link D to Y
would shift Y . In this case, the model D→ Y is a mechanism sketch that, for the
purposes at hand, cannot be regarded as a sufficiently deep explanation. The arrow in
the sketch D→Y is a black box that must be filled in through further analysis.

If a warranted claim of a counterfactually defined causal effect is properly regarded
as insufficiently deep, the recourse is not to abandon the counterfactual model but
rather to investigate the nested mechanism that intercepts the effect of D on Y . Such
analysis may initially take the form of a set of alternative conjectured mechanisms.
But, ultimately, any such analysis must return to the particular observed relationship
betweenD and Y in the population of interest (or more broadly in multiple well-defined
populations for which the question of interest is relevant). Thus, although theoretical
creativity and new measurement techniques may be required, opening up black boxes
is, at least in part, an empirical pursuit. At some point, one must specify the causal
states for the variables that constitute the mechanisms, and each link thereby specified
to give rise to an effect must be submitted to its own causal analysis.

Consider this process abstractly with reference to a causal graph, after which we
will introduce examples from the published literature. Suppose that one pursues further
theoretical conjecturing and subsequent empirical analysis, and one then determines
that the variables A, B, and C constitute an exhaustive and isolated mechanism that
identifies the causal effect of D on Y by Pearl’s front-door criterion. At this point, one
may be tempted to declare that a sufficiently deep causal explanation of the effect of

26An early (and particularly obtuse) one is Parsons (1937:741, footnote 1), where a “web of inter-
woven strands” is used to explain how means-end chains evolve in time and structure unit acts.
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D on Y has been secured. Such a claim may well be true, but it is not guaranteed. It
could be that further nested mechanistic variables exist, such that, for example, three
additional variables M , N , and O (each of which is a concept of considerable interest
to one’s peers) are then found to elaborate the casual pathway D→ A → Y . In this
case, the causal pathway D→ A→Y is then itself best regarded in hindsight as merely
a component of a mechanism sketch. When M , N , and O are then observed, D→ A
→Y is replaced in the mechanism sketch with, for example, one or more related causal
pathways, such as D→M →A →N→ Y and D→A →O→ Y . In this example, A,
B, and C may well identify the causal effect by the front-door criterion, but they do
not qualify as a sufficiently deep causal account of how D brings about Y .

As we noted in the first part of this chapter, the progressive deepening of causal
explanation through the modeling of intervening processes is entirely consistent with
social science tradition. And yet we also claimed that Pearl’s front-door criterion can
help guide sharpened analysis practices in this regard. To see what we mean, consider
the example of Duncan’s research on status attainment processes again. As we noted
in Chapter 1, Blau and Duncan (1967) deepened the causal account of how parental
social status determines offsprings’ social status by specifying what most scholars now
regard as the most important link: levels of educational attainment.

Thereafter, Duncan and his colleagues then supported and encouraged further work
on the process of educational attainment, most importantly the Wisconsin model of
status attainment that we introduced in Section 1.3.1. This model is a direct exten-
sion of Blau and Duncan’s research, in which the causal pathways between parental
status and offspring’s attainment were elaborated by the introduction of intervening
variables for significant others’ influence and educational aspirations. In fact, in the
most important article in this tradition, Sewell et al. (1969) used mechanistic language
to introduce the contribution of their study:

we present theory and data regarding what we believe to be a logically con-
sistent social psychological model. This provides a plausible causal argu-
ment to link stratification and mental ability inputs through a set of social
psychological and behavioral mechanisms to educational and occupational
attainments. One compelling feature of the model is that some of the inputs
may be manipulated through experimental or other purposive interven-
tions. This means that parts of it can be experimentally tested in future
research and that practical policy agents can reasonably hope to use it in
order to change educational and occupational attainments. (Sewell et al.
1969:84)

The Wisconsin model was very favorably received in sociology, as it was considered to
be consistent with the basic features of the model of Blau and Duncan (1967) and yet
had a claim to greater causal depth.27

Even so, as we also noted in Section 1.3.1, critics emerged immediately (see also
Morgan 2005, chapter 2, for a more extended summary). The basic argument was that,
even if significant others’ influence and educational aspirations have causal effects on

27Another widely read example of the time is the earlier mechanistic elaboration in the research of
Kendall and Wolf, contributed by Kendall to Hyman (1955:324–27).
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educational attainment, they are both grounded in part in sources outside of parental
status and mental ability (a point the authors of the Wisconsin model recognized).
Thus, although significant others’ influence and educational aspirations may be helpful
to some extent in offering an interpretation of some of the causal process that generates
intergenerational correlations of educational attainment, these intervening variables do
not qualify as an exhaustive and isolated mechanism that fully accounts for the effects
of parental status on offsprings’ status.

In this regard, the Blau and Duncan model can be regarded as a mechanism sketch
for the status attainment process, and the Wisconsin model can then be regarded as
a mechanism-based attempt to deepen its implied explanation. The Wisconsin model
was therefore an important step forward, but it was not conclusive and did not settle
all further research.

More than four decades later, it is now clear that the Wisconsin model itself is a
mechanism sketch. The research community of inequality scholars in sociology seems
to have concluded that its pathways have not bottomed out, and much research con-
tinues on the processes that generate educational aspirations (as well as whether or not
the relationship between aspirations and attainment is sufficiently explanatory to be
useful). Moreover, some scholars (e.g., Goldthorpe 2007) have produced entirely differ-
ent mechanism sketches for the relationship between parental status and educational
attainment. The future of this research tradition is clearly careful empirical analysis
that can adjudicate between these rival mechanism sketches, which will be decisive
only when alternative mechanism sketches are pushed down to lower-level entities on
which critical tests can then be performed.

10.5 Conclusions

Pearl’s front-door strategy for the identification of a causal effect is a powerful and
illuminating perspective on the explanatory power of mechanisms. It clearly shows
that the identification of a causal effect by a mechanism requires that the mechanism
be exhaustive and isolated and that its variables be observed. For such a mechanism
to count as a sufficiently deep explanation, its causal pathways must be finely enough
articulated that it meets whatever standard of bottoming out is maintained in the
relevant field of study. If such a standard is not reached, then the causal effect is
identified even though it is not accompanied by a sufficiently deep explanation. Instead,
the identifying causal pathways represent a mechanism sketch that demands further
analysis.

Considering this chapter and the strategies for causal effect estimation from prior
chapters, we have come back full circle to our initial presentation of causal modeling
options in Chapter 1. We noted there, with reference to Figure 1.3, that a causal effect
that is identified by both the back-door criterion and an IV is best explained when it is
also identified by an exhaustive and isolated mechanism. This is the highest standard
for an explanatory causal analysis, at least until a field decides that a crucial linkage
within a mechanism must then be opened up and subjected to its own analysis.

In the next chapter, we turn in a different direction to consider the extent to which
over-time data on an outcome variable can be used to identify and estimate a causal
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effect. One often hears presentations in which scholars remark, “I cannot get at causal-
ity because I do not have longitudinal data.” We will argue in the next chapter that
longitudinal data, although very helpful in many cases, are not the panacea that such
statements seem to imply. Moreover, we will show that some long-standing techniques
that are thought to reveal causal effects are strongly dependent on assumptions that
are often entirely inappropriate and sometimes completely unrecognized.



Chapter 11

Repeated Observations
and the Estimation of
Causal Effects

As discussed in previous chapters, the fundamental challenge of causal inference is that
an individual cannot be simultaneously observed in both the treatment and control
states. In some situations, however, it is possible to observe the same individual or unit
of observation in the treatment and control states at different points in time. If the
potential outcomes do not evolve in time for reasons other than the treatment, then the
causal effect of a treatment can be estimated as the difference between an individual’s
observed outcome in the control state at time 1 and the same individual’s observed
outcome in the treatment state at time 2. The assumption that potential outcomes
are stable in time (and thus age for individuals) is often heroic. If, however, potential
outcomes evolve in a predictable way, then it may be possible to use the longitudinal
structure of the data to predict the counterfactual outcomes of each individual.

We begin our discussion with the interrupted time series (ITS) design, which we
introduced already with the example of the year of the fire horse in Section 2.8.1. The
ITS design is the simplest case where the goal is to determine the degree to which
a treatment shifts the underlying trajectory of an outcome. It is simple because the
analysis is based only on data for a single individual or unit of analysis observed at
multiple time points. We also consider the regression discontinuity design. Although
not a case in which we have repeated observations on a single individual or unit, the
structure of the regression discontinuity (RD) design is sufficiently similar to that of
the ITS that it is useful to present it here as well. For the RD design, we also consider
the case of fuzzy assignment, which amounts to using instrumental variable (IV) meth-
ods to correct for possible imprecision in the treatment assignment criterion.

We then transition to a full consideration of panel data: multiple observations over
time on multiple individuals or units. We first examine the adequacy of traditional
two-period adjustment strategies, building on our brief introduction to these models
in Section 8.2, where we demonstrated how little insight can be gained from additional

354
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posttreatment data. We show in this chapter that such methods, even when used with
pretreatment data, are inadequate for making causal inferences unless one is willing to
make strong and usually untestable assumptions about how the outcome evolves over
time across individuals.

We then consider a more comprehensive model-based approach. The key require-
ments of this approach are assumptions about the evolutionary dynamics of the out-
come and how selection into the treatment depends on these dynamics. This type of
strategy typically requires data from multiple pretreatment time periods. With data
over a sufficient number of time periods, it is possible to test the appropriateness of
different models.

Although for the main body of this chapter we will assume that the time period
at which the treatment occurs is fixed and has no dynamic structure, in an appendix
to this chapter we will consider scenarios in which the treatment can be repeated and
the specific timing of each treatment instantiation is endogenous. These scenarios are
considerably more complex because a treatment indicator must be modeled for every
time period, recognizing that selection of the treatment in any single time period is
not only a function of individual characteristics but also of previous decisions and
expectations of future decisions.

11.1 Interrupted Time Series Models

To estimate the treatment effect for a study with an ITS design, a time series model
is typically offered:

Yt = f(t)+Dtb+ et, (11.1)

where Yt is some function in time (which is represented by f(t) on the right-hand
side), Dt is a dummy variable indicating whether the treatment is in effect in time
period t, and et is time-varying noise. The basic strategy of an ITS analysis is to use
the observed trajectory of Yt prior to the treatment to forecast the future trajectory
of Yt in the absence of the treatment (see the introductions in Marcantonio and Cook
1994, McDowall, McCleary, Meidinger, and Hay 1980, and Shadish et al. 2001).

Consider, as in our prior example in Section 2.8.1 on the year of the fire horse,
how potential outcome notation can be used to understand the ITS design. For setup,
suppose that we have discrete intervals of time t that increase from 1 to T . The outcome
variable Yt in Equation (11.1) then has observed values {y1,y2,y3, ...,yT }. The two-
state causal variable, Dt, is equal to 1 if the treatment is in place during a time period
t and is equal to 0 otherwise. For the ITS design, it is typically assumed that once the
treatment is introduced in time period t∗, its effect persists through the end of the
observation window, T .

Analogous to (but a bit simpler than) our general setup in Section 2.8.1, the ITS
observed data are defined in terms of potential outcome variables as



356 Chapter 11. Repeated Observations and the Estimation of Causal Effects

1. Before the treatment is introduced (for t < t∗):1

Dt =0

Yt = Y 0
t

2. After the treatment is in place (from t∗ through T ):

Dt =1

Yt = Y 1
t

Y 0
t exists but is counterfactual.

The causal effect of the treatment is then

δt = Y 1
t −Y 0

t (11.2)

for time periods t∗ through T . By the definition of the potential outcomes, Equation
(11.2) is equal to

δt = Yt−Y 0
t , (11.3)

again for time periods t∗ through T .
The crucial identifying assumption for the ITS design is that the observed values of

yt before t
∗ can be used to specify f(t) for all time periods, including time periods from

t∗ to T .2 Equivalently, the primary weakness of the ITS design is that the evolution of
Yt prior to the introduction of the treatment may not be a sufficiently good predictor
of how Yt would evolve in the absence of the treatment. In other words, even though
the pretreatment evolution of Yt is by definition a perfect reflection of the evolution
of Y 0

t before t∗, it may be unreasonable to extrapolate to posttreatment time periods
in order to estimate treatment effects defined by Equation (11.3).

Consider the trajectory of Yt in the hypothetical example depicted in Figure 11.1.
The solid line represents the observed data on Yt, and the time of the introduction
of the treatment is indicated on the horizontal axis, which we defined above as t∗.
The true counterfactual evolution of Y 0

t in the absence of treatment is represented by
the dashed line. Clearly, this counterfactual trajectory would be poorly predicted by a
straightforward linear extrapolation from the observed data before the treatment. In
fact, in this case, assuming that the counterfactual trajectory followed such a linear
trajectory would result in substantial overestimation of the treatment effect in all
posttreatment time periods.

For estimation, no issues beyond those relevant to a standard time series analysis
arise for an ITS model. The key statistical concern is that the errors et are likely to be
correlated over time. If we use least squares regression, the parameter estimates will
be consistent, but the standard errors and any hypothesis tests based on them will be
incorrect. This problem can be especially acute when the number of data points in a

1Again, as in Section 2.8.1, counterfactual values for Y 1
t exist in pretreatment time periods, but

these values are not typically considered in an ITS analysis.
2A secondary assumption, which we do not emphasize, is the common position that the parameter

b in Equation (11.1) is a structural constant that does not vary with t. This assumption can be
relaxed, allowing b to vary from t∗ through T as some function in t.
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Time

Yt

t*

Observed

True counterfactual

Assumed counterfactual

Figure 11.1 Trajectories of the observed outcome as well as the true and assumed
counterfactual outcomes for a faulty ITS model.

time series is small. We will not address any of the issues involved in estimating time
series models, as there are many books that cover the topic in depth (e.g., Hamilton
1994; Hendry 1995).

Instead, we will illustrate the basic thinking behind an ITS analysis with an exam-
ple from Braga, Kennedy, Waring, and Piehl (2001), which is presented in Figure 11.2.
Braga and his colleagues were interested in evaluating whether an innovative program,
“Operation Ceasefire,” initiated by the Boston Police Department in June 1996, pre-
vented youth homicides. Figure 11.2 presents the trend in the monthly youth homicide
rate in Boston between June 1991 and May 1998.

Operation Ceasefire involved meetings with gang-involved youth who were engaged
in gang conflict. Gang members were offered educational, employment, and other social
services if they committed to refraining from gang-related deviance. At the same time,
the police made it clear that they would use every legal means available to see that
those who continued to be involved in violent behavior were sent to prison (see Kennedy
1997 for a more detailed description).

The vertical line in Figure 11.2 marks the date at which Operation Ceasefire was
initiated. The two horizontal lines indicate, respectively, the mean level of youth homi-
cides before and after June 1996. As can be seen in Figure 11.2, there appears to be
an abrupt and large drop in the level of youth homicide in Boston immediately after
the implementation of Operation Ceasefire.

Braga and his colleagues carried out a more formal analysis using standard time
series techniques (but because their dependent variable is a count variable – number
of youth homicides in a month – they used a Poisson regression model). In their first
model, they adjusted only for seasonal effects by using dummy variables for month and
a linear term for time. Inclusion of the time trend is particularly important. Although
it is not clear in Figure 11.2, there is a slight downward time trend in the homicide
rate in the pretreatment time period, which it seems reasonable to assume would have
continued even if Operation Ceasefire had not been implemented. For this model,
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Figure 11.2 Monthly youth homicide rates in Boston, 1991–1999.
Source: Braga et al. (2001), figure 2.

Braga and his colleagues reported a large negative and statistically significant effect
of Operation Ceasefire on youth homicides.

In general, a researcher would usually prefer a situation in which the underlying
time trend and the treatment effect are in the opposite directions. In such a case,
disentangling the treatment effect and the time trend is far easier, strengthening any
warrant for a causal inference. However, for this example, the underlying time trend
and the expected program impact move in the same direction. Thus, a researcher
should be concerned about the ability to accurately estimate the size of the program
effect in the presence of the underlying trend. Recall that Figure 11.1 illustrated a
similar but more problematic situation. Not only does the time trend move in the
same direction as the effect in that hypothetical example, but there is a change in the
time trend in the same direction as the treatment effect, making accurate estimation
of the effect impossible with an ITS model.

The research of Braga et al. (2001) represents a very high-quality example of how
to use an ITS design to investigate a treatment effect. They offered four types of sup-
plemental analysis, each of which is broadly applicable to all ITS designs, and each of
which can be used to strengthen the warrant for a causal claim. First, they considered
additional dependent variables that Operation Ceasefire should have affected. Specif-
ically, they analyzed whether the program affected the number of gun assaults and
reports of gun shots fired. For these dependent variables, they found an even larger
program impact. Their analysis would have been strengthened further if they also had
considered dependent variables that Operation Ceasefire should not have affected as
much (e.g., number of robberies and incidents of domestic violence). Here, evidence of
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an impact would suggest that factors other than the program itself at least partially
accounted for the observed drop in youth homicides.

Second, they focused their hypothesis and considered it within meaningful sub-
groups. In particular, they analyzed the level of gun assaults in police district B-2, the
district where gang violence was the highest in the early 1990s and Operation Ceasefire
was most active. As they predicted, the program effect was larger in district B-2 than
in the city as a whole. If there had been districts with high levels of youth violence
where Operation Ceasefire was inactive, it would have been useful to have tested for a
program impact. If evidence were found that the program had an impact in these dis-
tricts, it would suggest that something other than the program was responsible for the
observed decline in youth homicides, gun assaults, and gun shots fired. Unfortunately,
at least for the analyst, almost all youth violence in Boston occurred in three adjacent
police districts, all districts in which Operation Ceasefire was active. As a result, such
an analysis was not possible.

Third, they included additional adjustment variables in their time series models in
order to capture the underlying time trend as well as the year-by-year variability before
and after the introduction of the treatment. These time-varying covariates included
unemployment rates, the size of the youth population, the robbery rate, the homicide
rate for older victims, and the drug-related arrest rate. The advisability of adjusting
for the latter three variables is questionable, given that these variables are also likely
to have been affected by Operation Ceasefire to at least some degree. Nonetheless,
conditioning on these additional variables produced little change in their estimate of
the program impact on any of their dependent variables.

Finally, they compared the time trend in homicides in Boston with the time trend in
41 other cities where no targeted interventions for homicide rates were implemented.
Their goal was to determine whether other cities experienced declines in rates as
abrupt as the one observed in Boston. The explanation of Braga and his colleagues
for the abruptness of the decline in Boston – in fact, a decline that emerged in only
two months – was that word got out on the street quickly that the police meant
business. For many of the other cities considered, homicide rates fell throughout the
1990s. With the exception of New York City, the declines were substantially smaller
than in Boston. Braga and his colleagues then showed that abrupt declines did occur
in five other cities, but the exact timing of these abrupt declines was different than
in Boston. This evidence raises perhaps the greatest doubt about the assertion that
Operation Ceasefire reduced youth homicide rates in Boston because there is no clear
explanation for why these abrupt declines occurred elsewhere either. And, because it
may be implausible that Operation Ceasefire’s effect could have fully taken hold in as
short as two months, the possibility exists that the decline in homicide rates and the
introduction of Operation Ceasefire were coincidental.

If Braga and his colleagues had carried out their evaluation a number of years later,
they could have implemented one additional strategy. In 1999, Operation Ceasefire was
cut back and then terminated. If they had performed their analysis for at least a few
years beyond 1999, they could have examined whether the termination of the program
resulted in an increase in homicide rates. In fact, after 1999, the youth homicide rate
did increase such that, by the summer of 2006, it was at nearly the same level as in the
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early 1990s (see Braga, Hureau, and Winship 2008). The subsequent increase provides
additional evidence for the impact of Operation Ceasefire while it was in place.

This example nicely illustrates the variety of general strategies that are often avail-
able to strengthen an ITS analysis:

1. Assess the effect of the cause on multiple outcomes that should be affected by
the cause.

2. Assess the effect of the cause on outcomes that should not be affected by the
cause.

3. Assess the effect of the cause within subgroups across which the causal effect
should vary in predictable ways.

4. Adjust for trends in other variables that may affect or be related to the underlying
time series of interest.

5. Compare the focal time trend with the time trend for other units or populations
to determine whether breaks in the time series are likely to occur in the absence
of the cause.

6. Assess the impact of the termination of the cause in addition to its initiation.

These strategies are often available for other types of analysis, and they are also widely
applicable to all forms of data analysis that attempt to infer causation from over-time
relationships. Unless one has a case as dramatic as the year of the fire horse, these
strategies are essential for building support for a causal inference.

11.2 Regression Discontinuity Designs

A regression discontinuity (RD) design is very similar to an ITS design, except that
the treatment assignment pattern is a function of the values of a variable rather than
the passage of time. An RD design is especially appropriate in situations where treat-
ment assignment is sharply discontinuous in the values of a variable, and it has been
applied to a variety of problems: the effect of student scholarships on career aspirations
(Thistlewaite and Campbell 1960), the effect of unemployment benefits for former pris-
oners on recidivism (Berk and Rauma 1983), the effect of financial aid on attendance
at a particular college (Van der Klaauw 2002), the effect of class size on student test
scores (Angrist and Lavy 1999), and the willingness of parents to pay for better schools
(Black 1999).

Campbell was the first to propose the RD design (see Shadish et al. 2001; Trochim
1984), but it has evolved considerably since then (see Bloom 2012; Hahn, Todd, and
Van der Klaauw 2001; Imbens and Lemieux 2008). It is most easily understood with an
example. Here we consider the example of Mark and Mellor (1991), which is discussed
also by Shadish et al. (2001). Mark and Mellor were interested in examining the effect
that an event of high personal relevance may have on hindsight bias – the claim that an
event was foreseeable after it occurred. Selecting all members of a large manufacturing
union, they examined the specific effect of being laid off from work on retrospective
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Figure 11.3 Foreseeability of a layoff as an example of an RD design.
Source: Mark and Mellor (1991), figure 1.

foresight claims (measured as agreement with statements such as “I saw it coming
all the way”). The study took place just after workers with fewer than 20 years of
seniority were laid off. Figure 11.3 shows the relationships between retrospective claims
of foresight and both layoff status and seniority.

As shown in Figure 11.3, there is an abrupt discontinuity in the relationship
between retrospective foresight claims and seniority at the point in seniority where
individuals were laid off. All workers, regardless of whether they were laid off, were
asked whether they had expected the layoffs that occurred among union members.
Those who were not laid off (i.e., individuals with 20 or more years of seniority) were
on average more likely to claim that the layoffs in the union were expected, even
though they were not themselves laid off. At the same time, those who were laid off
were less likely to claim that the layoffs were expected. Notice also that the associa-
tion between seniority and retrospective claims of foresight is in the opposite direction
of the estimated treatment effect: Individuals with more seniority were less likely to
claim that the layoffs were expected, even among those who were subsequently laid off.
Because the layoff effect and the underlying seniority association are in the opposite
directions, Mark and Mellor had strong evidence that being laid off decreased the like-
lihood that an individual who was laid off would claim that the layoffs were expected.
This finding strengthened their overall interpretation that the personal relevance of a
negative event decreases the likelihood that an individual will claim that the event was
expected. They concluded that this pattern reflects a type of self-protection, according
to which individuals seek to avoid blaming themselves for not having been sufficiently
prepared to mitigate the negative consequences of an event.
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Figure 11.4 An example of a fuzzy RD design.

In general, an RD model can be estimated in the same way as an ITS model because
most of the same issues apply. One key and helpful difference is that in most RD designs
individuals are sampled independently. As a result, the problem of correlated errors in
an ITS design is absent in an RD design.

A generalization of the RD design, known as the fuzzy RD design, has received
recent attention.3 Here, the treatment variable is a function of an assignment process in
which there is error that is associated with Y . Consider the graph in Figure 11.4, where
f(Z) represents the intended assignment rule to D as a function in Z. However, in this
case the assignment is imperfect in the specific sense that the other determinants of
assignment, UD, cannot be assumed to be independent of the unobserved determinants
of Y , UY . Instead, UD and UY are assumed to be determined by common causes
represented by the dashed, bidirected edge in UD ������UY .

For fuzzy RD design, the assignment rule is not deterministic because D is a func-
tion of both f(Z) and UD, and, furthermore, because UD and UY are determined by
common causes. For a fuzzy RD analysis, the investigator conditions on Z so that f(Z)
can then be used as an instrument for D (because it is mean-independent of both UD

and UY and affects Y only through D).4 Conditioning on Z is necessary to eliminate
the back-door path f(Z)← Z→ Y in order to establish f(Z) as a valid IV; see our
prior discussion of conditional IVs in relation to Figure 9.2(b). A fuzzy RD analysis
is possible only if f(Z) is some nonlinear function of Z, so that f(Z) and Z are not
linearly dependent.

Angrist and Lavy (1999) use the fuzzy RD design to study the effects of class size
on student test performance in Israel. In the Israeli public school system during the
period of their study, an additional class was added to a grade within a school when
the existing classes crossed a threshold size of 40 students in response to an increase in
the overall school enrollment. This policy created a discontinuity in the distribution of
class sizes, which allowed Angrist and Lavy to create a nonlinear function of enrollment
that could then be used as an instrument for class size. They found that class size has

3Another type of generalization is toward the consideration of multiple assignment variables (see
Wong, Steiner, and Cook 2013).

4The situation is directly analogous to an experiment with noncompliance in which noncompliance
is thought to be nonrandom. As Imbens and Rubin (1997) show, one can deal with noncompliance
by treating the intention-to-treat indicator as an instrument, Z, for the actual treatment, D.
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a substantial effect on test performance for fourth and fifth graders, but not for third
graders.

As shown by these examples, RD designs are simple and can be convincing. But
the same weaknesses of ITS designs are present. Counterfactual values must be extrap-
olated from observed data below and above the value that triggers the introduction
of the treatment. If the assumptions built into the chosen method of extrapolation
are unreasonable, then causal effect estimates will be incorrect. Caughey and Sekhon
(2011) present a critique of RD analyses where adoption of the assumptions requires
substantial additional conditioning, precisely of the sort that RD designs are meant to
avoid. In other cases, where the assumptions are reasonable, RD designs can be very
powerful (see Berk, Barnes, Ahlman, and Kurtz 2010; Shadish, Galindo, Wong et al.
2011).

11.3 Panel Data

A severe limitation of time series data is that we have data on only a single unit over
time. Because we do not observe the treated unit of analysis in the control state after
the treatment is introduced, the only way to estimate the counterfactual outcome is
to assume that the future can be predicted accurately from the past. This assumption
is generally untestable.

Panel data, where multiple individuals or units are observed over time, may solve
this problem. Assuming that each individual’s time series is relatively long, separate
ITS analyses could be conducted for each individual and then pooled to form an average
causal effect estimate. Moreover, because individuals receive the treatment at different
times or do not receive the treatment at all, it is possible to observe how Y 0

t changes
over time for some individuals after others have received the treatment. To the degree
that Y 0

t evolves similarly over time for individuals in the treatment and control groups,
it may be possible to make reasonable predictions about the counterfactual values of
Y 0
t for individuals in the treatment group after they are exposed to the treatment.
For the remainder of this chapter, we will adopt the panel data notation introduced

in Section 2.8.2 to differentiate between quantities that vary only over individuals
(subscripted by i), quantities that vary only over time (subscripted by t), and quantities
that vary over individuals and time (subscripted by it). In most cases, the subscripting
for i is redundant and is utilized only for additional clarity. For example, in prior
chapters, we have represented the average treatment effect (ATE) as E[δ], recognizing
that the argument of the expectation, δ, can be regarded as a random variable that
takes on values that vary across individuals, which we specified was possible when
defining the individual-level causal effect as δi= y1i −y0i . Our notation in the remainder
of this chapter requires that we write the same time-constant ATE as E[δi], because
for a time-varying ATE, we would instead need to subscript for t as well, writing E[δit].

As explained in Section 2.8.2, we will distinguish between two different treatment
indicator variables: Dit is a time-varying dummy variable that indicates whether indi-
vidual i receives the treatment in time period t, and D∗

i is a time-constant dummy
variable that indicates whether individual i ever receives the treatment at any point
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in the time span under study. Dit is best thought of as a treatment exposure indi-
cator variable, and D∗

i is best thought of as a treatment group indicator variable.
Observed and potential outcomes are related to each other by time-specific relations,
Yit = DitY

1
it + (1 −Dit)Y

0
it , where Y 1

it , Y 0
it , and Dit all vary over i and t. Finally,

individual-level treatment effects vary in time, such that δit=y1it−y0it for all t. As noted
above, the ATE is now likewise time-specific and can be written as E[δit]=E[Y 1

it−Y 0
it ].

The average treatment effect for the treated (ATT) and the average treatment effect
for the controls (ATC), and any other conditional average treatment effect one might
be interested in estimating, are defined analogously.

11.3.1 Traditional Adjustment Strategies

The most common situation in panel data analysis consists of nonequivalent treatment
and control groups and two periods of data, where the first wave of data is from
pretreatment time period t− 1 and the second wave of data is from posttreatment
time period t. Such two-period, pretreatment-posttreatment panel data are sometimes
thought to be a panacea for not having a randomized experiment. Typically, it is
assumed that changes over time in the control group can be used to adjust the changes
observed for the treatment group, with the net change then representing a consistent
and unbiased estimate of the causal effect of the treatment.

Unfortunately, the situation is far more complicated. There are an infinite number
of ways to adjust for differences in gains between the treatment and control groups,
and alternative methods of adjustment give estimates that sometimes differ dramati-
cally. Specifically, as we will show in this section, by choosing a particular adjustment
technique when analyzing two-period, pretreatment-posttreatment data, any estimate
that a researcher may want can be obtained.

Consider the two most common methods, usually referred to as change score and
analysis of covariance models. The change score model is often referred to as a panel
data variant of a difference-in-difference model, especially in the economics literature;
see Imbens and Wooldridge (2009). These two models are equivalent to estimating the
following two equations with least squares regression:

Change score: Yit−Yit−1 = a+D∗
i c+ ei, (11.4)

Analysis of covariance: Yit = a+Yit−1b+D∗
i c+ ei. (11.5)

These two equations provide different means of adjustment for Yit−1. In the change
score model, one adjusts Yit by subtracting out Yit−1. For the analysis of covariance
model, one adjusts Yit by regressing it on Yit−1.

5 Recall that we introduced the analysis
of covariance model already in Panel Data Demonstration 1 (see page 273), where we
considered its utility when analyzing posttreatment-only data.

