Software and Memory

Wendy Hui Kyong Chun

Programmed Visions

Software Studies
Matthew Fuller, Lev Manovich, and Noah Wardrip-Fruin, editors

Expressive Processing: Digital Fictions, Computer Games, and Software Studies
Noah Wardrip-Fruin, 2009

Code/Space: Software and Everyday Life
Rob Kitchin and Martin Dodge, 2011

Programmed Visions: Software and Memory
Wendy Hui Kyong Chun, 2011

Programmed Visions

Software and Memory

Wendy Hui Kyong Chun

The MIT Press
Cambridge, Massachusetts

London, England

© 2011 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu

This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited. Printed
and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Chun, Wendy Hui Kyong, 1969-
Programmed visions : software and memory / Wendy Hui Kyong Chun.
p- cm. — (Software studies)
Includes bibliographical references and index.
ISBN 978-0-262-01542-4 (hardcover : alk. paper)
1. Computer software—Development—Social aspects. 2. Software architecture—Social
aspects. 3. Computer software—Human factors. 1. Title.
QA76.76.D47C565 2011
005.1—dc22
2010036044

10 9 8 7 6 5 4 3 21

Contents

Series Foreword vii

Preface: Programming the Bleeding Edge of Obsolescence xi
Introduction: Software, a Supersensible Sensible Thing 1
You 13

I Invisibly Visible, Visibly Invisible 15

1 On Sourcery and Source Codes 19

Computers that Roar 55

2 Daemonic Interfaces, Empowering Obfuscations 59
Il Regenerating Archives 97

3 Order from Order, or Life According to Software 101
The Undead of Information 133

4 Always Already There, or Software as Memory 137
Conclusion: In Medias Res 175

Epilogue: In Medias Race 179

You, Again 181

Notes 183
Index 233

Series Foreword

Software studies aims to find ways of expanding and intensifying reflection on
software and computational culture in general. The problems it works on are rather
unavoidable since software, and the underlying ideas and techniques that it embod-
ies, is a crucial, if underacknowledged, element of everyday life. Few parts of human
culture remain untouched by software, but there are relatively fewer means by
which to evaluate it. The Software Studies book series aims to contribute to a certain
balancing out of this ratio.

The ability to understand its preconditions and basal factors is in turn essential
for any field of endeavor to prosper and to renew itself. To ally such an understand-
ing with a synthetic approach, which brings together some of the iterations of a
foundational set of ideas as they move through different fields and are changed by
them as they in turn change those that they provide new insights to, is crucial.
As this book shows, the ideas of code and of programmability underlie software.
In turn, they form a set of idioms and techniques to shape and make possible other
areas of life.

While Programmed Visions operates as a sustained introduction to the ideas of soft-
ware, code, and programmability as they work in relation to computation, the book
is also a meditation on how this model proliferates, by various means, into systems
such as living materials that are in turn understood to be bearers of a form of code
that instructs their growth and that can, by further convolution, be read as a print
out of the truth of an organism. Indeed, Chun’s book shows how, in nuanced and
intriguing ways, the idea of code in biology anticipates that in computing. Thus, the
idea of programmability proliferates into other pasts.

That computing is something that has a history is, three generations removed from
the first electronic computers, relatively well established. The study of that history
itself has grown from a focus on canonical surveys and detailed and vivid oral histories
to a very fruitful proliferation of focuses, problematics, and methodological scope.
Programmed Visions places the field of software studies in direct dialogue with that of
computing history, but it also suggests that in order to work through history, we need

viii Series Foreword

to be able to bring other scales into account, from feelings to geopolitics and the
conceptual and ideological orderings that are operative in them.

One of the operations evaluated here is the idea that one thing can stand in for,
or be seen as equivalent to, another. This is the essential idea of a code. Systems of
equivalence and codification such as capitalism, the universal Turing machine, man-
agement, structuralism, each has its own idiosyncrasies, and each, as constructive
systems, has its own capacities for invention. Chun’s claim, in an interlude text in
this book, is that the computer, and software in particular, has gone one step further,
becoming a metaphor for metaphor, a means by which other metaphors are filtered
and arranged, becoming in turn a system of universal experiential machining. This is
one reason the computer cannot be written off, or lauded, as a simply crazily rational-
ist machine. There is a velocity, idiosyncrasy, and thickness to the changes wrought
by software that makes it a fundamentally tricky phenomenon, potentially rich rather
than inherently reductive, but not automatically so.

One other set of phenomena that these qualities couple with are the means of
assigning value to things. The degradation experienced in the neoliberal moment is
partly in the abstractions it operates by: that relations, singular qualities of inherence
in the world, are exchanged for equivalences; that money becomes the secret means
by which a table may be transmogrified into a meal and a house may be turned into
a debt. In the secret ironic engine undergirding economics, equivalences are exchanged
for sames. These sames may be goods, the same dull coffee places in cities across the
overdeveloped world, the same infrastructure of contracts, law, and possession, and
the same operating systems that accompany them.

The ability of numbers, statements, currencies, or other signs to stand in for all
kinds of things gives systems of abstraction and generalization immense power, espe-
cially when they can be made to line up into larger-scale structures, producing veri-
table machines. Programmed Visions gives us a means of understanding such processes,
but also importantly understanding how software is the code that works to disinter-
mediate these systems. Thus, to understand the contemporary situation, it is not
enough solely to recognize the operations of the economy, or even to be able to inter-
rogate the morphological expressivity of a genetic array, but also to understand the
very mechanisms that conjoin them. And here, software’s capacity to handle relations,
equivalences,and sames is also something that, as well as bearing the capacity for
indefensible reductions, also makes it deeply productive. Software, in its relations with
other things, brings a capacity of synthesis to multiple scales of reality, acting as a
condition of thought, of imagination, investing them with multiple kinds of motility
and conjunction. In turn, one of the imaginaries that invests this synthetic domain
is a technocratic dreamwork of understanding, interpretability, ambivalent optimiza-
tion, but also of instrumentalisation and restructuration running in a recursive mode
that reinforces systems of sames.

Series Foreword ix

This is a necessarily complicated, highly intriguing, series of transitions and the
elegance with which Chun marks these moments of the waxing and waning of inte-
grations and encodings is testament both to the expressivity of the systems that she
interprets and to the skill with which her analyses are assembled. The very dynamic
range of the materials that the book discusses indeed compels what the book both
celebrates and exemplifies: a means of thinking “in the middle of things.” This feel
for both immanence and abstraction drives Programmed Visions in its figuring out of
the relations between the different loci that it inhabits, and it is one that is marked
by multiple resonances of vicissitude and pleasure. It is in these transitions too that
the book engenders its relation to memory, the regenerative capacity that is needed
when one does not have an absolute overview. Memory allows us to see patterns, to
unlock codes, even in a world of ongoing change. Programmed Visions sets such a
capacity in contrast to the figure of memory as simple storage, or “hardened” informa-
tion, and offers a new reading of the relationship between them. In broader terms,
the book commends us to keep looking at what becomes soft, that which ossifies or
proliferates by staying the same, what multiplies and what grows anew. With an
urgency that cannot be rushed, we are here presented with the materials to carry out
such work.

Matthew Fuller

Preface: Programming the Bleeding Edge of Obsolescence

This book was inspired by the many lives of new media—by the ways that it not only
survives, but also thrives on, cycles of obsolescence and renewal.

In the early 2000s, new media seemed to be dead, and the utopian and dystopian
discourses around the World Wide Web and Y2K were exposed for what they were:
hype. Gone were the celebrations of the “new economy,” virtual reality, and cyber-
space. The term new media even seemed “old”: the New York New Media Association
folded in 2003, and many New Media Groups within corporate structures (Apple,
Gannett, etc.), and many new media companies disappeared.' Everyone was on the
Internet—new media was everywhere—but new media seemed boring; the reality of
surfing the net did not compare to the glitzy cyberpunk visions touted by Mondo 2000.

By 2008, however, the future was, once more, in fashion, and there was a growing
impatience with the so-called critical hindsight that flourished after the dot.bombs
and 9/11. Rather than sobering if banal reassessments of the Internet as a “double-
edged sword” that aids both terrorists and victims, the main strain of both popular
and scholarly new media analysis stressed future possibilities and sought to outline
the next big thing: mobile mobs, Web 3.0, cloud computing, radical topsight, and so
on. A sense that something had really changed, as well as a desire to capitalize on this
change, fueled this renewal: the returns of new media are linked to the promise of
financial returns. Silicon Valley, if not Alley, had recovered from the demise of the
“new economy”; Google was everywhere in every possible form; iPhones and BlackBer-
ries had proliferated; even Granny was on Facebook.com. Every social movement,
every social protest appeared to be wired; newspaper companies were folding and
television stations laid off staff as content migrated online; everyone, it appeared, was
bombarding one another with 140-character-long tweets, and no one seemed to care.

This future 2.0, like Web 2.0 or 3.0, was not as utopian or as bold as its mid-1990s
predecessor, the future. No one was prophesying the end of all brick-and-mortar busi-
nesses; there were no upbeat yet paranoid commercials promising the end to racial
discrimination and the beginnings of a happy global village; there were no must-read
cyberpunk novels or films outlining cyberspace’s gritty, all-encompassing nature,

xii Preface

although new media does now encompass the bio- and nanotech. Instead, even within
this optimism, there was a dim yet gnawing sense that this too will pass, that every
next big thing is also the next big bubble (if it’s anything at all). To call something
new, after all, is to guarantee its obsolescence, and this hopeful return to the future
as future simple—as what will be, as what you will do, as a programmed upgrade to
your already existing platform—constantly recedes and disappears. Although this
cycle of the ever-returning and ever-receding new mirrors the economic cycle it
facilitates, the undeadness of new media is not a simple consequence of economics;
rather, this book argues, this cycle is also related to new media’s (undead) logic of
programmability. New media proliferates “programmed visions,” which seek to shape
and to predict—indeed to embody—a future based on past data.

This book addresses this concept of programmability through the surprising mate-
rialization of software as a thing in its own right. It argues that the hardening of
programming into software and of memory into storage is key to understanding new
media as a constantly inspiring yet disappointing medium of the future. It links this
hardening to several factors: computing’s gendered and military history, foundational
parallels between the fields of genetics and computing technology, long-standing
visions of a stable archive of knowledge as driving human progress, and a general,
neoliberal trend to personalize power (to make power touch each and all). All this has
made the computer, understood as networked software and hardware machines, both
an instrument and a symptom of neoliberal governmental power. It has made it an
instrument of both causal pleasure and extreme frustration, a means of navigation
and obfuscation.

This book, however, does not seek to condemn computers as simple neoliberal tools
or to view user empowerment as a form of imprisonment. Computers are mediums
of power in the fullest senses of both words. Through them, we can pleasurably create
visions that go elsewhere, specters that reveal the limitations and possibilities of user
and programmer, choices that show how we can rework neoliberal formulations of
freedom and flexibility. Specters haunt us through our interfaces—by working with
them we can collectively negotiate the dangers and pleasures of the worlds they
encapsulate and explode.

Acknowledgments

I am very grateful to all those who have read and sponsored various parts of this book.
I owe special thanks to Matthew Fuller and Florian Cramer who read drafts of the
whole book, and to Lisa Gannett, N. Katherine Hayles, Adrian Mackenzie, the editors
of Grey Room, the editorial board of Critical Inquiry, and the Critical Code Studies
Working Group, who all read and offered critiques of portions of it. Their comments
have immeasurably improved this book. I have learned much and received great

Preface xiii

support from my colleagues in the Department of Modern Culture and Media. To Chris
Csikszentmihalyi, Arindam Dutta, Liz Canner, Lynn Festa, Thomas Keenan, and Mary
Ann Doane, I owe much inspiration and good cheer. I am also grateful to my incred-
ible research assistant loana Jucan for her impeccable work and to Robin Davis for her
assistance with the images. To the fantastic editorial machine at MIT—Doug Sery, Katie
Helke, and Kathleen Caruso—I owe an enormous thanks. Without the love and
support of my sweetie Paul Moorcroft, this book would not have been possible.

Research for this book was supported by grants, fellowships and leave from Brown
University (in particular, a Henry Merritt Wriston Fellowship and a Edwin and Shirley
Seave Faculty Fellowship from the Pembroke Center for Teaching and Research on
Women)—I am grateful to Brown University for its financial and academic support.
A fellowship from the Radcliffe Institute for Advanced Study was crucial to conceiving
the manuscript, and a travel award from the Lemelson Center at the National Museum
of American History, Smithsonian Institute made it possible for me to do archival
work. I began writing in earnest while a visiting scholar in Harvard University’s
History of Science Department—I would like to thank Harvard and my hosts for their
invaluable support.

Fragments of the book have been published in Configurations, Grey Room, and
Critical Inquiry.

Boston, Massachusetts
August 2010

Introduction: Software, a Supersensible Sensible Thing

Debates over new media resonate with the parable of the six blind men and the ele-
phant. Each man seizes a portion of the animal and offers a different analogy: the
elephant is like a wall, a spear, a snake, a tree, a palm, a rope. Refusing to back down
from their positions since they are based on personal experience, the wise men engage
in an unending dispute with each “in his own opinion / Exceeding stiff and strong /
Though each was partly in the right, / And all were in the wrong!” The moral, accord-
ing to John Godfrey Saxe’s version of this tale, is: “So oft in theologic wars, / The
disputants, I ween, / Rail on in utter ignorance / Of what each other mean, / And
prate about an Elephant / Not one of them has seen!”' It is perhaps irreverent to
compare a poem on the incomprehensibility of the divine to arguments over new
media, but the invisibility, ubiquity, and alleged power of new media (and technology
more generally) lend themselves to this analogy. It seems impossible to know the
extent, content, and effects of new media. Who can touch the entire contents of the
World Wide Web or know the real size of the Internet or of mobile networks? Who
can read and examine all time-based online interactions? Who can expertly move
from analyzing social networking sites to Japanese cell phone novels to hardware
algorithms to databases? Is a global picture of new media possible?

In response to these difficulties, many within the field of new media studies have
moved away from specific content and technologies toward what seems to be common
to all new media objects and moments: software. All new media objects allegedly rely
on—or, most strongly, can be reduced to—software, a visibly invisible or invisibly
visible essence. Software seems to allow one to grasp the entire elephant because it is
the invisible whole that generates the sensuous parts. Based on and yet exceeding our
sense of touch—based on our ability to manipulate virtual objects we cannot entirely
see—it is a magical source that promises to bring together the fractured field of new
media studies and to encapsulate the difference this field makes. To know software
has become a form of enlightenment: a Kantian release from self-incurred tutelage.

This notion of knowing software as a form of enlightenment—as a way to com-
prehend an invisible yet powerful whole—is not limited to the field of new media

2 Introduction

studies. Based on metaphor, software has become a metaphor for the mind, for
culture, for ideology, for biology, and for the economy. Cognitive science, as Paul
Edwards has shown, initially comprehended the brain/mind in terms of hardware/
software.” Molecular biology conceives of DNA as a series of genetic “programs.”
More broadly, culture itself has been posited as “software,” in opposition to nature,
which is “hardware.”* Although technologies, such as clocks and steam engines,
have historically been used metaphorically to conceptualize our bodies and culture,
software is unique in its status as metaphor for metaphor itself. As a universal
imitator/machine, it encapsulates a logic of general substitutability: a logic of order-
ing and creative, animating disordering. Joseph Weizenbaum has argued that com-
puters have become metaphors for all “effective procedures,” that is, for anything
that can be solved in a prescribed number of steps, such as gene expression and
clerical work.*

The clarity offered by software as metaphor—and the empowerment allegedly
offered to us who know software—however, should make us pause, because software
also engenders a sense of profound ignorance. Software is extremely difficult to com-
prehend. Who really knows what lurks behind our smiling interfaces, behind the
objects we click and manipulate? Who completely understands what one’s computer
is actually doing at any given moment? Software as metaphor for metaphor troubles
the usual functioning of metaphor, that is, the clarification of an unknown concept
through a known one. For, if software illuminates an unknown, it does so through an
unknowable (software). This paradox—this drive to grasp what we do not know
through what we do not entirely understand—this book argues, does not undermine,
but rather grounds software’s appeal. Its combination of what can be seen and not
seen, can be known and not known—its separation of interface from algorithm, of
software from hardware—makes it a powerful metaphor for everything we believe is
invisible yet generates visible effects, from genetics to the invisible hand of the
market, from ideology to culture.

Every use entails an act of faith, and this book tries to understand what
makes this trust possible not in order to condemn and move “beyond” computer
software and interfaces, but rather to understand how this combination of visibility
and invisibility, of past experiences with future expectation, makes new media
such a powerful thing for each and all. It also takes seriously new media’s modes
of repetition and transmission in order to understand how they open up gaps
for a future beyond predictions based on the past. Computers—understood as
software and hardware machines—this book argues, are mediums of power. This
is not only because they create empowered users, but also and most importantly,
because software’s vapory materialization and its ghostly interfaces embody—
conceptually, metaphorically, virtually—a way to navigate our increasingly complex
world.

Introduction 3

How Soft Is Software?

Software is, or should be, a notoriously difficult concept. Historically unforeseen,
barely a thing, software’s ghostly presence produces and defies apprehension, allowing
us to grasp the world through its ungraspable mediation.

Computer scientist Manfred Broy describes software as “almost intangible, gener-
ally invisible, complex, vast and difficult to comprehend.” Because software is
“complex, error-prone and difficult to visualize,” Broy argues, many of its “pioneers”
have sought to make “software easier to visualize and understand, and to represent
the phenomena encountered in software development in models that make the
often implicit and intangible software engineering tasks explicit.”* Software chal-
lenges our understanding not only because it works invisibly, but also because it is
fundamentally ephemeral—it cannot be reduced to program data stored on a hard
disk. Historian Michael Mahoney describes software as “elusively intangible. In
essence, it is the behavior of the machines when running. It is what converts their
architecture to action, and it is constructed with action in mind; the programmer
aims to make something happen.”® Consequently, software is notoriously difficult
to study historically: most “archived” software programs can no longer be executed,
and thus experienced, since the operating systems and machines, with which they
merge when running, have disappeared. Although these systems can be emulated,
what is experienced is a reconstruction.” Hence, not only does software’s ephemeral-
ity make analysis difficult, so does the lack of clear boundaries between running
programs and between running software and live hardware. Theorist Adrian Mac-
kenzie aptly calls software a “neighbourhood of relations”; “in code and coding,”
he argues, “relations are assembled, dismantled, bundled and dispersed within and
across contexts.”® Software “pioneers” Herman H. Goldstine and John von Neumann,
in their 1940s explication of programming, similarly described it as “the technique
of providing a dynamic background to control the automatic evolution of a
meaning.”’

To be apprehended, software’s dynamic porousness is often conceptually trans-
formed into well-defined layers. Software’s temporality, in other words, is converted
in part to spatiality, process in time conceived in terms of a process in space. Historian
Paul Ceruzzi likens software to an onion, “with many distinct layers of software over
a hardware core.”'® Application on top of operating system, on top of device drivers,
and so on all the way down to voltage charges in transistors. What, however, is the
difference between an onion’s layers and its core? Media archeologist Friedrich Kittler,
taking this embedded and embedding logic to its limit, has infamously declared “there
is no software,” for everything, in the end, reduces to voltage differences. More pre-
cisely, he contends, “there would be no software if computer systems were not
surrounded . . . by an environment of everyday languages. This environment . . . since

4 Introduction

a famous and twofold Greek invention, consists of letters and coins, of books and
bucks.”"" Less controversially, Mahoney has argued that software “is an artifact of
computing in the business and government sectors during the '50s”; software, as Paul
Ceruzzi and Wolfgang Hagen have shown, was not foreseen: the engineers building
high-speed calculators in the mid-1940s did not plan or see the need for software."?

At first, software encompassed everything that was not hardware, such as services.
The term soft, as this book elaborates, is gendered. Grace Murray Hopper claims that
the term software was introduced to describe compilers, which she initially called
“layettes” for computers; J. Chuan Chu, one of the hardware engineers for the ENIAC,
the first working electronic digital computer, called software the “daughter” of Fran-
kenstein (hardware being the son)."® Software, as a service, was initially priced in terms
of labor cost per instruction.'* Herbert D. Benington remarks that attendees at the
1956 symposium on advanced programming methods for digital computers were hor-
rified that his Lincoln Laboratory group, working on what would become the ground-
breaking SAGE (Semi-Automatic Ground Environment) Air Defense System, could do
no better than $50 per instruction. In that 1956 address Benington also stresses the
growing importance of software: “our colleagues who build computers,” he notes,
“have come to realize that a computer is not useful until it has been programmed.”"?
As this statement reveals, the word program, at that time, was predominantly a verb,
not a noun.'

Legal battles over software copyrights and patents make clear the stakes of this
transformation of software from a service, priced per instruction, to a thing. Not
surprisingly, software initially was considered neither patentable nor copyrightable
because of its functional, intangible, and “natural” status. The U.S. Supreme Court
in 1972 first rejected engineers Gary Benson and Arthur Tabbot’s claim to patent
an algorithm for converting digital into binary digits. It decided, as legal scholar
Pamela Samuelson argues, that “mathematical innovations should be treated like
scientific truths and laws of nature, and scientific truths and laws of nature are
unpatentable subject matter.”"” Software algorithms, in other words, were “natural”
mental processes, not artificial things. As Samuelson and as legal scholar Margaret
Jane Radin both note, key to the eventual patenting of software was its transforma-
tion from a set of instructions to a machine.” In 1981, the Supreme Court in
Diamond v. Diehr, 450 U.S. 175 (1981) upheld the patenting of an algorithmic-based
process for curing rubber because the algorithm resulted in a tangible physical
process: it cured rubber. By 1994, the U.S. Court of Appeals Federal Circuit held in
In re Alappat (1994) that all software was inherently machinic, since it changed the
material nature of a computer: “a general purpose computer in effect becomes a
special purpose computer once it is programmed to perform particular functions
pursuant to instructions from program software.””” A change in memory, it seems,
a change in machine.

Introduction 5

As a physical process, however, software would seem uncopyrightable.”® Copyright
seeks to protect creative expression; as Radin notes, patents and copyrights were sup-
posed to be mutually exclusive: “Copyright is supposed to exclude works that are
functional; patent is supposed to focus on functionality and exclude texts.””! To
address this contradiction, the U.S. Congress changed the law in 1975, so that expres-
sions, as opposed to the actual processes or methods, adopted by the programmer
became copyrightable.”” The difference, however, between expression and methods
has been difficult to determine, especially since the expression of software has not
been limited to source code.

Further, copyright law insists on the tangibility of the copy, where a copy is a “fixa-
tion in a tangible medium of expression.” Performances thus were initially considered
to be outside the purview of copyright.” Although information is often considered to
be immaterial, the forces behind copyrighting (and taxing) software stress the fact
that, regardless of information’s ephemerality, information is always embodied; it
always, as Matthew Kirschenbaum argues, leaves a trace.?* Indeed, digital information
has divorced tangibility from permanence, with “courts and commentators in the
United States adopt[ing] the notion that the momentary arrangement of electrons in
a computer memory, which we might have thought of as intangible information,
amounts to a tangible physical object, a copy.”*® Since, as I have argued elsewhere,
computer reading is a writing elsewhere, viewing the momentary arrangement of
electrons in memory as a tangible copy technically makes all computer reading a
copyright infringement. Indeed, this redefinition of copy as thing, as Radin notes, has
had far-reaching consequences since “a great many activities that were not covered
by copyright in the offline environment are being brought under copyright—that is,
under control of an owner—in the online environment. . . . The physical analogy to
browsing in a bookstore is obliterated by the more powerful assimilation of the activity
involved in a physical object—the production of physical ‘copies’ by a computer.”*®
This definition also muddies questions of responsibility: given that every networked
computer regularly downloads all materials in a network and then erases those not
directly addressed to it, should everyone whose computer has unwittingly downloaded
child pornography or pirated media be prosecuted?

These changes, brought about by the “hardening” of software as textual or machinic
thing through memory, point toward a profound change in our understanding of what
is internal and external, subject and object. According to Radin, “the distinction
between tangible objects and intangible information is a distinction upon which
much of our modern understanding of the world was built, and hence, from which a
great many legal categorizations derive,” for this traditional distinction “owes much
to the ‘modernist’ dichotomies of the Enlightenment—between subject and object,
between autonomous persons and heteronomous things.”?” The notion of intellectual
property, which seems to break this dichotomy, was initially a compromise, she

6 Introduction

contends, between the Enlightenment notion that the intellect was internal and
property external.”® (It is not simply, though, that information was once inside a
person and then externalized, but also that information was considered inseparable
from a person. Symptomatically, the meaning of information has moved from “the
action of informing . . . the formation or moulding of the mind or character, training,
instruction, teaching” to “knowledge communicated concerning some particular fact,
subject, or event.””’) Crucially, Radin argues that the information age has compro-
mised the compromise that intellectual property represents, since, by breaking down
the distinction between tangibility and intangibility, it conceives of information,
whether internal or external, as always external to the self (hence the patentability of
genes). As I've argued elsewhere, the Internet and computers—which have offered
enlightenment for all—have exploded enlightenment by literalizing it.