5Also, it bears mentioning that when we present alternative equations, such as Equations (11.4) and
(11.5) in this chapter, we give generic notation – such as a, b, and c – to regression parameters, such
as intercepts and treatment effect estimates. We do the same, in general, for regression residuals, and
so on. We do not mean to imply that such quantities are equal across equations, but it is cumbersome
to introduce distinct notation for each coefficient across equations to make sure that we never imply
equality by reusing generic characters such as a, b, c, and e.
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Consider now an example that shows how these two models can yield different
results with pretreatment-posttreatment data. After decades of studying the environ-
mental and genetic determinants of intelligence, considerable controversy remains over
their relative effects on lifecourse outcomes. As discussed in Devlin, Fienberg, Resnick,
and Roeder (1997) and other similar collections, these debates resurfaced after the
publication of The Bell Curve: Intelligence and Class Structure in American Life by
Herrnstein and Murray in 1994. Even though existing reviews of the literature empha-
sized the malleability of IQ (see Ceci 1991), Herrnstein and Murray concluded in their
widely read book:

Taken together, the story of attempts to raise intelligence is one of high
hopes, flamboyant claims, and disappointing results. For the foreseeable
future, the problems of low cognitive ability are not going to be solved by
outside interventions to make children smarter. (Herrnstein and Murray
1994:389)

As discussed in Winship and Korenman (1997), the weight of evidence supports the
claim that education determines measured intelligence to some degree, even though
debate remains on how best to measure intelligence.

Consider now a very specific question associated with this controversy: What is the
causal effect of a twelfth year of education on measured IQ? The following results, based
on data from the National Longitudinal Survey of Youth, show how different the results
from change score and analysis of covariance models can be (see Winship and Winship
2013 for additional details). For both models, IQ is measured before the twelfth grade
for all individuals who meet various analysis-sample criteria (N = 1,354). IQ is then
measured after high school completion, and high school completion is designated the
treatment variable. A change score model yields a treatment effect estimate of 1.318
(with a standard error of .241) and an analysis of covariance model yields a treatment
effect estimate of 2.323 (with a standard error of .217).6 These estimates are quite
different: The analysis of covariance model suggests that the effect of a twelfth year
of schooling on IQ is 76 percent larger than that of the change score model (i.e.,
[2.323− 1.318]/1.318). Which estimate should one use? Before we discuss how (and
if) one can choose between these two types of traditional adjustment, consider a more
general, but still simple, hypothetical example.

Panel Data Demonstration 2

For this demonstration, we will again consider the Catholic school effect analyzed by
Coleman and his colleagues. Departing from the setup of Panel Data Demonstration
1 (see page 273), in this demonstration we will consider how alternative estimators
perform assuming a world in which (1) no Catholic elementary schools or middle

6For completeness, we report additional features of these models here. Each was estimated with
three other covariates: age, year of the test, and a standardized measure of socioeconomic status.
The coefficients on these three variables were −.18, −.76, and −.43 for the change score model and
−.97, −.50, and 2.05 for the analysis of covariance model. The R2 was .06 for the change score model
and .68 for the analysis of covariance model, in which the lag coefficient on IQ in the twelfth grade
was .62.
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schools exist, (2) all students consider entering either public or Catholic high schools
after the end of the eighth grade, and (3) a pretreatment achievement test score is
available for the eighth grade. Such a world does not exist, because (1) and (2) are not
true (and, furthermore, Coleman and colleagues were not fortunate enough to have
(3) either). We offer a demonstration assuming such a world for didactic purposes.

Basic Setup. As for Panel Data Demonstration 1, we will consider only linear speci-
fications and, except when otherwise detailed, restrict all causal effects to be constants
or to vary across individuals in completely random ways independent of all else in the
models. This setup gives traditional panel data regression estimators the best chance
of succeeding. Even so, recall that we showed through demonstrations in Chapters
5, 6, and 7 that least squares regression estimators invoke implicit weighting that is
unlikely to effectively deal with the nonrandom individual-level heterogeneity of the
Catholic school effect on achievement. We hold these additional complications aside
in this demonstration in order to focus narrowly on the potential value of traditional
panel data estimators of causal effects.

The potential outcome variables are Y 1
it and Y 0

it , where now t= {8,9,10} for the
three grades that occur during the assumed observation window from the eighth grade
through the tenth grade. Because treatment selection occurs before t = 9, we have
observed data only for one pretreatment time period, and we will assume that Coleman
and his colleagues had the tenth grade data as well (and that no data were collected
in the ninth grade). The treatment group indicator variable, D∗

i , is equal to 1 if the
student enrolls in a Catholic high school and 0 if the student enrolls in a public high
school.

The observed outcome variable, Yit, is defined with reference to the time-specific
treatment exposure indicator variable, Dit. Because no one can be exposed to Catholic
schools in the eighth grade (i.e., we have assumed that Catholic middle schools do not
exist for this demonstration), Di8 = 0 for all students. As a result, Yi8 = Y 0

i8 for all
students, and the eighth grade test score is therefore a pretreatment outcome that we
observe for all students. However, for t= {9,10} the observable outcome is equal to
the relevant potential outcome defined by our usual definition: DitY

1
it +(1−Dit)Y

0
it .

We will assume that those observed to be in Catholic or public schools in the tenth
grade were in the same type of school in the ninth grade as well. Accordingly, for
this demonstration, D∗

i = Di10, and the definition of the observed outcome in the
tenth grade can be written either as Yi10 = Di10Y

1
i10 + (1−Di10)Y

0
i10 or as Yi10 =

D∗
i Y

1
i10+(1−D∗

i )Y
0
i10.

7

Figure 11.5 presents a directed graph for the core features of this demonstration,
which we will elaborate below when introducing alternative patterns of treatment
selection. The graph has the same basic structure as Figure 8.2, but the first achieve-
ment test (now Y8) is a pretreatment outcome, while the second achievement test (now
Y10) is a posttreatment outcome. We are interested in estimating the effect of D on
Y10, as in the research of Coleman and his colleagues. In comparison to Panel Data

7As is typical in this type of analysis, students who switch treatments between the ninth and tenth
grades receive no special consideration because we do not observe their type of school enrollment
in the ninth grade. See the appendix to this chapter, where we introduce the literature on dynamic
treatment regimes that attempts to model all combinations of the effects of time-varying treatments.
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Figure 11.5 A directed graph for the effect of Catholic schooling on tenth grade
achievement when a measure of eighth grade achievement is also available.

Demonstration 1, we have more reason to be optimistic. We can compare posttreat-
ment outcomes for the Catholic school students to their pretreatment outcomes when
in public schools and also to the outcomes of students enrolled in public schools in the
posttreatment time period.

For simplicity, our other variables O, X , and U are specified as indices of many
underlying variables, which we again scale as normally distributed composite variables.
X is a composite determinant of achievement test scores in all years that has no direct
effect on whether students select Catholic schooling. U is a composite variable of
unobserved factors that determine both Catholic school attendance and achievement
tests in all years. O is a composite variable of ultimate background factors that has
effects on U and X , as well as direct effects on Catholic school attendance and test
scores in all years. To give these composite variables distributions that are familiar and
that align with their counterparts for Panel Data Demonstration 1, O is a standard
normal random variable with mean of 0 and variance of 1. Having defined O as an
exogenous root variable, we then set X =O+ eX and U =O+ eU , where eX and eU
are independent standard normal random variables with mean of 0 and variance of
1. Finally, E is a normal random variable with mean of 0 and variance of 1 that is a
common cause of test scores in all years and is independent of all else in the graph.

Scenarios for Analysis. We will consider eight separate scenarios, defined as a
cross-classification of two patterns of between-group differences in the trajectories of
outcomes (parallel or divergent trajectories) and four treatment selection patterns
(no-self-selection, self-selection on the individual-specific treatment effect, positive
selection on the pretreatment outcome, and negative selection on the pretreatment
outcome). For the four parallel-trajectory scenarios, Y 0

it is defined as

Y 0
i8 =98+Oi+Ui+Xi+Ei+υ0

i8, (11.6)

Y 0
i9 =99+Oi+Ui+Xi+Ei+υ0

i9,

Y 0
i10 =100+Oi+Ui+Xi+Ei+υ0

i10,

where the υ0
it terms are values from independent normal random variables with mean

of 0 and variance of 10. On average, Y 0
it follows a linear time path as determined by the
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intercept values of 98, 99, and 100.8 However, the levels of these potential outcomes
for individuals are set by the time-invariant values of Oi, Ui, Xi, and Ei, as well as by
time-specific shocks to their outcomes, υ0

it.
To specify a treatment effect that increases in time, Y 1

it is defined as

Y 1
i9 = Y 0

i9+ δ′i+ δ′′i , (11.7)

Y 1
i10 = Y 0

i10+(1+ δ′i)+ δ′′i ,

where δ′i is a baseline individual-level treatment effect, specified as values for each
individual from a normal random variable with mean of 9 and variance of 1. The
values of δ′′i are a separate source of individual-level variation in the treatment effect,
specified as values for each individual from a normal random variable with mean of 0
and variance of 1. In the no-self-selection scenarios, δ′′i is additional random individual-
level variation. In the scenarios that specify self-selection on the treatment effect, δ′′i
will be an input into treatment selection decisions, as explained below.9

For the four divergent-trajectory scenarios, we specify group-specific intercepts for
Equation (11.6) so that the trajectory of E[Y 0

it ] differs across the treatment and control
groups after the onset of treatment. For the treatment group (D∗

i =1), the intercepts
are specified as 98 for t=8 and 99 for t=9, but then 100.5 for t=10. For the control
group (D∗

i = 0), the intercepts are specified also as 98 for t= 8 and 99 for t= 9, but
then only 99.5 for t= 10. Taken together, by the end of the observation window in
the tenth grade, the treatment group’s value for E[Y 0

i10] is higher by 1 than for the
control group (i.e., 100.5− 99.5= 1). For this “fan spread” pattern, in the absence of
treatment the test scores of those in the treatment group increase faster after the onset
of treatment than the test scores of those in the control. In other words, students who
select into Catholic schools would have had a boost in achievement even if they had
remained in public schools, net of all other determinants of Y 0

it in Equation (11.6).10

We consider four types of treatment selection. For the first, treatment selection is
on fixed characteristics of individuals unrelated in any way to the outcomes before
or after the treatment. Accordingly, the probability of Catholic school enrollment is
specified as a logistic distribution

Pr[D∗
i =1|Oi,Ui] =

exp(−3.8+Oi+Ui)

1+exp(−3.8+Oi+Ui)
, (11.8)

8To mimic real data, the intercept values such as 98, 99, and 100 in this demonstration will
always be expected values of individual-specific intercepts, where the variation in the intercepts is
independent of all else on the right-hand sides of the relevant equations. We suppress this fact in the
main text for simplicity of exposition. To be precise, we set up individual-specific time trends in y0it by
specifying individual-specific multipliers (from uniform distributions with strictly positive probability
and mean of 1), which we then apply to the common time trends that define the expectations E[Y 0

it],
sometimes differentially with respect to D∗

i .
9Y 1

i8 is counterfactual for all individuals, and we exclude it from Equation (11.7) because we have
assumed for this demonstration that Catholic middle schools do not exist. Explicitly allowing for it
would suggest otherwise.

10We take no position on why fan spread occurs, although in this demonstration it is equivalent to
assuming that another variable, Q, exists that generates this pattern by structuring Y 0

it in interaction
with D∗

i after the onset of treatment. In many situations in education research, it is assumed that
fan spread exists because learning is a cumulative process. We consider this type of thinking later in
this chapter, when considering dynamic scenarios where Yit is structured directly by its prior values.
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where Oi and Ui are as defined above. As in prior demonstrations, the probabilities
defined by Equation (11.8) are then set as the parameters for draws from a binomial
distribution, yielding the indicator variable D∗

i for Catholic schooling defined above.
For the second type of treatment selection, we introduce self-selection on the

individual-specific treatment effect, assuming that students and their parents are
able to forecast and then choose based on accurate beliefs about how much they
would benefit from attending a Catholic school. The treatment selection probability is
specified as

Pr[D∗
i =1|Oi,Ui] =

exp(−7.3+Oi+Ui+5δ′′i )
1+exp(−7.3+Oi+Ui+5δ′′i )

, (11.9)

where δ′′i is as defined above. For the directed graph in Figure 11.5, this type of self-
selection is equivalent to adding an additional bidirected edge, D ������Y10.

11

For the final two types of treatment selection, we specify the treatment selection
probability as

Pr[D∗
i =1|Oi,Ui] =

exp(−3.8+Oi+Ui+k(Yi8−E[Yi8]))

1+exp(−3.8+Oi+Ui+k(Yi8−E[Yi8]))
, (11.10)

where (Yi8−E[Yi8]) is the individual deviation from the expectation of the pretreat-
ment test. These individual-level values are scaled by k, which is set to either .05 or
−.05. For the positive value of k, students and their parents are selecting the treatment
assuming that those with higher pretreatment test scores will be the most likely to
benefit from Catholic schooling, perhaps because they believe that Catholic schools
have a more challenging curriculum from which only high achievers will benefit. For the
negative value of k, they are assuming the opposite, perhaps because they believe that
Catholic schools can compensate for lower achievement in the past. For the directed
graph in Figure 11.5, this type of selection is equivalent to adding an additional direct
causal effect, Y8→D.

Results from Traditional Panel Data Estimators. Consider first the four parallel-
trajectory scenarios in the first panel of Table 11.1. For the first column, selection pat-
terns are simple and based only on the fixed characteristics of individuals, as specified
above in Equation (11.8). The true ATE is 10.00, which is equal to the ATT and ATC
by construction.

For this scenario, the naive estimator yields 14.75 (on average across repeated
samples), and this value is upwardly biased because O and U are positively associated
with both D and Y10. We could use a cross-sectional estimator to block the back-
door paths through the observed characteristics of individuals, O, which are shown
in Figure 11.5. Unfortunately, the unobserved variable U generates a back-door path
D←U→Y10 that remains unblocked after conditioning on O.

Can traditional panel data estimators solve this problem? The change score esti-
mator yields a value of 10.00, which is equal to the true ATE, ATT, and ATC. In

11Or, as with the charter school example in Section 8.3, we could add a fully elaborated back-door
path using latent classes and attempting to capture the inputs into the self-selection decision itself
(see Figures 8.5 through 8.7).
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Table 11.1 Change Score and Analysis of Covariance Estimates of the
Catholic School Effect in the Tenth Grade

Setup conditions:

Self-selection on the causal effect No Yes No No

Positive self-selection on the pretest No No Yes No

Negative self-selection on the pretest No No No Yes

Parallel Trajectories

True average treatment effects:

ATE 10.00 10.00 10.00 10.00

ATT 10.00 11.51 10.00 10.00

ATC 10.00 9.83 10.00 10.00

Estimated coefficients for D∗:
Naive estimator:

Regression of Y10 on D∗ 14.75 13.86 15.92 13.25

Change score estimator:

Regression of (Y10−Y8) on D∗ 10.00 11.51 7.96 12.26

Analysis of covariance estimator:

Regression of Y10 on D∗, Y8, O, and X 10.51 11.75 10.49 10.52

Divergent Trajectories

True average treatment effects:

ATE 10.00 10.00 10.00 10.00

ATT 10.00 11.51 10.00 10.00

ATC 10.00 9.83 10.00 10.00

Estimated coefficients for D∗:
Naive estimator:

Regression of Y10 on D∗ 15.75 14.86 16.88 14.30

Change score estimator:

Regression of (Y10−Y8) on D∗ 11.00 12.51 8.92 13.31

Analysis of covariance estimator:

Regression of Y10 on D∗, Y8, O, and X 11.52 12.75 11.50 11.53

contrast, the analysis of covariance estimator instead yields a value of 10.51, which is
upwardly biased for the ATE, ATT, and ATC. The bias is smaller than for the naive
estimator because conditioning on O has removed some of the back-door confound-
ing.12 We know that 10.00 is the correct answer and therefore can favor the estimate
from the change score model. If we did not know the correct answer ahead of time
and/or were uncertain about the correct directed graph for the generation of the data,

12At the same time, it is unclear from these results what the total consequences are of conditioning
further on X and Y8. The latter is a collider that, when conditioned on, induces a back-door association
between D and Y10 by unblocking the path D←U→ Y8←E→ Y10. Notice that conditioning on Y8

would also unblock other back-door paths in the graph, but all of these remain blocked by simultaneous
conditioning on O and X.
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we would have a hard time picking between these two estimates. Before offering an
explanation for this result, it is helpful to consider the next scenario for comparison.

The second column of the first panel presents the same results for the scenario
where treatment selection is on fixed characteristics as well as on the causal effect
itself, as specified above in Equation (11.9). As with past demonstrations, the true
ATT is now greater than both the ATE and the ATC. The naive estimator is again
upwardly biased for the ATE, ATT, and ATC. The analysis of covariance estimator
is also upwardly biased for all three. In contrast, the change score model yields an
estimate of 11.51, which is equal to the ATT, but not to the ATE or to the ATC.

Taken together, the first two columns suggest that the change score estimator yields
values that will on average equal the ATT. When self-selection is absent, the ATT will
equal the ATE and the ATC, and as a result a consistent and unbiased estimate of
the ATT will also be a consistent and unbiased estimate of the ATE and the ATC.

We will explain this result more formally following this demonstration. The core
of the explanation is that the change score model subtracts out the effects of all fixed
characteristics – observed and unobserved – and can then generate a consistent and
unbiased estimate of the ATT in scenarios such as these two. If one is willing to assume
that no self-selection on the causal effect is present, as is the case for the scenario in
the first column, then this estimate of the ATT is also consistent and unbiased for the
ATE and ATC.

These results may suggest that the change score model is most commonly the best
choice for these situations, and one might also be encouraged that even in the presence
of self-selection it can be used to effectively estimate the ATT. The third and fourth
columns were constructed to temper any such enthusiasm. For these two columns,
individuals do not self-select on the treatment effect itself, and thus the ATE, ATT,
and ATC are all equal. However, treatment selection is on the pretreatment outcome,
as specified by Equation (11.10), where individuals choose Catholic schooling either
as a positive or negative function of the eighth grade test score.

For the third and fourth columns of the first panel, the naive estimator is again
upwardly biased for the ATE, ATT, and ATC. More important for our considera-
tion, the change score model now yields values that are either too small or too large,
depending on whether selection is a positive or negative function in the eighth grade
test score. In fact, the estimates yielded by the analysis of covariance model are on
average much closer to the ATE, ATT, and ATC. In these scenarios, the change score
model continues to generate estimates based on average differences between eighth and
tenth grade tests scores within the treatment group, but the average of these differ-
ences is no longer a consistent or unbiased estimate of the ATT. If the distribution of
the individual-level treatment effects does not vary across the treatment and control
groups, the average difference, Yi10−Yi8, within the treatment group will be too small
if those with high values for Yi8 select into Catholic schooling and will be too large if
those with low values of Yi8 select into Catholic schooling. The analysis of covariance
estimator offers a less extreme adjustment for the eighth grade test score and is thus
closer to the true ATE, ATT, and ATC. Nonetheless, the analysis of covariance esti-
mator generates values that do not equal the target parameters, and this suggests that
the adjustment may not be correct, which we will explain below is usually the case (i.e.,
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except in the very rare case that the estimated regression coefficient exactly adjusts
for a regression to the mean effect that is generated by the behavior of individuals).

The second panel of Table 11.1 presents four scenarios for diverging trajectories
of Y 0

it , using the same four patterns of treatment selection. The true ATE, ATT, and
ATC are all the same as for the first panel because the underlying fan spread in the
potential outcomes only applies to the potential outcome in the control state in the
tenth grade, Y 0

i10. The treatment effect continues to be defined by Equation (11.7),
which does not vary across the scenarios for parallel and divergent trajectories. To
focus on this key point, recall from our discussion above that even for this set of
scenarios the trajectories of the potential outcome are the same for the treatment and
control groups from t=8 to t=9 because

E[Y 0
i8|D∗

i =1]−E[Y 0
i8|D∗

i =0]= 98− 98= 0

and

E[Y 0
i9|D∗

i =1]−E[Y 0
i9|D∗

i =0]= 99− 99= 0.

The difference of 1 emerges between t=9 and t=10 because we specified that

E[Y 0
i10|D∗

i =1]−E[Y 0
i10|D∗

i =0]= 100.5− 99.5= 1.

These divergent trajectories are inconsequential for the true ATE, ATT, and ATC
because these target parameters continue to be structured in the same way for both
groups. More specifically, the term (1+ δ′i)+ δ′′i in Equation (11.7) does not vary by
group.

Consider the first column in the second panel, which is for the treatment selec-
tion pattern where selection is on the fixed characteristics of individuals, Oi and Ui.
As was the case for the parallel-trajectory scenarios, the naive estimator and analy-
sis of covariance estimator yield values that are too large. Now, however, the change
score estimator fails as well. The change score estimator yields a coefficient on D∗ that
is equal to 11, assuming an infinite sample (or averaged over repeated samples). In
particular, with reference to Equation (11.4), it yields

Yi10−Yi8 = â+D∗
i ĉ

=1.5+D∗
i 11.

As we explain in the next section, the intercept is equal to

â=E[Y 0
i10|D∗

i =0]−E[Y 0
i8|D∗

i =0]

=E[Yi10|D∗
i =0]−E[Yi8|D∗

i =0]

= 99.5− 98,
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which is the difference in the observed outcome in the absence of treatment for public
school students. In addition, the treatment effect estimate is equal to

ĉ=
{
E[Y 1

i10|D∗
i =1]−E[Y 0

i8|D∗
i =1]

}−{E[Y 0
i10|D∗

i =0]−E[Y 0
i8|D∗

i =0]
}

= {E[Yi10|D∗
i =1]−E[Yi8|D∗

i =1]}−{E[Yi10|D∗
i =0]−E[Yi8|D∗

i =0]}
= {110.5− 98}−{99.5− 98},

which is the expected gain in the observed outcome for the students who enrolled in
Catholic schools minus the expected gain in the observed outcome for the students who
remained in public schools. The change score estimator delivers an upwardly biased
estimate because it assumes implicitly (but incorrectly) that the observed average
gain among public school students in test scores between the eighth and tenth grades
is the same gain that those who enter Catholic schools would have experienced if they
had instead remained in public schools. This assumption was correct for the parallel-
trajectory scenario presented in the first panel of Table 11.1, but it is incorrect, by
construction, for the scenarios we are considering now. For our divergent-trajectory
scenarios, we have set the (counterfactual) gain to be equal to 2.5 for the treatment
group and the factual and observed gain to be 1.5 for the control group (i.e., 100.5−
98= 2.5 in contrast to 99.5− 98= 1.5).

For completeness, consider the final three columns in the second panel briefly. As
shown in the second column, the change score estimator remains upwardly biased for
the ATT when self-selection is present, and the magnitude of the bias is exactly the
same because the trajectory-induced bias is unrelated to selection on the treatment
effect. As shown in the third and fourth columns, when selection is on the pretreatment
outcome, the change score estimator will yield values that are either too small or too
large for the ATT, ATE, and ATC for the same reasons as in the first panel for parallel
trajectories. The analysis of covariance models show the same basic patterns as for the
parallel-trajectory scenarios.

Altogether, this demonstration suggests that the change score estimator will offer
consistent and unbiased estimates of the ATT when selection is not a function of the
pretreatment outcome and when the unobserved average trajectory for the potential
outcome in the absence of treatment for the treatment group is equal to the observed
trajectory for the control group.13 If individuals do not self-select on the treatment
effect, then the ATT will be equal to the ATE and ATC by definition; the change
score estimator is therefore consistent and unbiased for all three. If, however, selection
is on the pretreatment outcome or the trajectories are not parallel, then the change
score estimator is no longer consistent and unbiased for the ATT (or the ATC or
ATE). Finally, although we have yet to fully explained why, in this demonstration the
analysis of covariance model never appears to be consistent or unbiased for any of
the target parameters, even though it appears to be less sensitive to departures from

13In this demonstration, the parallel trajectories are also linear. Linearity is not required. Parallelism
exists if E[Y 0

it|D∗
i =1]−E[Y 0

it|D∗
i =0]=k for all t, where k is any constant that does not vary in t. For

the demonstration, we set k=0. Parallelism in all values of t is sufficient, but it is not necessary. As
we explain below, we only need k to be the same for the two time periods in which the pretreatment
and posttreatment outcomes are observed.
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the parallelism of the first four scenarios. The explanation for this outcome will follow
the demonstration.

In conclusion, we should note four additional points. First, only because we con-
structed the data for this demonstration is it clear when the change score estimator
outperforms the analysis of covariance estimator. In observational research, the true
values for the ATE, ATT, and ATC are unknown and thus no benchmark for com-
parison is available. Second, it is of course possible to have a situation where selection
is a function of both the pretreatment outcome and also accurate expectations of the
individual-level treatment effect. In this case, the results of the demonstration are as
implied: Neither the change score estimator nor the analysis of covariance estimator
would deliver estimates that are consistent or unbiased for any of the average treat-
ment effects. Third, with data from only two points in time, there is no way to evaluate
whether selection is on the pretreatment outcome using the observed data. This point
should be obvious from a consideration of Figure 11.5. If we add the effect Y8→D
to the graph, we have no way to analyze the data to separate this casual effect from
the association generated by the unobserved variable in Y8←U→D. Thus, any argu-
ment in favor of the change score model would have to rest entirely on an argument
grounded in theory or past research. Finally, if the fan spread pattern emerges in the
same basic pattern considered here, where it only emerges at the same time as the
treatment, analysis will be extremely difficult. However, if the trajectories differ but
can be effectively modeled as a function of the pretreatment data from more than one
time period, then the model-based strategy we introduce in the final section of this
chapter may be effective.

Return to the question that motivated this demonstration, where we are not in
the fortunate situation of knowing the true values for the ATE, ATT, or ATC. All we
have are alternative treatment effect estimates suggested by a change score model and
an analysis of covariance model. How should one choose between them? There are at
least three possible ways to decide:

1. Choose the method that gives us the results we want.

2. Choose based on the nature of the problem. As Allison (1990) suggests: If selec-
tion is based on fixed characteristics, use change score analysis. If selection is
based on the dependent variable, use an analysis of covariance.

3. Use the data to determine which model, if either, is appropriate (as in Heckman
and Hotz 1989).

We hope that the first approach to the decision is not a serious consideration. The
second is a better option, in that it at least suggests that one should begin to think
through the specific nature of the problem of interest. The third appears most promis-
ing, at least at face value. However, in some cases (perhaps most where these two
estimators are utilized), we have data from only two points in time. This is the sit-
uation for the estimate of the causal effect of a twelfth year of schooling on IQ. It
is also the case for the demonstration that we have just offered. Unfortunately, with
only two time periods, the data cannot be used to test whether one of the two mod-
els is more appropriate. As we will explain when we discuss model-based approaches
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in the next section, we need at least two periods of pretreatment data in order to
carry out an informative test. For example, we would be able to perform a test for the
demonstration above only if we also had test score data from the seventh grade.

For now, consider the case in which we continue to have data from only one pre-
treatment time point, t− 1, and one posttreatment time point, t. Suppose also that
no self-selection on the individual-level treatment effect is present so that the ATT is
equal to the ATE. Consider the implicit assumptions that are made if it is asserted
that either a change score model or an analysis of covariance model is a consistent and
unbiased estimator of the ATT or the ATE:

• The change score model assumes that, in the absence of treatment, any difference
between the expectations of the outcome for those in the treatment group and
those in the control group remains constant over time. With potential outcome
notation, the required assumption for two-period, pretreatment-posttreatment
data is that E[Y 0

it−1|D∗
i =1]−E[Y 0

it−1|D∗
i =0]=k and E[Y 0

it |D∗
i =1]−E[Y 0

it|D∗
i =

0] = k, where k is the same constant in both time periods t− 1 and t. The
constant k can be equal to 0, as in the parallel-trajectories scenarios for Panel
Data Demonstration 2. In this case, there are no differences in E[Y 0

it ] between
the treatment and control groups in time periods t− 1 and t.

• The analysis of covariance model assumes that, in the absence of treatment,
any difference between the expectations of the outcome for those in the treat-
ment group and those in the control group shrinks by a multiplicative factor
r in each subsequent time period. An implication of this assumption is that,
after enough time, the analysis of covariance model assumes that there would be
no difference in the expected outcomes for the treatment and control groups if
the treatment is not introduced. With potential outcome notation, the required
assumption for two-period, pretreatment-posttreatment data is that any differ-
ence E[Y 0

it−1|D∗
i =1]−E[Y 0

it−1|D∗
i =0]= k in the pretreatment time period t−1

is equal to E[Y 0
it |D∗

i =1]−E[Y 0
it |D∗

i =0]=k×r in the posttreatment time period
t, where k is the same constant in both time periods and where r is the amount
of between-group shrinkage that is assumed to occur in each and every time
period. Any remaining difference between the two groups approaches 0 in the
limit so that by time period t =∞, E[Y 0

it=∞|D∗
i = 1] = E[Y 0

it=∞|D∗
i = 0]. In

addition, the analysis of covariance model assumes that r is equal, in an infi-
nite sample, to the least squares coefficient on Yit−1 in a regression equation
Yit = a+ Yit−1b+D∗

i c+ ei (or Yit = a+ Yit−1b+D∗
i c+Xiq + ei if additional

adjustment variables in Xi are also specified).

The key difference between these two models is therefore their implicit assumptions
about the evolution of the difference between E[Y 0

it ] for the treatment group and for
the control group.

Consider a general equation that can be used to represent the value of the ATE for
the posttreatment time period t (again assuming that the ATE is equal to the ATT
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because no self-selection is present):

E[δit] =
(
E[Y 1

it |D∗
i =1]−E[Y 0

it−1|D∗
i =1]

)
(11.11)

−α
(
E[Y 0

it |D∗
i =0]−E[Y 0

it−1|D∗
i =0]

)
for some unknown value α.14 The term in the first set of parentheses is equal to the
average difference in the observed outcome between time periods t− 1 and t for the
treatment group. Given the definition of the observed outcome, this difference is equal
to E[Yit|D∗

i =1]−E[Yit−1|D∗
i =1], which is the observed gain in the treatment group.

The second term is an adjustment factor. It has two pieces: an unspecified value, α,
and a term in parentheses that is the difference between time periods t−1 and t in the
potential outcome in the absence of the treatment for the control group. The latter
is equal to E[Yit|D∗

i = 0]−E[Yit−1|D∗
i = 0], which is the observed gain in the control

group. Equation (11.11) can therefore be rewritten as

E[δit] = (E[Yit|D∗
i =1]−E[Yit−1|D∗

i =1]) (11.12)

−α(E[Yit|D∗
i =0]−E[Yit−1|D∗

i =0]),

and its right-hand side can then be written even more simply with words as

(treatment group gain in Y ) − α (control group gain in Y ) (11.13)

The change score model and the analysis of covariance model can be seen as alternative
methods that make very different and very rigid assumptions about the value of α in
Equations (11.11)–(11.13). The change score model implicitly assumes that α=1. In
contrast, the analysis of covariance model implicitly assumes that α= r, where r is the
intraclass correlation between Yit and Yit−1 (i.e., r is the correlation coefficient for Yit

and Yit−1). In other contexts, this correlation coefficient r is known as the reliability
of Y . If other covariates are included in the model, then the analysis of covariance
model assumes that the coefficient on Yit−1 is a conditional variant of the intraclass
correlation (i.e., the intraclass correlation of residualized variants of Yit and Yit−1,
from which their common linear dependence on the covariates has been purged).