Software as thing has led to all “information” as thing. Software as thing recon-
ceptualizes society, bodies, and memories in ways that both compromise and extend
the subject, the user. Importantly, software as thing cannot be reduced to software as
a commodity: software as “thing” is a return to older definitions of thing as a “gath-
ering,” as pertaining to anything related to “man.”*" Treating software as a thing
means treating it, again, as a neighborhood, as an amalgamation. It also means think-
ing through its simultaneous ambiguity and specificity. Further, it means thinking
beyond this legal history, this legal framework, toward the historical and theoretical
stakes of the reemergence of things as relations. Indeed, this book argues that the
remarkable process by which software was transformed from a service in time to a
product, the hardening of relations into a thing, the externalization of information
from the self, coincides with and embodies larger changes within what Michel
Foucault has called governmentality. Software as thing is a response to and product of
changing relations between subjects and objects, of challenges brought about by
computing as a neoliberal governmental technology.

Soft Government

According to Foucault, governmentality and government broadly encompass acts
and institutions that govern, or steer, conduct and thus cannot be reduced to the
state. (Not coincidentally, the term cybernetics is derived from the Greek term “kyber-
nete” for governing.) As Colin Gordon notes, government for Foucault is “the conduct
of conduct,” that is, “a form of activity aiming to shape, guide or affect the conduct
of some person or persons.” Governmentality could concern “the relation between
self and self, private interpersonal relations involving some form of control or guid-
ance, relations within social institutions and communities and, finally, relations
concerned with the exercise of political sovereignty.”*' The move from the Enlight-
enment, with its dichotomy of subjects and objects, to our current compromised

Introduction 7

situation corresponds to a transition from liberal to neoliberal governmentality (and,
even further, to a neoconservative one).

Liberal governmentality, which emerged during the eighteenth century, is an “eco-
nomic government”: government that embraces both liberal political economy and
the principle of noninterference. It is based on two principles: the principle of blind
self-interest and the principle of freedom. According to its vision, actors, who cannot
know the whole picture, blindly and freely follow their own self-interests so that “the
invisible hand of the market” can magically incorporate their actions into a system
that benefits all. This unknowability is fundamental, for it enables a transition from
sovereign to liberal forms of governmentality. The liberal market undermines the
power of the monarch by undermining his or her knowledge: no one can have a
totalizing view. It also consumes freedom: it both produces freedom and seeks to
control it.** Liberal governmentality also makes possible biopolitical power: a collec-
tion of institutions and actions focused on “taking care” of a population, rather than
a territory, focused on masses rather than on sovereign subjects.

Historically, computers, human and mechanical, have been central to the manage-
ment and creation of populations, political economy, and apparatuses of security.*
Without them, there could be no statistical analysis of populations: from the process-
ing of censuses to bioinformatics, from surveys that drive consumer desire to social
security databases. Without them, there would be no government, no corporations,
no schools, no global marketplace, or, at the very least, they would be difficult to
operate. Tellingly, the beginnings of IBM as a corporation—the Herman Hollerith's
Tabulating Machine Company—dovetails with the mechanical analysis of the U.S.
census.* Before the adoption of these machines in 1890, the U.S. government had
been struggling to analyze the data produced by the decennial census (the 1880 census
taking seven years to process). Crucially, Hollerith’s punch-card-based mechanical
analysis was inspired by the “punch photograph” used by train conductors to verify
passengers.*® Similarly, the Jacquard Loom, a machine central to the industrial revolu-
tion, inspired (via Charles Babbage’s “engines”) the cards used by the Mark 1, an early
electromechanical computer. Scientific projects linked to governmentality also drove
the development of data analysis: eugenics projects that demanded vast statistical
analyses, nuclear weapons that depended on solving difficult partial differential
equations.*

Importantly, though, computers in the period this book focuses on (post-World
War II) coincide with the emergence of neoliberalism. As well as control of “masses,”
computers have been central to processes of individualization or personalization.
Neoliberalism, according to David Harvey is “a theory of political economic practices
that proposes that human well-being can best be advanced by liberating individual
entrepreneurial freedoms and skills within an institutional framework characterized
by strong private property rights, free markets, free trade.”*” Although neoliberals,

8 Introduction

such as the Chicago School economist Milton Friedman, claim merely to be resusci-
tating classical liberal economic theory, Foucault argues that neoliberalism differs from
liberalism in its stance that the market should be “the principle, form, and model for
a state.”*® It contends that individual economic and political freedom are tied together:
competitive capitalism, Friedman writes, “is a system of economic freedom and a
necessary condition for political freedom.”* Harvey argues that neoliberalism has
thrived by creating a general “culture of consent”—even though it has harmed most
people economically by fostering incredible income disparities. In particular, it
has incorporated progressive 1960s discontent with government and, remarkably,
dissociated this discontent from its critique of capitalism and corporations.

In a neoliberal society, the market has become an ethics: it has spread everywhere
so that all human interactions, from motherhood to education, are discussed as eco-
nomic “transactions” that can be assessed in individual cost-benefit terms. The market,
as Margaret Thatcher argued, “change[s| the soul”* by becoming, Foucault argues, the
“grid of intelligibility” for everything.*' This transforms the homo oeconomicus—the
individual who lies at the base of neoliberalism—from “the [liberal] man of exchange
or man the consumer” to “the man of enterprise and consumption.”** It rests on the
“proposition that both parties to an economic transaction benefit from it, provided the
transaction is bi-laterally voluntary and informed.”* Tt focuses on discourses of empower-
ment in which the worker does not simply own his/her labor, but also possesses his/
her own body as a form of “human capital.”* Since everyone is in control of this form
of capital—the body—neoliberalism relies on voluntary, individual actions.** Thus,
this changed man who has imbibed the market ethic is thus eminently governable,
for homo oeconomicus is shaped through “rational” and empowering management
techniques that make him “self-organized” and “self-controlling.”*®

Relatedly, “user-friendly” computer interfaces have been key to empowering and
creating “productive individuals.” As Ben Shneiderman, whose work has been key to
graphical user interfaces (GUIs), has argued, these interfaces succeed when they move
their users from grudging acceptance to feelings of mastery and eagerness.*” Moreover,
this book argues, interfaces—as mediators between the visible and the invisible, as
a means of navigation—have been key to creating “informed” individuals who can
overcome the chaos of global capitalism by mapping their relation to the totality of
the global capitalist system. (Conversely, they enable corporations to track both
individuals and totalities, through the data traces produced by our mappings.) The
dream is: the resurgence of the seemingly sovereign individual, the subject driven to
know, driven to map, to zoom in and out, to manipulate, and to act. The dream is:
the more that an individual knows, the better decisions he or she can make. Goldman
Sachs and other investment companies, for instance, invest millions of dollars on
computer programs that can analyze data and execute trades milliseconds faster
than their competition. This “informing” is thus intriguingly temporal. New media
empowers individuals by informing them of the future, making new media the

Introduction 9

future. “The future,” as William Gibson famously and symptomatically quipped, “is
already here. It's just not very evenly distributed.”*® This future—as something that
can be bought and sold—is linked intimately to the past, to computers as capable
of being the future because, based on past data, they shape and predict it.* Comput-
ers as future depend on computers as memory machines, on digital data as archives
that are always there. This future depends on programmable visions that extrapolate
the future—or, more precisely, a future—based on the past. As chapter 1 elaborates,
computers, understood as software and hardware machines, have made possible a
dream of programmability, a return to a world of Laplaceian determinism in which
an all-knowing intelligence can comprehend the future by apprehending the past
and present. They have done so through a conflation of words with things that both
externalizes knowledge and creates a position from which a subject can try to “hack”
the invisible hands and laws that drive the system.

This book, therefore, links computers to governmentality neither at the level of
content nor in terms of the many governmental projects that they have enabled, but
rather at the level of their architecture and their instrumentality.*® Computers embody
a certain logic of governing or steering through the increasingly complex world
around us. By individuating us and also integrating us into a totality, their interfaces
offer us a form of mapping, of storing files central to our seemingly sovereign—
empowered—subjectivity. By interacting with these interfaces, we are also mapped:
data-driven machine learning algorithms process our collective data traces in order
to discover underlying patterns (this process reveals that our computers are now more
profound programmers than their human counterparts). This logic of program-
mability, it also argues, is not limited to computer technology; it also stems from and
bleeds elsewhere, in particular modern genetics, with its conceptualization of codes
and of programs as central to inheritance. Crucially, though, this knowledge is also
based on a profound ignorance or ambiguity: our computers execute in unforeseen
ways, the future opens to the unexpected. Because of this, any programmed vision
will always be inadequate, will always give way to another future. The rest of this
book unpacks this temporality and the odd combination of visibility and invisibility
these visions enable.

In part I, chapters 1 and 2 focus on how software is invisibly visible. Chapter 1
argues that software emerged as a thing—as an iterable textual program—through an
axiomatic process of commercialization and commodification that has made code
logos: a word conflated with and substituting for action. This formulation of instruc-
tion as source—source code as fetish—is crucial to understanding the power and thrill
of programming, in particular the fantasy of the all-powerful programmer, a subject
with magical powers to transform words into things. This separation of code from
execution, however, itself a software effect, is also constantly undone, historically
and theoretically. Thus, it concludes by analyzing how code as fetish can open up
surprising detours and ends.

10 Introduction

Chapter 2 analyzes how this invisibly visible (or visibly invisible) logic works at the
level of the interface, at the level of “personal computing.” It investigates the extent to
which this paradoxical combination of rational causality and profound ignorance
grounds the computer as an attractive model for the “natural” world. Looking both at
the use of metaphor within the early history of human-computer interfaces and at the
emergence of the computer as metaphor, it contends that real-time computer inter-
faces are a powerful response to, and not simply an enabler or consequence of, post-
modernism and neoliberalism. Both conceptually and thematically, these interfaces
offer a simpler, more reassuring analog of power, one in which the user takes the place
of the sovereign “source,” code becomes law, and mapping produces the subject.

Chapters 3 and 4 of part II examine the intertwining of computer technology and
biology, specifically the emergence of memory and its importance to notions of pro-
grammability. Through this focus on the relation between biology and computing
technology, part II explores how software, as an axiomatic, came to embody the logic
of the “always already there.” By exploring the ways in which biology and computer
technology have become complementary strands of a double helix, chapters 3 and 4
embed computer technology within the larger epistemological field of programmabil-
ity, a larger drive for “permanence” that conflates memory with storage and conflates
the ephemeral with the enduring, or rather turns the ephemeral into the enduring
(the enduring ephemeral) through a process of constant regeneration.

Chapter 3 argues that software was not foreseen, because the drive for software—for
an independent program that conflates legislation with execution—did not arise solely
from within the field of computation, but also from early Mendelian genetic and eugen-
ics. Through a reading of Erwin Schrodinger’s What Is Life, it contends that Mendelian
genetics and software envision a return to a reductionist, mechanistic understanding
of life, in which the human body becomes an archive. This chapter thus complicates
the standard narrative within the history of science that the notion of a program was
adapted by biologists from computer science, a narrative that rather remarkably treats
software as though it always already existed. It also shows how computers, not just in
terms of content but also of form, are deeply intertwined with questions of biopower.

The final chapter takes up this intertwining of biology and computer technology,
specifically in terms of memory and transmission. Revising the running hypothesis of
the first three chapters, chapter 4 shows how digital hardware, which grounds soft-
ware, is itself axiomatic. Through the reading of early work on neural nets and of John
von Neumann’s work on automata, it reveals how logical hardware reduces events to
words. Analyzing the importance of the analog to conceptualizing the digital, it argues
that the digital emerged as a clean, precise logic through an analogy to an analogy.
Crucially, it argues that computer memory, as a constantly regenerating and degenerat-
ing archive, does not simply erase human agency, but rather makes possible new
dreams of human intervention and responsibility.