Researchers often believe that, because the coefficient on Yit−1 is estimated from the
data, an analysis of covariance model is superior to a change score model. This position
is incorrect. To be sure, an analysis of covariance model does estimate a coefficient on
Yit−1, and this coefficient can be interpreted as an intraclass correlation coefficient.
This fact is irrelevant to the more fundamental issue of whether r, or a conditional
variant of it, is the correct adjustment factor for generating consistent estimates of
average treatment effects. In other words, if the goal is to estimate the ATE or ATT,
researchers who favor the analysis of covariance model because it allows the data to

14In this section, we will consider values for α that would be appropriate for estimating the ATE
because this is the typical scenario in which researchers use change score models and analysis of
covariance models. We could offer an analogous explanation for the ATT in the presence of self-
selection, and here the values for α would be different if self-selection were present. The overall
argument would have the same structure but would begin with an analogous expression for E[δit|D∗

i =
1] instead of Equation (11.11). We avoid having to do this by stating above that no self-selection is
present for this explanation, so that the ATE is equal to the ATT.
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α = 1

α < 1

α > 1

t

E[Yt
0]

Figure 11.6 Examples of possible trajectories for E[Y 0
it ] for the treatment group (the

upper line of each pair) and the control group (the lower line of each pair) where the
correct adjustment favor, α, varies.

determine the coefficient on Yit−1 are assuming implicitly that α in Equations (11.11)–
(11.13) should be equal to r, or a conditional variant of it that is determined by the
relationship between Yit−1 and any covariates that are specified.

Consider the graph presented in Figure 11.6, which presents three scenarios for
changes over time in the expected value of the outcome in the absence of the treat-
ment.15 For each pair of lines, the upper line is E[Y 0

it ] for the treatment group, and
the lower line is E[Y 0

it ] for the control group. For the first pair of lines, the correct
adjustment factor, α, is equal to 1. In this situation, a change score model is appro-
priate. For the second pair of lines, the correct adjustment factor is less than 1. In
this situation, the change score model is inappropriate, but it is conceivable that the
analysis of covariance model can deliver an estimated coefficient on Yit−1 that is equal
to the correct adjustment factor. It is not guaranteed to do so because, even in an
infinite sample, the coefficient on Yit−1 is simply the partial slope for the best linear
predictor of Yit. Finally, this graph shows a third possibility where the correct adjust-
ment factor is greater than 1. In this case, neither the change score model nor the
analysis of covariance model is appropriate. Here, in the absence of treatment, E[Y 0

it ]
for the treatment group and for the control group diverge over time. There are many
possible examples of this situation, but the most famous is represented by situations
described in the Gospel of Matthew, where it is written, “Unto every one that hath
shall be given, and he shall have abundance: but from him that hath not shall be
taken away even that which he hath” (quoted in Merton 1968, who is credited with
introducing this version of the idea into the social sciences).

The key point is that different methods of estimation make different implicit
assumptions about how the difference in the expectations between the treatment and
control groups would change with time in the absence of the treatment (which, in the

15See Judd and Kenny (1981, figure 6.4) for a similar figure and explanation that does not use
potential outcomes.
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counterfactual tradition, are different assumptions about treatment and control group
differences in the evolution of E[Y 0

it ]). Researchers typically use either change score
models or analysis of covariance models without taking note of these assumptions.
Nevertheless, these assumptions can be very consequential, as we now show in a more
general way than for Panel Data Demonstration 2.

Our claim that any assumption about α is potentially reasonable can be justified
by consideration of the following model for the generation of the potential outcome
variables:

Y 0
it = λi+Tτi, (11.14)

Y 1
it = Y 0

it + δi, (11.15)

where λi is an individual-varying intercept, the variable T identifies the time period,
and τi is an individual-varying coefficient on time T . For this model, the following
equality holds:

E[Y 0
it |D∗

i =1]−E[Y 0
it |D∗

i =0]= (E[λi|D∗
i =1]−E[λi|D∗

i =0]) (11.16)

+T (E[τi|D∗
i =1]−E[τi|D∗

i =0]) ,

where the T on the right-hand side is set equal to the value of t in the subscript on the
left-hand side. Without loss of generality, assume for the moment that (E[λi|D∗

i = 1]
−E[λi|D∗

i = 0])> 0. In this case, note that whether the initial difference in E[Y 0
it−1]

between those in the treatment group and those in the control group remains the same,
grows, or shrinks, respectively, is a function of whether (E[τi|D∗

i =1]−E[τi|D∗
i =0])

is equal to 0, is greater than 0, or is less than 0.
If we assume that (E[λi|D∗

i =1]−E[λi|D∗
i =0]) = 0, then the appropriate adjust-

ment factor, α, equals

α=1+(E[τi|D∗
i =1]−E[τi|D∗

i =0]) . (11.17)

If (E[τi|D∗
i =1]−E[τi|D∗

i =0]) = 0 (i.e., E[Y 0
it ] changes on average over time at the

same rate for individuals in the treatment and control group), then α=1 in Equation
(11.17), and the assumptions of the change score model are appropriate. If (E[τi|D∗

i =1]
−E[τi|D∗

i = 0]) = (r− 1), which is necessarily nonpositive (because 0 < r < 1), then
α= r in Equation (11.17), and the assumptions of the analysis of covariance model are
appropriate instead.

Of course, there is no reason that (E[τi|D∗
i =1]−E[τi|D∗

i =0]) should necessar-
ily be equal to either 0 or r− 1. Thus, it is possible that neither the change score
model nor the analysis of covariance model provides the correct adjustment. To bring
this point home, consider Table 11.2, in which the stipulated true causal effect is
1. The table reports different estimates of the average treatment effect for differ-
ent combinations of correct and assumed adjustment factors. Equivalently, because
α= 1+ (E[τi|D∗

i =1]−E[τi|D∗
i =0]), the table reports estimates for different actual

and assumed values of the difference in slopes for the treatment and control groups.
Note first that all of the diagonal elements of Table 11.2 are equal to 1. If the

assumed adjustment factor equals the correct adjustment factor, we get the correct
estimate of the causal effect, 1. Below the diagonal are cases where we have overad-
justed (that is, in which the assumed adjustment factor is greater than the correct
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Table 11.2 Estimated Average Treatment
Effects for Different Combinations of Correct
and Assumed Adjustment Factors, Where the
True Effect Is Equal to 1

Assumed α
2 1.5 1 .5 0

2 1 1.5 2 2.5 3
1.5 .5 1 1.5 2 2.5

Correct α 1 0 .5 1 1.5 2
.5 −.5 0 .5 1 1.5
0 −1 −.5 0 .5 1

one). As a result, we get estimates of the causal effect that are too low, ranging from
.5 to −1, including an estimate of no effect at all. Above the diagonal, we have cases
where we have underadjusted (that is, the assumed adjustment factor is smaller than
the correct one). As a result, our estimates of the causal effect are too high, ranging
from 1.5 to 3.

For this example, the true average treatment effect is 1 by construction. Across
Table 11.2, we have estimates ranging from −1 to 3. We could easily expand the range
of these estimates by considering a broader range of correct and assumed adjustment
factors. And alternative examples could be developed in which the true average treat-
ment effect equals alternative values, and in which the range of estimates varies just as
widely. Although the calculations behind Table 11.2 are simple, the point of the table
is to show that one can obtain any estimate of an average treatment effect by making
different assumptions about the appropriate adjustment factor.16

In view of this problem, what should a researcher do? If there are strong theoretical
reasons for arguing that a particular adjustment factor is correct, and others agree,
then analysis is straightforward. If not, which we suspect is generally the case, then it
may be possible to argue for a range of adjustment factors. In this case, a researcher
may be able to bound the causal effect to a region on which all researchers can agree.

In general, the assumption that a particular adjustment factor is correct must
be based on a set of assumptions about how E[Y 0

it ] for those in the treatment and
control groups evolves over time. This leads naturally to a more explicit model-based
approach, which we present in the next section. As we will also see, with data from
more than one pretreatment time period, it may be possible to test the adequacy of
the assumptions and thus the appropriateness of a particular adjustment factor.

16Recall Panel Data Demonstration 2. There, the divergent-trajectory scenario with no self-selection
yielded a change score estimate that was biased upward by 1. Adopting the logic of this explanation,
the correct adjustment factor was 5/3, so that (110.5− 98)− (5/3)(99.5 − 98) = 10. However, the
change score estimator assumed that the correct adjustment factor was 1, resulting in (110.5−98)−
(1)(99.5−98) = 11.
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11.3.2 Model-Based Approaches

In discussing panel data models we have until now considered only traditional methods
of estimating a causal effect. There is, however, much merit to considering explicit
models of the evolution of Y 1

it and Y 0
it and asking, “Under what model assumptions

do different methods give consistent estimates?” In this section, we take this approach
and address four questions:

1. What is the dynamic structure of the outcome? In particular, how are future
values of the outcome related to previous values of the outcome? Answering this
question is critical if our goal is to estimate counterfactual values. In the potential
outcome framework for the sort of examples we will consider, we are interested
primarily in the dynamic structure of Y 0

it , which is the potential outcome variable
under the control state.

2. How is assignment to the treatment determined? As in cross-sectional attempts
to estimate causal effects, modeling treatment assignment/selection is crucial if
a researcher hopes to generate consistent estimates of a particular causal effect.

3. What are the alternative methods of estimation that can be used to consistently
estimate average effects, given a valid set of assumptions?

4. How can the estimated model be tested against the data?

We will consider these four questions in this order.

Dynamic Structure

As shown in any advanced time series textbook, the dynamic structure of the out-
come can be infinitely complex. In the context of panel data models, researchers have
typically considered fairly simple structures, often because of the limited number of
waves of data that are available. Rather than trying to provide an exhaustive account
– which would take a book in and of itself – we primarily focus on conceptual issues.

The broad statistics and econometric literature on panel data models is quite
distinct from the estimation of treatment effects from a counterfactual perspective.
Implicit in much of this literature is the assumption that causal effects are constant
across individuals, such that causes/treatments simply shift the outcome by fixed
amounts. From a counterfactual perspective, such assumptions are overly rigid. A nec-
essary component of estimating a treatment effect is the consideration of the hypothet-
ical evolution of Y 0

it for the treatment group after the treatment occurs. If treatment
effects are heterogeneous and selection is on the treatment effect itself, then the ATT
is usually the parameter of interest, as it is often the only one that can be identified
by any model (and, fortunately, it is also often of inherent substantive interest).

Consider the following possible two equations for the generation of Y 0
it :

Y 0
it =λi+ eit, (11.18)

eit = ρeit−1+ vit−1, (11.19)
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Table 11.3 Alternative Trajectories of the Outcome Under the Control
State for Different Assumptions About Its Dynamic Structure

Model Assumed Constraints Evolution of Y 0
it

A ρ=0 Var(λi) �=0 Immediate regression of individual values

to separate group expectations

B ρ �=0 Var(λi) = 0 Regression over time of individual values

to a common expectation

C ρ �=0 Var(λi) �=0 Regression over time of individual values

to separate group expectations

where λi is a time-constant, individual-varying fixed effect, vit−1 is pure random noise
(that is, uncorrelated with everything), and ρ is the correlation between eit over time
(not the correlation between Y 0

it over time, which we labeled as r earlier). Equation
(11.19) specifies an autoregressive process of order (1). It is order (1) because the
current eit is dependent on only the last eit−1, not eit−2 or any errors from prior time
periods. There are many possible ways that the current error could be dependent on
past errors. These define what are known as the class of autoregressive moving average
(ARMA) models.

Within the current context (i.e., assuming that we know that Equations (11.18) and
(11.19) are capable of representing the full dynamic structure of Y 0

it), determining the
dynamic portion of the model for Y 0

it amounts to asking whether Var(λi)=0, ρ=0, or
both. Multiple tests are available to evaluate these restrictions (see, again, texts such
as Hamilton 1994 and Hendry 1995 for comprehensive details). Most standard data
analysis programs allow a researcher to estimate a full model on the pretreatment
values of Yit, assuming that neither Var(λi) = 0 nor ρ = 0, and then to reestimate
various constrained versions. Thereafter, a researcher can then use standard likelihood
ratio tests of these model constraints. Such tests on the pretreatment data are not
full tests of how Y 0

it evolves for the treatment group in the absence of treatment (here
again, we are back to the issue for the ITS model in Figure 11.1). Thus, a researcher
most likely will need to make some untestable assumptions.

Consider the following scenarios. If both Var(λi) and ρ are nonzero (and, further-
more, selection into the treatment is on λi only), how then do the values of Y 0

it in
the treatment and control group evolve? When asking this question, we are implic-
itly considering how E[Y 0

it |D∗
i = 1] and E[Y 0

it |D∗
i = 0] evolve over time toward one or

more values, even though the evolution of these two conditional expectations represent
average trajectories of individual-specific patterns of evolution in trajectories of Y 0

it .
Consider a summary of these different situations in Table 11.3, which are then depicted
as pairs of lines in Figure 11.7.

Note that Model A is consistent with the assumptions of the change score model.
Model B is consistent with the assumptions of the analysis of covariance model. Model
C is consistent with neither, but we suspect that it is the most common scenario in
empirical research.
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Model A

Model B

Model C

E[Yt
0]

t – 2 t – 1 t

Figure 11.7 Depictions of possible trajectories, as specified by the models in Table
11.3, for E[Y 0

it |D∗
i = 1] (the upper line of each pair, corresponding to the treatment

group) and E[Y 0
it |D∗

i = 0] (the lower line of each pair, corresponding to the control
group).

Many of the most common models in panel data analysis assume that there is
virtually no dynamic structure to the process that generates the outcome. In fact,
most versions of the model that generally goes by the name of a “fixed effects” model
are based on the following implicit model for the generation of Y 0 and Y 1:

Y 0
it = λi+Tτ + vit, (11.20)

Y 1
it = Y 0

it + δi, (11.21)

where λi is a fixed time constant, individual-level determinant of the outcome in the
absence of treatment, Tτ is a time trend common to all (because T is a variable
measuring time, τ is a constant coefficient that does not vary over individuals or
time), vit is random noise, and δi is an individual-specific additive causal effect that
is assumed to be independent of λi and vit. The assumed data generation process
that motivates the most standard form of a fixed effect model is equivalent to the
assumption that each individual has his or her own intercept, but there is neither
serial correlation in vit nor individual-specific trajectories in time.

The motivation for the standard fixed effects model can be generalized by allowing
each individual to have his or her own slope with respect to time, which is indicated
by subscripting τ by i in the assumed data generation model in Equations (11.20) and
(11.21). This more general model is then

Y 0
it = λi+Tτi+ vit, (11.22)

Y 1
it = Y 0

it + δi, (11.23)

which, apart from the stochastic term vit, was considered already in the previous sec-
tion; see Equations (11.14) and (11.15). There, we showed that allowing for differences
between E[τi|D∗

i =1] and E[τi|D∗
i = 0] could lead to the necessity of adjustment fac-

tors ranging from negative to positive infinity. The attractiveness of this model, of
course, is that it allows E[Y 0

it ] for the treatment and control groups to evolve in par-
allel, diverge, or converge. This will depend, respectively, on whether the difference in



11.3. Panel Data 383

Yt – 2
Yt – 1

et – 1et – 2

Yt

et

D

Figure 11.8 A model of endogenous treatment assignment in which selection is on
the pretreatment outcome, Yt−1.

the expected slopes for the treatment and control groups is zero, positive, or negative.
But substantial amounts of data are needed to estimate it, and certainly from more
than just one pretreatment time period and one posttreatment time period.

Determining the Assignment Process

As we have argued throughout this book, the key to estimating a treatment effect is
understanding the process of treatment assignment/selection. One of the advantages
of conceptualizing and then analyzing the dynamic process of the outcome is that it
may provide evidence about the factors that structure the assignment process. Two
general cases are of particular interest and lead to quite different estimation strategies.
The issue, however, is potentially tricky in that we may want to condition on one or
more endogenous variables. As we have discussed at many points throughout this book,
conditioning on an endogenous variable that is a collider along a back-door path will
unblock an already blocked back-door path, thus creating a new source of confounding.

Consider first the case in which assignment is directly a function of previous values
of Y as in Figure 11.8. In this graph, the association between Yt andD does not identify
the causal effect of D on Yt because they are connected by a back-door path through
Yt−1: D←Yt−1→Yt. However, this back-door path can be blocked by conditioning on
Yt−1.

Note that Yt−1 is a collider on the path et−2→ Yt−2→ Yt−1← et−1. Thus, condi-
tioning on Yt−1 will induce associations between Yt−2 and et−1 as well as between et−2

and et−1. These new associations are unproblematic, however, because they do not
create any new as-if back-door paths between D and Yt. Note also that if we thought
that treatment assignment D was determined by earlier values of Y , we could condi-
tion on these Y ’s without creating as-if back-door paths that confound the effect of
interest.

Consider an alternative and much more complex model, presented in Figure 11.9,
where treatment assignment D is determined by λ instead of Yt−1. For this model,
there is an unblocked back-door path connecting D to Yt: D←λ→Yt. What happens
if we condition on Yt−1? Obviously, the unblocked back-door path D←λ→Yt remains
unblocked because Yt−1 does not lie along it. In addition, conditioning on Yt−1 unblocks
a set of already blocked back-door paths because Yt−1 is a collider on the previously
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Figure 11.9 A model of endogenous treatment assignment in which selection is on a
fixed effect that also determines the outcome.

blocked back-door paths represented collectively by D←λ→Yt−1← et−1 ������ et→
Yt. In combination, conditioning on Yt−1 has only made things worse. We failed to
block the original back-door path that was of concern, and we unblocked already
blocked back-door paths.

Consider this problem from another perspective. Suppose that the standard moti-
vation of a fixed effect model is in place, such that one has reason to believe that Y 0

it

and Y 1
it are generated in the simple way specified for Equations (11.20) and (11.21).

Suppose, therefore, that we wish to estimate the following regression equation:

Yit = li+Ditc+ eit, (11.24)

where the li are individual-specific intercepts, and where we then hope that the esti-
mated coefficient c on the treatment exposure variable in time period t will then be
equal to the ATE (or the ATT if self-selection is present).

If we had a measure of λi, then estimating the model in Equation (11.24) would be
straightforward. We could put in a dummy variable specification to parameterize the
li intercepts. For the graph in Figure 11.9, and from a standard structural equation
perspective, Yit−1 can be thought of as a measure of λi. This then suggests that the
following regression equation can be estimated instead of Equation (11.24):

Yit = a+Yit−1b+Ditc+ eit. (11.25)

If we think of Yit−1 as a measure of λi, then it contains measurement error because it is
also a function of eit−1. As a result, the coefficient on Yit−1 will be downwardly biased.
In fact, the estimate of b will be a consistent estimate of r, which is the reliability of
Y . This is not surprising because Equation (11.25) is the analysis of covariance model.
Thus, the analysis of covariance model can be interpreted as a fixed effect model in
which we have used a noisy measure of λi as an adjustment variable.

In the last section, we saw that the choice of either the analysis of covariance
model or the change score model can be consequential. Accordingly, it is critical to
determine whether assignment to D is function of Yit−1 or λi. If we have two or more
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pretreatment observations, this is easy to do. The first step is to determine whether
b= c or c=0 in the following model:

Logit(Di) = a+Yit−1b+Yit−2c. (11.26)

In Figure 11.8, D is dependent only on Yt−1. Thus, c should equal 0. In Figure 11.9, D
is associated with only Yt−1 and Yt−2 through their joint dependence on λ. As a result,
b= c.17 Obviously, with this test, we may also include additional observed variables
that we believe also determine D. And the test generalizes in the obvious way when
we observe Y at more than two pretreatment time periods.

Effect Estimation

Extensive discussions exist in the econometrics literature on the estimation of the
fixed effects model and its generalizations. Basically, there are two different estimation
strategies. For the differencing approach, the specification is

differencing: Yit−Yit−1 = (λi−λi)+ (Dit−Dit−1)d (11.27)

+(Xit−Xit−1)b+(eit− eit−1)

= (Dit−Dit−1)d+(Xit−Xit−1)b+(eit− eit−1),

where treatment exposure occurs between time period t− 1 and t. In contrast, the
dummy variable approach is

individual dummies: Yit =Pili+Ditd+Xitb+ eit, (11.28)

where Pi is a dummy variable for person i and li is its associated coefficient. This
second method amounts to estimating a separate intercept for each individual. It is
also equivalent to differencing Y and X from their respective individual-level means. If
one wants to estimate the generalized fixed effect model in which there is an interaction
between an individual effect and time, one can do this by either differencing additional
times or by interacting the individual dummies, Pi, with time and estimating a separate
interaction term for each dummy.

To understand the differences between these two approaches, evolving conventions
in data analysis must be noted. For the representation of the change score model and
the analysis of covariance model in Equations (11.4) and (11.5), we conformed to the

17These assumptions can more easily be tested by estimating the model

Logit(Di) = a+Yit−1b+(Yit−1 +Yit−2)c

and testing whether b = 0 or c = 0. Here, (Yit−1 + Yit−2) is essentially acting as a measure of λi.
This strategy is based on the following trick often used to test for the equality of coefficients for two
variables X and Z. Let the coefficient on X be m and on Z be m+n. Run the following regression
equation:

Y =Xm+Z(m+p)+u

=(X+Z)m+Zp+u

and use a standard statistical test to evaluate the null hypothesis that p=0.
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convention in the literature wherein the models are written out so that they can be
estimated easily with a cross-sectional dataset. In other words, time is encoded in the
variables, so that time-varying outcome variables, Yit and Yit−1, are regressed on a
cross-sectional treatment group dummy variable D∗

i in an implicit dataset with one
record for each of N individuals. This data setup is also the implicit background for
the differencing specification of the fixed effect estimator in Equation (11.27).

As can be seen in virtually any panel data textbook (e.g., Baltagi 2005), the con-
vention is to now structure one’s dataset in person–time records, which results in N×T
records rather than N records. Forcing time to be constant within each data record
allows for variables such as Dit and D∗

i to be cleanly parameterized in subsequent
analysis. This data setup is the implicit background for the individual dummy speci-
fication of the fixed effect estimator in Equation (11.28), and that is why there is no
reference to time t−1 versus time t in Equation (11.28). Throughout the remainder of
this section, we will write with such an N×T dataset in mind. The ideas, however, do
not depend on such an implicit structuring, as one can switch back and forth between
both setups based on analogs to Equations (11.27) and (11.28).

As for the alternative fixed effect specifications in Equations (11.27) and (11.28),
the two methods give identical answers when there are only two points in time. When
the errors are correlated across time and there are more than two time periods, the
two methods will give somewhat different estimates, although both estimators are
consistent. Which estimator is preferable depends on the nature of the correlation
structure. We need not be concerned about this issue here; see Baltagi (2005), Hsiao
(2003), and Wooldridge (2010) for discussion.

Traditional fixed effect and differencing methods are generally inefficient, how-
ever, if the goal is only to estimate the effect of a treatment. These methods simply
eliminate unobserved individual effects from the data. Doing so powerfully eliminates
all associations between the treatment variable Dit and unobserved time-constant,
individual-level variables. If the coefficients of all observed variables are of interest,
then this is appropriate.

In the present case, however, our focus is simply on estimating the effect of treat-
ment exposure, Dit. As pointed out repeatedly in previous chapters, one approach
to consistently estimate the effect of Dit is to balance the data with respect to all
systematic determinants of Dit. As discussed in the last section, our interest in the
case of linear models (the situation with nonlinear models being more complicated)
is in differences in the expected trajectories of Y 0

it for those in the treatment group
and those in the control group. If we want to use the average observed values of Yit

in the control group in the posttreatment time periods in order to predict the average
counterfactual values of Y 0

it in the treatment group in the posttreatment time periods,
then it is essential that differences in the average trajectories of these two groups be
modeled effectively.

To be more concrete, suppose that we have three time points. If the only difference
in the expected trajectories of Y 0

it for the two groups is in their average levels, then all
we need to do is allow for differences in group-level intercepts by estimating

Yit = a+D∗
i b+Ditd+ eit. (11.29)
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Here, the coefficient b captures differences in the expected trajectories for the treatment
and control groups, such that the intercept for the control group is a and the intercept
for the treatment group is a+ b.18

If the expected trajectories also differ in their slopes, then we need to include a
term for time and an interaction term between group membership and time, as in

Yit = a+D∗
i b+Tc+(D∗

i ×T )c′+Ditd+ eit. (11.30)

The coefficient b again captures differences in the expected trajectories, and c′ now
captures differences in the slopes of the expected trajectories. Interactions between
D∗ and higher-order polynomials of T (or any other function of time) can also be
introduced, assuming sufficient pretreatment data are available.

Estimating the model in Equation (11.30) is equivalent to differencing out the
treatment/control group expectations of λi and τi in the following assumed data gen-
eration model for Y 0 and Y 1, based on an augmentation of Equations (11.22) and
(11.23). Expanding a standard fixed effect model separately for the treatment and
control groups using the time-constant indicator of the treatment group D∗ yields

forD∗
i =0: (11.31)

Y 0
it,D∗=0 = (μλ,D∗=0+ vi,D∗=0)+T (μτ,D∗=0+ τ ′i,D∗=0),

Y 1
it = Y 0

it + δi,

and

forD∗
i =1: (11.32)

Y 0
it,D∗=1 = (μλ,D∗=1+ vi,D∗=1)+T (μτ,D∗=1+ τ ′i,D∗=1),

Y 1
it = Y 0

it + δi.

Here, μλ,D∗=0 is the expectation of λi in the control group, and λi=μλ,D∗=0+vi,D∗=0

for those in the control group. Likewise, μτ,D∗=0 is the expectation of τi in the control
group, and τi = μτ,D∗=0 + τ ′iλ,D∗=0 for those in the control group. The terms for the
treatment group are defined analogously.

In this setup, the terms vi,D∗=0, vi,D∗=1, Tτ
′
i,D∗=0, and Tτ ′i,D∗=1 become compo-

nents of the error term eit of Equation (11.30) as constant individual-level differences
vi and time-varying individual differences Tτ ′i . Because vi,D∗=0, vi,D∗=1, Tτ

′
i,D∗=0, and

Tτ ′i,D∗=1 are all by construction uncorrelated with D∗
i , eit is uncorrelated with D∗

i ,
assuming any extra individual or time-varying noise embedded within eit is completely
random. Furthermore, the coefficient a in Equation (11.30) is equal to μλ,D∗=0, and
the coefficient b is equal to μλ,D∗=1− μλ,D∗=0. Thus, b captures the difference in the
expected intercept for individuals in the treatment and control groups. Likewise, the
coefficient c in Equation (11.30) is equal to μτ,D∗=0, and the coefficient c′ is then equal
to μτ,D∗=1−μτ,D∗=0. And thus c′ captures the difference in expected slope of the time
trends for individuals in the treatment and control groups.

18Notice that we can include both Dit and D∗
i in the same regression equation because we have

multiple records for each individual over time in our dataset. In posttreatment time periods, D∗
i =Dit

for all individuals (assuming that no one leaves the treatment state before the end of the study), but
in pretreatment time periods, D∗

i =Dit only for individuals in the control group.
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The coefficient d on Dit is a consistent estimate of the ATE because the expec-
tations of λi and τi are balanced across the treatment and control groups. All of
their systematic components related to treatment group membership are parameter-
ized completely by a, b, c, and c′. This leaves all remaining components of the distri-
butions of λi and τi safely relegated to the error term.19

There are two advantages of estimating Equation (11.30), as opposed to using
traditional methods for estimating fixed effect models and their generalizations. First,
conceptually, the model makes clear that if the goal is consistent estimation, then the
expected trajectories of Y 0

it for the treatment and control groups must be correctly
modeled, not necessarily all individual-specific trajectories. Later, we show how this
principle leads to a general specification test. Second, there are potential efficiency
gains. For example, in a standard fixed effect model, half of the overall degrees of
freedom are lost by specifying individual-specific fixed effects (when there are only
two time periods of data). In estimating Equation (11.30), only one degree of freedom
is lost to an estimate of the difference in the intercept for the mean of Y 0

it . We should
note, however, that this minimization in the loss of degrees of freedom is moderated
by the fact that the errors in Equation (11.30) are likely to be highly correlated within
individuals (because the errors within individuals include a common fixed effect). An
estimation procedure should be used for the standard errors that accounts for this
correlation.

In the situation in which Yit is determined only by Yit−1 and Dit, estimation is
simpler. As already discussed with reference to Figure 11.8, conditioning on Yit−1 is
sufficient to block all back-door paths connecting D to Yit. How the necessary condi-
tioning should be performed will depend on the details of the application. Conditioning
could be done by matching, as in the analysis of Dehejia and Wahba (1999) for the
National Supported Work data (although there is no evidence that they attempt to
test the suitability of this specification as opposed to a fixed effect specification).20

Alternatively, Yit−1 could be conditioned on by a regression model, as in an analysis of
covariance model. These models will not yield the same results, and it may be difficult
to choose between them. More complicated specifications in which Yit is a function of
both Yit−1 and individual-level variables are also possible. Halaby (2004) provides a
clear introduction to these methods.

Model Testing

By now, we hope to have convinced the reader that maintained modeling assumptions
can have large consequences. Given this dependence, it is critical that researchers
be explicit about the assumptions that they have made and be able to defend those
assumptions. Assumptions can be defended either theoretically or on empirical grounds.
Often neither is done. In fact, they are made often without any explicit recognition.
Fortunately, if pretreatment observations are available for multiple time periods, it is

19Moreover, because this model is set up as a linear specification of the treatment effect, a lack of
balance in higher-order (centered) moments of λi and τi does not affect the estimation of d.

20For detailed discussions of the appropriate model specification for these data, see Smith and Todd
(2005) and associated comment and reply.
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possible in many circumstances to test the assumptions against the data. Here, we
describe two conceptually different, but mathematically closely related, approaches.

In discussing strategies to increase confidence in a causal effect estimate from an
ITS model, we suggested that a researcher could either use a dependent variable for
which no effect should occur or estimate the effect for a group for which no treatment
effect should occur. Evidence of a treatment effect in either case is evidence that the
model is misspecified.

Heckman and Hotz (1989) suggest applying this same principle to panel data when
two or more pretreatment waves of data are available. Specifically, they suggest taking
one of the pretreatment outcomes and analyzing it as if it occurred posttreatment. A
researcher then simply applies the estimation method to the new pseudo-posttreatment
data and tests for whether there is evidence of a “treatment effect.” Because neither
the treatment nor the control group has experienced a treatment in the data under
consideration, evidence of a treatment effect is evidence that the model is misspecified
(i.e., that the model has failed to fully adjust for differences between the treatment
and control groups).

In the analysis of covariance model, care must be taken. Here, it is implicitly
assumed that selection is on Yit−1. For example, for a logit specification of the proba-
bility of treatment selection, it is implicitly assumed that

Logit(D∗
i ) = a+Yit−1b. (11.33)

In this model, D∗
i is a function of Yit−1. This is mathematically equivalent to maintain-

ing that D∗
i is a function of Yit−2+(Yit−1−Yit−2). Generally, Yit−1 will be correlated

with (Yit−1−Yit−2). Consider the following model:

Yit−1 = a+Yit−2r+D∗
i c+ui. (11.34)

Because D∗
i is a function of both Yit−1 and (Yit−1−Yit−2), and Yit−1 is correlated with

the latter term, in general c will not equal 0. The basic point is that D∗
i is partially

a function of a component of Yit−1 that is not contained in Yit−2. In general, the
coefficient c on D∗

i is a function of this dependence.
We can, however, run time backwards. Accordingly, we can estimate

Yit−2 = a+Yit−1r+ vi. (11.35)

If we are going to use the testing strategy of Heckman and Hotz (1989) to evaluate
an analysis of covariance model, we should then test whether c= 0 in the following
related model:

Yit−2 = a+Yit−1r+D∗
i c+ ei. (11.36)

Because there is no component of D∗
i that depends on Yit−2 conditional on Yit−1, c

should equal 0 in this model if the analysis of covariance model has correctly adjusted
for treatment group differences in Yit−2.

Heckman and Hotz’s test also indicates how two-period, pretreatment-posttreatment
data can be used. What we should do is fit a cross-sectional model. We should then
treat the pretreatment outcome as if it were a posttreatment outcome and then test for
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a treatment effect. Evidence of a treatment effect is evidence that our cross-sectional
model has failed to fully adjust for pretreatment differences between the treatment
and control groups.

To better understand these procedures, consider a more general specification of
this type of test. Recall that, net of our adjustments for various functions of time and
other variables, we seek to evaluate for these tests whether the trajectories of Y 0

it are
equivalent in the pretreatment data for the treatment and control groups. A variety
of different models can be assessed. A fixed effect model allows for differences in the
intercepts for two groups. A model with individual- or group-specific time coefficients
allows for differences in slopes. If we have enough pretreatment data, we can add
additional functions of time to our model and thereby allow for even more heterogeneity
for the trajectories of Y 0

it .
The most general specification would be to choose one time period as the base,

create a dummy variable for all other time periods, and allow these dummy variables
to fully interact with our treatment group indicator D∗. This is what is known as the
saturated model in this tradition. It is a completely flexible functional form and allows
for completely separate time trajectories for Y 0

it for the treatment and control groups.
It is of little use in estimating the true causal effect.

Using just the pretreatment data, we can, however, compare the saturated model
with any more restrictive model – such as a fixed effects model – using an F -test
or likelihood ratio test. Evidence that the more restrictive model does not fit is evi-
dence that the more restrictive model fails to fully model the differences between the
treatment and control groups in the trajectories of Y 0

it .
Consider the results of Heckman and Hotz (1989), a portion of which is presented in

Table 11.4.21 For their analysis, Heckman and Hotz estimated a wide range of alterna-
tive models of the effect of the National Supported Work program on the 1978 earnings
of participants who were high school dropouts. The first column reports selected esti-
mated effects from their study. The experimental estimate suggests that there is no
evidence that the program has an effect (given a point estimate of −$48 with a stan-
dard error of $144). The regression and fixed effect models show large negative effects,
which are statistically significant by conventional standards. The random-growth mod-
els, which allow for individual slope coefficients for the trajectories of earnings, suggest
a modest but still nonsignificant negative effect.

The second column of Table 11.4 reports the p values for tests of no treatment effect,
in which the preprogram 1975 earnings are used as if they were in fact posttreatment
earnings. If the models that are tested adequately adjust for underlying differences
between the treatment and control groups in the trajectories of earnings, one would
expect the treatment effect estimate to be nonsignificant (i.e., have a high p value). In
the case of the regression and fixed effects models, the faux-treatment-effect estimate
is highly significant, indicating a lack of model fit. In the case of the random-growth
model, however, it appears to fit the data.

21Although Heckman and Hotz (1989) is an exemplary early example of this sort of analysis, the
basic specification test approach is used in one form or another in other work as well (e.g., Petersen,
Penner, and Høgsnes 2011).
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Table 11.4 Specification Tests from the Analysis of Heckman and Hotz (1989) of
the Effect of the National Supported Work Program on the Earnings of High School
Dropouts

p values for specification tests

Preprogram Postprogram
Estimated effect, in dollers 1975 earnings 1978 earnings

Experiment −48

(144)

Regression −1884 .000 .000

(247)

Fixed effect model −1886 .000 .000

(pre-1972) (242)

Random-growth model −231 .375 .329

(pre-1972 and 1973) (414)

Note: Results are from tables 3 and 5 of Heckman and Hotz (1989).

The third column reports results from a similar test, where Heckman and Hotz
analyze the valid 1978 posttreatment data as if one time period was in fact pretreat-
ment data. Again, they test for whether there is evidence of a treatment effect. As with
the tests reported in the second column, if the model is properly specified, then there
should be no evidence of a treatment effect. But here also the p values for the regression
and fixed effects models suggest a significant treatment effect, indicating that these
models do not fit the data. And, as before, the p value for the random-growth model
indicates that it fits the data.22

The National SupportedWork data have been analyzed by many different social sci-
entists, and they are perhaps the most widely used data to assess the relative explana-
tory power of alternative types of panel data estimators. There has been considerable
debate about whether or not researchers need methods that take account of unobserv-
ables or whether adjusting only for observables is sufficient. Smith and Todd (2005;
see also the associated comment and reply) show clearly how sensitive estimates can
be to the sample that is chosen. Their results support Heckman’s position that there
are important situations for which treatment selection is likely to be a function of
unobserved variables.

22A note of caution is warranted here. As in all situations, the power of these tests is a function
of sample size. In this case, there are only 566 treatment cases. From the data, it is impossible to
tell whether the random-growth model fits the data because it is a sufficiently correct model of the
underlying individual-specific trajectories or rather because the sample is small.
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11.4 Conclusions

Longitudinal data may be helpful for estimating causal effects, but longitudinal data do
not constitute a magic bullet. Defendable assumptions about the treatment assignment
process must be specified. And, to use longitudinal data to its maximum potential,
researchers must carefully consider the dynamic process that generates the outcome,
clearly define the causal effect of interest, and then use constrained models only when
there is reason to believe that they fit the underlying data.

With this chapter, we have completed our consideration of identification and anal-
ysis strategies that can be relied upon to estimate the ATE, ATT, and ATC. We make
no claim to have considered anything but a subset of all strategies that are available,
but we have attempted to cover the material that receives the most attention in the lit-
erature. In the next chapter, we consider how analysis can proceed when the prospects
are low for point identification of a causal effect of interest. Informative empirical
analysis is still possible, even though strong causal conclusions cannot be developed.

11.5 Appendix to Chapter 11: Time-Varying
Treatment Regimes

The longitudinal data models and analysis strategies that we have considered up until
this point make the strong assumptions that the treatment is administered only once
and that the timing of the treatment is fixed. Models that relax these assumptions
are needed in order to consider research questions where they cannot be sustained,
or where maintaining them alters the structure of the questions that are of genuine
interest. Social scientists regularly encounter systems of causal effects where the timing
of the treatment varies across individuals and where the treatment is repeated across
multiple time periods in dynamic fashion.

Dealing with data where the timing of the treatment varies and where there are
multiple treatments at different times complicates analysis considerably. First, indi-
viduals may differ not only in whether they receive the treatment or not, but they also
may differ on when the treatment is received. These additional sources of differences
between individuals lead to new identification challenges. Second, new questions about
treatment effects may be of interest: Does it matter when the treatment occurs? If there
are repeated treatments, what are the effects of different combinations of treatments?
Third, new estimation requirements arise. Even in the seemingly ideal case where
ignorability holds (i.e., there are no unobserved confounders of the treatments and the
outcomes, so that all causal effects are identified), standard conditioning methods such
as matching and regression do not always provide consistent estimates. As a result,
new specialized methods must be utilized.

Robins and his collaborators have developed several different approaches to mod-
eling data where treatments vary in these ways (see Robins 1997, 1998, 1999, 2000;
Robins and Hernán 2009). Unfortunately, these methods do not solve the problem of
selection on the unobservables that the main body of this chapter addresses. In fact, as
we will discuss below, serious estimation challenges exist even in the absence of selec-
tion on the unobservables, with the main challenge being the dependency between
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treatment states and intermediate outcomes even when unconfoundedness holds. Even
so, the methods we present in this appendix are an exciting frontier of methodologi-
cal scholarship that social scientists need to learn. And directed graphs elucidate the
crucial issues.

In this appendix, we will follow the presentation of Robins and Hernán (2009).
We will examine methods that are appropriate when the data have been generated by
what is known as a “dynamic treatment regime” – a treatment exposure at one point
in time is potentially a function of past treatment history and/or current and/or past
time-varying covariates. However, we will only discuss the estimation of the effects
of what are called “static regimes”: the difference in an outcome between individuals
when all individuals follow one regime versus another regime. Thus, although we will
assume that the data have been generated by a dynamic regime, we will focus on the
effects of static regimes.

Types of Regimes

Fixed Treatment Regimes. Situations where the timing of a single treatment
or multiple treatments is determined at the beginning of the study are considered to
have fixed treatment times. The case where treatment occurs at the same time for
all individuals provides the simplest case. The Operation Ceasefire study discussed
in Section 11.1 is an example. A college or university where promotion to associate
professor always occurs in the sixth year after initial appointment is another. More
complicated examples are also possible. A randomized experiment for the evaluation of
a worker training program (LaLonde 1986) would be considered to have fixed treatment
times, even though participants in the experiment have work histories of different
lengths, because for each individual the timing of treatment assignment is known at
baseline and thus fixed. A medical treatment regime where different doses or types of
drugs are taken for fixed periods of time would be considered to have fixed treatment
times as long as which drugs are taken and how long they are taken are determined
at baseline.

Nondynamic Regimes. When treatment assignment is endogenous in the
restricted sense that treatment status at one point in time is a (nondeterministic)
function of treatment status at prior points in time, the treatment regime is labeled
“nondynamic” by Robins and Hernán (2009). We do not find this label particularly
helpful. The classic example is a sequentially randomized experiment where individ-
uals are randomized at different stages to different treatment possibilities, such that
the probability of receiving a treatment at a later stage is solely a function of the
outcome of a previous randomization. A simple example would be a worker training
experiment where (1) individuals are first randomized to either training or no training
and then (2) individuals who are assigned to training are then randomized into specific
training programs for either computer skills or construction skills. The key feature of a
nondynamic regime is that all randomization probabilities are fixed at baseline before
randomization is enacted, so that the randomization probabilities are not functions of
either time-varying covariates or actual prior treatment statuses. When such additional
dependence does exist, the regime is considered to be dynamic.

Dynamic Regimes. Fixed and nondynamic treatment regimes represent con-
strained forms of time-varying treatment structures, and they are the ones that present
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no new analysis challenges beyond those explained in prior chapters of this book.
Dynamic treatment regimes are a more general class of models where treatment status
at time t, Dt, is determined by a covariate or set of time-varying covariates that may
be functions of earlier treatments. The classic example comes from medicine, where
treatment at time t is determined as a function of the patient’s observed symptoms at
time t, which are, in turn, a function of whether or not the patient received a treatment
in a prior time period. There are many social science examples as well, and we next
consider an example that follows from others we have considered in this book.

The Catholic School Example as a Dynamic Treatment Regime

Consider the effect of Catholic schooling on twelfth grade test scores. For a dynamic
treatment regime version of this effect, we allow students to do what some of them
are actually observed to do: change the type of school – Catholic or public – that they
are enrolled in between the tenth and twelfth grades.23 In order to keep the example
from becoming too complex, we assume that students can only change type of school
at the end of tenth grade (i.e., students are assumed to be in the same type of school
in both the eleventh and the twelfth grades).

The indicator variables for enrollment type in the tenth grade and in the eleventh
and twelfth grades are D10 and D12, respectively. Students may follow any of the
following four regimes:

1. D10 =D12 =0 (public school throughout),

2. D10 =D12 =1 (Catholic school throughout),

3. D10 =1, D12 =0 (Catholic school, then public school),

4. D10 =0, D12 =1 (public school, then Catholic school).

The questions for analysis are how twelfth grade tests scores are affected by these
alternative treatment regimes, not simply what the effect of twelfth grade enrollment
status is on test scores in the twelfth grade. The effect of Catholic schooling is likely
to differ across students who have been enrolled in Catholic schools continuously from
the tenth grade through the twelfth grade in comparison to students who switch from
public schools after the tenth grade and are then enrolled in Catholic schools in the
eleventh and twelfth grades.

Because of the complexity of treatment regime patterns, we therefore need to under-
stand the effects that generate tenth grade test scores, even if our primary goal is to
estimate effects that can be measured at the end of high school in the twelfth grade.
Accordingly, we must model test scores in both the tenth and twelfth grades, Y10 and
Y12, respectively. For this appendix, we will reduce the complexity of our discussion
and the worked example we offer below by analyzing Y10 and Y12 as two dummy
variables that indicate whether students receive high rather than low test scores.

23For Panel Data Demonstration 1 (see page 273), we considered the effect of Catholic schooling
on tenth and twelfth grade test scores, but we restricted attention, as in the existing literature, to
students who remained in the same types of schools in both grades. For Panel Data Demonstration 2
(see page 365), we considered only the effects of Catholic schooling on tenth grade test scores, which
we modeled using pretreatment outcome measures from the eighth grade.
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U

D10

D12
Y10 Y12

Figure 11.10 The Catholic school effect in the tenth and twelfth grades as a dynamic
treatment regime.

Consider the directed graph in Figure 11.10. In order to keep the discussion as
simple as possible, Figure 11.10 does not include any observed variables other than
the two treatment indicator variables, D10 and D12, and the two outcome indicator
variables, Y10 and Y12. Additional observed variables would affect any or all of these
four variables, as in the other demonstrations in this book that analyze the Catholic
school effect. It is appropriate to think of Figure 11.10 as the graph that applies within
one stratum defined by some combination of other variables. This simplification implies
that, unlike in the other demonstrations, we ignore the determinants of D10 (see, for
example, Equations (5.24) and (5.25) in Matching Demonstration 4). This means that
we are holding aside all of the other complications shown in prior demonstrations
and now considering an additional set of complications that would still remain if we
could solve all of the other complications explained in prior demonstrations. A more
realistic model would include variables that would allow us to demonstrate all of the
complications at once, but our presentation would then lose focus on the issues we
wish to explain in this appendix.

For Figure 11.10, we also assume that whether a student is enrolled in a Catholic
school by the twelfth grade, D12, is solely determined by whether the student was
enrolled in a Catholic school in tenth grade, D10, and by how successful the student
was on the test at the end of tenth grade, Y10. Thus, the directed graph allows for
persistence effects (i.e., students may be more likely to be in the same type of school in
twelfth grade as in the tenth grade) and also the possibility that some students change
school type based on test performance at the end of the tenth grade. For example,
the directed graph is consistent with scenarios where students in public schools who
perform poorly at the end tenth grade switch to Catholic schools thereafter.

Finally, note the restricted way in which the unobserved variable U structures Y10

and Y12 and nothing else in the graph. Because we have assumed that we are analyzing
Figure 11.10 within a stratum defined by variables that may also determine treatment
assignment, the unobserved variable U in Figure 11.10 is not one of the variables that
define these strata. U might reflect the portions of innate intelligence, motivation,
or other variables that determine the test score outcomes but that have no role in
structuring treatment selection decisions. The critical assumption in the model is that
selection into D12 is solely a function of observed variables, in this case D10 and Y10.
Unobserved variables that determine D12 and either Y10 or Y12 are assumed not to
exist. As we discuss below, this assumption is the key to identification.
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To clarify the language of treatment regimes, note that Figure 11.10 represents a
dynamic treatment regime because the second treatment, D12, is determined by an
intermediate outcome, Y10, that is itself determined by the initial treatment, D10. If
Y10 were omitted from Figure 11.10, we would then have a nondynamic treatment
regime because the second treatment, D12, would be determined only by the first
treatment, D10, in addition to idiosyncratic determinants unrelated to all else. And, if
the dependence of D12 on D10 did not exist, we would have a fixed treatment regime
consisting of the two treatments, D10 and D12, that could be analyzed separately
without concern for the implications of one analysis on the other.

Independent of whether Figure 11.10 contains Y10 or not, or whether D10 is a
cause of D12 or not, the directed graph represents a structure of effects that is equiv-
alent to a sequentially randomized experiment. Because D10 is a function of no other
variables, it is akin to a randomized treatment (again, within strata of observed and
unobserved variables that structure treatment assignment in the worlds considered for
prior demonstrations). Analogously, D12 can be thought of as having been determined
by a randomization scheme where the probability of receiving the treatment in the
twelfth grade is determined by two specific observed variables, D10 and Y10. Since
the directed graph in Figure 11.10 represents a sequentially randomized experiment,
ignorability holds with the result that the total causal effects of D10 on Y10, D10 on
Y12, and D12 on Y12 are all identified. We explain this result, and related results for
direct causal effects, in considerable detail below.

General Identification Conditions

As noted in the introduction to this appendix, our concern now is whether it is pos-
sible to identify the causal effects of a fixed regime (i.e., the effects of combinations
across time of Catholic and public school enrollment) from data generated as part
of a dynamic treatment regime. Identification of the causal effect of a fixed regime
of treatments holds under three conditions, two of which are demanding and worth
explaining.24 The most important condition is that sequential ignorability holds (i.e.,
conditional on observables, treatment assignment in each time period is independent of
the potential outcomes). This assumption is equivalent to maintaining that no unob-
served confounders exist that determine both the treatments and outcomes. In general,
this condition is untestable and must be defended by appeals to substantive knowledge.
We have discussed this issue extensively in previous chapters.

For this appendix, we are assuming away this problem by focusing on an analysis
within a stratum where we can assume that sequential ignorability holds. Return to
the directed graph in Figure 11.10. The fact that it has the same structure as the
directed graph that would be an appropriate representation of a sequentially random-
ized experiment means that ignorability holds for both D10 and D12 separately and
together. This result can be confirmed by noting that neither D10 nor D12 is affected
by any unobserved confounders that also affect either Y10 or Y12.

The second condition is known as positivity. For this condition, it must be the
case that at least some individuals have followed each logically possible treatment

24The third condition is what is known as consistency, which states that the value of the realized Y
under a specific treatment condition is equal to the potential outcome under that treatment. Hernan
(2005) discusses situations where consistency may not hold.



11.5. Appendix to Chapter 11: Time-Varying Treatment Regimes 397

regime within each stratum. When there are a large number of possible treatment
combinations and/or strata, nonpositivity can be a serious problem because there
may well be too few individuals (indeed, perhaps none) in particular combinations of
treatments and the strata defined by observed confounders. As with any stratification
procedure, one may face the “curse of dimensionality.” As we discuss below, the method
of G-computation, which is a stratification-type procedure, is often impractical because
of the curse of dimensionality (even though G-computation is a very useful way to think
through identification results).

A Specific Setup of the Dynamic Treatment Regime Variant
of the Catholic School Example

In order to demonstrate how various methods do or do not work, we now introduce
a hypothetical empirical dataset that is consistent with the directed graph in Figure
11.10. We do so in two steps. First, we posit a set of equations consistent with Figure
11.10. To keep matters simple, we use linear equations, although we will allow for
interactions. Second, we generate a table of the expected values for the endogenous
variables in the directed graph in Figure 11.10. We use expected values as opposed
to a fully simulated dataset because this setup makes it easier to demonstrate that a
particular estimation strategy will generate consistent estimates of effects of interest.

First, we assume that E[D10] = .20 because 20 percent of the students are enrolled
in Catholic schools in the tenth grade. U is a dummy indicator variable that measures
whether a student is high, as opposed to low, on unobserved characteristics, such as
motivation, effort, and mental ability. We assume that E[U ] = .60 because 60 percent
of students are in the high category for U . With these distributions for D10 and U , we
set the expected value of test scores at the end of tenth grade as

E[Y10|D10,U ] = .1+ .2D10+ .4U. (11.37)

Enrolling in a Catholic school increases the probability that a student will be in the
high-test-score group by .2. In addition, being in the high category of the unobserved
variable (U = 1) increases the probability of being in the high-test-score category
by .4.25

25Note that we have not defined E[Y10|D10,U ] directly in values of underlying potential outcomes.
We could do so by working toward a conditional expectation function analogous to Equation (11.37)
by starting with three equations:

Y 0
12 = .1+ .4U +υ0,

Y 1
10 = Y 0

10 + .2+υ1,

Y10 =D10Y
1
10 +(1−D10)Y

0
10.

We will not use this type of setup for this example because we will not focus on individual-level
variability of causal effects and because the Markov structure of Figure 11.10, along with binary
variables, allows us to fit saturated models to recover all conditional expectations that match those
we could define explicitly with potential outcomes. This is consistent with the dynamic treatment
regime literature, where Markov assumptions for (sometimes implicit) causal graphs are often used
to allow for a consideration of causal effects that are structured by how observed treatment variables
have effects on observed outcome variables. These observed outcome variables could be defined in
terms of underlying potential outcomes.
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Having set the distributions for D10 and Y10, we then set enrollment in Catholic
schools in the twelfth grade as

E[D12|D10,Y10] = .5+ .4D10− .4Y10+ .4(D10×Y10), (11.38)

which specifies a cross-product interaction betweenD10 and Y10. Accordingly, Equation
(11.38) indicates that, for students enrolled in public schools in the tenth grade (D10=
0) and in the low-test-score group (Y10 = 0), their probability of being in a Catholic
school in the twelfth grade is .5. However, for students enrolled in a public school in
tenth grade (D10 = 0) and in the high-test-score group (Y10 =1), their probability of
being in Catholic school in the twelfth grade is only .1. We specify this pattern to give
the treatment regime a dynamic structure where students doing well in public schools
at the end of the tenth grade are much less likely to decide to switch enrollment status
to enter into a Catholic school in the twelfth grade. Finally, for students enrolled in
Catholic schools in the tenth grade (D10 = 1), the probability of being in a Catholic
school in the twelfth grade is .9, regardless of whether or not these students are in the
high-test-score or the low-test-score groups at the end of the tenth grade.

To complete the specification of the example, we set the expected value of the test
scores at the end of the twelfth grade as

E[Y12|D10,D12,U ] = .2+ .2D12+ .1(D10×D12)+ .4U. (11.39)

The unobserved variable U has the largest effect on the expected value of Y12 (but, at .4,
has the same effect on the expected value of Y12 as for Y10). Being in a Catholic school
in the twelfth grade increases the probability of being in the high-test-score group by
.2. However, being in a Catholic school in the tenth grade only increases the chances
of being in the high-test-score group in the twelfth grade if one was also enrolled in a
Catholic school in the twelfth grade. This repeated treatment effect generates a boost
of .1 for students enrolled in Catholic schools in both the tenth and twelfth grades.26

Table 11.5 presents expected values for the endogenous variables, Y10, D12, and Y12

based on this setup. Note that there are four variables, D10, Y10, D10, Y12, and that
each takes on the value 0 and 1. The table reports the conditional expected values for
the three endogenous variables: E[Y10|D10], E[D12|D10,Y10], and E[Y12|D10,Y10,D12].
The final column of Table 11.5 presents the proportion of the sample in the 16 strata
defined across the 4 dichotomous variables. These values can be used to calculate
additional conditional expectations defined by combinations of values for the variables
in the first four columns.

Identification of Total and Direct Effects for the Example For total causal

effects, which have been the focus of this book, the key identification results in the
dynamic treatment regime literature are given by the back-door criterion. In cases
where the total causal effect is not equivalent to the direct causal effect (e.g., the effect
of D10 on Y12 in Figure 11.10, which has both a direct effect, D10→ Y12, and two

26In other words, there is an implicit term in Equation (11.39) of 0×D10 because enrollment in
a Catholic school in the tenth grade has no effects on twelfth grade test scores, which implies that
students do not carry with them a lagged effect of tenth grade Catholic schooling when they switch
from Catholic schools to public schools for the eleventh and twelfth grades.
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Table 11.5 Expected Values for the Endogenous Variables in the Directed Graph in
Figure 11.10

D10 Y10 D12 Y12 E[Y10|D10] E[D12|D10,Y10] E[Y12|D10,D12,Y10] Proportion

1 1 1 1 .460 .900 .811 .079

1 1 1 0 .460 .900 .811 .018

1 1 0 1 .460 .900 .511 .006

1 1 0 0 .460 .900 .511 .005

1 0 1 1 .460 .900 .657 .054

1 0 1 0 .460 .900 .657 .028

1 0 0 1 .460 .900 .357 .003

1 0 0 0 .460 .900 .357 .006

0 1 1 1 .260 .100 .753 .020

0 1 1 0 .260 .100 .753 .007

0 1 0 1 .260 .100 .553 .135

0 1 0 0 .260 .100 .553 .109

0 0 1 1 .260 .500 .582 .154

0 0 1 0 .260 .500 .582 .110

0 0 0 1 .260 .500 .382 .101

0 0 0 0 .260 .500 .382 .163

indirect effects, D10→ Y10→D12→ Y12 and D10→D12→ Y12), the key identification
results are given by a related literature on causal mediation; see Pearl (2009), Wang
and Sobel (2013), and VanderWeele (in press). Accordingly, the first step in an identi-
fication analysis, which we offer below for the Catholic school example, is to consider
the total causal effects in Figure 11.10 by consulting the back-door criterion. The
results that we offer below will be consistent with many others offered in Chapters 4
through 7. We then give sustained attention to the identification of direct effects, con-
centrating on what have been labeled the “controlled direct effects” in the literature
on causal mediation. These effects have not been considered in this book up until now
in any explicit way, although the careful reader will have seen references to them in
the details of Chapter 10. Our identification analysis will make use of the conditional
expectations reported in Table 11.5, with reference to Equations (11.37)–(11.39) that
generate them. In the section that follows, we will then discuss how to estimate these
identified effects from a single sample of data.

Total Effects. Table 11.6 indicates which of the eight possible total causal effects
in Figure 11.10 are identified, as well as the method that would need to be used in
order to consistently estimate those that are identified.27 Most of the identification
results in Table 11.6 are not surprising, although the last three differ from others that

27The fact that all of the total effects of observed variables in Figure 11.10 are identified means that
we can test whether they are equal to 0 or not and thus at least partially consider the appropriateness
of the directed graph as a whole. Elwert (2013, table 13.1) gives an example of how such testing can
be organized.



400 Chapter 11. Repeated Observations and the Estimation of Causal Effects

Table 11.6 Identification Status of the Total Causal Effects in Figure 11.10

Total Effect Identified? Method for Estimation

1. U →Y10 No

2. U →Y12 No

3. D10 →Y10 Yes Unconditional association

4. Y10 →D12 Yes Condition on D10

5. D12 →Y12 Yes Condition on D10 and Y10

6. (Y10 →D12 → Y12) Yes Front-door combination of
already identified effects
Y10 →D12 and D12 → Y12

7. (D10 →D12)+ (D10 →Y10 →D12) Yes Unconditional association

8. (D10 → Y12)+ (D10 →D12 →Y12) Yes Unconditional association

+(D10 → Y10 →D12 →Y12)

we have considered explicitly in this book. We will examine these eight effects in the
order in which they are listed Table 11.6, and they fall into five distinct identification
patterns according to the order in which they are listed.

First, because is U is unobserved, the total effects of U on both Y10 and Y12 are
not identified by the observed data. Second, because D10 and Y10 are not connected
by any confounders that generate a back-door path, it follows that their unconditional
association identifies D10→ Y10. For our hypothetical data, the effect is equal to the
difference in the expected values of Y10 for the two values of D10,

E[Y10|D10 =1]−E[Y10|D10 =0]= .460− .260

= .200,

given in Table 11.5. Nonetheless, recall that this result follows from the construction of
the example, where we have assumed that we are analyzing the Catholic school effect
within a stratum where Figure 11.10 can be accepted as reasonable.

Third, the next two total effects are identified by conditioning that is warranted by
the back-door criterion. For the effect Y10→D12, three back-door paths are present:

1. Y10←D10→D12,

2. Y10←D10→Y12←D12,

3. Y10←U→ Y12←D12.

Without any conditioning, paths 2 and 3 are blocked by the collider Y12. However,
path 1 remains unblocked and generates a noncausal association between Y10 and D12.
When D10 is conditioned on, all three back-door paths are blocked and a consistent
estimate of the effect Y10→D12 can be obtained. Similarly, for the effect D12→ Y12,
four back-door paths are present:

1. D12←D10→ Y12,
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2. D12← Y10←D10→Y12,

3. D12← Y10←U→ Y12,

4. D12←D10→Y10←U→ Y12.

In the absence of conditioning, path 4 is blocked by the collider Y10, while paths
1, 2, and 3 remain unblocked. If only D10 is conditioned on, paths 1, 2, and 4 are
blocked, but path 3 remains unblocked. If only Y10 is conditioned on, paths 2, 3, and
4 are blocked, but path 1 remains unblocked. If both D10 and Y10 are conditioned
on, then all four back-door paths are blocked and a consistent estimate of the effect
D12 →Y12 can be obtained.

Fourth, the total causal effect of Y10 on Y12, which is a two-edge directed path
Y10→ D12→ Y12, is also identified. This result follows from a double consideration
of the back-door criterion, which is the front-door identification strategy presented
in Chapter 10. The edge-by-edge identification results that constitute the front-door
identification strategy are given in the corresponding rows of the table immediately
above the row for the total effect of Y10 on Y12, and as discussed already.

Fifth, the final two total effects are identified but are different because they are
composed of both a direct effect and one or more indirect effects through chains of
mediation. The total causal effect ofD10 onD12 (which is composed of the two directed
paths D10→Y10→D12 and D10→D12) is identified by the unconditional association
between D10 and D12 because no back-door paths between D10 and Y12 are present
that generate confounding. Likewise, the total causal effect of D10 on Y12, which is
composed of the three directed paths (D10→Y10→D12→Y12, D10→D12→Y12, and
D10→ Y12) is identified by the unconditional association between D10 and Y12, again
because no back-door paths are present that generate confounding. Note, however,
that we have established these last two identification results by construction of the
example, just as for our prior consideration of the total effect of D10 on Y10.

Overall, the directed graph in Figure 11.10 has a simple structure, allowing for
the estimation of all total causal effects of the observed variables, including the total
effects of D10 on both Y10 and Y12 as well as the total causal effect of D12 on Y12. The
simple structure yields straightforward identification results because Figure 11.10 is
equivalent to a sequential randomized experiment.

Direct Effects. Consider now the identification of direct effects, ignoring those
that are equal to their total effects (i.e., D10→Y10). Two such direct effects are present
in Figure 11.10, one of which is straightforward and of secondary interest (D10 →
D12) and one of which is not straightforward but of primary interest (D10 → Y12).
These effects are identified, but they are not identified using the back-door criterion to
warrant conditioning variables (because no back-door paths confound these two direct
effects).