Introduction 11

As this synopsis hopefully makes clear, understanding software as a thing does
not mean denigrating software or dismissing it as an ideological construction that
covers over the “truth” of hardware. It means engaging its odd materializations and
visualizations closely and refusing to reduce software to codes and algorithms—
readily readable objects—by grappling with its simultaneous ambiguity and specificity.
As Bill Brown has influentially argued, things designate “the concrete yet ambiguous
within the everyday,” that is, the thing “functions to overcome the loss of other
words or as a place holder for some future specifying operation. . . . It designates
an amorphous characteristic or a frankly irresolvable enigma. . . . Things is a word
that tends, especially at its most banal, to index a certain limit or liminality, to
hover over the threshold between the nameable and unnameable, the figureable
and unfigureable, the identifiable and unidentifiable.”®" Things thus “lie both at
hand and somewhere outside the theoretical field, beyond a certain limit, as a rec-
ognizable yet illegible remainder or as the entifiable that is unspecifiable.”**> Because
things simultaneously name the object and something else, they are both reducible
to and irreducible to objects.”® Whereas we “look through objects (to see what they
disclose about history, society, nature, or culture—above all, what they disclose about
us),” we “only catch a glimpse of things.”** We encounter, but do not entirely
comprehend, things.*® According to Brown:

A thing . . . can hardly function as a window. We begin to confront the thingness of objects
when they stop working for us: when the drill breaks, when the car stalls, when the windows
get filthy, when their flow within the circuits of production and distribution, consumption
and exhibition, has been arrested, however momentarily. The story of objects asserting them-
selves as things, then, is the story of a changed relation to the human subject and thus the
story of how the thing really names less an object than a particular subject-object relation.*

Crucially, this effort to rethink, and indeed theorize things, is intimately intertwined
with media: Martin Heidegger begins “The Thing” by outlining the shrinking of time
and space due to “instant information” (television being the peak of this abolition of
every possibility of remoteness); Brown argues, “if the topic of things attained a new
urgency in the closing decades of that [twentieth] century, this may have been a
response to the digitization of our world—just as, perhaps, the urgency in the 1920s
was a response to film.”"’

This book sees this renewed interest in things, things which always seem to be
disappearing, not simply as an effect of new media on other “things,” but rather as
central to the temporality of new media itself. New media, like the computer technology
on which it relies, races simultaneously toward the future and the past, toward the bleeding
edge of obsolescence. Software as thing is inseparable from the externalization of
memory, from the dream and nightmare of an all-encompassing archive that con-
stantly regenerates and degenerates, that beckons us forward and disappears before
our very eyes.

You

You. Everywhere you turn, it’s all about you—and the future. You, the produser. Having turned
off the boob tube, or at least added YouTube, you collaborate, you communicate, you link in,
you download, and you interact. Together, with known, unknown, or perhaps unknowable
others you tweet, you tag, you review, you buy, and you click, building global networks, build-
ing community, building databases upon databases of traces. You are the engine behind new
technologies, freely producing content, freely building the future, freely exhausting yourself
and others. Empowered. In the cloud. Telling Facebook and all your “friends” what’s on your
mind. Who needs surveillance when you constantly document your life?

But, who or what are you? You are you, and so is everyone else. A shifter, you both
addresses you as an individual and reduces you to a you like everyone else. It is also singular
and plural, thus able to call you and everyone else at the same time. Hey you. Read this.
Tellingly, your home page is no longer that hokey little thing you created after your first HTML
tutorial; it’s a mass-produced template, or even worse, someone else’s home page—Google’s,
Facebook’s, the New York Times’. You: you and everyone; you and no one.

I Invisibly Visible, Visibly Invisible

When enough seemingly insignificant data is analyzed against billions of data elements, the
invisible becomes visible.

—Seisint!

Computers have fostered both a decline in and frenzy of visual knowledge. Opaque
yet transparent, incomprehensible yet logical, they reveal that the less we know the
more we show (or are shown). Two phenomena encapsulate this nicely: the prolifera-
tion of digital images (new media as “visual culture”) and “total information” systems
(new media as “transparent”).

When digital cameras were introduced to the mass market in the 1990s, many
scholars and legal experts predicted the end of photography and film.* The reasons
they offered were both material and functional: the related losses of celluloid and of
indexicality, the evidentiary link between artifact and event. If, as Roland Barthes
argues, the photograph certifies that something has been—it is not a “copy” of a past
reality, but an “emanation of a past reality”>—and if, as Mary Ann Doane contends,
film as a historical artifact and the filmic moment as historical event are inextricably
intertwined,* digital images by contrast break the temporal link between record and
event. Because a memory card can be constantly rewritten, there is, theoretically, no
fixed relationship between captured event and image. Thus, it is not just that digital
images are easily manipulated, but also that the moments they refer to cannot be
chemically verified. Digital images, in other words, challenge photorealism’s confla-
tion of truth and reality: the notion that what is true is what is real and what is real
is what is true.

Digital photographs, however, are hardly divorced from either the true or the real,
although they relate to them differently than did their celluloid predecessors. Truth
is not necessarily coupled to images captured with minimal machinic intervention,
but rather to images subject to high-tech manipulation. The so-called CSI effect exem-
plifies this: because of the popular valorization of “forensic” identificatory techniques
over deduction, juries are increasingly unwilling to convict based on circumstantial

16 Part |

evidence.’ In addition, although digital photographs were initially treated with suspi-
cion because they were difficult to authenticate, they are now routinely used as evi-
dence both legally and colloquially in part due to their ubiquity: digital images and
devices have proliferated wildly. A critical literacy or smartness, verging on paranoia,
has also accompanied their use as evidenced by user-driven investigations revealing
the darkening of O. J. Simpson’s mug shot by Time Magazine, the darkening of skies
over war-torn Lebanon during the 2006 Isreal-Lebanon conflict by Adnan Hajj, and
Dan Rather’s unintentional use of forged documents in his investigation of President
George W. Bush’s war record.

This proliferation, paradoxically, has also fostered a growing belief that computers
enable total transparency. Jean Baudrillard in The Ecstasy of Communication has argued
“we no longer partake of the drama of alienation, but are in the ecstasy of communication.
And this ecstasy is obscene,” because “in the raw and inexorable light of information,”
everything is “immediately transparent, visible, exposed.”® Although extreme, Baudril-
lard’s assessment resonates with public outrage over projects such as the George W.
Bush administration’s Total Information Awareness Program (TIA), a “systems-level”
program developed by the Defense Advanced Research Projects Agency’s (DARPA’s)
Information Awareness Office (IAO) to create a virtual, centralized database, drawing
from multiple sources, that would enable the government to capture a person’s “infor-
mation signature.” The IAO’s motto—scientia est potentia (knowledge is power)—and
its logo resonated strongly with dystopian science fiction: an eye affixed to the apex
of a pyramid, shining a ray of light onto the globe (figure 1.1). At all levels, TIA was
to enable “topsight”: “the ability to ‘see the whole thing’—and to plunge in and
explore the details.”” Renamed the Terrorism Information Awareness Program, the
funding for this agency was partly revoked by Congress in 2003 in response to citizen
complaints, although many of the TIA initiatives, as of 2009, were still funded.

)-ii"r T "
POTEN LY
N f e 9‘,

Figure 1.1
Information Awareness Office logo

Invisibly Visible, Visibly Invisible 17

Crucially, this desire to bring together billions of data items was and is not limited
to governmental organizations. Google allegedly stores the search terms, linked to IP
addresses, of every search on its site; its cameras, designed to produce images for its
street view, cruise streets around the world; its “interest-based advertising” monitors
user activity in order to refine ads (a technique described by Tim Berners-Lee as similar
to allowing someone “to put a television camera in your room, except it will tell them
a whole lot more about you than the television camera.”)® Also, according to the 2009
“KnowPrivacy” report by Joshua Gomez, Travis Pinnick, and Ashkan Soltani of UC
Berkeley’s iSchool, Google has “a web bug on 92 of the top 100 sites, and on 88% of
the total domains reported in the data set of almost 400,000 unique domains.”’
Although Google claims that it does not aggregate these data into one large database,
its tracking of consumers through Doubleclick and Google Analytics means that even
people who avoid google.com are still tracked by Google. Google—and the Internet—
are not the only sites of commercial surveillance. Cable companies use programs like
“The Visible World” to target television advertisements to households based on
consumption pattern information gathered by firms such as Experian.

This notion of the computer as rendering everything transparent, however, is
remarkably at odds with the actual operations of computation, for computers—their
hardware, software, and the voltage differences on which they rely—are anything but
transparent. When the computer does let us “see” what we cannot normally see, or
even when it acts like a transparent medium through video chat, it does not simply
relay what is on the other side: it computes. In order to become transparent, the fact
that computers always generate text and images rather than merely represent or repro-
duce what exists elsewhere must be forgotten. The current prominence of transparency
in product design and in political and scholarly discourse is a compensatory gesture.
As our machines increasingly read and write without us, as our machines become more
and more unreadable so that seeing no longer guarantees knowing (if it ever did), we
the so-called users are offered more to see, more to read. As our machines disappear,
getting flatter and flatter, the density and opacity of their computation increases. Every
use is also an act of faith: we believe these images and systems render us transparent
not for technological, but rather for metaphorical, or more strongly ideological,
reasons.

As stated earlier, this paradox is not accidental to computing’s appeal, but rather
grounds the computer as a useful and provocative, indeed magical, model. Its combi-
nation of what can be seen and not seen, can be known and not known—its separation
of interface from algorithm; software from hardware—makes it a powerful metaphor
for everything we believe is invisible yet generates visible effects, from genetics to the
invisible hand of the market; from ideology to culture. Joseph Weizenbaum has argued
that computers have become metaphors for all “effective procedures,” that is, for
anything that can be solved in a prescribed number of steps, such as gene expression

18 Part |

and clerical work.'” Weizenbaum also notes that the computer as metaphor is itself
based on “only the vaguest understanding of a difficult and complex scientific concept.
... The public vaguely understands—but is nonetheless firmly convinced—that any
effective procedure can, in principle, be carried out by a computer.”"' Even a computer
programmer, Weizenbaum notes, cannot “know the path of decision making within
his own program, let alone what intermediate or final results it will produce.”” But
critiques—even those as insightful as Joseph Weizenbaum’s—that condemn the com-
puter as a poor model because of its contradictory reductionism and incomprehensi-
bility miss the point. Revealing the illogical intertwining of computers we cannot
understand with understanding will not dispel the power of the computer as metaphor
because this intertwining grounds its appeal. The linking of rationality with mysticism,
knowability with what is unknown, makes it a powerful fetish that offers its program-
mers and users alike a sense of empowerment, of sovereign subjectivity, that covers
over—barely—a sense of profound ignorance.

The following two chapters address this causal pleasure through software, or, to be
more precise, the curious separation of software from hardware. Software perpetuates
certain notions of seeing as knowing, of reading and readability, which were supposed
to have faded with the waning of indexicality, by producing WYSIWG (What You See
Is What You Get) interfaces that mimic both ideology and ideology critique, the
process of covering and uncovering." As I explain in more detail in chapter 2, it offers
us a way to cognitively map our increasingly complex world, or at least to understand,
often pleasurably, our relation to its complexity. Software, through programming
languages that stem from a gendered system of command and control, creates an
invisible system of visibility, a system of causal pleasure. This system renders our
machine’s normal processes demonic and makes our computer truly a medium: some-
thing in between, mystical, channeling, and not entirely trustworthy. It becomes a
conduit that also amplifies and selects what is at once real and unreal, true and untrue,
visible and invisible.

1 On Sourcery and Source Codes

The spirit speaks! I see how it must read,
And boldly write: “In the beginning was the Deed!”

—Johann Wolfgang Goethe'

Software emerged as a thing—as an iterable textual program—through a process
of commercialization and commodification that has made code logos: code as
source, code as true representation of action, indeed, code as conflated with, and
substituting for, action.” Now, in the beginning, is the word, the instruction.
Software as logos turns program into a noun—it turns process in time into process
in (text) space. In other words, Manfred Broy’s software “pioneers,” by making
software easier to visualize, not only sought to make the implicit explicit, they
also created a system in which the intangible and implicit drives the explicit.
They thus obfuscated the machine and the process of execution, making software
the end all and be all of computation and putting in place a powerful logic of
sourcery that makes source code—which tellingly was first called pseudocode—
a fetish.’

This chapter investigates the implications of code as logos and the ways in which
this simultaneous conflation and separation of instruction from execution, itself a
software effect, is constantly constructed and undone, historically and theoretically.
This separation is crucial to understanding the power and thrill of programming, in
particular the nostalgic fantasy of an all-powerful programmer, a sovereign neoliberal
subject who magically transforms words into things. It is also key to addressing the
nagging doubts and frustrations experienced by programmers: the sense that we are
slaves, rather than masters, clerks rather than managers—that, because “code is law,”
the code, rather than the programmer, rules. These anxieties have paradoxically led to
the romanticization and recuperation of early female operators of the 1946 Electronic
Numerical Integrator and Computer (ENIAC) as the first programmers, for they, unlike
us, had intimate contact with and knowledge of the machine. They did not even need
code: they engaged in what is now called “direct programming,” wiring connections

20 Chapter 1

and setting values. Back then, however, the “master programmer” was part of the
machine (it controlled the sequence of calculation); computers, in contrast, were
human. Rather than making programmers and users either masters or slaves, code as
logos establishes a perpetual oscillation between the two positions: every move to
empower also estranges.