To begin to appreciate the complications, it is useful to consider how the conditional
expectations in Equations (11.38) and (11.39) structure these direct effects. Consider
first the direct effect D10 →D12. Here, the direct effect varies with the two values of
Y10 because of the nature of the dynamic treatment regime. We can use Equation
(11.38) to see how these effects were set by construction. The first step is to generate
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the conditional expectations that will define the direct effects:

E[D12|D10 =1,Y10 =1]= .5+ .4(1)− .4(1)+ .4(1× 1)
(11.40)

= .9,

E[D12|D10 =0,Y10 =1]= .5+ .4(0)− .4(1)+ .4(0× 1)
(11.41)

= .1,

E[D12|D10 =1,Y10 =0]= .5+ .4(1)− .4(0)+ .4(1× 0)
(11.42)

= .9,

E[D12|D10 =0,Y10 =0]= .5+ .4(0)− .4(0)+ .4(0× 0)
(11.43)

= .5.

These values are also given in the sixth column of Table 11.5.
The second step is take the values yielded by Equations (11.40)–(11.43) and then

calculate what have become known as “controlled direct effects” in the literature on
mediation, direct, and indirect effects (see Pearl 2001, 2009, 2012a, 2012b; VanderWeele
2009a, 2010; Wang and Sobel 2013):

CDED10→D12 (Y10 =1)

=E[D12|D10 =1,Y10 =1]−E[D12|D10 =0,Y10 =1] (11.44)

= .9− .1

= .8,

CDED10→D12(Y10 =0)

=E[D12|D10 =1,Y10 =0]−E[D12|D10 =0,Y10 =0]
(11.45)

= .9− .5

= .4.

These two controlled direct effects for D10→D12 are two distinct components of the
direct effect, each of which can be calculated when Y10 is set to one of its two values of
0 or 1. The label “controlled” refers to the action of setting the value for the variable
Y10 before calculating the effect of the primary causal variable on the outcome variable
of interest.

When controlled direct effects are identified, then the direct effect can be considered
identified. In other words, the direct effect is identified because all of its component
effects are identified.28 To understand this result, notice first that all of the calculations

28Nonetheless, one may prefer to have a single value for a direct effect, rather than multiple values for
each controlled direct effect. The most common single-value direct effect is what has been labeled both
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carried out for Equations (11.40)–(11.46) use values for conditional expectations and
probabilities that are functions in observed variables only. As such, if a sample of
infinite size were available, we could exactly calculate these effects for such a sample
because the sample values would be exactly equal to these population values. This
explanation, however, is too shallow. The deepest explanation can be found in the
primary literature on results that have been established for graphs that have a Markov
structure; see Pearl (2009), after reading our appendix to Chapter 3. The core idea is
that the simple structure of the graph in Figure 11.10, where no unblocked back-door
paths are present between the two treatment variables, ensures that we can define
the conditional expectations using Equations (11.37)–(11.39) and then assert that
differences in the estimated values of the conditional expectations on the left-hand
sides of Equations (11.40)–(11.43) are causal contrasts that identify controlled direct
effects. Consider a counterexample for insight. If the graph in Figure 11.10 cannot be
defended for the substantive example because an unobserved confounder of D10 and
D12 exists, such that a back-door path D10←C→D12 exists where C is unobserved,
then the conditional expectations that define the controlled direct effects in Equations
(11.44) and (11.45) would not identify causal effects. The difference between the sample
analogs to these conditional expectations, such as

EN [di12 =1|di10 =1,yi10 =1]−E[di12 =1|di10 =0,yi10 =1],

would not converge to the relevant controlled direct effect, CDED10→D12(Y10 = 1)
because the confounder C generates additional noncausal dependence between D10

and D12 within strata defined by Y10.
29

We find another explanation of this identification result helpful as well because
of the way it connects to the sort of thinking that we have used extensively when

the “pure direct effect” and the “natural direct effect” in the causal mediation literature. Whatever
label chosen, it is a weighted average of the controlled direct effects that correspond to the distribution
of the mediator that exists in the control group. In this case, the natural direct effect is

NDED10→D12
=CDED10→D12

(Y10 =1)×Pr[Y10 =1|D10 =0]

+CDED10→D12
(Y10 =0)×Pr[Y10 =0|D10 =0] (11.46)

= (.8× .34)+(.8× .66)

= .536,

where the values of .34 and .66 for Pr[Y10 = 1|D10 = 0] and Pr[Y10 = 0|D10 = 0] are calculated from
the final column of Table 11.5. In this case, the natural direct effect is a counterfactual quantity: the
Catholic school persistence effect, net of the dynamic nature of the treatment regime that we have
assumed by construction exists. Thus, apart from how test score performance is determined in the
tenth grade, the estimate suggests that the probability of entering a Catholic school in the twelfth
grade is higher by .536 if a student was enrolled in a Catholic school in the tenth grade. We do not
find this counterfactual single-value direct effect to provide any additional information beyond the
controlled direct effects. In the broader literature on causal mediation, natural direct effects yield
effects that are more informative, typically when the mediator represents the primary substantive
mechanism that generates the total effect.

29In the causal graph literature, this identification result follows from the Markov structure of
the graph, which allows all differences in the conditional expectations of observed variables in the
pre-intervention graph to be equal to their under-intervention differences. These equalities could be
made more explicit by using either potential outcome notation or Pearl’s do(.) operator. When the
graph has a Markov structure, such representations are redundant, as we explained in the appendix
to Chapter 3.
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invoking the back-door criterion in this book. Consider the following graphical expla-
nation for the role of conditioning in calculating controlled direct effects. In order to
estimate the controlled direct effects, we need to condition on Y10. The basic idea
here is that we need to set the indirect effect of D10 on Y12 to 0 by blocking the
directed path D10 → Y10 → D12 in order to then calculate the separable controlled
direct effects. As a result, conditioning is essential to the calculation of these effects.
Yet, note also that Y10 is a collider on a path that begins atD10 and ends at D12, which
is D10→ Y10←U → Y12←D12. Although this path is not a back-door path between
these two variables (because it does not begin with D10←), conditioning on Y10 does
nonetheless induce an association between D10 and U . Fortunately, this induced asso-
ciation is blocked by a second collider on the same path, Y12. Accordingly, we can
see that conditioning on Y10 effectively sets the indirect path to 0 without inducing
any unwanted noncausal associations between D10 and D12. This result suggests that
a straightforward approach for the estimation of the direct effect D10 → D12 is to
calculate the conditional associations between D10 and D12 for each value of Y10.

To fully appreciate the depth of the issues involved in the dynamic treatment regime
literature, we need to consider the direct effect of D10 on Y12, which is D10→ Y12 in
Figure 11.10. This direct effect is identified according to some of the same reasoning
just laid out for the direct effect of D10 on D12, with some very important differences
we will fully explain below. First note that the direct effect D10→Y12 is a much more
important substantive effect to estimate because it is a net average treatment effect for
the treatment introduced in the first time period on the final outcome observed. It is
also a more complicated direct effect to consider because the indirect effect of D10 on
Y12 traverses two separate directed paths, D10→D12→ Y12 and D10→ Y10→D12→
Y12. Fortunately, because the directed path through Y10 lies on top of the directed path
through D12, the indirect effect through Y10 is fully absorbed into the distribution of
D12. Accordingly, and following the reasoning above, we can set both indirect effects
to 0 by conditioning in D12.

As was the case for the direct effect D10→D12, the first step to developing an
explanation for the identification results is to generate the conditional expectations
that define the controlled direct effects, plugging all combinations of values for D10

and D12 into Equation (11.39) while allowing U to vary:

E[Y12|D10 =1,D12 =1,U ] = .2+ .2(1)+ .1(1× 1)+ .4U
(11.47)

= .5+ .4U,

E[Y12|D10 =0,D12 =1,U ] = .2+ .2(1)+ .1(0× 1)+ .4U
(11.48)

= .4+ .4U,

E[Y12|D10 =1,D12 =0,U ] = .2+ .2(0)+ .1(1× 0)+ .4U
(11.49)

= .2+ .4U,

E[Y12|D10 =0,D12 =0,U ] = .2+ .2(0)+ .1(0× 0)+ .4U
(11.50)

= .2+ .4U.
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Note that, even though Y10 lies on a path that is part of the indirect effect of D10 on
Y12, Y10 is absent from Equation (11.39). According to the graph, this effect is fully
absorbed into the effect of D12 on Y12. The controlled direct effects are then

CDED10→Y12(D12 =1)

=E[Y12|D10 =1,D12 =1,U ]−E[Y12|D10 =0,D12 =1,U ]
(11.51)

= (.5+ .4U)− (.4+ .4U)

= .1,

CDED10→Y12(D12 =0)

=E[Y12|D10 =1,D12 =0,U ]−E[Y12|D10 =0,D12 =0,U ]
(11.52)

= (.2+ .4U)− (.2+ .4U)

= 0,

where the effects of U cancel.30 These controlled direct effects match the values of
Equation (11.39) by construction, and they indicate that being in a Catholic school in
the tenth grade has no direct effect on test scores in the twelfth grade unless one is in
a Catholic school in the twelfth grade.31

We again must ask: How do we know that the controlled direct effects are all
identified? As for the direct effect D10→D12, the core of the answer is the same as for
the direct effect D10→ Y12. It is still the case that the controlled directed effects are
identified by the observed data based of the results established for graphs that have
a Markov structure (again, see Pearl 2009 after reading our appendix to Chapter 3).

30Although we did not specify a value for U in Equations (11.47)–(11.50), and simply allowed U
to cancel in the calculation of the controlled direct effects, we could have developed eight separate
conditional expectations because we know the values of U and the probability distribution of U . We
do not do so because this information is not typically available to the analyst. It would also require us
to then average over these eight conditional expectations to get to the four values for the conditional
expectations that can be used to directly calculate the true controlled direct effects. Instead, we show
how to solve for these values using other methods in the next section.

31For completeness, the natural direct effect is then

NDED10→Y12
=CDED10→Y12

(D12 =1)×Pr[D12 =1|D10 =0] (11.53)

+CDED10→Y12
(D12 =0)×Pr[D12 =0|D10 =0]

= (.1× .36)+(0× .64)

= .036,

where the values of .36 and .64 for Pr[D12=1|D10 =0] and Pr[D12=0|D10=0] are calculated from the
final column of Table 11.5. The natural direct effect is small and is again a counterfactual quantity:
the effect of Catholic schooling in the tenth grade on test scores in the twelfth grade, net of the
dynamic nature of the treatment regime that we have assumed by construction exists. Thus, apart
from how Catholic school attendance is determined in the twelfth grade, the estimate suggests that
the probability of being in the high-test-score group increases by .036 if a student was enrolled in a
Catholic school in the tenth grade. This counterfactual effect is an example of a natural direct effect
that probably does not deserve attention. The weighting in Equation (11.53) is a direct function of
the number of students who enter Catholic schools in the twelfth grade, having been in public schools
in the tenth grade, and this is precisely the group for whom the controlled direct effect is equal to 0.
In this case, the controlled direct effects are sensible and have clear interpretations.
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The key feature that establishes identification is again the absence of confounders that
would generate noncausal associations through unblocked back-door paths between
the treatment and outcome variables (in this case between D10 and Y12 and between
D12 and Y12).

Although identification is again positive, all of the shallower explanations we offered
for the direct effect D10→D12 no longer easily apply. Instead, the same explanatory
strategies reveal complexities that suggest why a clever set of techniques has been
developed to estimate direct effects of these types. When we discussed the identifica-
tion of the direct effect D10→D12, we were able to point out that sample analogs
to the conditional expectations on the left-hand sides of Equations (11.40)–(11.43)
would converge to the true values for those conditional expectations as the sample size
approaches infinity. When considering the direct effect D10→Y12, an equivalent claim
is true for the conditional expectations on the left-hand sides of Equations (11.47)–
(11.50), but with one debilitating caveat: We cannot form the sample analogs to the
true conditional expectations because U is an unobserved variable. And, if we try
to estimate controlled direct effects by recklessly substituting in sample analogs to
E[Y12|D12,D10] for what would be the proper sample analogs to E[Y12|D12,D10,U ]
that are impossible to generate from the observed data, we will obtain inconsistent
and biased estimates of the controlled direct effects. The usual culprit produces this
bias: a collider. This complication can be seen in the graph, as we now explain.

Recall our prior graphical explanation for the crucial role that conditioning on the
mediator played in the identification of the controlled direct effects for D10→D12. We
explained that conditioning on Y10 effectively sets the indirect effect path D10→Y10→
D12 to 0, enabling identification of the controlled direct effects within strata defined by
the mediator, Y10. For the direct effect D10→Y12, the situation is more complicated. In
order to estimate the controlled direct effects in this case, we again need to condition
in a way that sets the indirect effect to 0. But, now we need to condition in a way that
blocks two paths,D10→D12→Y12 andD10→Y10→D12→Y12. The obvious candidate
conditioning variable is D12 because it lies on both of these paths. At the same time,
it should also be obvious that Y10 is not a good candidate for conditioning. Not only
would conditioning on Y10 fail to block the path D10→D12→ Y12, Y10 is a collider
on the path D10→ Y10←U → Y12 that begins at D10 and ends at Y12. Conditioning
on Y10 would induce an association between D10 and U , which would then generate a
noncausal association between D10 and Y12 because U is a direct cause of Y12.

Upon closer inspection, however, we can see that D12 is a descendant of Y10. As a
result, conditioning on D12 will also induce an association between D10 and U , which
then generates a noncausal association between D10 and Y12 within strata defined by
the mediator D12. Given this predicament, it is not obvious how we can condition on
the D12 to set the indirect effect to 0 without triggering a new source of confounding.
Yet, without conditioning in a way that will set the indirect effect to 0, we cannot
estimate the controlled direct effects that according to the causal graph literature are,
in fact, identified because of the absence of unobserved confounders. This predicament
is often referred to colloquially in this literature as “damned if you do and damned if
you don’t.”

Before too much despair accumulates, note that if we could find a way to condition
on D12 in order to set the indirect effects to 0 and then also adjust away the induced
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bias that travels by way of U , we would be able to estimate the controlled direct effects.
The signal contribution of the literature on dynamic treatment regimes is a solution
to this predicament, which we will explain below when presenting estimation methods
in the next section. The key innovation is to use the relationships that constitute the
indirect effects (i.e., the joint probability distribution of D10, Y10, and D12) to adjust
away the induced confounding that travels by way of the unobserved variable U when
we condition on D12, Y10, or both.

Estimation Strategies

We will not discuss how to estimate total effects in detail because the strategies should
be obvious. As shown in Table 11.6, many of these effects can be estimated using the
naive estimator because unconditional associations identify the effects. Even when this
is not the case, standard back-door conditioning estimators can be used to estimate
the others. Instead, we will focus in this section on the two direct effects, D10 →
D12 and D10→ Y12. Estimation of the first of these effects is straightforward, once
the identification result is known. Estimation of the second of these effects is not
straightforward and is the focus of the dynamic treatment regime literature.

Estimating the Direct Effect of D10 on D12. How would one estimate the
controlled direct effects of D10 on D12 in a finite sample? Assuming that conditions
such as positivity are met for the available data, our identification explanation in the
section above suggests one straightforward method. The researcher estimates sample
analogs to the conditional expectations on the left-hand sides of Equations (11.40)–
(11.43), which would be

EN [di12 =1|di10 =1,yi10 =1] for E[D12|D10 =1,Y10 =1],

EN [di12 =1|di10 =0,yi10 =1] for E[D12|D10 =0,Y10 =1],

EN [di12 =1|di10 =1,yi10 =0] for E[D12|D10 =1,Y10 =0],

EN [di12 =1|di10 =0,yi10 =0] for E[D12|D10 =0,Y10 =0].

Differences between these four estimated conditional expectations can then be taken
to estimate the controlled direct effects in Equations (11.44) and (11.45).32

In the literature on dynamic treatment regimes, this straightforward estimation
strategy is labeled G-computation (Robins 1986; Robins and Hernán 2009), where the
“G” is an abbreviation of “General.” G-computation is one of three related approaches
to the estimation of treatment effects for dynamic treatment regimes. For examples
such as this one, where we have three binary variables, positivity, and no emergent
conditioning bias from colliders, G-computation takes a particularly simple form and
is nearly certain to be feasible. As such, the other two estimation methods, which we
detail in the next section, would not need to be used.

Estimating the Direct Effect of D10 on Y 12. To estimate the direct effect of
D10 on Y12, the dynamic treatment effect literature offers three methods. The first, G-
Computation (Robins 1986), was just presented, and it conveys the core identification

32In addition, these estimated controlled direct effects can then be combined into a weighted average,
using the sample analog to Pr[Y10 = 1|D10 =0], which would then yield a consistent estimate of the
natural direct effect.
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Figure 11.11 An illustrative directed graph for G-computation.

challenge and how it is resolved. As we will show in this section, it is more compli-
cated for the direct effect of D10 on Y12. The second approach, known as the estima-
tion of marginal structural models (MSMs), is feasible for research scenarios in which
G-Computation is infeasible because of the curse of dimensionality (Robins 1998, 1999,
2000). We will also briefly discuss a third approach, G-Estimation, and the intuition
behind it.

G-Computation. Consider the simple example in Figure 11.11 of a directed graph
where D is a single fixed treatment and Y is an outcome of interest. As in many other
examples in this book, the association between D and Y does not identify the causal
effect of D on Y because of the back-door path D←O→ Y . However, because O is
observed, we can condition on it and generate a consistent estimate of D→ Y for the
reasons discussed extensively in Chapters 4 through 7.

If D and O are discrete, then the overall causal effect of D on Y is easily estimated
via stratification (see Matching Demonstration 1 on page 145). Two different strategies,
however, are possible. The standard approach would be to first estimate the causal
effect of Y within strata of O and then calculate the overall causal effect of D on
Y as the weighted average of the causal effects across strata where the weights are
proportional to stratum size; see Equations (5.5) and (5.6). A second approach would
be to estimate the expectation of each of the potential outcomes, Y 1 and Y 0, within
each stratum of O as

EN [yi|di =1,oi = o]
p−→E[Y 1|O= o], (11.54)

EN [yi|di =0,oi = o]
p−→E[Y 0|O= o].

Weighted sums of these stratified estimates can then be taken, which will be consistent
estimates of E[Y 1] and E[Y 0] because

E[Y 1] =
∑
O

E[Y 1|O= o]Pr(O= o), (11.55)

E[Y 0] =
∑
O

E[Y 0|O= o]Pr(O= o). (11.56)

To then estimate the ATE, the researcher takes the difference between the sample
analogs to the expectations in Equations (11.55) and (11.56).

This general approach to estimation is G-computation, and Equations (11.55) and
(11.56) are an example of what are labeled G-formulas. The “G” for “General” is
meant to indicate that this procedure represents a general approach to the estimation
of a causal effect. If a causal effect is identified, and ignorability holds, then in principle
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a causal effect can be estimated using G-computation. A simple but key requirement is
that we are considering average causal effects defined using expectations. In this case,
causal effects calculated as weighted averages of differences within strata are equal to
causal effects calculated as differences between weighted outcomes across strata.

Consider what G-computation does. G-computation stratifies the sample in order
to estimate the expected potential outcome for each possible treatment regime under
the assumption that all individuals have the same treatment status. With consistent
estimates of these expected potential outcomes, estimating the effect of any treatment
regime relative to any other treatment regime then only requires that one calculate the
differences between these expectations. An important point in this literature is that
controlled direct effects can be thought of as differences between compound effects for
different combinations of treatments, as we will demonstrate below.

Now consider again the directed graph in Figure 11.10. From a G-computation
perspective, what we want to estimate are the outcomes of Y12 for the four different
regimes (i.e., the four possible combinations of values of D10 and D12). Because sus-
pense offers no explanatory value for this appendix, we will reveal these values before
we show how to estimate them:

E[Y12|D10 =1,D12 =1]= .74, (11.57)

E[Y12|D10 =0,D12 =1]= .64, (11.58)

E[Y12|D10 =1,D12 =0]= .44, (11.59)

E[Y12|D10 =0,D12 =0]= .44. (11.60)

From the values in Equations (11.57)–(11.60), it is trivial to calculate the causal effect
of one regime relative to another.33 Notice this shift in language: from total and direct
effects to alternative treatment regimes. In particular, we can calculate the expected
effect of enrollment in Catholic school in the tenth grade as

E[Y12|D10 =1,D12 =1]−E[Y12|D10 =0,D12 =0]= .74− .44= .3.

Most important for our consideration of direct effects, the values in Equations (11.57)–
(11.60) can be used to calculate the difference in Y12 produced by D10, separately by
the value of D12. These are, in fact, what we labeled the controlled direct effects above:

CDED10→Y12(D12 =1)

=E[Y12|D10 =1,D12 =1]−E[Y12|D10 =0,D12 =1]
(11.61)

= .74− .64

= .1,

33In addition, two equivalences are worth noting at this point. Given the Markov structure of the
graph, the values in Equations (11.57)–(11.60) are equivalent to expected potential outcomes. They
are also equivalent to the conditional expectations in Equations (11.47)–(11.50), averaged over the
distribution of U .
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CDED10→Y12(D12 =0)

=E[Y12|D10 =1,D12 =0]−E[Y12|D10 =0,D12 =0]
(11.62)

= .44− .44

= 0,

but now U is no longer present for reasons we will explain below; see Equations (11.51)
and (11.52) for comparison. In the literature on dynamic treatment regimes, these
differences are simply the effect of Catholic schooling in the tenth grade on test scores in
the twelfth grade calculated first for the regime in which students also attend Catholic
schools in the twelfth grade and then second for the regime in which students do not
attend Catholic schools in the twelfth grade.34 In short, with the values in Equations
(11.57)–(11.60), we can calculate all of the treatment effects we want for all contrasts
across the permissible treatment regimes.

How do we estimate these values with G-computation? We use the appropriate
G-formula:

E[Y12|D10,D12] =E[Y12|D10,D12,Y10 =1]×Pr[Y10 =1|D10]
(11.63)

+E[Y12|D10,D12,Y10 =0]×Pr[Y10 =0|D10].

Although the structure of this G-formula is given by the graph and the identifying
assumptions that it represents, the computed expectation can be interpreted as the
expected outcome for Y12 for the particular combination of values set by interventions
on D10 and D12. The right-hand side is a sum of two products, where each product
includes the appropriate conditional expectation weighted by whether Y10 equals 1 or
0. This weight is conditional on D10, but not D12 (because Y10 is determined by D10

but not by D12).
35

Operationally, we take eight strata defined across all two-way combinations of D10,
D12, and Y10 and then calculate the mean values for Y12. We then average over strata
defined by Y10, conditional on patterns of D12 and D10, to generate the four values in
Equations (11.57)–(11.60).

For this example, the expectations for the relevant eight strata are presented in
the seventh column of Table 11.5. Sample analogs to the conditional expectations will
converge to the true values for these conditional expectations:

EN [y12|d10 =1,d12 =1,y10 =1]
p−→ .811,

EN [y12|d10 =1,d12 =1,y10 =0]
p−→ .657,

EN [y12|d10 =0,d12 =1,y10 =1]
p−→ .753,

EN [y12|d10 =0,d12 =1,y10 =0]
p−→ .582, (11.64)

34In this literature, controlled direct effects are considered differences in compound effects for alter-
native combinations of treatments.

35For completeness, we should note that the G-formula for the direct effect D10→D12 is much
simpler. It is E[D12|D10,Y10] and does not require averaging over any underlying strata.
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EN [y12|d10 =1,d12 =0,y10 =1]
p−→ .511,

EN [y12|d10 =1,d12 =0,y10 =0]
p−→ .357,

EN [y12|d10 =0,d12 =0,y10 =1]
p−→ .553,

EN [y12|d10 =0,d12 =0,y10 =0]
p−→ .382.

Inserting these conditional expectations into the G-formula in Equation (11.63), and
while assuming an infinite sample, we can calculate the desired four values in Equations
(11.57)–(11.60) as

EN [y12|d10 =1,d12 =1]

= .811×PrN [y10 =1|d10 =1]+ .657×PrN [y10 =0|d10 =1]
(11.65)

= (.811× .55)+ (.657× .45)

= .74,

EN [y12|d10 =0,d12 =1]

= .753×PrN [y10 =1|d10 =0]+ .582×PrN [y10 =0|d10 =0]
(11.66)

= (.753× .34)+ (.582× .66)

= .64,

EN [y12|d10 =1,d12 =0]

= .511×PrN [y10 =1|d10 =1]+ .357×PrN [y10 =0|d10 =1]
(11.67)

= (.511× .55)+ (.357× .45)

= .44,

EN [y12|d10 =0,d12 =0]

= .553×Pr[y10 =1|d10 =0]+ .382×PrN [y10 =0|d10 =0]
(11.68)

= (.553× .34)+ (.382× .66)

= .44,

where the conditional probabilities PrN [y10=1|d10=1], PrN [y10=0|d10=1], PrN [y10=
1|d10=0], and PrN [y10 =0|d10=0] are calculated from the final column of Table 11.5.

With the four values produced by Equations (11.65)–(11.68), we can estimate the
causal effect for any two contrasting treatment regimes, as shown above with reference
to the values in Equations (11.57)–(11.60). In effect, the structure of the graph allows
us to collapse the strata defined by Y10 as long as the strata are weighted in accordance
with the conditional probability distributions encoded by the graph. As we will explain
in the next section, there are alternative methods available to achieve this type of
weighted collapsing.
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Figure 11.12 A directed graph for a pseudo-population produced using inverse prob-
ability of treatment weighting.

Alternatives to G-Computation. If there is sufficient data and the appropriate
ignorability assumptions hold, estimating a saturated model via G-computation will
always provide consistent estimates of the causal effect of any one regime relative to
another. From these treatment regime differences, one can then calculate the relevant
controlled direct effects.

However, because of the curse of dimensionality, G-computation-based estimates
can be very imprecise because some conditional expectations will be estimated for
strata with very small samples. In this final section, we consider two alternative
approaches to G-computation that are meant to deal with the curse of dimension-
ality: marginal structural models (MSMs) estimated via inverse probability of treat-
ment weighting (IPTW), and structural nested mean models (SNMMs) estimated via a
G-estimation. Our discussion of the later approach will be brief.

Marginal Structural Models (MSMs). These models are attracting interest in soci-
ology and have been used in several published papers (Wimer, Sampson, and Laub
2008; Sharkey and Elwert 2011; Wodtke, Harding, and Elwert 2011). They are labeled
structural because they estimate a causal effect and marginal because the effect that
is estimated is the marginal effect over a set of collapsed strata. MSMs are attracting
interest because they are feasible when G-computation is not, because they are com-
paratively easy to understand relative to G-estimation (see below), and because they
can be estimated using available software.

Consider the directed graph in Figure 11.12. Notice that D12 is not determined by
either D10 or Y10. As a result, D10 no longer has an indirect effect on Y12 through
Y10 and D12. As a result, there is no reason to condition on either Y10 or D12 when
estimating the causal effect of D10 on Y12 for this graph. Notice also that the path
D10→ Y10←U→Y12 that connects D10 to Y12 is blocked by the collider Y10. As long
as we do not condition on Y10, this path will remain blocked. If the directed graph
in Figure 11.12 described our data, the unconditional association between D10 and
Y12 would identify the (direct) effect of D10 on Y12. It would also be the case that the
unconditional association between D12 and Y12 would identify the effect of D12 on Y12.

Of course, the causal dependence of D12 on D10 and Y10 cannot just be assumed
away. Nonetheless, Robins (1999) showed how one can create a pseudo-population in
which the directed graph in Figure 11.12 can be substituted for the directed graph in
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Figure 11.10. The pseudo-population construction is achieved using the inverse prob-
ability weighting methods we presented in Chapter 7. In particular, after examining
the directed graph in Figure 11.10, one estimates a propensity score model predicting
assignment to D12 as a function of D10 and Y10:

Pr(D12 =1|D10,Y10) =F (D10,Y10). (11.69)

For each individual, the probability of enrolling in a Catholic school in the twelfth
grade can either be estimated nonparametrically from the data if there are a sufficient
number of cases or using a general linear model, such as a logit or probit. We can then
define the weights in two different ways:

For d12i =1: wi, MSM =
1

p̂i
,

For d12i =0: wi, MSM =
1

1− p̂i
,

or

For d12i =1: swi, MSM =
EN [d12 =1]

p̂i
,

For d12i =0: swi, MSM =
1−EN [d12 =1]

1− p̂i
,

where p̂ is the estimated probability for each individual of entering Catholic schooling
in the twelfth grade based on Equation (11.69). Robins and Hernán (2009) refer to
the wi weights as “unstabilized weights” and the swi weights as “stabilized weights.”
Unstabilized weights generally have greater variance and typically lead to wider confi-
dence intervals. As such, stabilized weights are usually recommended, although there
are special circumstances where stabilized weights will produce inconsistent estimates
of causal effects (Robins and Hernán 2009:576).

Table 11.7 presents the pseudo-population proportions that would result from non-
parametric estimation of the weights for the dynamic treatment regime version of the
Catholic school effect we have been analyzing in this appendix. The final column of
this table can be directly compared to the observed population proportions in Table
11.5 that we set by construction for the hypothetical example. If we use these esti-
mated proportions to calculate weighted means of Y12 conditional on values for all four
combinations of D10 and D12, we can then calculate differences to recover the total
effect of D10 on Y12 as well as the two controlled direct effects.

The advantage of MSMs, relative to G-computation, is that we do not have to
calculate the means of Y12 within each stratum (i.e., across Y10 as in our example).
Instead, we estimate weights and then calculate contrasts for Y12 with the weighted
data. This is the same advantage that the propensity-score-based weighting estimators
presented in Chapter 7 have relative to the full stratification estimators presented in
Chapter 5. MSMs still require positivity with respect to all possible treatment regimes,
but they permit sparseness in observed variables that determine treatment assignment,
just as for propensity-score estimators for a fixed-time treatment regime.
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Table 11.7 Pseudo-Population Proportions for
the Directed Graph in Figure 11.12

Pseudo-Population

D10 Y10 D12 Y12 Proportion

1 1 1 1 .041

1 1 1 0 .010

1 1 0 1 .093

1 1 0 0 .037

1 0 1 1 .031

1 0 1 0 .036

1 0 0 1 .021

1 0 0 0 .025

0 1 1 1 .082

0 1 1 0 .020

0 1 0 1 .011

0 1 0 0 .064

0 0 1 1 .145

0 0 1 0 .104

0 0 0 1 .107

0 0 0 0 .173

Accordingly, MSMs can be a very useful approach to dealing with “damned if you
do, damned if you don’t” situations. MSMs, however, are not a panacea and have
several weaknesses. First, and most importantly, even stabilized weights can produce
unusually large weights resulting in imprecise estimates. In Chapter 7, we have dis-
cussed various methods, such as trimming, for dealing with this situation, noting that
these methods will lead to biased estimates. Second, MSMs cannot be used when an
instrumental variable is available. Third, the types of sensitivity analysis (see Chapter
12) that can be done with MSMs are limited (Robins and Hernán 2009:592–93). We
next consider a method, G-estimation (not to be confused with G-computation) that
does not share these problems. Unfortunately, G-estimation is both more difficult to
understand and more difficult to implement.