This chapter, however, does not call for a return to direct programming or hardware
algorithms, which, as I argue in chapter 4, also embody logos. It also does not endorse
such a call because the desire for a “return” to a simpler map of power drives source
code as logos. The point is not to break free from this sourcery, but rather to play with
the ways in which logos also invokes “spellbinding powers of enchantment, mesmer-
izing fascination, and alchemical transformation.”* The point is to make our comput-
ers more productively spectral by exploiting the unexpected possibilities of source code
as fetish. As a fetish, source code produces surprisingly “deviant” pleasures that do
not end where they should. Framed as a re-source, it can help us think through the
machinic and human rituals that help us imagine our technologies and their execu-
tions. The point is also to understand how the surprising emergence of code as logos
shifts early and still-lingering debates in new media studies over electronic writing’s
relation to poststructuralism, debates that the move to software studies has to some
extent sought to foreclose.® Rather than seeing technology as simply fulfilling or
killing theory, this chapter outlines how the alleged “convergence” between theory
and technology challenges what we thought we knew about logos. Relatedly, engaging
source code as fetish does not mean condemning software as immaterial; rather, it
means realizing the extent to which software, as an “immaterial” relation become
thing, is linked to changes in the nature of subject-object relations more generally.
Software as thing can help us link together minute machinations and larger flows of
power, but only if we respect its ability to surprise and to move.

Source Code as Logos

To exaggerate slightly, software has recently been posited as the essence of new media
and knowing software a form of enlightenment. Lev Manovich, in his groundbreaking
The Language of New Media, for instance, asserts: “New media may look like media,
but this is only the surface. . . . To understand the logic of new media, we need to
turn to computer science. It is there that we may expect to find the new terms, catego-
ries, and operations that characterize media that become programmable. From media
studies, we move to something that can be called ‘software studies’—from media theory to
software theory.”® This turn to software—to the logic of what lies beneath—has offered
a solid ground to new media studies, allowing it, as Manovich argues, to engage pres-
ently existing technologies and to banish so-called “vapor theory”—theory that fails
to distinguish between demo and product, fiction and reality—to the margins.”

On Sourcery and Source Codes 21

This call to banish vapor theory, made by Geert Lovink and Alexander Galloway
among others, has been crucial to the rigorous study of new media, but this rush
away from what is vapory—undefined, set in motion—is also troubling because vapo-
riness is not accidental but rather essential to new media and, more broadly, to
software. Indeed, one of this book’s central arguments is that a rigorous engagement
with software makes new media studies more, rather than less, vapory. Software, after
all, is ephemeral, information ghostly, and new media projects that have never, or
barely, materialized are among the most valorized and cited.® (Also, if you take the
technical definition of information seriously, information increases with vapor, with
entropy). This turn to computer science also threatens to reify knowing software as
truth, an experience that is arguably impossible: we all know some software, some
programming languages, but does anyone really “know” software? What could this
knowing even mean? Regardless, from myths of all-powerful hackers who “speak the
language of computers as one does a mother tongue”® or who produce abstractions
that release the virtual' to perhaps more mundane claims made about the radicality
of open source, knowing (or using the right) software has been made analogous to
man’s release from his self-incurred tutelage.!' As advocates of free and open source
software make clear, this critique aims at political, as well as epistemological, eman-
cipation. As a form of enlightenment, it is a stance of how not to be governed like
that, an assertion of an essential freedom that can only be curtailed at great cost."

Knowing software, however, does not simply enable us to fight domination or
rescue software from “evil-doers” such as Microsoft. Software, free or not, is embedded
and participates in structures of knowledge-power. For instance, using free software
does not mean escaping from power, but rather engaging it differently, for free and
open source software profoundly privatizes the public domain: GNU copyleft—which
allows one to use, modify, and redistribute source code and derived programs, but
only if the original distribution terms are maintained—seeks to fight copyright by
spreading licences everywhere."> More subtly, the free software movement, by linking
freedom and freely accessible source code, amplifies the power of source code both
politically and technically. It erases the vicissitudes of execution and the institutional
and technical structures needed to ensure the coincidence of source code and its execu-
tion. This amplification of the power of source code also dominates critical analyses
of code, and the valorization of software as a “driving layer” conceptually constructs
software as neatly layered.

Programmers, computer scientists, and critical theorists have reduced software to
a recipe, a set of instructions, substituting space/text for time/process. The current
common-sense definition of software as a “set of instructions that direct a computer
to do a specific task” and the OED definition of software as “the programs and pro-
cedures required to enable a computer to perform a specific task, as opposed to the
physical components of the system” both posit software as cause, as what drives

22 Chapter 1

computation. Similarly, Alexander Galloway argues, “code draws a line between what
is material and what is active, in essence saying that writing (hardware) cannot do
anything, but must be transformed into code (software) to be effective. . . . Code is
a language, but a very special kind of language. Code is the only language that is execut-
able . . . code is the first language that actually does what it says.”'* This view of
software as “actually doing what it says” (emphasis added) both separates instruction
from, and makes software substitute for, execution. It assumes no difference between
source code and execution, between instruction and result. That is, Galloway takes
the principles of executable layers (application on top of operating system, etc.) and
grafts it onto the system of compilation or translation, in which higher-level languages
are transformed into executable codes that are then executed line by line. By doing
what it “says,” code is surprisingly logos. Like the King’s speech in Plato’s Phaedrus,
it does not pronounce knowledge or demonstrate it—it transparently pronounces
itself.’ The hidden signified—meaning—shines through and transforms itself into
action. Like Faust’s translation of logos as “deed,” code is action, so that “in the
beginning was the Word, and the Word was with God, and the Word was God.”'*

Not surprisingly, many scholars critically studying code have theorized code as
performative. Drawing in part from Galloway, N. Katherine Hayles in My Mother Was
a Computer: Digital Subjects and Literary Texts distinguishes between the linguistic
performative and the machinic performative, arguing:

Code that runs on a machine is performative in a much stronger sense than that attributed to
language. When language is said to be performative, the kinds of actions it “performs” happen
in the minds of humans, as when someone says “I declare this legislative session open” or “I
pronounce you husband and wife.” Granted, these changes in minds can and do reach in
behavioral effects, but the performative force of language is nonetheless tied to the external
changes through complex chains of mediation. By contrast, code running in a digital computer
causes changes in machine behavior and, through networked ports and other interfaces, may
initiate other changes, all implemented through transmission and execution of code."”

The independence of machine action—this autonomy, or automatic executability of
code—is, according to Galloway, its material essence: “The material substrate of code,
which must always exist as an amalgam of electrical signals and logical operations
in silicon, however large or small, demonstrates that code exists first and foremost
as commands issued to a machine. Code essentially has no other reason for being
than instructing some machine in how to act. One cannot say the same for the
natural languages.”'® Galloway thus concludes in “Language Wants to Be Overlooked:
On Software and Ideology,” “to see code as subjectively performative or enunciative
is to anthropomorphize it, to project it onto the rubric of psychology, rather than
to understand it through its own logic of ‘calculation’ or ‘command.””"’

To what extent, however, can source code be understood outside of anthropomor-
phization? Does understanding voltages stored in memory as commands/code not

On Sourcery and Source Codes 23

already anthropomorphize the machine? The title of Galloway’s article, “Language
Wants to Be Overlooked” (emphasis mine), inadvertently reveals the inevitability of
this anthropomorphization. How can code/language want—or most revealingly say—
anything? How exactly does code “cause” changes in machine behavior? What media-
tions are necessary for this insightful yet limiting notion of code as inherently
executable, as conflating meaning and action?

Crafty Sources

To make the argument that code is automatically executable, the process of execution
itself not only must be erased, but source code must also be conflated with its execut-
able version. This is possible, Galloway argues, because the two “layers” of code can
be reduced to each other: “uncompiled source code is logically equivalent to that
same code compiled into assembly language and/or linked into machine code. For
example, it is absurd to claim that a certain value expressed as a hexadecimal (base
16) number is more or less fundamental than that same value expressed as binary
(base 2) number. They are simply two expressions of the same value.””’ He later
elaborates on this point by drawing an analogy between quadratic equations and
software layers:

One should never understand this “higher” symbolic machine as anything empirically differ-
ent from the “lower” symbolic interactions of voltages through logic gates. They are complex
aggregates yes, but it is foolish to think that writing an “if/then” control structure in eight
lines of assembly code is any more or less machinic than doing it in one line of C, just as the
same quadratic equation may swell with any number of multipliers and still remain balanced.

The relationship between the two is technical.*'

According to Galloway’s quadratic equation analogy, the difference between a compact
line of higher-level programming code and eight lines written in assembler equals the
difference between two equations, in which one contains coefficients that are multi-
ples of the other. The solution to both equations is the same: one equation is the same
as the other.

This reduction, however, does not capture the difference between the various
instantiations of code, let alone the empirical difference between the higher symbolic
machine and the lower interactions of voltages (the question here is: where does one
make the empirical observation?). To state the obvious, one cannot run source code:
it must be compiled or interpreted. This compilation or interpretation—this making
executable of code—is not a trivial action; the compilation of code is not the same as
translating a decimal number into a binary one. Rather, it involves instruction explo-
sion and the translation of symbolic into real addresses. Consider, for example, the
instructions needed for adding two numbers in PowerPC assembly language, which is
one level higher than machine language:

24 Chapter 1

li r3,1 *load the number 1 into register 3
li 14,2 *load the number 2 into register 4
add 15,r4,r3 *add r3 to r4 and store the result in 15

stw 15,sum(rtoc) *store the contents of 15 (i.e., 3) into the memory location
*called “sum” (where sum is defined elsewhere)
blr *end of this snippet of code*

This explosion is not equivalent to multiplying both sides of a quadratic equation by
the same coefficient or to the difference between E and 15. It is, instead, a breakdown
of the steps needed to perform a simple arithmetic calculation; it focuses on the move-
ment of data within the machine. The relationship between executable and higher-
level code is not that of mathematical identity but rather logical equivalence, which
can involve a leap of faith. This is clearest in the use of numerical methods to turn
integration—a function performed fluidly in analog computers—into a series of
simpler, repetitive arithmetical steps.

This translation from source code to executable is arguably as involved as the execu-
tion of any command, and it depends on the action (human or otherwise) of compil-
ing/interpreting and executing. Also, some programs may be executable, but not all
compiled code within that program is executed; rather, lines are read in as necessary.
Software is “layered” in other words, not only because source is different from object,
but also because object code is embedded within an operating system.

So, to spin Galloway’s argument differently, a technical relation is far more complex
than a numerical one. Rhetoric was considered a techné in antiquity. Drawing on this
Paul Ricoeur explains, “techné is something more refined than a routine or an empiri-
cal practice and in spite of its focus on production, it contains a speculative element.”**
A technical relation engages art or craft. A technical person is one “skilled in or practi-
cally conversant with some particular art or subject.””* Code does not always or auto-
matically do what it says, but it does so in a crafty, speculative manner in which
meaning and action are both created. It carries with it the possibility of deviousness:
our belief that compilers simply expand higher-level commands—rather than alter or
insert other behaviors—is simply that, a belief, one of the many that sustain comput-
ing as such. This belief glosses over the fact that source code only becomes a source after
the fact. Execution, and a whole series of executions, belatedly makes some piece of
code a source, which is again why source code, among other things, was initially called
pseudocode.

Source code is more accurately a re-source, rather than a source. Source code becomes
the source of an action only after it—or more precisely its executable substitute—
expands to include software libraries, after its executable version merges with code
burned into silicon chips; and after all these signals are carefully monitored, timed,

On Sourcery and Source Codes 25

and rectified. Source code becomes a source only through its destruction, through its
simultaneous nonpresence and presence.” (Thus, to return to the historical difficulties
of analyzing software outlined by Mahoney, every software run is to some extent a
reconstruction.) Source code as techné, as a generalized writing, is spectral. It is neither
dead repetition nor living speech; nor is it a machine that erases the difference
between the two. It, rather, puts in place a “relation between life and death, between
present and representation, between two apparatuses.”*® As I elaborate throughout this
book, information—through its capture in memory—is undead.

Source Code, after the Fact

Early on, the difficulties of code as source were obvious. Herman H. Goldstine and
John von Neumann emphasized the dynamic nature of code in their “Planning and
Coding of Problems for an Electronic Computing Instrument.” In it, they argued that
coding, despite the name, is not simply the static translation of “a meaningful text
(the instructions that govern solving the problem under consideration) from one
language (the language of mathematics, in which the planner will have conceived the
problem, or rather the numerical procedure by which he has decided to solve the
problem) into another language (that of our code).”” Because code does not unfold
linearly, because its value depends on intermediate results, and because code can be
modified as it is run (self-modifying code), “it will not be possible in general to foresee
in advance and completely the actual course of C [the sequence of codes].” Therefore,
“coding is . . . the technique of providing a dynamic background to control the auto-
matic evolution of a meaning.”*® Code as “dead repetition,” in other words, has always
been regenerative and interactive; every iteration alters its meaning. Even given the
limits to iterability that Hayles has presciently outlined in My Mother Was a Computer—
limits due to software as axiomatic—coding still means producing a mark, a writing,
open to alteration/iteration rather than an airtight anchor.?