G-estimation. Our discussion of G-estimation will be brief because our goal is to
give the reader an intuitive understanding of how G-estimation works, with the hope
that when readers encounter these methods, they will have a basic understanding of
the procedure. G-estimation is closely related to the method of generalized estimating
equations (GEE) and other methods-of-moments estimators. G-estimation seeks a set
of estimates that satisfies an orthogonality condition. As we have discussed above,
identification occurs when ignorability holds. Ignorability holds if the potential out-
comes are independent of an individual’s past treatment, conditional on their past
and present covariate history. The intuition behind G-estimation is that one wants to
create a set of predicted counterfactual potential outcomes by modeling the observed
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outcomes. This goal is pursued by searching for a set of parameters that results in
orthogonality of both observed and the predicted potential outcomes with respect to
treatment assignment, conditional on treatment history and current and past covariate
values. Unfortunately, in most cases it is necessary to use a grid search procedure to
find the desired set of parameters, which can require substantial computing power and
time to generate results. Also, as far as we are aware, no software routines have been
shared for use with either commercial or freely available data analysis programs. For
more details on G-estimation, consult (Robins and Hernán 2009:577–92).

Conclusions

We have chosen a simple example where the data are generated from a hypothetical
dynamic treatment regime, and we have then shown how it is possible to identify
static treatment effects from such data. This example is rich enough to convey both
the basic identification results and the clever ways in which estimation is rendered
feasible with the methods developed by Robins and his colleagues. If one’s interest is
in identifying dynamic treatment effects, then identification and estimation are con-
siderably more challenging (see Robins and Hernán 2009). If sequential ignorability
does not hold because confounders such as U in our example determine either or both
of the treatment exposure variables, then the models developed in this literature are
not identified, just as in the case for fixed treatment regimes. In addition, not all esti-
mation issues have been resolved. G-computation is beyond reproach, but it is often
infeasible because of insufficient data. Marginal structural models can be fragile for
the same reasons as the weighted regression estimators discussed in Chapter 7. The
specification of the model that generates the weights must be correct, and the concern
with extreme weights will be present for many applications, especially if some patterns
of treatment exposure are comparatively rare. Finally, G-estimation also requires that
the model predicting potential outcomes be correct, something which may be difficult
to test. In addition to Robins and Hernán (2009), we recommend that readers seek
additional guidance in Chakraborty and Moodie (2013).
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Chapter 12

Distributional Assumptions,
Set Identification, and
Sensitivity Analysis

In this chapter, we consider how analysts can proceed when no observed variables
are available to point-identify and then estimate causal effects using the procedures
explained in prior chapters. We discuss three complementary approaches. First, we
will review the early literature on selection-bias adjustment, which shows clearly how
distributional assumptions about unobservables, when harnessed from within a struc-
tural model, can identify causal parameters of interest. Point identification and esti-
mation utilizing this strategy was frequent before it became clear to researchers in
the 1990s how rarely the required distributional assumptions were warranted for their
applications. The more recent selection-bias adjustment literature offers less restrictive
semiparametric methods, but it also reemphasizes the relative value of instrumental
variables in contrast to distributional assumptions for unobservables.

We will then consider the exact opposite strategy. Rather than place strong and
usually untestable assumptions on the distributional characteristics of unobservables,
the set-identification approach asks what can be learned about particular causal param-
eters by asserting only weak but defendable assumptions about unobserved variables.
Instead of attempting to point-identify average causal effects, the set-identification
approach suggests that it is more credible to try to limit the interval within which an
average treatment effect must fall.

Finally, we will consider the related approach known as sensitivity analysis. Here,
the analyst offers an estimate based on the provisional maintenance of an identify-
ing assumption – most often, ignorability or selection on the observables – and then
assesses the extent to which the estimate would vary as violations of the identifying
assumption increase in severity. These final two modeling strategies are complemen-
tary, and each of them may be an effective path forward when an analyst has low
confidence that any of the methods presented in prior chapters will suffice.

419
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12.1 Distributional Assumptions and Latent

Variable Selection-Bias Models

Heckman’s early work in the 1970s on selection bias, particularly his lambda method,
has received a great deal of attention in the social sciences. His closely related work on
dummy endogenous variables, pursued at the same time, has received far less attention
(see Heckman 1978, 1979). Although completed before most of Rubin and Rosenbaum’s
work on propensity scores, Heckman’s work on dummy endogenous variables can be
understood in relation to the propensity score approach.

Suppose that we are again interested in estimating the average treatment effect
(ATE) for the effect of a binary cause D on an interval-scaled outcome Y. Recall
the treatment selection model from the econometric tradition and Equation (4.7) in
particular:

D̃=Zφ+U. (12.1)

For this equation, D̃ is a latent continuous variable, Z represents observed variables
that determine treatment selection (either instruments for D or determinants of treat-
ment selection that are also determinants of Y ), and φ is a coefficient (or a vector of
coefficients if Z represents more than one variable). Most importantly for these meth-
ods, U represents both systematic unobserved determinants of treatment selection as
well as completely random idiosyncratic determinants of treatment selection. It is the
unobserved systematic determinants in U that generate confounding that cannot be
removed by conditioning on Z, and therefore this model is used to represent selection
on the unobservables. Finally, as in Section 4.3.2, the latent continuous variable D̃ in
Equation (4.7) is related to the treatment selection dummy variable, D, by

D=1 if D̃≥ 0,

D=0 if D̃ < 0,

where the threshold 0 is arbitrary because U has no inherent metric.
Rather than focus on the conditional probability of treatment selection (i.e., directly

on the propensity score Pr[D = 1|Z]), Heckman instead focused on the conditional
expectation function of the latent variable D̃. Using the linearity of Equation (12.1),
he wrote the conditional expectation function as

E[D̃|Zφ,D] =Zφ+E[U |Zφ,D]. (12.2)

Accordingly, the expectation of D̃ is a function in Zφ and D, which therefore varies
across individuals according to characteristics measured by zi, and whether or not
individuals select into the treatment, di. Heckman’s insight was the recognition that,
although one cannot observe ui directly for each individual (unlike zi and di), one can
formulate an expression for a conditional expectation function of U if one is willing to
assert distributional assumptions that imply values for the expectation of U conditional
on Zφ and D. The standard assumption for selection-bias adjustment is that U is
normally distributed with mean 0 and variance 1.1 If f(.) is the normal density function

1In the treatment effects context, it is also common to assert trivariate normality for the distri-
butions of ui, υ0

i , and υ1
i , where the latter two are the individual-level variation in the potential
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and F (.) is the corresponding cumulative distribution function, then standard results
for truncated normal distributions yield the following expressions for the conditional
expectation functions for U :

E[U |Zφ,D=1]=
f(Zφ)

F (Zφ)
, (12.3)

E[U |Zφ,D=0]=
−f(Zφ)

[1−F (Zφ)]
. (12.4)

Equation (12.3) simply gives the formula for Heckman’s λ in a standard sample selec-
tion problem. In the treatment effects context, this expression is the λ for the treat-
ment group (D=1). The full dummy endogenous variable model requires a second λ
for those in the control group (D=0), which is calculated from Equation (12.4). These
two λ’s are then used to form two new regressors,

di×
(
f(ziφ̂)

F (ziφ̂)

)
and (1−di)×

(
−f(ziφ̂)

[1−F (ziφ̂)]

)
, (12.5)

that are specified as adjustment variables alongside other conditioning variables in
the regression model that estimates the effect of D on Y. Thus, the procedure here is
identical to Heckman’s general lambda method for correcting for selection bias, except
that two distinct λ’s are utilized, each of which applies either to the treatment group
or to the control group. Because these supplementary adjustment terms are functions
in ziφ̂ and di, the model is often referred to as a control function estimator.

As many researchers have come to appreciate, estimates from these models can be
very sensitive to assumptions about the distribution of U . This recognition prompted
the development of a second generation of selection-bias estimators that introduced
semiparametric estimation of the treatment selection equation (see Honor and Powell
1994; Pagan and Ullah 1999). And it led to a greater appreciation of a point that
Heckman made clearly in the original development of the approach: sample selection-
bias models are most effectively estimated when the variables in Z include instrumental
variables, so that the added regressors in Equation (12.5) have an exogenous source of
variation unrelated to the distributional assumption placed on U .

More recently, Heckman and Vytlacil (2005, 2007) have offered a latent index model
for heterogeneous treatment effects that can represent latent variable selection-bias
estimators, their semiparametric extensions, and instrumental variable (IV) estima-
tors that satisfy monotonicity assumptions. Although the latent index model accom-
modates the original control function strategy and is consistent with the basic struc-
ture of the potential outcome model, it emphasizes the core identifying power of local
instrumental variables (LIVs) rather than the distributional assumptions about unob-
servables that were heavily relied upon in the applied literature; see our discussion of
local IVs and MTEs in Section 9.3.4. As such, one can read the latent index model
as an appeal for piecewise IV identification of heterogeneous treatment effects, not
for structural identification of average treatment effects by assumptions about the

outcomes; see Section 4.3.2. In addition to the two-stage models explained in this section, these mod-
els can also be estimated by maximum likelihood and nonlinear least squares. See Winship and Mare
(1984, 1992) and Fu, Winship, and Mare (2004) for further discussion.
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distributions of unobservables. In response to this most recent literature, the control
function approach to selection-bias adjustment appears likely to continue to decline
in usage in the applied literature, except in cases where instrumental variables for
treatment selection equations are available.

12.2 Set Identification with Minimal Assumptions

If one cannot (or does not) impose a strong assumption to point-identify and then esti-
mate an average treatment effect, it is natural to wonder about an opposing strategy
for analysis: What can be learned about average causal effects while imposing weaker
but defendable assumptions? In a series of articles and books that have built on less
formalized work of the past, Manski (1994, 1995, 1997, 2003, 2013b) has investigated
plausible values for treatment effect parameters, such as the ATE, that are consis-
tent with the data when weak assumptions alone are maintained. In this section, we
introduce Manski’s work to show that, in most research situations, the observed data
themselves provide some information on the size of average treatment effects without
any assumptions. We then introduce some of the additional assumptions considered
by Manski to show how they bound average causal effects to permissible intervals. We
use the label of “set identification” in contrast to point identification of single values.
Manski often uses the alternative phrase “partial identification,” and many writers
refer to this strategy as an “analysis of bounds.”

12.2.1 No-Assumptions Bounds

To see why the collection of data can bound the range of permissible values for the
ATE, consider a hypothetical example in which we know that both Y 1 and Y 0 are
bounded by 0 and 1, and thus that Y is also bounded by 0 and 1. Examples could
be dichotomous potential outcomes for graduating high school or not in response to
two causal states, such as Catholic schooling or public schooling, discussed extensively
already. Or the potential outcomes could be whether one voted for Al Gore, depending
on whether or not one received a butterfly ballot. This latter example (see Section
1.3.2) would be especially appropriate to analyze from a bounds and set-identification
perspective because the goal of such a causal analysis would be to determine whether
the causal effect is plausibly large enough to have flipped the election results. With that
goal clearly in focus, concerns over putative statistical significance are of secondary
concern.

In this case, we know from the definitions of Y 1 and Y 0, even without collect-
ing data, that the ATE, E[δ], cannot be greater than 1 or less than −1. This is a
straightforward implication of the obvious point that no individual treatment effect
can be greater than 1 or less than −1. Accordingly, the maximum ATE of 1 would
occur if E[Y 1|D= 1]=E[Y 1|D=0] = 1 and E[Y 0|D= 1]=E[Y 0|D= 0]= 0, whereas
the minimum ATE of −1 would occur instead if E[Y 1|D= 1] =E[Y 1|D= 0] = 0 and
E[Y 0|D = 1] = E[Y 0|D = 0] = 1. Thus, we know that E[δ] must be contained in an
interval of length 2, which can be stated as a known bound on E[δ], using the notation

−1≤E[δ]≤ 1 (12.6)
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Table 12.1 A Hypothetical Example of the Calculation of Bounds
for the ATE

E[Y 1| .] E[Y 0| .]

Naive estimator suggests E[δ] = .4

Treatment group E[Y 1|D=1]= .7 E[Y 0|D=1]= ?

Control group E[Y 1|D=0]= ? E[Y 0|D=0]= .3

Largest possible E[δ] = .7

Treatment group E[Y 1|D=1]= .7 E[Y 0|D=1]= 0

Control group E[Y 1|D=0]= 1 E[Y 0|D=0]= .3

Smallest possible E[δ] =−.3

Treatment group E[Y 1|D=1]= .7 E[Y 0|D=1]= 1

Control group E[Y 1|D=0]= 0 E[Y 0|D=0]= .3

or that E[δ] lies in an interval with closed bounds, as in

E[δ]∈ [−1,1]. (12.7)

Manski has shown that we can improve on these bounded intervals considerably
without making additional assumptions but by collecting data on Y and D. By fol-
lowing a systematic sampling strategy from a well-defined population, we can assert
the specific convergence results stated earlier in Equations (2.9)–(2.11). These would
ensure that, for an infinite sample, EN [di] =E[D], EN [yi|di = 1] =E[Y 1|D= 1], and
EN [yi|di=0]=E[Y 0|D=0]. Knowledge of these three quantities allows one to narrow
the bound of width 2 in Equations (12.6) and (12.7) to one with a width of only 1.

Consider the hypothetical example depicted in Table 12.1, where, as shown in
the first panel, we stipulate that E[Y 1|D = 1] = .7 and E[Y 0|D = 0] = .3. The naive
estimator, EN [yi|di =1]−EN [yi|di =0], would yield values that converge to .4 as the
sample size increases. Note that the naive estimator does not use the information
about the distribution of the sample across the observed values of D. And, we leave
question marks to stand in for the unknown values of the counterfactual conditional
expectations E[Y 1|D=0] and E[Y 0|D=1].

Suppose that E[D] = .5 and that our sample is infinite such that sampling error
is 0. And, for simplicity of notation and consistency with the decomposition in Chap-
ter 2, allow π to again stand in for E[D]. For the second and third panels of Table
12.1, the minimum and maximum values of 0 and 1 for the counterfactual conditional
expectations E[Y 1|D= 0] are E[Y 0|D= 1] and substituted for the question marks in
the first panel.

If half of the sample is in the treatment group, and if E[Y 1|D = 1] = .7 and
E[Y 0|D= 0] = .3, then the largest possible treatment effect is .7, whereas the small-
est possible treatment effect is −.3. This result is a straightforward calculation using
what-if values for the decomposition of the ATE presented in Equation (2.10), which
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was used earlier in Chapter 2 and elsewhere to discuss the bias of the naive estimator:

E[δ] = {πE[Y 1|D=1]+(1−π)E[Y 1|D=0]} (12.8)

− {πE[Y 0|D=1]+(1−π)E[Y 0|D=0]}.
Plugging in the values from the second panel of Table 12.1 into the decomposition in
Equation (12.8) yields the largest possible treatment effect as

E[δ] = {(.5)(.7)+ (1− .5)(1)} −{(.5)(0)+ (1− .5)(.3)}
= .85− .15

= .7,

whereas plugging in the values from the third panel yields the smallest possible treat-
ment effect as

E[δ] = {(.5)(.7)+ (1− .5)(0)} −{(.5)(1)+ (1− .5)(.3)}
= .35− .65

=−.3.
Thus, the constraints implied by the observed data alone guarantee, for this example,
that E[δ] ∈ [−.3, .7], which is an interval of length 1 and is half the length of the
maximum interval calculated before estimates of π, E[Y 1|D = 1], and E[Y 0|D = 0]
were obtained from the data.

Manski labels this interval the “no-assumptions bound” because it requires knowl-
edge only of the bounds on Y 1 and Y 0, as well as collection of data on Y and D from a
systematic random sample of a well-defined population. Consider now a more general
development of these same ideas.

The treatment effect can be bounded by finite values only when the potential
outcomes Y 1 and Y 0 are bounded by finite values. In other words, because E[Y 1|D=0]
and E[Y 0|D=1] are both unobserved, they can take on any values from −∞ to ∞ in
the absence of known restrictions on the ranges of Y 1 and Y 0. Thus, in the absence
of any known restrictions on E[Y 1|D= 0] and E[Y 0|D = 1], E[δ] is contained in the
completely uninformative interval between −∞ and ∞.

Manski (1994, 1995, 2003) shows that with potential outcome variables bounded by
1 and 0, the no-assumptions bound will always be of length 1. This result is obtained by
a more general manipulation of Equation (12.8), for which the lower bound is derived
as

{πE[Y 1|D=1]+(1−π)(0)} −{π(1)+ (1−π)E[Y 0|D=0]}, (12.9)

and the upper bound is derived as

{πE[Y 1|D=1]+(1−π)(1)} −{π(0)+ (1−π)E[Y 0|D=0]}. (12.10)

Simplifying and then combining Equations (12.9) and (12.10) yields the no-assumptions
bound for potential outcomes bounded by 1 and 0:

πE[Y 1|D=1]− (1−π)E[Y 0|D=0]−π (12.11)

≤E[δ]

≤ πE[Y 1|D=1] − (1−π)E[Y 0|D=0]+(1−π).
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The length of the bound is 1 because the upper and lower bounds differ only by two
complementary probabilities π and 1−π that sum to 1. The location of the bound in
the [−1,1] interval is set by the common term πE[Y 1|D=1] − (1−π)E[Y 0|D=0], to
which −π and 1−π are then added to form the bound.

More generally, if Y 1 and Y 0 are bounded by any finite values a and b, where
b> a, such as theoretical minimum and maximum scores on a standardized test, then
Equation (12.6) can be written more generally as

−b+a≤E[δ]≤ b−a, (12.12)

which then generates the more general no-assumptions bound for the observed data:

πE[Y 1|D=1]− (1−π)E[Y 0|D=0]+a(1−π) − bπ (12.13)

≤E[δ]

≤ πE[Y 1|D=1]− (1−π)E[Y 0|D=0]+ b(1−π)−aπ.

The same basic results hold as before. The no-assumptions bound always includes 0,
and it is only half as wide as the bound in Equation (12.12) implied only by the bounds
on the potential outcomes. In this case, the no-assumptions bound is of length b− a
rather than of length 2(b− a).2 As with the case for potential outcomes bounded by
1 and 0, the particular location of the interval of length b−a in [−b+a,b−a] is again
determined by the same term, πE[Y 1|D=1]− (1−π)E[Y 0|D=0].

12.2.2 Bounds Under Additional Weak Assumptions

For Manski, calculation of the no-assumptions bound is only the starting point of a set-
identification analysis. The primary goal is to analyze how additional assumptions can
narrow the no-assumptions bound. Manski’s basic perspective is summarized nicely in
the following passage:

Empirical researchers should be concerned with both the logic and the
credibility of their inferences. Credibility is a subjective matter, yet I take
there to be wide agreement on a principle I shall call:

The Law of Decreasing Credibility: The credibility of inference decreases
with the strength of the assumptions maintained.

This principle implies that empirical researchers face a dilemma as they
decide what assumptions to maintain: Stronger assumptions yield infer-
ences that may be more powerful but less credible. (Manski 2003:1)

Manski has shown that weak and often plausible assumptions can substantially nar-
row the no-assumptions bound. Consider the following simple assumptions about the
direction of individual-level treatment effects and the direction of self selection.3

2To see this result, note that [b−a] + [−1(−b + a)] simplifies to 2(b − a), and [b(1−π)−aπ]
+ [−1(a(1−π) − bπ)] simplifies to b−a.

3For empirical examples with the same structure, see first the applications offered at the time Man-
ski was developing the set-identification perspective (e.g., Manski and Nagin 1998; Manski, Sandefur,
McLanahan, and Powers 1992). More recently, Manski has used the same basic approach to critique
the “dueling certitudes” and other noncredible claims that pervade public policy pronouncements in
academic research and beyond (Manski 2013b). See also Rein and Winship (1999).
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Monotone Treatment Response

In many situations, it may be reasonable to assume that the individual-level treatment
effect cannot be negative, such that δ ≥ 0 for every individual i. Manski labels this
assumption the monotone treatment response (MTR) assumption.

Under MTR (in the direction where δ ≥ 0), the lower bound for the ATE must
be 0. MTR implies that members of the control group have counterfactual values of y1i
that are at least as high as their observed values of yi. The reasoning here is simple: If
yi = y0i for members of the control group, then the MTR assumption that y1i ≥ y0i for
all individuals i implies that y1i ≥ yi for members of the control group. The opposite
is likewise true for members of the treatment group; their counterfactual values for
y0i are no higher than their observed values of yi. Under MTR for the hypothetical
example presented in Table 12.1, one can therefore replace the extreme values of 1 and
0 in the no-assumptions lower bound:

{(.5)(.7)+ (1− .5)(0)} −{(.5)1+(1− .5)(.3)}=−.3
with less extreme values of .7 and .3. As a result, one obtains a new lower bound:

{(.5)(.7)+ (1− .5)(.3)} −{(.5)(.7)+ (1− .5)(.3)}=0,

implying that the bound for the ATE, assuming MTR in this direction, is [0, .7] rather
than [−.3, .7].

Monotone Treatment Selection

It may also be reasonable to assume that those who receive the treatment have higher
average outcomes under potential exposure to both the treatment and control, which
Manski labels the monotone treatment selection (MTS) assumption. In most cases,
one would assume jointly that E[Y 1|D= 1]≥E[Y 1|D = 0] and E[Y 0|D= 1]≥E[Y 0|
D=0], which is traditionally thought of as positive self-selection. (But one could flip
the direction of the assumption, just as we also noted for MTR.) Manski and Pepper
(2000) present this type of MTS assumption for the example of the effect of education
on earnings, for which it is equivalent to assuming that individuals with higher edu-
cation would on average receive higher wages than individuals with lower education,
under counterfactual conditions in which they had the same levels of education.

For the hypothetical example presented in Table 12.1, MTS implies that the naive
estimator would be an upper bound for the ATE. In short, MTS in this direction
stipulates that members of the treatment group could not have done any worse in the
control state than those observed in the control group (and, vice versa, that members
of the control group could not have done any better in the treatment state than those
observed in the treatment group). Maintaining MTS allows one to replace the extreme
values of 1 and 0 in the no-assumptions upper bound,

{(.5)(.7)+ (1− .5)(1)} −{(.5)0+(1− .5)(.3)}= .7,

with the less extreme values of .7 and .3, yielding for this example,

{(.5)(.7)+ (1− .5)(.7)} −{(.5)(.3)+ (1− .5)(.3)}= .4.

MTS thereby implies that the bound for the ATE is [−.3, .4] rather than [−.3, .7].
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Monotone Treatment Response and Treatment Selection Together

The power of Manski’s approach comes from the ability to apply multiple assumptions
at the same time in order to narrow the no-assumptions bound to a bound that is
considerably more informative. For the hypothetical example presented in Table 12.1,
one can narrow the no-assumptions bound from [−.3, .7] to [0, .4] by invoking the
MTR and MTS assumptions together. The resulting bound still includes 0, but in
some applications such narrowing may well be helpful in ruling out some unreasonable
and extreme causal claims.

Monotone Instrumental Variables

Whereas the recent work of Heckman and his colleagues has demonstrated how power-
ful the conclusions of a study can be if a perfect and finely articulated IV is available
(see Section 9.3.4), Manski’s work on IVs probes the opposite territory, following on
the consideration in his early work of the capacity of traditional IVs to narrow the
no-assumptions bound (see Manski 1994, 1995). Manski and Pepper (2000) investigate
what can be learned about the ATE when both standard and weaker IV assumptions
are maintained. Their results are then presented as a component of the general set-
identification methodology laid out in Manski (2003; see especially chapter 9).

Manski and Pepper (2000) first define the traditional IV assumption in terms of
mean independence, after conditioning on a covariateX for generality. In our notation,
the standard IV assumption of no direct effect of Z on Y (by either Y 1 or Y 0) is written
out as

E[Y 1|X,Z = z
′
] =E[Y 1|X,Z = z′′], (12.14)

E[Y 0|X,Z = z′] =E[Y 0|X,Z = z′′], (12.15)

for any two values z′ and z′′ of Z (and separately for strata defined by X). In other
words, Equations (12.14) and (12.15) require that the expectations of the potential
outcomes be equal within strata defined by Z (conditional on X). Accordingly, the
bounds analysis presented above then applies within each stratum of Z, and the bound
on the ATE can then be defined as the intersection of the bounds across the strata
defined by Z. This result implies that the no-assumptions bound can only be narrowed
by an IV if the no-assumptions bounds that could be calculated within each stratum
z of Z also vary across the strata defined by Z.

Manski and Pepper (2000) then consider a weaker assumption for an IV analy-
sis, known as a monotone IV (MIV) assumption. It states that for all values of the
instrument Z, in which z′′≥ z′, the variable Z is an MIV if

E[Y 1|X,Z = z′′]≥E[Y 1|X,Z = z′], (12.16)

E[Y 0|X,Z = z′′]≥E[Y 0|X,Z = z′]. (12.17)

In Equations (12.16) and (12.17), the expected values of both potential outcomes are
weakly increasing in Z. Note that this usage of the concept of monotonicity is quite
different than for a local average treatment effect (LATE) analysis or an LIV analysis
(see Section 9.3, beginning on page 305). For an MIV, monotonicity refers to the
relationship between the instrument and the potential outcomes, not the relationship
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between the treatment and the instrument. The latter type of assumption is referred
to as monotone treatment selection (MTS) by Manski and his colleagues (see our
discussion above).

To what extent does an MIV narrow the bound for the ATE (or, in the words
of Manski 2003, shrink the identification region for it)? The short answer: No more
than a traditional IV (and usually considerable less), but still enough to have some
identifying power.

It is easier to explain how an MIV bounds the expectation of each potential outcome
than it is to demonstrate directly how an MIV bounds the ATE that is a function of
these expectations. Consider just the determination of the upper bound for E[Y 1].

Under the standard IV assumption of mean independence, the upper bound for
E[Y 1] is equal to the smallest upper bound across the different subpopulations defined
by the instrument Z. More precisely, the upper bound is the smallest value that
E[Y 1|Z = z] takes on across all values z of Z.

In contrast, under the weaker MIV assumption, the upper bound for E[Y 1] is a
weighted average of subpopulation upper bounds, for which each subpopulation upper
bound is defined across the values of Z. The implicit calculation of this upper bound
on E[Y 1] can be described in a series of as-if algorithmic steps. First, a value of Z is
selected as z′. The upper bound for E[Y 1], with respect to z′, is set as the smallest
value that E[Y 1|Z = z] takes on across all values z′′ of Z where z′′ ≥ z′.4 After this
smallest upper bound is found with z′ fixed, the next value of z′ is selected, and a
smallest upper bound is found with respect to this next z′. After all values of Z have
been selected as z′, the upper bound for E[Y 1] is set as the weighted average of the
subpopulation upper bounds with respect to each value of Z, where the weights are
the marginal distribution of Z attached pointwise to the smallest upper bounds set
with respect to all z′ of Z. The determination of the lower bound on E[Y 1] under MIV
is the opposite of this procedure, in the sense that the greatest lower bound is first
sought across subpopulations of Z, restricting the range of Z over which one searches
in each step to be larger than the selected anchoring point z′ of Z.

To find the bounds implied by an MIV for the ATE, the bounds on E[Y 0] must be
calculated with the same basic procedure. These bounds can then be substituted into
the same basic framework introduced in the last section, with the marginal distribution
of D used to characterize the known distribution across treatment states.

Of course, as we noted above, the goal of a set-identification analysis is to invoke
combinations of weak assumptions.5 As with the more general set-identification

4Because this smallest upper bound relative to z′ is selected from a smaller subset of possible upper
bounds (only those greater than z′ rather than all values of Z), the resulting weighted upper bound
across z′ is by definition no smaller (and usually larger) than would be the upper bound suggested by
a more stringent mean-independence IV assumption. As a result, MIVs never shrink the identification
region more than traditional IVs (and usually considerable less).

5In a prior version of their manuscript, Manski and Pepper used the MTR, MTS, and MIV assump-
tions together to determine the bounds on the effect of education on the logged wages of respondents
for the National Longitudinal Survey of Youth. When they invoked MTR and MTS assumptions, they
found that the bound for the effect of a twelfth year of schooling was [0, .199], that the bound for the
effect of a fifteenth year of schooling was [0, .255], and that the bound for the effect of a sixteenth year
of schooling was [0, .256]. When they then used the Armed Forces Qualification Test as an MIV while
still maintaining the MTR and MTS assumptions, they obtained narrower bounds, respectively, of
[0, .126], [0, .162], and [0, .167].
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approach, it is generally difficult to eliminate values of 0 for average treatment effects
in this tradition, but the methodology can be used, as Manski shows, to convincingly
reject extreme causal effect assertions and build regions of credible inference to move
the literature forward in any given area. Moreover, it is presumably much easier to
find MIVs in any substantive area than IVs that allow for the identification of LATEs
or full schedules of MTEs.

In sum, the set-identification approach is a principled and strict framework for
developing warranted causal claims. In part because it is so strict, but more funda-
mentally because scholars and reviewers value point estimates so highly, the usage rate
of set-identification strategies in empirical research remains quite low. For exceptions,
it is well worth consulting the applications offered at the time Manski was developing
his set-identification perspective (e.g., Manski and Nagin 1998; Manski et al. 1992).
More recently, Blundell, Gosling, Ichimura, and Meghir (2007) use a bounds approach
to analyze wage trajectories for men and women. Gunderson, Kreider, and Pepper
(2012) offer an MIV application to generate support for the claim that reduced-price
lunches in public schools have positive effects on health outcomes of children. Manski
and Pepper (2013) offer a full analysis of the deterrence effect of the death penalty.
And, following on the general orientation reflected in this last piece, Manski (2013b)
offers an extended critique of the “dueling certitudes” and other noncredible claims
that pervade public policy pronouncements in academic research and beyond.

12.3 Sensitivity Analysis for Provisional

Causal Effect Estimates

Consider a situation where a researcher suspects, based on substantive knowledge from
other studies or a particular theoretical perspective, that treatment selection is non-
ignorable because selection is, in part, on unobserved variables. Yet, the researcher is
unwilling to adopt the set-identification perspective because she feels that the viola-
tions of the point-identifying assumptions are very small. In this case, she may want to
offer a causal effect estimate under the assumption that treatment selection is ignor-
able, but she should then judge how wrong the results may be and offer interpretations
that are appropriately cautious.

Although Blalock is often accused of inspiring naive causal analysis (and we have
engaged, as well, in our own share of Blalock criticism in Chapter 1), he did warn
against overconfident causal claims based on conditioning with regression methods
long before most of the methods we have presented in this book were developed. At
the end of his influential 1961 book Causal Inferences in Nonexperimental Research,
he wrote:

It seems safe to conclude that the problem of making causal inferences
on the basis of nonexperimental data is by no stretch of the imagination
a simple one. A number of simplifying assumptions must be made, per-
haps so many that the goal would seem almost impossible to achieve. The
temptation may very well be to give up the entire venture. But, as we have
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suggested at a number of points, there may not be any satisfactory alterna-
tives. Most likely, social scientists will continue to make causal inferences,
either with or without an explicit awareness of these problems. (Blalock
1964[1961]:184)

His recommendation was to report a range of plausible results, and he lamented the
pressures to settle in on only one favored set of results:

it would be extremely helpful if social scientists would develop the habit of
contrasting the results of several different procedures. . . . If conclusions
or results differed, one might gain valuable insights as to why specific
differences have occurred. . . . Present practices and publication policies
are undoubtedly unfavorable to such a strategy. . . . there are undoubtedly
pressures on the individual investigator to report only his “best” results
in instances where different techniques have not given the same results.
(Blalock 1964[1961]:184–85)

In the decades since scholars such as Blalock appealed for the multimodel reporting
of results, a number of scholars have attempted to systematize this approach.

In the counterfactual tradition, the approach known as sensitivity analysis has been
the most influential.6 Based largely on the work of Rosenbaum and his colleagues
(see Rosenbaum 1991, 1992, 2002, 2010), the guiding principle of the approach is
simple: When reporting and interpreting an estimate of a causal effect, researchers
should analyze and report how sensitive the estimates and interpretations are to the
maintained assumptions of the analysis.

For Rosenbaum, sensitivity analysis of this form is quite distinct from other types
of robustness checks on one’s results because of its concern with estimates of causal
effects. Rosenbaum (1999:275) writes, “Assumptions are of three kinds: (i) the sci-
entific model or hypothesis, which is the focus of scientific interest, (ii) incidental
assumptions, needed for statistical inference but of little or no scientific interest and
(iii) pivotal assumptions which rival the scientific hypothesis and are the focus of sci-
entific controversy.” Sensitivity analysis is usually focused narrowly on the specific
and pivotal assumption of ignorability of treatment assignment. Here, the question
of interest is usually, How sensitive are estimates of an average causal effect to the
potential effects of unobservable treatment selection patterns?

Rosenbaum (2002; see also Rosenbaum 2010) devotes a large portion of his excellent
book on observational data analysis to strategies for performing sensitivity analysis,
especially for matching designs.7 Consider for reference the simple directed graph in

6There is a related literature on sensitivity analysis that is tied to simulation methods and deter-
ministic modeling more generally. In this tradition, for example, the parameters of a deterministic
simulation of an outcome are varied systematically. If variation in nuisance parameters of no inherent
interest does not change the basic results of the model, then the model is robust. And, as described
in Saltelli, Tarantola, Campolongo, and Ratto (2004), such methods can be used to assess the uncer-
tainty of model predictions based on the uncertainty of model inputs. Such results can direct future
effort optimally, so as to reduce the uncertainty of those inputs that generate the most uncertainty
of prediction.

7For expositions of the basic perspective written for social scientists, see DiPrete and Gangl (2004),
Frank (2000), and Gangl (2013).
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C U

D Y

Figure 12.1 A graph in which the causal effect of D on Y is confounded by an
observed variable C and an unobserved variable U.

Figure 12.1, where an analyst seeks to estimate the effect of D on Y. In this case, the
researcher observes only one of two known confounders, C but not U. For Rosenbaum,
adjusting for C would remove “overt bias” but would leave the “hidden bias” produced
by D←U→ Y untouched. For a sensitivity analysis, the typical steps would be

1. Offer a provisional point estimate of the ATE for the effect of D on Y by condi-
tioning on C and assuming that ignorability holds.

2. Choose multiple pairs of values for the effects of U on D and of U on Y.

3. Using either analytic methods or simulation methods, present results that show
how much the provisional point estimate of the ATE would be expected to change
assuming each pair of values.

4. Identify and report the pairs of values that would push the provisional point
estimate of the ATE below the critical level that would prevent one from rejecting
the null hypothesis of no effect.

5. Use external information on what is known about U and its relationships to D
and Y to assess whether or not the pairs of values that would prevent one from
rejecting the null hypothesis of no effect are reasonably likely.8

If, after after executing these steps, the researcher can argue that all plausible vio-
lations of ignorability (i.e., the pairs of values for the effects of U on D and of U on
Y ) would not change the qualitative conclusions, then one can report the levels of sen-
sitivity from step 3 and confidently stick to the main substantive conclusion that the
ATE is sufficiently unlikely to be equal to 0. If, however, plausible violations of ignor-
ability would change the main substantive conclusion, because 0 cannot be regarded
as implausible, then one should step back from strong conclusions and consider other
methods of analysis.

Examples in the literature demonstrate the utility of the sensitivity analysis approach,
although for obvious reasons it is hard to find published examples where causal asser-
tions have been abandoned in response to sensitivity analyses. Instead, sensitivity anal-
ysis is usually used to defend conclusions against the reasonable objections of either

8Note how this strategy differs from the set-identification approach presented above. From this
alternative orientation, the researcher would first calculate no-assumptions bounds for the conditional
average effect of D on Y within strata of C. Then, the researcher would introduce additional credible
assumptions about the individual-level and/or average effects of U on D and U on Y in an attempt
to narrow the no-assumptions bounds to intervals that all researchers can accept.
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fictitious fair critics or the specific assertions of real critics. Consider an example of
each type.

In response to fictitious critics, Harding (2003) assesses the strength of the rela-
tionship that a composite of unobserved variables would have to have with a treatment
variable and an outcome variable in order to challenge the causal interpretations of his
estimates of the effect of neighborhood context on the odds of completing high school.
He uses Rosenbaum’s specific pair-matching thresholds for violations of ignorability
to demonstrate that convincing support for his conclusions is available. He is able
to conclude, “Thus, to drive the [estimated] neighborhood effect to nonsignificance,
parental involvement would have to be more powerful than family income or having
poorly educated parents, net of these variables” (Harding 2003:712).

For a response to real critics, VanderWeele (2011b) defends the claim of Christakis
and Fowler (2007) that obesity is contagious and spreads through social networks.
The critics claimed that the results of Christakis and Fowler did not provide sup-
port for the causal effects of interest and instead reflected both homophily bias and
unmeasured effects of shared environments (see, e.g., Cohen-Cole and Fletcher 2008;
Shalizi and Thomas 2011). VanderWeele (2011b) performed a sensitivity analysis, also
based on Rosenbaum’s general procedures, and concluded that his sensitivity analy-
sis suggested that the contagion effects on obesity “were reasonably robust to latent
homophily” (VanderWeele 2011b:252). The results, however, were not definitive, even
if they were encouraging to the original authors (see Christakis and Fowler 2013). Shal-
izi (2012) raised objections to the realism of the sensitivity analysis, while also making
the more fundamental point that the original models were themselves less suited to
the estimation task than Christakis and Fowler recognized when first offering them.

Given the close connections between set identification and sensitivity analysis, are
there reasons to favor one or the other approach when both are equally feasible? To
consider this question, it is useful to first review the writing of Manski and Rosenbaum.
Manski’s identification focus is clear, as explained in the quotations that we used in
Section 3.1 (see page 78). In contrast, Rosenbaum sees a targeted focus on identification
to be considerably less helpful:

The idea of identification draws a bright red line between two types of
problems. Is this red line useful? . . . In principle, in a problem that is
formally not identified, there may be quite a bit of information about β
[a causal parameter of interest], perhaps enough for some particular practi-
cal decision . . . . Arguably, a bright red line relating assumptions to asymp-
totics is less interesting than an exact confidence interval describing what
has been learned from the evidence actually at hand. (Rosenbaum 2002:
185–86)

Rosenbaum’s objection to the bright red line of identification is issued in a discussion
of an IV estimator, which we explained in Chapter 9 can offer an estimate of a formally
identified parameter that may be so noisy in a dataset of finite size that one cannot
possibly learn anything from the estimate. However, an alternative estimator in the
same context – usually a least squares regression estimator – that does not formally
identify a parameter because it remains asymptotically biased even in an infinite sam-
ple may nonetheless provide sufficiently systematic information so as to remain useful,
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especially if one has a sense from other aspects of the analysis of the likely direction
and size of any remaining bias.

We accept Rosenbaum’s perspective to some extent. It is undeniable that an empir-
ical researcher who forsakes all concern with statistical inference could be led astray
by considering only estimates that are formally identified. But, for this book, our per-
spective has been much closer to that of Manski. We have focused on identification
problems almost exclusively because our primary goal has been to help researchers to
determine what assumptions must be maintained in order to identify causal effects
and then estimate them. Accordingly, we do not take a particular position on whether
set identification or sensitivity analysis is a better strategy when point estimation of
a causal effect of interest is infeasible. We give more space with a worked example for
an analysis of bounds only because it fits with the identification focus of this book.

Our position notwithstanding, Manski does have a principled reason for favoring set
identification, even though he sees it as “mathematically complementary” to sensitivity
analysis (Manski 2003:5). He regards Rosenbaum’s sensitivity analysis approach as too
narrow, writing:

Where Rosenbaum and I differ is that I do not view the assumption of
ignorable treatment selection to have a special status in observational stud-
ies of treatment effects. As an economist, I usually am inclined to think
that treatments are purposefully selected and that comparison of outcomes
plays an important role in the selection process. Perhaps the departures
from ignorable treatment selection that Rosenbaum entertains in his sen-
sitivity analysis can be interpreted behaviorally in terms of some model
of purposeful treatment selection, but for now I do not see how. (Manski
1999:281)

Other social scientists may agree with this position, based on whether they also feel
that it is too difficult to discuss departures from ignorability of treatment assignment
in a coherent way without reference to the behavior of individuals. To some degree, we
found ourselves in the same situation when discussing the charter school example in
Section 8.3, where we found it necessary to elaborate the back-door path that Rosen-
baum would regard as a source of hidden bias. This orientation likely also underlies
the critique that Shalizi (2012) offers of VanderWeele’s sensitivity analysis in defense
of Christakis and Fowler:

[VanderWeele 2011b] is a truly ingenious paper, which advanced the field . . .
However, it did so under very strong parametric and substantive assump-
tions, such as, e.g., all latent homophily being due to a single binary vari-
able, which interacts with observables in very specific and limiting ways.
Proving results under these restrictions is more than anyone else has done,
but before one appeals to the results in empirical problems, one needs to
either have some scientific reason to think the restrictions hold, or a math-
ematical reason to think that the conclusions are robust to substantial
departures from those assumptions. Since those mathematical reasons are,
at least for now, unavailable, we are forced to rely on scientific knowledge.
Is anyone prepared to argue that we ought, on biological or sociological
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grounds, to think that everything relevant to friendship formation and
obesity (in suburban Massachusetts) boils down to one binary variable?
(Shalizi 2012:2)

It remains to be determined, therefore, whether sensitivity analysis can serve as an
effective defense against real critics.

Nonetheless, sensitivity analysis can be and is being generalized, to the extent
that the boundary between sensitivity analysis and set identification seems likely to
gradually disappear. Consider, for example, savvy applied work such as Berk and de
Leeuw (1999), where simulation is used to insert uncertainty into conclusions that
may result from violations of assumptions. The prospects for such work are bright,
especially when used to extend interpretations of findings by exploring alternative
structures for outcomes, rather than simply trying to defend against the claims of
critics who challenge identifying assumptions.

12.4 Conclusions

In this chapter, we have considered three separate strategies for how analysts can pro-
ceed when they are unable to use observed data to point-identify average causal effects
of interest. After using the classic selection-bias literature as an example of how distri-
butional assumptions for unobservables can identify some estimates of interest, we then
took the position of the more recent literature that distributional assumptions may be
particularly hard to justify. We then considered the set-identification literature, which
is motivated by a similar type of skepticism. Rather than issue daring assumptions
that may be hard to justify, the goal is to offer easily defendable assumptions that are
not open to doubt. This literature has shown that through combinations of assump-
tions, some causal claims can be eliminated. Yet, these methods have not been widely
used because they typically cannot eliminate 0 as a permissible value for estimated
causal effects and, even more so, because social scientists continue to very much prefer
single-value estimates. Finally, we considered an approach that is complementary to
set identification, where analysts offer provisional point estimates of average treatment
effects, with full recognition that they are likely inconsistent and biased. Analysts then
examine how wrong these estimates may be by assessing their sensitivity to violations
of the maintained assumptions.
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Chapter 13

Counterfactuals and the
Future of Empirical
Research in Observational
Social Science

What role should the counterfactual approach to observational data analysis play in
causal analysis in the social sciences? Some scholars see its elaboration as a justifi-
cation for experimental methodology as an alternative to observational data analysis.
We agree that by laying bare the challenges that confront causal analysis with obser-
vational data, the counterfactual approach does indirectly support experimentation as
an alternative to observation. But, because experiments are often (perhaps usually)
infeasible for most of the causal questions that practicing social scientists appear to
want to answer, this implication, when considered apart from others, is understandably
distressing.

We see the observational data analysis methods associated with the potential out-
come model, motivated using directed graphs, as useful tools that can help to improve
the investigation of causal relationships within the social sciences, especially when
experiments are infeasible. Accordingly, we believe that the methods associated with
the counterfactual approach complement and extend older approaches to causal anal-
ysis with observational data by shaping the goals of an analysis, requiring explicit
consideration of individual-level heterogeneity of causal effects, encouraging a wider
consideration of available identification strategies, and clarifying standards for credible
interpretations.

In this chapter, we first shore up our presentation of the counterfactual approach by
considering several critical perspectives on its utility. We weigh in with the arguments
that we find most compelling, and it will not be surprising to the reader that we find
these objections less serious than do those who have formulated them. However, we use
quotations from the published literature in order to demonstrate the richness of these
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debates and to encourage a full reading of the material that we are able to summarize
only briefly here.

We conclude the chapter with a discussion of causal modeling practices where we
delineate the multiple modes of causal inquiry that exist in observational social science.
We argue that the counterfactual approach is useful because it facilitates movement
between modes of causal inquiry, guiding analysis to the deepest level that theory and
data can enable at any given point in time.

13.1 Objections to Adoption of the

Counterfactual Approach

The counterfactual approach is not without serious objections from thoughtful crit-
ics. In this section, we will present three objections from the published literature. If
these objections are accepted, then a justification for eschewing much of what we have
presented in prior chapters is available. Such a decision, however, would presumably
require the adoption of the counterposition(s) of those who raise the following objec-
tions. We will not lay out these alternative approaches to causal analysis here, but
their main features are implicit in the objections.

We will not further discuss two objections that we have already addressed in detail
in prior chapters. First, for a response to the supposed limitations for practice implied
by the typical adoption of stable unit treatment value assumption (SUTVA), see Sec-
tion 2.5. As argued there, the potential outcome model cannot be considered prob-
lematic or inappropriate for the social sciences because it more clearly demonstrates
a challenge to the definition and estimation of causal effects than other less complete
frameworks for causal inference. In addition, counterfactual analysis can proceed when
SUTVA does not hold, although the potential outcome model then shows how difficult
it can be to identify average causal effects of various forms.

Second, for a response to the claim that the counterfactual approach does not give
sufficient attention to generative mechanisms, see Chapter 10. While the counterfactual
approach takes no general position on the necessary depth of a causal claim, we argued
there that (1) the counterfactual approach is suitable for use when evaluating levels
of support for conjectured alternative mechanisms that generate observed outcomes
and (2) the counterfactual approach is entirely consistent with the theory construction
agenda of the generative mechanisms movement, as long as such theory construction
is not itself passed off as causal explanation.1

1We will also not discuss the claim that, by adopting a notion of causality that grants currency to
counterfactuals, the analyst is forced to include in any explanation an abundance of ancillary causal
claims, typically those grounded in causality by omission (“because the moon did not crash into
the earth”) and those grounded in causality by prehistory (“because of the birth of the universe”).
Proponents of this red-herring objection then argue that, because such ancillary claims have little
or no explanatory value, but the counterfactual approach requires that they be admitted into the
explanation, it must be the case that the counterfactual approach to causation is indefensible because
it is incomplete. See Martin (2011) for the style of argument, where he writes, for example, “[W]e
cannot ask the question, What causes B’s death? and bring in anything less than an infinite number
of causes, with little way of telling them apart. Almost everything that led our world to be our world
(and not some other) was a cause of B’s death. . . . Committed counterfacualists have learned to live
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Objection 1: Nonmanipulable Causes Cannot Be Analyzed When
Using the Potential Outcome Model

The counterfactual approach is most natural when one can conceive of a specific pro-
cedure for manipulating the cause of interest, or in the words of Berk (2004:91), “in
the sense that conscious human action can change things.” If the effects of a cause
that cannot be manipulated by “human action” are of interest, then the potential out-
come model loses some of its transparency because the counterfactuals become harder
to conceptualize. The statistician Paul Holland is usually cited as offering the most
eloquent statement of this position, using the motto “no causation without manipula-
tion” that he developed in a prior discussion with Rubin (see Holland 1986:959).2 The
objection we consider in this section maintains that, because one must agree with the
1986 Holland-Rubin position in order to utilize the potential outcome model, schol-
ars who are interested in the effects of (typically) immutable characteristics – such as
gender and race – must instead find some other approach to causal analysis to use in
their research. And, given that so many social scientists are interested in these sorts of
effects, the potential outcome model must therefore be regarded as one that has quite
limited utility for observational social science (see, e.g., Goldthorpe 2001).

We find this objection unpersuasive for the following reasons. Even if one adopts
the counterfactual approach while also accepting the rigid position of “no causation
without manipulation,” the entailed restrictions on permissible analysis are not as
limiting as is often claimed. Woodward (2003) has argued this position more completely
than anyone else (see, in particular, his section 3.4, “In What Sense Must Interventions
Be Possible?”). In developing his conception of an intervention, Woodward concludes:

The sorts of counterfactuals that cannot be legitimately used to elucidate
the meaning of causal claims will be those for which we cannot coherently
describe what it would be like for the relevant intervention to occur at
all or for which there is no conceivable basis for assessing claims about
what would happen under such interventions because we have no basis for
disentangling, even conceptually, the effect of changing the cause variable
alone from the effects of other sorts of changes that accompany changes in
the cause variable. (Woodward 2003:132)

In this regard, what matters is not the ability for humans to manipulate the cause
through some form of actual physical intervention but rather that we be able, as obser-
vational analysts, to conceive of the conditions that would follow from a hypothetical
(but perhaps physically impossible) intervention.3

with this strange conclusion” (38). The position that we have maintained in this book is that the
simple and direct explanatory goals at hand are valid guides for the delineation of causal states and,
furthermore, that claims about the sizes of estimated causal effects will be sufficiently informative for
the purposes at hand if the causal states that define them are local and reasonable. Simply put, claims
for the relevance of causality by omission, and especially causality by prehistory, can be held aside by
scientific judgment alone because they are sufficiently remote relative to the goals of the analysis.

2Even so, Holland’s position is frequently misinterpreted. He did not argue that nonmanipulable
causes cannot be analyzed using the potential outcome model but rather that the effects of nonma-
nipulable causes are ill-defined and therefore cannot be estimated effectively with any methods. For
an update to his argument, see Holland (2008).

3Woodward (2003:122) also discusses how the focus on conceivable interventions allows one to avoid
having to contemplate preposterously unreasonable counterfactuals. Holland (2008) still supports the
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In addition, the manipulability criterion is not as relevant as is sometimes supposed.
For example, if discrimination is the topic of study, the attributes of individuals do
not need to be manipulated, only the perception of them by potential discriminators.
Deception then can be used to gain leverage on the causal effects of interest, while the
attributes of the subjects of potential discrimination remain fixed. Greiner and Rubin
(2011) offer a discussion of appropriate research designs, consistent with the potential
outcome model, where the causal effects of immutable characteristics can be studied
by manipulations of perceptions.

Even if Woodward’s position is rejected, and thus if a researcher does not feel
comfortable using counterfactuals to define the causal effects for hard-to-conceive-
of-actually-manipulating attributes, the counterfactual approach can still be used in
an as-if mode in order to sharpen the goals and contribution of an analysis. This is
the position of Glymour (1986), who responds to the original Holland-Rubin position
by arguing that counterfactuals can be used to elucidate effects that are presumed to
have been caused by a set of potentially manipulable factors but are merely referred to
collectively by nominal labels. The goal of research is to push the analysis further down
from the nominal labels to the separable manipulable factors. In pursuit of this goal,
it can be efficient to first define the counterfactuals associated with nonmanipulable
attributes as if they could be easily and naturally manipulated by human action.4

Consider studying the effect of race on socioeconomic outcomes, one of the most
common topics of study in the literature on social inequality. Although race cannot be
manipulated easily, the framework can still be used to motivate an attempt to estimate
average gains that employed black adults working full-time, full-year would expect to
capture if all prospective employers believed them to be white. This effect would dif-
fer from an attempt to estimate what the black–white gap in earnings would be if
black adults had grown up in families with the same average level of income as whites,
and hence would have had the available resources with which to purchase higher-
quality secondary and postsecondary education. By helping to frame such fine distinc-
tions between alternative causal states, the potential outcome model helps to sharpen
research questions and then shape reasonable interpretations of whatever results can
be distilled from the data that are at hand. Such a basic framing of differentials is
a necessary first step, and only thereafter can one begin to systematically investigate
the particular mechanisms that generate the causal relationships and that can explain
the sources of the differences that motivate the inquiry in the first place.

In this regard, stating merely that an attribute D causes an outcome Y is simply
the crudest form of a mechanism sketch (as we discussed in Chapter 10). To further
investigate this mechanism sketch, counterfactuals must then be defined for what-
ever conjectured process is thought to generate the causal effect of D on Y . Reskin
(2003), for example, provides a clear exposition of how the investigation of such effects

original 1986 motto, but his position is more nuanced than much of the secondary literature implies
and appears to have softened to some small degree.

4We should also note, consistent with our prior discussion in Section 2.1, that some of the causes
that we can easily conceive of manipulating are also nominal, in the sense that the causal capacities
inherent in them may be attributable to only some of their constituent features. From this perspective,
perhaps most of the causes that we can conceive of manipulating – obtaining another year of schooling,
enrolling in a worker training program, moving to an alternative neighborhood – are nominal starting
points as well.
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of attributes should proceed. She argues that researchers should lay out alternative
mechanisms that generate ascriptive inequality – primarily those based on the discrim-
inatory motives of gatekeepers versus those based on unequal access in structures of
opportunity – and then evaluate the relative of importance of each set of mechanisms
in targeted empirical analysis.

Objection 2: The Counterfactual Approach Is Appropriate Only for
Modeling the Effects of Causes, Not the Causes of Effects

If an investigator is interested in estimating the effect of a particular cause, D, on an
outcome of interest, Y , then the potential outcome model offers a strong foundation
for empirical inquiry. Causal analysis of this type is often labeled an effects-of-causes
analysis, and we have explained the counterfactual approach to such analysis at great
length in this book.

If, instead, an investigator is interested in answering the all-encompassing question
“What causes Y ?” then the investigator is interested in conducting what is often
labeled a causes-of-effects analysis. No progress in such an investigation is possible
without consulting extant theory or abducting relevant hypotheses that suggest that
the effects of one or more candidate causes –A, B, C,D, and so on – need to be modeled
to determine whether evidence exists that one or more of these causes contributes
to the full account that explains the pattern of all observations of Y . For this type
of investigation, the potential outcome model is less natural. In fact, when potential
outcomes are defined for each distinct combination of states across all candidate causes,
the resulting notation quickly becomes an impediment to practice when more than two
or three candidate causal variables must be considered. Fortunately, the causal graphs
that we have also utilized in this book offer corresponding definitions for causal effects
and, as a result, permit efficient representations of full causal systems. These systems,
when fully written out, can effectively guide model specifications that can, in theory,
estimate the effects of an unlimited number of causes of an outcome of interest. For
this reason, it is false to claim that the counterfactual approach can only be used to
motivate studies that estimate the effects of causes. This claim can only be considered
reasonable if one restricts the counterfactual approach to the potential outcome model
and if one is concerned unduly with the practicality of using potential outcomes to
define effects for complex patterns of causal configurations.

The issues worth debating, as we see them, are whether social scientists pose too
many causes-of-effects questions relative to effects-of-causes questions and whether
the counterfactual approach differs from other approaches in its capacity to enable the
analysis of causes-of-effects questions. Michael Sobel has provided perhaps the most
vigorous indictment of the common practice of attempting to estimate simultaneously
large numbers of causes of an effect of interest with observational data. To cite one
example of his perspective, he writes in the overview essay “Causal Inference in the
Social Sciences” for a millennium issue of the Journal of the American Statistical
Association:

much of quantitative political science and sociology may be characterized
as a highly stylized search for new causes of effects. Researchers typically
begin with one or more outcomes and a list of causes identified by previous
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workers. Potentially new causes are then listed; if these account (“explain”)
for additional variability of the response, then the new causes are held to
affect the outcome, and the significant coefficients in the new model are
endowed with a causal interpretation. The process is repeated by subse-
quent workers, resulting in further “progress.” When researchers realize
that they are merely adding more and more variables to a predictive con-
ditioning set, one wonders what will take the place of the thousands of
purported (causal) effects that currently fill the journals. (Sobel 2000:650)

If Sobel is correct (and we are inclined to agree with him), then the social sciences in
the past few decades have given too much attention to the estimation of the causes of
effects and too little attention to the simpler and more tractable goal of estimating the
effects of particular causes. But even if one disagrees with this position, maintaining
instead that causes-of-effects questions should always be in the foreground, it is hard
to deny that the quest for a full account of the causes of any outcome is aided (and
perhaps, at times, best advanced) by the pursuit of well-defined questions that focus
narrowly on the effects of particular causes. As knowledge of these effects accumulates,
we can then attempt to build full causal accounts of all of the effects on the outcome
of interest. If the counterfactual approach is then justified only as an instrumental
path toward the ultimate goal of sustaining full causal accounts, little of its appeal is
diminished in our view.5

The philosopher Paul Humphreys offers an elegant appeal to this pragmatic realist–
empiricist position in the concluding paragraph of his 1989 book, The Chances of
Explanation: Causal Explanation in the Social, Medical, and Physical Sciences. After
reflecting on the demise of the covering law model of explanation and some of its failed
alternatives, Humphreys writes:

What, then, do we have to replace the traditional account of explana-
tory knowledge? It is not propositional knowledge. . . . Nor is it de dicto
knowledge. . .. It is de re knowledge of the causes that contributed to the
effect, gained in a cumulative manner, coupled with the discovery of previ-
ously unknown structures that pushes the moving boundary of the observ-
able even further from ordinary experience and allows us to become acquainted
with finer and finer details of how the world works. When we know of all of
the causes, then we shall know all there is to know of the kind with which
we are concerned, for all that we will be left is pure chance, and chance is,
as I have said, literally nothing. (Humphreys 1989:140–41)

5One frontier of current methodological scholarship, consistent with the counterfactual approach,
is the elaboration of sufficient component cause models that bridge classic epidemiological models with
causal graph methodology (see VanderWeele and Robins 2007b, 2008, 2009; VanderWeele, Vanstee-
landt, and Robins 2010; Vansteelandt, VanderWeele, and Robins 2012). These causes-of-effects models
adopt a threshold-crossing framework where combinations of risk factors are modeled as jointly suffi-
cient to generate the outcome of interest (typically, onset of a health condition of some form). Pearl
(2009, chapters 9 and 10) has long recognized the value in using his structural equation approach
to develop “actual cause” models. We expect that in the coming years recognition that these sorts
of models exist will decrease the frequency with which others raise the causes-of-effects objection
discussed in this section.
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The idea here is that we should strive to explain phenomena by estimating the effects
of putative causes on particular outcomes. And, in practice for observational data
analysis, most such attempts require a consideration of at least two types of other
causes of the outcome: (1) those that may lie along back-door paths in a causal graph
and (2) those that constitute the mechanisms that link the putative cause to the
outcome. Over time, we collect more data and estimate the effects of the same causes
on the same outcomes in a variety of conditions, which deepens our understanding of
the additional causes that were considered unobservables initially.

The counterfactual approach we have presented in this book is well suited to
this pragmatic account of social science research, where progress results from cred-
ible advances rather than grand claims. Even so, the counterfactual approach is not
inconsistent with the development and analysis of full causal systems that deliver
answers for causes-of-effects questions, even though it encourages skepticism of results
that are warranted only by assumptions of dubious validity.

Objection 3: Causal Inference Should Not Depend on Metaphysical
Quantities Such as Potential Outcomes

In a wide-ranging article titled “Causal Inference Without Counterfactuals,” the statis-
tician A. Philip Dawid argues that potential outcomes are inherently metaphysical,
and thus the counterfactual model for causal inference is “generally unhelpful and fre-
quently misleading” (Dawid 2000:409). He argues that causal claims must rest only
on inherently testable ideas, and he presents an alternative that he argues succeeds in
realizing the goal of estimating the effects of causes.6

Although some aspects of Dawid’s critique are rather involved, some of its central
features are quite simple. He first argues that the potential outcome model embraces
“fatalism” because it implicitly assumes that the potential outcomes of individuals
(i.e., y1i and y0i for a binary cause) are fixed values that are regarded as “predeter-
mined attributes” of individuals “waiting only to be uncovered by suitable experi-
mentation” (Dawid 2000:412). For his alternative, Dawid considers a basic Bayesian
decision model that, without reference to potential outcomes, allows a statistician
to (1) design a randomized experiment to compare the effects of a treatment on an
outcome (in comparison with a base state of either no treatment or an alternative
treatment) and (2) convey the results of this experiment to inform a relevant decision
maker of the expected effect of applying the treatment to an additional subject similar
to those on whom the experiment was conducted.7 After contrasting his model with
the counterfactual model, he concludes:

I have argued that the counterfactual approach to causal inference is essen-
tially metaphysical, and full of temptation to make “inferences” that can-
not be justified on the basis of empirical data and are thus unscientific.

6For brevity, we do not cover Dawid’s position on modeling the causes of effects here. We just
addressed the causes-of-effects versus effects-of-causes position in the last section.