Much disciplinary effort has been required to make source code readable as the
source. Structured programming, which I examine in more detail later, sought to rein
in “goto crazy” programmers and self-modifying code. A response to the much-
discussed “software crisis” of the late 1960s, its goal was to move programming from
a craft to a standardized industrial practice by creating disciplined programmers who
dealt with abstractions rather than numerical processes.*

Making code the source also entails reducing hardware to memory and thus erasing
the existence and possibility of hardware algorithms. Code is also not always the
source because hardware does not need software to “do something.” One can build
algorithms using hardware. Figure 1.1, for instance, is the logical statement: if notB
and notA, do CMD1 (state P); if notB and notA and notZ OR B and A (state Q) then
command 2.

26 Chapter 1

Combinational Logic

{ 5
! ,-k \5—— CMD2,H
— . -
S
Status] Command
input [outputs
7~ by CMDIH
7+ J ’
N
)
~
AH [‘ A(D)H
Q D (D),
2]
BH | B(D)LH
Q L —
SYSCLK, H .,
- —

State ﬁip flops

Figure 1.1
Logic diagram for a hardware algorithm

To be clear, I am not valorizing hardware over software, as though hardware natu-
rally escapes this drive to make space signify time. Crucially, this schematic is itself
an abstraction. Logic gates can only operate “logically”—as logos—if they are carefully
timed. As Philip Agre has emphasized, the digital abstraction erases the fact that gates
have “directionality in both space (listening to its inputs, driving its outputs) and in
time (always moving toward a logically consistent relation between these inputs and
outputs).”*' When a value suddenly changes, there is a brief period in which a gate
will give a false value. In addition, because signals propagate in time over space, they
produce a magnetic field that can corrupt other nearby signals (known as crosstalk).
This schematic erases all these various time- and distance-based effects by rendering
space blank, empty, and banal. Thus hardware schematics, rather than escaping from
the logic of sourcery, are also embedded within this structure. Indeed, as chapter 4
elaborates, John von Neumann, the generally acknowledged architect of the stored-
memory digital computer, drew from Warren McCulloch and Walter Pitts’s conflation
of neuronal activity with its inscription in order to conceptualize modern computers.
It is perhaps appropriate then that von Neumann, who died from a cancer stemming

On Sourcery and Source Codes 27

from his work at Los Alamos, spent the last days of his life reciting from memory Faust
Part 1. At the source of stored program computing lies the Faustian erasure of word
for action.

The notion of source code as source coincides with the introduction of alphanu-
meric languages. With them, human-written, nonexecutable code becomes source
code and the compiled code, the object code. Source code thus is arguably symptom-
atic of human language’s tendency to attribute a sovereign source to an action, a
subject to a verb.*® By converting action into language, source code emerges. Thus,
Galloway’s statement, “To see code as subjectively performative or enunciative is to
anthropomorphize it, to project it onto the rubric of psychology, rather than to under-
stand it through its own logic of ‘calculation’ or ‘command,’” overlooks the fact that
to use higher-level alphanumeric languages is already to anthropomorphize the
machine. It is to embed computers in “logic” and to reduce all machinic actions to
the commands that supposedly drive them. In other words, the fact that “code is
law”—something legal scholar Lawrence Lessig emphasizes—is hardly profound.*
After all, code is, according to the OED, “a systematic collection or digest of the laws
of a country, or of those relating to a particular subject.” What is surprising is the fact
that software is code; that code is—has been made to be—executable, and this execut-
ability makes code not law, but rather every lawyer’s dream of what law should be:
automatically enabling and disabling certain actions, functioning at the level of
everyday practice.*

Code is executable because it embodies the power of the executive, the power
of enforcement that has traditionally—even within classic neoliberal logic—been
the provenance of government.*® Whereas neoliberal economist and theorist Milton
Friedman must concede the necessity of government because of the difference
between “the day-to-day activities of people [and] the general customary and legal
framework within which these take place,” code as self-enforcing law “privatizes”
this function, further reducing the need for government to enforce the rules by
which we play.”” In other words, if as Foucault argues neoliberalism expands judicial
interventions by reducing laws to “the rules for a game in which each remains
master regarding himself and his part,” then “code is law” reins in this expansion
by moving enforcement from police and judicial functions to software functions.*
“Code is law,” in other words, automatically brings together disciplinary and sov-
ereign power through the production of self-enforcing rules that, as von Neumann
argues, “govern” a situation.

“Code is law” makes clear the desire for sovereign power driving both source
code and performative utterances more generally. David Golumbia—looking more
generally at widespread beliefs about computers—has insightfully claimed: “The
computer encourages a Hobbesian conception of this political relation: one is either
the person who makes and gives orders (the sovereign), or one follows orders.”*

28 Chapter 1

This conception, which crucially is also constantly undone by modern computa-
tion’s twinning of empowerment with ignorance, depends, I argue, on this confla-
tion of code with the performative. As Judith Butler has argued in Excitable Speech,
Austinian understandings of performative utterances as simply doing what they say
posit the speaker as “the judge or some other representative of the law.”*" Tt resus-
citates fantasies of sovereign—that is executive (hence executable)—structures of power:
it is “a wish to return to a simpler and more reassuring map of power, one in
which the assumption of sovereignty remains secure.”*' This wish for a simpler map
of power—indeed power as mappable—drives not only code as automatically execut-
able, but also, as the next chapter contends, interfaces more generally. This wish
is central to computers as machines that enable users/programmers to navigate
neoliberal complexity.

Against this nostalgia, Butler, following Jacques Derrida, argues that iterability lies
behind the effectiveness of performative utterances. For Butler, iterability is the process
by which “the subject who ‘cites’ the performative is temporarily produced as the belated
and fictive origin of the performative itself.”** The programmer/user, in other words, is
produced through the act of programming. Moreover, the effectiveness of performa-
tive utterances, Butler also emphasizes, is intimately tied to the community one joins
and to the rituals involved—to the history of that utterance. Code as law—as a judicial
process—is, in other words, far more complex than code as logos. Similarly, as
Weizenbaum has argued, code understood as a judicial process undermines the
control of the programmer:

A large program is, to use an analogy of which Minsky is also fond, an intricately connected
network of courts of law, that is, of subroutines, to which evidence is transmitted by other
subroutines. These courts weigh (evaluate) the data given to them and then transmit their
judgments to still other courts. The verdicts rendered by these courts may, indeed, often do,
involve decisions about what court has “jurisdiction” over the intermediate results then being
manipulated. The programmer thus cannot even know the path of decision-making within his
own program, let alone what intermediate or final results it will produce. Program formulation
is thus rather more like the creation of a bureaucracy than like the construction of a machine
of the kind Lord Kelvin may have understood.*

Code as a judicial process is code as thing: the Latin term for thing, res, survives in
legal discourse (and, as I explain later, literary theory). The term res, as Heidegger
notes, designates a “gathering,” any thing or relation that concerns man.** The rela-
tions that Weizenbaum discusses, these bureaucracies within the machine, as the rest
of this chapter argues, mirror the bureaucracies and hierarchies that historically made
computing possible. Importantly, this description of computers as following a set of
rules that programmers must follow—Weizenbaum’s insistence on the programmer’s
ignorance—does not undermine the resonances between neoliberalism and computa-
tion; if anything, it makes these resonances more clear. It also clarifies the desire

On Sourcery and Source Codes 29

driving code as logos as a solution to neoliberal chaos. Foucault, emphasizing the
rhetoric of the economy as a “game” in neoliberal writings, has argued, “both for
the state and for individuals, the economy must be a game: a set of regulated activi-
ties . . . in which the rules are not decisions which someone takes for others. It is a
set of rules which determine the way in which each must play a game whose outcome
is not known by anyone.”*® Although small-s sovereigns proliferate through neolib-
eralism’s empowered yet endangered subjects, it still fundamentally denies the posi-
tion of the Sovereign who knows—a position that we nonetheless nostalgically desire
. .. for ourselves.

Yes, Sir!

This conflation of instruction with result stems in part from software’s and comput-
ing’s gendered, military history: in the military there is supposed to be no difference
between a command given and a command completed—especially to a computer that
is a “girl.” For computers, during World War II, were in fact young women with some
background in mathematics. Not only were women available for work during that era,
they also were considered to be better, more conscientious computers, presumably
because they were better at repetitious, clerical tasks. They were also undifferentiated:
they were all unnamed “computers,” regardless of their mathematical training.** These
computers produced ballistics tables for new weapons, tables designed to control ser-
vicemen's battlefield actions. Rather than aiming and shooting, servicemen were to
set their guns to the proper values (not surprisingly, these tables and gun governors
were often ignored or ditched by servicemen).*

The women who became the “ENIAC girls” (later the more politically correct
“women of the ENIAC”)—Kathleen/Kay McNulty (Mauchly Antonelli), Jean Jennings
(Bartik), Frances Snyder (Holberton), Marlyn Wescoff (Meltzer), Frances Bilas (Spence),
and Ruth Lichterman (Teitelbaum) (married names in parentheses)—were computers
who volunteered to work on a secret project (when they learned they would be operat-
ing a machine, they had to be reassured that they had not been demoted). Program-
mers were former computers because they were best suited to prepare their successors:
they thought and acted like computers. One could say that programming became
programming and software became software when the command structure shifted
from commanding a “girl” to commanding a machine. Kay Mauchly Antonelli
described the “evolution” of computing as moving from female computers using
Marchant machines to fill in fourteen-column sheets (which took forty hours to com-
plete the job), to using differential analyzers (fifteen minutes to do the job), to using
the ENIAC (seconds).*®

Software languages draw from a series of imperatives that stem from World War
IT command and control structures. The automation of command and control, which

30 Chapter 1

Paul Edwards has identified as a perversion of military traditions of “personal leader-
ship, decentralized battlefield command, and experience-based authority,”* arguably
started with World War II mechanical computation. Consider, for instance, the rela-
tionship between the volunteer members of the Women'’s Royal Naval Service (called
Wrens), and their commanding officers at Bletchley Park. The Wrens also (perhaps
ironically) called slaves by the mathematician and “founding” computer scientist
Alan Turing (a term now embedded within computer systems), were clerks responsible
for the mechanical operation of the cryptanalysis machines (the Bombe and then
the Colossus), although at least one of the clerks, Joan Clarke (Turing’s former fiancé),
became an analyst. Revealingly, I. J. Good, a male analyst, describes the Colossus as
enabling a man-machine synergy duplicated by modern machines only in the late
1970s: “the analyst would sit at the typewriter output and call out instructions to a
Wren to make changes in the programs. Some of the other uses were eventually
reduced to decision trees and were handed over to the machine operators (Wrens).”*°
This man-machine synergy, or interactive real-time (rather than batch) processing,
treated Wrens and machines indistinguishably, while simultaneously relying on the
Wrens' ability to respond to the mathematician’s orders. This “interactive” system
also seems evident in the ENIAC’s operation: in figure 1.2, a male analyst issues
commands to a female operator.