7Following in the Bayesian tradition, the decision maker (who could also be the statistician)
can then assess the consequences of applying the treatment to the subject, with reference to cost
considerations and other determinants of her loss function. These additional points are not stressed
by Dawid, in part because they are not incompatible with the counterfactual model.
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An alternative approach based on decision analysis, naturally appealing
and fully scientific, has been presented. This approach is completely satis-
factory for addressing the problem of inference about the effects of causes,
and the familiar “black box” approach of experimental statistics is perfectly
adequate for this purpose. (Dawid 2000:423)

The response to Dawid’s critique of the potential outcome model has been largely
negative, as revealed in the comments published alongside it. The crux of the counter-
argument is the following. If perfect experiments for every causal question of interest
could be designed and then implemented, then potential outcomes are unnecessary
(even though they might still be useful for some purposes, such as to think through
the results that might have emerged from alternative experimental protocols). Further-
more, no one seems to disagree with the claim that we should use study designs that
can rescue us from having to apply assumptions to what-if quantities. In this regard,
it would of course be preferable to be able to use a crossover design in all situations,
which Rothman et al. (2008) describe as follows:

The classic crossover study is a type of experiment in which two (or more)
treatments are compared, as in any experimental study. In a crossover
study, however, each subject receives both treatments, with one following
the other. Preferably, the order in which the two treatments are applied
is randomly chosen for each subject. Enough time should be allocated
between the two administrations so that the effect of each treatment can be
measured and can subside before the other treatment is given. A persistent
effect of the first intervention is called a carryover effect. A crossover study
is only valid to study treatments for which effects occur within a short
induction period and do not persist, i.e., carryover effects must be absent,
so that the effect of the second intervention is not intermingled with the
effect of the first. (Rothman et al. 2008:125)

The appeal of this sort of a study design, in view of Dawid’s critique, is that each
ostensibly metaphysical potential outcome would become an observed outcome. Unfor-
tunately, as Rothman et al. (2008) note, the crossover design is only feasible when one
has control over the allocation of the treatment(s), is only effective when the treat-
ment effects of interest do not leave carryover effects behind, and is only possible if
the effects have a short enough duration that one can allocate and assess each of them
during the available observation window. These conditions exist very rarely for the
causal questions that concern social scientists, and as a result crossover studies are
most common in clinical settings where the goal is to examine “the efficacy of thera-
pies intended to reduce the frequency or severity of chronic, recurrent problems, such
as seizures” (Rothman et al. 2008:649).

For observational data analysis, which Dawid barely mentions in his article, we see
no way to escape having to assert what-if assumptions about potential outcomes in
order to move forward. Robins and Greenland (2000), when commenting on the Dawid
critique, consider many of the applied examples for which counterfactual models have
been used. They conclude:
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By narrowly concentrating on randomized experiments with complete com-
pliance, Dawid, in our opinion, incorrectly concludes that an approach to
causal inference based on “decision analysis” and free of counterfactuals is
completely satisfactory for addressing the problem of inference about the
effects of causes. We argue that when attempting to estimate the effects of
causes in observational studies or in randomized experiments with noncom-
pliance . . . [a] reliance on counterfactuals or their logical equivalent cannot
be avoided. (Robins and Greenland 2000:431)

This basic point is echoed by most of the other commentators on the article. Cox
(2000:424) asks this question: “And yet: has the philosophical coherence [of Dawid’s
position], if not thrown the baby out with the bathwater, at least left the baby seriously
bruised in some vital organs?” Casella and Schwartz (2000:425–26) conclude, “Dawid
insists that such choices [about how to conduct a causal analysis] . . . must be based
on strict principles that can be verified empirically. We believe that such a program is
so overly rigid that, in the end, science is not served.”

Even so, Dawid’s objection to the metaphysical nature of potential outcomes does
bring up a deeper question: What is the epistemological status of the potential out-
come model?8 It is certainly not positivist, as it breaks radically from the positivist–
empiricist prescription that analysis must be based only on observed quantities. The
reliance on what-if potential outcomes and the consideration of unobservables – in the
treatment assignment process and for the presumed generative mechanism – consigns
the counterfactual approach to the postpositivist model of science generally labeled
realism (see Psillos 1999; Putnam 1975; see also Godfrey-Smith 2003 for an overview).
But, because each unobserved potential outcome could have become an observed out-
come if the unobservables in the treatment assignment process had been configured
in an alternative way, and the variables that constitute the generative mechanism
could be observed as well, the entire framework aspires to help us become reductive
empiricists.

In this regard, we suspect that most social scientists who adopt the counterfactual
approach would find the enigmatic but enabling position of Donald Campbell similar
to their own, as he laid it out in 1977:

I am a fallibilist and antifoundationalist. No part of our system of knowl-
edge is immune to correction. There are no firm building blocks, either
as indubitable and therefore valid axioms, or in any set of posits that are
unequivocal once made. Nor are there even any unequivocal experiences or
explicit operations on which to found certainty of communication in lieu
of a certainty of knowledge.

8When wading into the philosophy literature, one point leaps out in regard to Dawid’s charge. The
literature on causality is considered by most philosophers to be properly situated in the subfield of
metaphysics. Thus, Dawid’s charge that the potential outcome framework is metaphysical is, from the
perspective of philosophers, both accurate and untroubling. See also the position of Pearl (2009:33–34),
who argues that, even if counterfactuals are metaphysical in some sense because they are structures
in the mind, individuals are all too happy to use them in their daily lives. For this reason alone, it
seems natural to build notions of causality around them.
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I am some kind of a realist, some kind of a critical, hypothetical, corri-
gible, scientific realist. But I am against direct realism, naive realism, and
epistemological complacency. (Campbell 1988[1977]:444–45)

We read this passage as indicating that Campbell recognized, grudgingly to be sure,
that the pursuit of valid knowledge necessitates the invocation of unobservable quan-
tities, such as potential outcomes. This necessity tips one into the realm of realism,
wherein such unobservables are given provisional truth status for pragmatic purposes.
But, for any corrigible realist like Campbell, the ultimate aspiration is to bring conjec-
tured unobservables out in the open, drawing analysis down to its most generic form
as an as-if positivist endeavor.

For scholars who find the counterfactual approach to observational data analysis
unappealing, perhaps because of the persuasiveness of some of the objections presented
in this section, a variety of responses exists. Some scholars argue, simply, that we should
devote much more attention to descriptive modeling because causal analysis can be so
intractable. We begin the next section with this position, after which we then move
on to consider alternative modes of causal inquiry within which the counterfactual
approach can be utilized.

13.2 Modes of Causal Inquiry in the
Social Sciences

Some scholars argue that many long-standing questions in the social sciences can and
should be pursued without any reference to causality. When the sole interest is a par-
simonious account of “what the data show” or “what the historical record reveals,”
then all strategies for causal analysis are largely irrelevant, including the counterfac-
tual approach. But, there are also good reasons to consider descriptive analysis more
generally. Berk (2004:218) notes that “good description is the bread and butter of
good science and good policy research.” Sobel (1996:376) declares that many ques-
tions “neither require nor benefit from the introduction of causal considerations, and
the tendency to treat such questions as if they are causal only leads to confusion.”

We agree with this position to a great extent. But the appeal for descriptive research
cannot be taken too far. Epistemological questions still arise in descriptive research, as
not all descriptive accounts can be considered equally worthy of our attention. Perhaps
more importantly, social scientists may not want to backpedal from causal inquiry, lest
journalists, partisan think-tank scholars, and politicians take it over entirely. We would
most prefer to see both judicious descriptive analysis and careful causal analysis jointly
crowd out poor causal analysis in the social sciences and beyond.

As we have noted at several points, when considering the causal controversies
that pervade the literature, many social scientists have echoed the point summarized
most clearly for sociology by John Goldthorpe, who writes, “sociologists have to find
their own ways of thinking about causation, proper to the kinds of research that
they can realistically carry out and the problems that they can realistically address”
(Goldthorpe 2001:8). With this appeal in mind, we conclude this book with a discus-
sion of the primary modes of causal inquiry that exist in observational social science.
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We have two goals for this concluding presentation of complementary modes of
causal inquiry: (1) to affirm that all of these modes of inquiry are valuable and (2)
to argue that adopting a counterfactual approach can help us to move productively
between them. Even so, we would not want to argue for the hegemony of counterfactual
thinking. The specter of widespread mechanical adoption of the potential outcome
model is truly frightening to us: No one wishes to have to review journal submissions
in which scholars define the average treatment effect for the treated (ATT), offer
up a fairly arbitrary set of matching estimates, and then a disingenuous sensitivity
analysis that purportedly bolsters the results. This prospect alone is sufficient for us
to recommend considerable caution. But, perhaps more important, we cannot envision
the pursuit of empirical analysis in our own research areas without engaging in analysis
that includes all of the modes below. In other words, we can see many future profitable
lines of inquiry in our own research in which counterfactual thinking will be used only
as a background tool to encourage clear thinking.

With that backing, we offer the following (necessarily oversimplified) representation
of complementary modes of causal inquiry in observational social science:

Mode 1: Associational Analysis. In practice, most causal inquiry begins with an
assessment, sometimes unreported, of whether putative observed causes are associated
with an outcome of interest in some way. It is often stated that establishing such asso-
ciations are a precondition for subsequent causal analysis, as reflected in the aphorism
“no causation without association.”9

Mode 2: Conditional Associational Analysis. After associations have been estab-
lished, it is customary to then reestimate the associations after conditioning on values
of other observed variables. Although quite general, the typical approach usually fol-
lows one of two implementations: (1) conditioning on other variables that are thought
to determine the outcome and that may also be related to the cause(s) and (2) condi-
tioning on variables that determine the cause(s) and that may also be related to the
outcome. Although conceptually quite different (as we noted in our discussion in Sec-
tion 4.4), the goal of such conditioning is to eliminate obvious sources of confounding
in order to build basic support for causal relevance.

Mode 3a: Targeted Analysis of the Effects of One or More Focal Causes. After an
assessment of basic causal relevance for a set of putative causes, the effects of one or
more particular causes are then estimated in targeted analysis. This mode of causal
inquiry can be (or, we would argue, should be) undertaken after first elaborating a
directed graph entailed by extant theory. In any case, careful attention to model speci-
fication is needed, adopting assumptions, for example, of ignorability if identification is
by back-door conditioning or exclusions restrictions if identification is by instrumental
variables.

9Formally, of course, there are cases for which this may not be true, such as when individual-varying
causal effects perfectly cancel out each other or when suppression effects exist. We ignore exceptions
such as these here, as they are rare. The sorts of physical equilibria that rigidly generate balancing
of responses to causal shocks have no clear analogs in the social sciences that would generate similar
perfect cancellation of unit-specific causal effects. And, although suppression effects exist in the social
sciences, we cannot think of examples for which they have been shown to completely erase bivariate
associations that are at least partly causal.
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Mode 3b: Mechanism-Based Analysis. After (or while) targeted estimation of the
effects of one or more causes is undertaken, a common practice in causal inquiry is
to then introduce intervening variables between the focal causal variable(s) subjected
to targeted analysis and the outcome variable in an effort to develop a mechanistic
explanation of the process that generates the causal effect. Such a form of causal
inquiry can proceed, as is often the case, even though it may be unclear whether or
not all forms of confounding have been eliminated.

Mode 4: All-Cause Structural Analysis. At its most ambitious level, causal inquiry
is pursued as an attempt to identify all causes in chains of causality from the causal
variables to the outcome variable, eliminating or neutralizing all confounding in order
to identify all parameters of full causal systems. This approach is best represented in
the forms of structural equation modeling that prevail in economics, wherein all speci-
fications are justified with appeals to microeconomic theory and purport to explain the
entire “who, when, where, and how” of all of the causes of the outcome of interest.10

Consider now how the counterfactual approach can be related to these comple-
mentary but increasingly ambitious modes of causal inquiry and how adoption of the
approach facilitates movement between them as advances in theory construction and
data collection are achieved. For Mode 1 (associational analysis), the counterfactual
approach encourages the consideration of causes for which one can conceive of the
reasonable and theoretically possible conditions that would result from an interven-
tion that changes the causal variable from one value to another. When causal inquiry
is stuck by convention on the consideration of the effects of attributes for which the
conditions of as-if interventions are unclear, the approach encourages additional effort
to break the associational analysis into pieces that are more amenable to analysis by
consideration of specific counterfactual dependencies. The hope of such a refined and
expansive strategy is that the analysis can be brought down to a level where manip-
ulations are more easily conceivable, which may then allow for a redirection of the
extant associational inquiry. Such redirection may be necessary in order to open up
the possibility of advancement beyond Modes 1 and 2.

For the transition from Mode 1 to Mode 2 (that is, from associational to condi-
tional associational analysis), the counterfactual model encourages separate but com-
parative consideration of the determinants of the causes and the determinants of the
outcome. Determinants of causal variables lost some deserved attention as regression
methods became dominant in observational social science in the 1980s and 1990s, but
the matching literature associated with the counterfactual model has restored some
of this attention by focusing analysis on the goal of balancing the data with respect
to the determinants of the cause. For the subsequent transition to Mode 3a (targeted
analysis of one or more focal causes), the joint consideration of both types of vari-
ables then allows for a determination, by carefully defined assumptions grounded in
theory, of which sufficient subset of such determinants may be used in a conditioning

10In addition, all-cause structural analysis may drill down to model directly the separable causal
effects of the constituent features that compose the causal states. In other words, the causal variables
analyzed for Modes 1, 2, and 3a may come to be regarded as too broad to motivate sensible struc-
tural models. This decision may emerge following analysis within Mode 3b when the analyst comes
to recognize that the relevant generative mechanisms apply to only a subset of the causal state’s
constitutive features.
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strategy to achieve identification of the causal effect by eliminating all confounding.
If the assumptions cannot be sustained for any set of observed variables, then point
identification of the focal causal effects by back-door conditioning is impossible.

If no other research design is possible, such as those that exemplify Modes 3b and
4, then the counterfactual model suggests clearly why analysis should then expand
beyond efforts to point-identify causal effects to alternative forms of set identifica-
tion and sensitivity analysis. In addition, the counterfactual approach also encourages
especially careful examination of all back-door paths from the causal variable to the
outcome variable (rather than simply a one-by-one consideration of all variables that
lie along any back-door paths). This form of systematic consideration of model identi-
fication can prevent researchers from mistakenly generating new confounding between
the causal variables and the outcome variable, as occurs when the analyst conditions
on a collider variable that lies along an already blocked back-door path.

For the transition to Mode 3b (mechanism-based analysis), the counterfactual
approach shows that such a transition is substantive, not methodological. No new
estimation techniques beyond those used for Modes 2 and 3a are required. All that is
required to pursue Mode 3b is a theory that suggests which variables (and in which
configuration) represent the causal mechanism that brings about the causal effect.
Moreover, the counterfactual approach suggests that typical mechanism-based analy-
ses must be clearly separated into two very different varieties: those that merely point
to possible causal pathways and those that fully identify the causal effects of interest.
For analysis of the former type, some explanation can be achieved. But, to realize the
more ambitious goals of the latter, the mechanistic variables that are specified must be
exhaustive and isolated (or made so by suitable conditioning). Mechanistic variables
that are not independent of unblocked back-door paths after conditioning on observed
variables cannot be used to identify a causal effect.

For the transition to Mode 4 (all-cause structural analysis), the counterfactual
approach sensitizes researchers to the stringency of the required assumptions. Pearl
(2009) is surely correct that our ambition should always be to get as close as possible to
all-cause structural models where accounts can be offered for all of the causes of an out-
come. Adopting the counterfactual approach helps to clarify the dubious nature of the
maintained assumptions that pervade the published literature where all-cause models
are offered. For example, most such models are based on combinations of two identi-
fication strategies – basic conditioning and instrumental variable techniques – under
maintained assumptions that causal effects are homogeneous (or at least conditionally
random). As the matching literature associated with the counterfactual approach has
shown, such homogeneity is rarely justified empirically even for singular causes, and
most parametric forms of conditioning average systematic causal effect heterogeneity
in arcane ways. Moreover, the instrumented variable (IV) literature associated with
the counterfactual approach has shown that, in the presence of such heterogeneity,
IVs estimate marginal causal effects that cannot then be extrapolated to other seg-
ments of the population of interest without introducing unsupportable assumptions of
homogeneity of effects.

By making these issues clear, the counterfactual approach shows how high the
demands on theory and on data must be in order to sustain the all-cause mode of causal
inquiry: Answers to all of the “who, when, where, and how” questions for the causal
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relationships of interest must be provided. Dodging these questions by introducing
homogeneity assumptions that have only a dubious grounding in theory (or a solid
grounding in dubious theory) can undermine causal claims, at least in the eyes of a
fair critic. In this sense, the counterfactual approach encourages modesty of causal
inquiry.

Finally, such modesty can be pursued outside of these modes of inquiry, after
which analysis can then shift into whichever of these modes seems most appropriate.
As shown perhaps most clearly when adopting Manski’s set-identification perspective
(see Chapter 12), the range that a causal effect may take on can be defined and
then examined with the potential outcome model before any data are considered.
Thereafter, an assessment can be undertaken of the data that are available to estimate
average causal effects of various forms. For these steps, assumptions about why a causal
relationship may exist need not be introduced, nor in fact assumptions that there is
any systematic relationship between the processes that generate causal relationships at
the individual level. Such flexibility leaves analysis wide open at the outset, focusing
attention on clear definitions of effects of interest, independent of data availability
issues.

But, once an analysis has begun, a theoretical position must be adopted in order
to provide answers to at least some of the “who, when, where, and how” questions
for the causal relationship of interest. Given provisional answers to these questions,
the counterfactual approach helps one to consider which modes of causal inquiry are
feasible. Analysis may have to stop at the associational level, yielding nothing other
than analogs to the naive estimator. If some of the determinants of the cause and/or
outcome are systematic and observed, then analysis can move down to conditional
variants of associational analysis, followed by an analysis of bounds (and perhaps a
sensitivity analysis). If a directed graph can be drawn that suggests that ignorability
assumptions or exclusion restrictions are available for focal causal effects, then it may
be feasible to generate consistent estimates of the effects of these specific causes. If
theory and data are available to examine what brings about the effect of the cause, then
analysis can move down toward a mechanism-based mode of causal inquiry. Finally,
if theory is finely articulated and supported by past substantive scholarship, and if
all data requirements are met, then full structural modeling can be attempted. Such
all-cause models represent a standard that is rarely achieved but properly valued, for
they provide complete explanations not only of the causes of an outcome but of every
linkage in the causal chains between them. Counterfactual modeling guides us as close
to this standard as is appropriate, given the constraints of theory and of data that
prevail at any given time.
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Nı́ Bhrolcháin, Máire and Tim Dyson. 2007. “On Causation in Demography: Issues
and Illustrations.” Population and Development Review 33:1–36.

Nie, Norman H., Jane Junn, and Kenneth Stehlik-Barry. 1996. Education and Demo-
cratic Citizenship in America. Chicago: University of Chicago Press.

Noell, Jay. 1982. “Public and Catholic Schools: A Reanalysis of ‘Public and Private
Schools.”’ Sociology of Education 55:123–32.

Notestein, Frank W. 1933. “The Differential Rate of Increase among the Social Classes
of the American Population.” Social Forces 12:17–33.

—. 1950. “The Population of the World in the Year 2000.” Journal of the American
Statistical Association 45:335–45.

Oreopoulos, Philip. 2006. “Estimating Average and Local Average Treatment Effects of
Education When Compulsory Schooling Laws Really Matter.” American Economic
Review 96:152–75.

Pagan, Adrian and Aman Ullah. 1999. Nonparametric Econometrics. New York: Cam-
bridge University Press.

Pampel, Fred C., Patrick M. Krueger, and Justin T. Denney. 2010. “Socioeconomic
Disparities in Health Behaviors.” Annual Review of Sociology 36:349–70.

Parsons, Talcott. 1937. The Structure of Social Action. New York: McGraw-Hill.

—. 1951. The Social System. Glencoe: Free Press.



482 References

Paul, L. A. and Ned Hall. 2013. Causation: A User’s Guide. Oxford: Oxford University
Press.

Pearl, Judea. 2000. Causality: Models, Reasoning, and Inference. Cambridge: Cam-
bridge University Press.

—. 2001. “Direct and Indirect Effects.” Pp. 411–20 in Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kauf-
mann.

—. 2009. Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge: Cambridge
University Press.

—. 2011. “Principal Stratification – a Goal or a Tool?” International Journal of Bio-
statistics 7:1–13.

—. 2012a. “The Causal Mediation Formula: A Guide to the Assessment Pathways and
Mechanisms.” Prevention Science 13:426–36.

—. 2012b. “The Mediation Formula: A Guide to the Assessment of Causal Pathways
in Nonlinear Models.” Pp. 151–79 in Causality: Statistical Perspectives and Appli-
cations, edited by C. Berzuini, P. Dawid, and L. Bernardinelli. Hoboken: Wiley.

Petersen, Trond, Andrew M. Penner, and Geir Høgsnes. 2011. “The Male Marital
Wage Premium: Sorting vs. Differential Pay.” Industrial and Labor Relations Review
64:283–304.

Peterson, Paul E. and William G. Howell. 2004. “Efficiency, Bias, and Classification
Schemes: A Response to Alan B. Krueger and Pei Zhu.” American Behavioral Sci-
entist 47:699–717.

Phelan, Jo C., Bruce G. Link, Ana Diez-Roux, Ichiro Kawachi, and Bruce Levin. 2004.
“‘Fundamental Causes’ of Social Inequalities in Mortality: A Test of the Theory.”
Journal of Health and Social Behavior 45:265–85.

Phelan, Jo C., Bruce G. Link, and Parisa Tehranifar. 2010. “Social Conditions as Fun-
damental Causes of Health Inequalities: Theory, Evidence, and Policy Implications.”
Journal of Health and Social Behavior 51:S28–S40.

Powers, Daniel A. and Yu Xie. 2000. Statistical Methods for Categorical Data Analysis.
San Diego: Academic Press.

Pratt, John W. and Robert Schlaifer. 1984. “On the Nature and Discovery of Struc-
ture.” Journal of the American Statistical Association 79:9–33.

—. 1988. “On the Interpretation and Observation of Laws.” Journal of Econometrics
39:23–52.

Psillos, Stathis. 1999. Scientific Realism: How Science Tracks Truth. London: Rout-
ledge.



References 483

Putnam, Hilary. 1975. Mind, Language, and Reality. New York: Cambridge University
Press.

Quandt, Richard E. 1972. “A New Approach to Estimating Switching Regression.”
Journal of the American Statistical Association 67:306–10.

Raftery, Adrian E. 1995. “Bayesian Model Selection in Social Research.” Sociological
Methodology 25:111–63.

Ragin, Charles C. 1987. The Comparative Method: Moving Beyond Qualitative and
Quantitative Strategies. Berkeley: University of California Press.

—. 2008. Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago: University of
Chicago Press.

Raudenbush, Stephen W. and Anthony S. Bryk. 2002. Hierarchical Linear Models:
Applications and Data Analysis Methods. Thousand Oaks: Sage.

Reardon, Sean F., Jacob E. Cheadle, and Joseph P. Robinson. 2009. “The Effect of
Catholic Schooling on Math and Reading Development in Kindergarten Through
Fifth Grade.” Journal of Research on Educational Effectiveness 2:45–87.

Reed, Isaac. 2011. Interpretation and Social Knowledge: On the Use of Theory in the
Human Sciences. Chicago: University of Chicago Press.

Reiersøl, Olav. 1941. “Confluence Analysis by Means of Lag Moments and Other Meth-
ods of Confluence Analysis.” Econometrica 9:1–24.

Rein, Martin and Christopher Winship. 1999. “The Dangers of ‘Strong’ Causal Rea-
soning in Social Policy.” Society 36:38–46.

Reskin, Barbara F. 2003. “Including Mechanisms in Our Models of Ascriptive Inequal-
ity.” American Sociological Review 68:1–21.

Retherford, Robert D. and Naohiro Ogawa. 2006. “Japan’s Baby Bust: Causes, Impli-
cations, and Policy Responses.” Pp. 5–47 in The Baby Bust: Who Will Do the Work?
Who Will Pay the Taxes?, edited by F. R. Harris. Lanham: Rowman and Littlefield.

Robins, James M. 1986. “A New Approach to Causal Inference in Mortality Studies
with a Sustained Exposure Period: Application to Control of the Healthy Worker
Survivor Effect.” Mathematical Modelling 7:1393–512.

—. 1997. “Causal Inference from Complex Longitudinal Data.” Pp. 69–117 in Latent
Variable Modeling and Applications to Causality: Lecture Notes in Statistics, edited
by M. Berkane. New York: Springer.

—. 1998. “Marginal Structural Models.” Pp. 1–10 in 1997 Proceedings of the Amer-
ican Statistical Association, Section on Bayesian Statistical Science. Alexandria,
Virginia.

—. 1999. “Association, Causation, and Marginal Structural Models.” Synthese 121:
151–79.



484 References

—. 2000. “Marginal Structural Models versus Structural Nested Modes as Tools for
Causal Inference.” Pp. 95–134 in Statistical Models in Epidemiology: The Environ-
ment and Clinical Trials, edited by M. E. Halloran and D. A. Berry. New York:
Springer.

Robins, James M. and Sander Greenland. 2000. “Comment on ‘Causal Inference With-
out Counterfactuals’ by A. P. Dawid.” Journal of the American Statistical Associa-
tion 95:431–35.

Robins, James M. and Miguel A. Hernán. 2009. “Estimation of the Causal Effects of
Time-Varying Exposures.” Pp. 553–99 in Longitudinal Data Analysis, edited by G.
Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs. Boca Raton: Chapman
& Hall/CRC.

Robins, James M. and Thomas Richardson. 2010. “Alternative Graphical Causal Mod-
els and the Identification of Direct Effects.” Center for Statistics and the Social
Sciences, Working Paper 100, University of Washington, Seattle, Washington.

Robins, James M. and Ya’acov Ritov. 1997. “Toward a Curse of Dimensionality Appro-
priate (CODA) Asymptotic Theory for Semi-Parametric Models.” Statistics in
Medicine 16:285–319.

Robins, James M. and Andrea Rotnitzky. 2001. “Comment on ‘Inference for Semipara-
metric Models: Some Questions and an Answer’ by Bickel and Kwon.” Statistica
Sinica 11:920–36.

Robins, James M., Andrea Rotnitzky, and Lue Ping Zhao. 1994. “Estimation of Regres-
sion Coefficients When Some Regressors Are Not Always Observed.” Journal of the
American Statistical Association 89:846–66.
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adjustment criterion, 136–39
always taker, 306–14, 320–21
analysis of covariance model, 275–77,

364–88
average causal effect, see

average treatment effect
average treatment effect, 46–48
conditional, 55–56
for the controls, 55
for the treated, 55

back-door criterion, 109–10
back-door path, 106
blocking, 110–14

balancing
definition of balance, 128
versus adjustment, 128–30
determinants of treatment, 162–66

bias, 58–60
baseline, 59
differential treatment effect, 59
omitted-variable, 110, 194–206
self-selection, 122, 197, 287

bound, 422
analysis of, 422–29
combinations of, 429–29
no-assumptions, 422–25

causal effect, see average treatment effect
and treatment effect

causal graph, 79–81, 97–99
causal state, 37–43
chain of mediation, 81, 331
change score model, 364–88
collider, 81

complier, 306–14, 320–21
conditioning, 82-84
control group, 44–45
control state, 37, 43–44
counterfactual, 37–46

conditional expectation, 58
covering law, 11, 340–43, 442

data-driven specification search, 130,
222–23

deffer, 306–14, 320–21
descendant, 80
directed acyclic graph (DAG), 80, 96
directed path, 80

error term, 88–89, 122–24, 131–36,
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examples
Catholic schools, 22–23, 39–41, 47, 50,
55–58, 61, 120–21, 171–80, 215,
220–24, 234–37, 243–62, 269–77,
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charter schools, 3, 24–25, 38, 50,
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class size, 362
educational attainment, 14–15, 327–28
education on earnings, 15–16, 59–60,
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father absence, 21–22, 38–39
fertility, 17–19, 67
felons and election outcomes, 42
health and mortality, 19–20, 41–42,
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military service, 300, 328–29
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neighborhoods, 21, 85–90, 284–89, 318,

322, 432
obesity, 26, 52, 432–34
Operation Ceasefire, 357–360
political participation, 16–17
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school vouchers, 23–24
worker training, 25–26, 390–91
Year of the Fire Horse, 64–68, 355, 360

experiment
definition of, 6

experimental design, 6-7, 118–19

front-door criterion, 330-38

generative mechanism, 338–42

how-actually model, 345–46
how-plausibly model, 345
how-possibly model, 345

ignorability, 119–22, 127, 205, 268–69,
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sequential, 396–97
independence
of potential outcomes from treatment,
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of instrument, 307, 311–13
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binary, 291–94
IV Demonstration 1, 294–96
IV Demonstration 2, 309–314
LATE assumptions,k 305–309
Traditional assumptions, 297–99

interrupted time series (ITS) design, 67,
355–60

local average treatment effect (LATE),
305, 327

local instrumental variable (LIV), 323,
421

Mahalanobis metric, 158
manipulability, 339, 439–41
many-valued treatments, 70–73, 185–86,

218–19

marginal treatment effect (MTE), 322–23
matching
as data analysis algorithm, 158–81
as stratification, 143–50
as weighting, 150–58
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genetic, 167–68
interval, 161
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many-valued causes, 185–86
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Matching Demonstration 3, 153–56
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on the region of common support,
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mechanism, 330–53
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mechanism schema, 347, 349
mechanism sketch, 347, 349–52,
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monotone instrumental variable (MIV),

427–28
monotone treatment response (MTR),

426–27
monotone treatment selection (MTS),

426–27
monotonicity
of response to instrument, 307–309

näıve estimator, 57–60
natural experiment, 303–305, 326–30
never taker, 306–14, 320–21
nonignorable, see ignorability
nonmanipulability, 339, 439–41

observational study, 7, 54
omitted variable bias, see bias, omitted

variable
ordinary least squares (OLS), see

regression, ordinary least squares
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panel data, 68–70, 363–92
Panel Data Demonstration 1, 273–77
Panel Data Demonstration 2, 365–74

partial identification, see bound,
analysis of

path, 80
path model, 10, 85–87
point identification, 78–79, 422
policy-relevant treatment effect (PRTE),

323
population, 27–28, 37, 74–76
potential outcome, 43–46
over-time, 62–70

propensity score, 118–22, 151
estimated, 152, 157–58, 166–68
true, 118–22, 151

quasi-experiment, 9

realism, 445–46
critical, 343–44

regression, 9–13, 188–225
as conditional-variance-weighted
matching, 206–14

ordinary least squares (OLS), 201–202
Regression Demonstration 1, 189–92
Regression Demonstration 2, 207–11
Regression Demonstration 3, 213–14
Regression Demonstration 4, 216–17
as supplemental adjustment when
matching, 215–217

weighted, 226–63

Weighted Regression Demonstration 1,
229–30, 232–33

Weighted Regression Demonstration 2,
235–37

Weighted Regression Demonstration 3,
243–62

regression discontinuity (RD) design,
360–63

selection
on the observables, 124–26,
268

on the unobservables, 124–26,
268

sensitivity analysis, 429–34
set identification, 422
stable unit treatment value assumption

(SUTVA), 48–52, 307, 438
stratification, see conditioning and

matching, as stratification
superpopulation, 28, 74–76

treatment assignment, 53–54
treatment effect, 43–44
treatment group, 44–45
treatment selection, see selection and

treatment assignment, 37, 43–44
two-stage lease squares (2SLS),

316–17

unconditional association, 81–82
weighted regression, see regression
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