The story of the initial meeting between Grace Murray Hopper (one of the first and
most important programmer-mathematicians) and Howard Aiken would also seem to
buttress this narrative. Hopper, with a PhD in mathematics from Yale, and a former
mathematics professor at Vassar, was assigned by the U.S. Navy to program the Mark
1, an electromechanical digital computer that made a sound like a roomful of knitting
needles. According to Hopper, Aiken showed her “a large object with three stripes . . .
waved his hand and said: ‘That’s a computing machine.’ I said, ‘Yes, Sir.” What else
could I say? He said he would like to have me compute the coefficients of the arc
tangent series, for Thursday. Again, what could I say? ‘Yes, Sir.” I didn’t know what on
earth was happening, but that was my meeting with Howard Hathaway Aiken.”®!
Computation depends on “Yes, Sir” in response to short declarative sentences and
imperatives that are in essence commands. Contrary to Neal Stephenson, in the
beginning—marking the possibility of a beginning—was the command rather than the
command line.* The command line is a mere operating system (OS) simulation. Com-
mands have enabled the slippage between programming and action that makes soft-
ware such a compelling yet logically “trivial” communications system.** Commands
lie at the core of the cybernetic conflation of human with machine.* I. J. Good’s and
Hopper’s recollections also reveal the routinization at the core of programming: the
analyst’s position at Bletchley Park was soon replaced by decision trees acted on by the
Wrens. Hopper, self-identified as a mathematician (not programmer), became an
advocate of automatic programming. Thus routinization or automation lies at the

On Sourcery and Source Codes 31

Figure 1.2

ENIAC programmers, late 1940s. U.S. military photo, Redstone Arsenal Archives, Huntsville,
Alabama.

core of a profession that likes to believe it has successfully automated every profession
but its own.>

This narrative of the interchangeability of women and software, however, is not
entirely true: the perspective of the master, as Hegel famously noted, is skewed.
(Tellingly, Mephistopheles offers to be Faust’s servant.)’® The master depends on the
slave entirely, and it is the slave’s actions that make possible another existence. Execu-
tion is never simple. Hopper’s “Yes, Sir” actually did follow in the military command
tradition. It was an acceptance of responsibility; she was not told how to calculate the
trajectory. Also, the “women of the ENIAC,” although an afterthought, played an
important role in converting the ENIAC into a stored-program computer and in deter-
mining the trade-off between storing values and instructions: they did not simply
operate the machine, they helped shape it and make it functional.’” Users of the ENIAC
usually were divided into pairs: one who knew the problem and one who knew the

32 Chapter 1

machine “so the limitations of the machine could be fitted to the problem and the
problem could be changed to fit the limitations.”*® Programming the ENIAC—that is,
wiring the components together in order to solve a problem—was difficult, especially
since there were no manuals or exact precedents.” To solve a problem, such as how
to determine ballistics trajectories for new weapons, ENIAC “programmers” had first
to break down the problem logically into a series of small yes/no decisions; “the
amount of work that had to be done before you could ever get to a machine that was
really doing any thinking,” Bartik relates, was staggering and annoying.® The unreli-
ability of the hardware and the fact that engineers and custodians would unexpectedly
change the switches and program cables compounded the difficulty.®!

These women, Holberton in particular, developed an intimate relation with the
“master programmer,” the ENIAC's control device. Although Antonelli first figured out
how to repeat sections of the program, using the master programmer, Holberton, who
described herself as a logician, specialized in controlling its operation.®* As Bartik
explains:

We found it very easy to learn that you do this step, step one, then you do step two, step three,
but I think the thing that was the hardest for us to learn was transfer of control which the
ENIAC did have through the master programmer, so that you would be able to repeat pieces of
program. So, the techniques for dividing your program into subroutines that could be repeated
and things of this kind was the hardest for us to understand. I certainly know it was for me.®

Because logic diagrams did not then exist, Holberton developed a four-color pencil
system to visualize the workings of the master programmer.®* This drive to visualize
also extended to the machine as a whole. To track the calculation, holes were drilled
in the panels over the accumulators so that “when you were doing calculations these
lights were flashing as the numbers built up and as you transferred numbers and things
of this kind. So you had the feeling of excitement.”®> These lights not only were useful
in tracking the machine, they also were invaluable for the demonstration. Even
though the calculation for the demonstration was itself buggy, the flashing lights, the
cards being read and written, gave the press a (to them) incomprehensible visual
display of the enormity and speed of the calculation being done. In what would
become a classic programming scenario, the problem was “debugged” the day after
the demonstration. According to Holberton:

I think the next morning, I woke up and in the middle of the night thinking what that
error was. I came in, made a special trip on the early train that morning to look at a certain
wire, and you know, it’s the same kind of programming error that people make today. It’s
the, the decision on the terminal end of a do loop, speaking Fortran language, had the wrong
value. Forgetting that zero was also one setting and the setting of the switch was one off.
And TI'll never forget that because there it was my first do loop error. But it went on that
way and I remember telling Marlyn, I said, “If anybody asks why it’s printing out that way,
say it’s supposed to be that way.” [Laughter]|*®

On Sourcery and Source Codes 33

Programming enables a certain duplicity, as well as the possibility of endless actions
that animate the machine. Holberton, described by Hopper as the best programmer
she had known, would also go on to develop an influential SORT algorithm for the
UNIVAC 1 (the Universal Automatic Computer 1, a commercial offshoot of the
ENIAC).?” Indeed, many of these women were hired by the Eckert-Mauchly company
to become the first programmers of the UNIVAC, and were transferred to Aberdeen to
train more ENIAC programmers.

Drawing from the historical importance of women and the theoretical resonances
between the feminine and computing (parallels between programming and what
Freud called the quintessentially feminine invention of weaving, between female sexu-
ality as mimicry and Turing’s vision of computers as universal machines/mimics) Sadie
Plant has argued that computing is essentially feminine. Both software and feminine
sexuality reveal the power that something that cannot be seen can have.®® Women,
Plant argues, “have not merely had a minor part to play in the emergence of digital
machines. . . . Theirs is not a subsidiary role which needs to be rescued for posterity,
a small supplement whose inclusion would set the existing records straight. . . . Hard-
ware, software, wetware—before their beginnings and beyond their ends, women have
been the simulators, assemblers, and programmers of the digital machines.”* Because
of this and women'’s early (forced) adaptation to “flexible” work conditions, Plant
argues, women are best prepared to face our digital, networked future: “sperm count,”
she writes, “falls as the replicants stir and the meat learns how to learn for itself.
Cybernetics is feminisation.””® Responding to Plant’s statement, Alexander Galloway
has argued, “the universality of [computer] protocol can give feminism something
that it never had at its disposal, the obliteration of the masculine from beginning to
end.””" Protocol, Galloway asserts, is inherently antipatriarchy. What, however, is the
relationship between feminization and feminism, between so-called feminine modes
of control and feminism? What happens if you take seriously Grace Murray Hopper's
claims that the term software stemmed from her description of compilers as “layettes”
for computers and the claim of J. Chuan Chu, one of the hardware engineers for the
ENIAC, that software is the “daughter” of Frankenstein (hardware being the son)?’?

To address these questions, we need to move beyond recognizing these women as
programmers and the resonances between computers and the feminine. Such recogni-
tion alone establishes a powerful sourcery, in which programming is celebrated at the
exact moment that programmers become incapable of “understanding”—of seeing
through—the machine. The move to reclaim the ENIAC women as the first program-
mers in the mid- to late-1990s occurred when their work as operators—and the visual,
intimate knowledge of machine operations this entailed—had become entirely incor-
porated into the machine and when women “coders” were almost definitively pushed
out of the workplace. It is love at last (and first) sight, not just for these women but
also for these interfaces, which really were transparent holes, in which inside and

34 Chapter 1

outside coincided. Also, reclaiming these women as the first programmers and as
feminist figures glosses over the hierarchies within programming—among operators,
coders, and analysts—that defined the emergence of programming as a profession and
as an academic discipline.”® To put Hopper and the “ENIAC girls” together is to erase
the difference between Hopper, a singular hero who always defined herself as a math-
ematician, and nameless disappearing computer operators. It is also to deny personal
history: Hopper, a social conservative from a privileged background, stated many times
that she was not a feminist, and Hopper’s stances could be perceived as antifeminist
(while the highest-ranking female officer in the Navy, she argued that women were
incapable of serving in combat duty).”* Not accidentally, Hopper’s dream, her drive
for automatic computing, was to put the programmer inside the computer and thus
to rehumanize the mathematician: pseudocode was to free the mathematician and
her brain from the shackles of programming.”

Bureaucracies within the Machine

TROPP: We talked about Von Neumann and I would like to talk about how you saw people like
John Mauchly and the role that they played, and Goldstine and Burks and others that you came
in contact with [including] Clippinger, and Frankel, and how, how they looked from your vantage
point?

HOLBERTON: Well, we were lowly programmers, so I looked up to all these gentlemen.
TROPP: [Laughter]”®

The conflation of instruction with action, which makes computers understood as
software and hardware machines such a compelling model of neoliberal governmen-
tality and which resuscitates dreams of sovereign power, depends on incorporating
historical programming hierarchies within the machine.

Programming, even at what has belatedly been recognized as its origin, was a hier-
archical affair. Herman H. Goldstine and John von Neumann, in “Planning and
Coding of Problems for an Electronic Computing Instrument,” separated the task of
planning (dealing with the dynamic nature of code through extensive flow charting)
from that of coding (the microproduction of the actual instructions). Regarding
dynamic or macroscopic aspects, they argued, “every mathematician, or every mod-
erately mathematically trained person should be able to do this in a routine manner,
if he has familiarized himself with the main examples that follow in this report, or if
he has had some equivalent training in this method.” Regarding the static or micro-
scopic work, they asserted, “we feel certain that a moderate amount of experience with
this stage of coding suffices to remove from it all difficulties, and to make it a perfectly
routine operation.””” The dropping of the pronoun he was not accidental: as Nathan
Ensmenger and William Aspray note, the dynamic analysis was to be performed by
“the ‘planner,” who was typically the scientific user and overwhelmingly often was

On Sourcery and Source Codes 35

male; the sixth task was to be carried out by ‘coders’—almost always female.”’®

Although this separation between operators, coders, and planners was not immedi-
ately accepted everywhere—the small Whirlwind group viewed itself more as a “model
shop” in which coding, programming, and operations were mixed together—this
hierarchical separation between what Philip Kraft calls the “head and the hand”
became dominant as programming became a mass, commercial enterprise.”’

SAGE (the Semi-Automatic Ground Environment) air defense system, widely con-
sidered the first large software project, was programmed by the Systems Development
Corporation (SDC), an offshoot of the RAND Corporation. SDC had expanded from
a few programmers to more than eight hundred by the late 1950s, making it by
far the largest employer of programmers. Because its programmers went on to form
the industry (it was dubbed the “university of programmers”), SAGE had a wide
impact on the field’s development. SAGE, however, not only taught people how to
code but also inculcated a strict division of programming in which senior program-
mers (later systems analysts), who developed program specifications, were separated
from programmers, who worked on coding specifications; they in turn were separated
from the coders who turned coding specifications into documented machine code.*
This separation, as Kraft has recorded, was still thriving in the 1970s.*' This separa-
tion was also gendered. As Herbert D. Benington, one of the managers of SAGE,
later narrated, “women turned out to be very good for the administrative programs.
One reason is that these people tend to be fastidious—they worry how all the details
fit together while still keeping the big picture in mind. I don’t want to sound sexist,
but one of our strongest groups had 80 percent women in it; they were doing the
right kind of thing. The mathematicians were needed for some of the more complex
applications.”® Not accidentally, the SDC was spun off from the System Training
Program, a group comprised of RAND psychologists focused on producing more
effective groups.*

Buttressing this hierarchy was a strict system of control, “tools of a very complex
nature” that did not survive SAGE. As Benington explains, these tools enabled man-
agers to track and punish coders: “You could assign an individual a job, you could
control the data that that individual had access to, you could control when that
individual’s program operated, and you could find out if that individual was playing
the game wrong and punish that person. So we had a whole set of tools for design,
for controlling of the team, for controlling of the data, and for testing the programs
that were really quite advanced.”® Because of this system of control, Benington
viewed symbolic addressing and other moves to automate programming as “danger-
ous because they couldn’t be well-disciplined.” However, although automatic pro-
gramming has been linked to empowerment, it has also led to the more thorough
(because subtle and internalized) disciplining of programmers, which simultaneously
empowers and disempowers programmers.

36 Chapter 1

Indeed, this overt system of control and punishment was replaced by a “softer”
system of structured programming that makes source code source. As Mahoney has
argued, structured programming emerged as a “means both of quality control and of
disciplining programmers, methods of cost accounting and estimation, methods of
verification and validation, techniques of quality assurance.”® Kraft targets structured
programming as de-skilling: through it, programming was turned from a craft to an
industrialized practice in which workers were reduced to interchangeable detail
workers.* Structured programming limits the logical procedures coders can use and
insists that the program consist of small modular units, which can be called from the
main program. Structured programming (also generally known as “good program-
ming” when I was growing up) hides, and thus secures, the machine. It focuses on
and enables abstraction—and abstraction from the specific uses of and for the
machine—thereby turning programming from a numerical- to a problem-based task.

Not surprisingly, having little to no contact with the actual machine enhances one’s
ability to think abstractly rather than numerically. Edsger Dijkstra, whose famous
condemnation of “goto” statements has encapsulated to many the fundamental
tenets of structured programming, believes that he was able to “pioneer” structured
programming precisely because he began his programming career by coding for ghosts:
for machines that did not yet exist.*’” In “Go To Statement Considered Harmful,”
Dijkstra argues, “the quality of programmers is a decreasing function of the density
of go to statements in the programs they produce” because goto statements work
against the fundamental tenet of what Dijkstra considered to be good programming,
namely, the necessity to “shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between the program (spread out
in text space) and the process (spread out in time) as trivial as possible.”® This is
important because, if a program suddenly halts because of a bug, gotos (statements
that tell a program to go to a specific line if a condition is met) make it difficult to
find the place in the program that corresponds to the buggy code. Gotos make difficult
the conflation of instruction with its product—the reduction of process to command—
that grounds the emergence of software as a concrete entity and commodity. That is,
gotos make it difficult for the source program to act as a legible source.*” As this
example makes clear, structured programming moves away from issues of program
efficiency—the time it takes to run a program—and more toward the problem of
minimizing all the costs involved in producing and maintaining large programs. This
move also makes programming an “art.” As Dijkstra argues in his letter justifying
structured programming, “it is becoming most urgent to stop to consider program-
ming primarily as the minimization of cost/performance ratio. We should recognize
that already now programming is much more an intellectual challenge: the art of
programming is the art of organizing complexity, of mastering multitude and avoiding
its bastard chaos as effectively as possible.””® Again, this depends on making “the

On Sourcery and Source Codes 37

structure of the program text [reflect] the structure of the computation.””' It means
moving away from assembly and other languages that routinely offer bizarre exits and
self-modifying code to languages that feature clear and well-documented repetitions
(while ... do...) that end in one clear place, that return control to the main program.

Structured programming languages “save” programmers from themselves by pro-
viding good security, where security means secure from the programmer (increasingly,
“securing” the machine means making sure programmers cannot access or write over
key systems).”” Indeed, structured programming, which emphasizes programming as
a problem of flow, is giving way to data abstraction, which views programming as a
problem of interrelated objects, and hides far more than the machine. Data abstraction
depends on information hiding, on the nonreflection of changeable facts in software.
As John V. Guttag, a “pioneer” in data abstraction explains, data abstraction is all
about forgetting, about hiding information about how a type is implemented behind
an interface.” Rather than “polluting” a program by enabling invisible lines of contact
between supposedly independent modules, data abstraction presents a clean or “beau-
tiful” interface by confining specificities, and by reducing the knowledge and power
of the programmer. Knowledge, Guttag insists, is dangerous: “‘Drink deep, or taste not
the Pierian Spring,” is not necessarily good advice. Knowing too much is no better,
and often worse, than knowing too little. People cannot assimilate very much infor-
mation. Any programming method or approach that assumes that people will under-
stand a lot is highly risky.”** Abstraction—the “erasure of difference in the service of
likeness or equality”—also erases, or “forgets,” knowledge, rendering it, like the
machine, ghostly.”

Thus abstraction both empowers the programmer and insists on his/her igno-
rance—the dream of a sovereign subject who knows and commands is constantly
undone. Because abstraction exists “in the mind of the programmer,” abstraction gives
programmers new creative abilities. Computer scientist David Eck argues, “every pro-
gramming language defines a virtual machine, for which it is the machine language.
Designers of programming languages are creating computing machines as surely as
the engineer who works in silicon and copper, but without the limitations imposed
by materials and manufacturing technology.”’® However, this abstraction—this move
away from the machine specificities—hands over, in its virtual separation of machine
into software and hardware, the act of programming to the machine itself. Mildred
Koss scoffed at the early notion of computers as brains because “they couldn’t think
in the way a human thinks, but had to be given a set of step-by-step machine instruc-
tions to be executed before they could provide answers to a specific problem”—at that
time software was not considered to be an independent object.”” The current status
of software as a commodity, despite the nonrivalrous nature of “instructions,” indi-
cates the triumph of the software industry, an industry that first struggled not
only financially but also conceptually to define its product. The rise of software

38 Chapter 1

depends both on historical events, such as IBM’s unbundling of its services from its
products, and on abstractions enabled by higher-level languages. Guttag’s insistence
on the unreliability and incapability of human beings to understand underscores the
cost of such an abstraction. Abstraction is the computer’s game, as is programming
in the strictest and newest sense of the word: with “data-driven” programming, for
instance, machine learning/artificial intelligence (computers as source of source code)
has become mainstream.

Importantly, this stratification and disciplining of labor has a much longer history:
human computing itself, as David Grier has documented, moved from an art to a
routinized procedure through a separation of planners from calculators.”® Whereas
the mathematician Alexis-Claude Clairaut called on two of his colleagues/friends,
Joseph Lalande, Nicole-Reine Lapaute, in 1757 to calculate the date of Halley’s comet’s
1758 return, Gaspard Clair Franc¢ois Marie Riche de Prony, director of the Bureau du
Cadastre, devised a system of intellectual labor to calculate metric tables in 1791.
Not accidentally, the tables were part of a revolutionary governmental project: the
move to the metric system by the National Assembly in order to gain control of the
French economy.” De Prony, inspired by Adam Smith, divided the group into manual
workers (unemployed pre-Revolutionary wig makers or servants who had basic arith-
metic skills) and planners (experienced computers who planned the calculation). This
system in turn inspired Charles Babbage’s difference and analytic engines, in which
the engines would replace the manual workers: according to Grier, de Prony’s system
showed Babbage that “the division of labor was not restricted to physical work but
could be applied to ‘some of the sublimest investigations of the human mind,’
including the work of calculation.”'® This routinized calculation was not smoothly
adopted; for a long time within the United States, such a model was resisted and,
even during World War I, computers were graduate students and young assistant
professors. In order to produce calculations necessary for governmental projects (such
as eugenics, census, navigation, weapons, etc.) in the twentieth century, however,
mass computation became the norm.

The U.S. wholesale embrace of mass calculation also coincides with a governmental
project. Begun during the Great Depression as a way to put unemployed high school
graduates to work, the Work Progress Administration’s (WPA) Math Tables Project
(MTP) produced some of the finest error-free tables in the world.'’! Indeed, it was not
until the Roosevelt administration and the New Deal that the United States became
seriously involved in producing mathematical tables. Since it was a WPA project, many
established academics refused to be involved with it. To gain credibility, those in
charge (themselves “less desirable” or unconventional PhDs) were determined to
produce the most accurate tables possible. Gertrude Blanch, who ran the program with
Milton Abramowitz, insists that most of the people they hired were qualified.'”” In
contrast, Ida Rhodes, another PhD hired by the MTP, claims: “[Most] of the people

On Sourcery and Source Codes 39

[who] came to us really knew nothing at all about mathematics or [even] arithmetic.
Gertrude Blanch says that they were all High School graduates, and they may have
been. I never checked on that. But if they were, very few of them had remembered
anything about the arithmetic or the algebra or whatever mathematics they had
[studied].”'® By the end, however, they were transformed. According to Rhodes,
Blanch performed miracles, “welding a malnourished, dispirited crew of people,
coming from [the] Welfare Rolls, [into] a group that Leslie J. Comrie said was the
‘mightiest computing team the world had ever seen.””'” To Rhodes, the social work
involved in this project—“[salutary benefit conferred on] the spirit of those people
[by] raising them from abject and self-despising people into a team that [acquired] a
magnificent esprit de corps”—has been overlooked.'” As Rhodes’s rhetoric indicates,
this was a patronizing if admirable project, run by “saints.” Rhodes, herself partially
deaf, would become an advocate for including physically challenged people in pro-
gramming work. (Blanch interestingly had a more edgy view of sainthood. Describing
Rhodes, she remarked, “if there are saints on earth, she’s one of them. Saints may be
difficult to live with but . . . it’s nice to have a few around”).'*

This saintly salutary work comprised dividing the group into four categories,
listed in ascending ability—the adders, the multipliers, the dividers, and the check-
ers—and creating worksheets so that “people who knew nothing about mathematics
could [do advanced functions] by just following one step at a time.”'”” The flawless-
ness of these tables stemmed both from these worksheets, created by Blanch, and
from the degree to which these tables were checked (the Bessel function, for instance,
was checked more than twenty-two times). Since the goal of the project was to
keep these people busy, as well as to produce tables, accuracy was stressed over
expediency and over sophistication of numerical techniques. Accuracy, according
to Rhodes, became an obsession.”'*

Not surprisingly, though, the MTP computers were sometimes suspicious of their
oversight. Rhodes relates, “we had impressed upon our workers over and over and
over again that we were not watching them. We were not counting their output.”
Rather, “the only thing we asked of them is complete accuracy.” This accuracy was
also inscribed in the worksheets themselves in a nontransparent, repetitive manner.
Rhodes and Blanch created worksheets, “in which every operation had to be done
at least twice” and in which this duplicity was hidden. Rhodes explains, “for example,
if we added a and b we wouldn’t immediately say: add b and a. But some time
later we saw to it that b got added to a, and we had arrows connecting the answers
saying that these two answers should agree to, say one or two [units in] the last
place. If they did not get such an agreement, then they were to [erase the pertinent
portion] and [re-compute it].”’” Again, the fact that these tables were largely
unnecessary—and hence not time-sensitive—made this emphasis on accuracy over
timeliness possible.

40 Chapter 1

According to Rhodes, only two girls did not internalize the accuracy-ethic and
cheated."® Rhodes revealingly narrates the dishonesty of the “colored” girl who joined
the group after claiming that she was being discriminated against in another project:

[Being] a softy, [I swallowed her story.] I should have checked with [her] boss and found out
why she was not liked. But I didn’t. And so I asked Gertrude’s permission and she said, “All
right, let’s give her a chance.” [And] she started working for us.

Well, she hadn’t been with us long enough apparently to absorb that feeling of accuracy,
although, of course, we also gave her the [same] lecture that we gave everybody else. She must
have thought that the more she produces, the more we will think of her and the more anxious
we will be to keep her. [Her checker| reported to us that the girl was a whiz, she handed in
many more sheets than anyone else; and I began to feel very proud of myself, thinking, oh, I
got [me a] good girl, working so hard.

You see, all that the [checker did was to examine the values, connected by the] arrows and
if they agreed within one or two [units,] he was satisfied. In her case he once mentioned, “It’s
remarkable, they agree to the very last place.” That should have given me an idea, but I was
too busy with other things. Well, one evening Gertrude and I sat down to do our regular job
of checking the sheets, and [when] we got [to] hers, [no values] differenced, absolutely nothing
differenced. That was something we couldn’t believe. How could [they] not difference? The
arrows showed perfect agreement—too perfect, as a matter of fact.

Well, lots of things can happen. First of all, the formula can be wrong. [Or we] could have
made a mistake [in breaking down] the formula [while preparing] the worksheet. [Or] we could
have made a mistake in [a sign.] We could have made a mistake in a constant. It happened to
be my worksheet, so I checked [it] over: no mistake there. [She had to] copy certain informa-
tion from other Tables. Maybe [I] gave her the wrong tables. [An examination showed] that
she copied the correct Tables. What else could have happened? The point [is] that we were so
innocent and so trusting, it never occurred to us that what really happened [could have
occurred.] What had happened was that she would get the first answer, and then when she
got to [it] the second time — where the arrows showed that they had to agree — and [they]
didn’t agree, she merely erased the [second] answer and copied down the first [one.] We found

that out [when] Gertrude and I recomputed all her sheets.'"

This remarkable story reveals the contradictions in this disciplinary system: although
Rhodes denies that they judged performance by speed, she thinks she got herself a “good
girl” when the “colored girl” performs quickly. Also, although math presumably requires
some intellectual labor, intelligence is condemned. The “colored girl”’s ability to figure
out the system, the algorithm, is denounced as cheating, and the managers’ faith in
their own nontransparent plans described as “trusting.” These worksheets were an early
form of programming: a breakdown of a complex operation into sequence of simple
operations that depends on accurate and single-minded calculation. As this example
makes clear, such programming depended on mind-numbingly repetitive operations
by the “dumb” and the downtrodden, whose inept or deceitful actions could disrupt
the task at hand. Modern computing replaces these with vacuum tubes and transistors.

On Sourcery and Source Codes 4

As Alan Turing contended, “the class of problems capable of solution by the machine
can be defined fairly specifically . . . [namely] those problems which can be solved by
human clerical labour, working to fixed rules, and without understanding.”'?

Source code become “thing”—the erasure of execution—follows from the mecha-
nization of these power relations, the reworking of subject-object relations through
automation as both empowerment and enslavement and through repetition as both
mastery and hell. Embedded within the notion of instruction as source and the
drive to automate computing—relentlessly haunting them—is a constantly repeated
narrative of liberation and empowerment, wizards and (ex-)slaves.

Automation as Sourcery

Automatic programming, what we could call programming today, reveals the extent
to which automation and the history of programming cannot be considered a simple
deskilling (Kraft’s argument) or a march toward greater human power. Rather, through
automation, expertise is both created and called into question: it is something that
coders did not simply fear, but also appreciated and drove.

Automatic programming arose from a desire to reuse code and to recruit the com-
puter into its own operation—essentially, to transform singular instructions into a
language a computer could write. As Koss, an early UNIVAC programmer, explains:

Writing machine code involved several tedious steps—breaking down a process into discrete
instructions, assigning specific memory locations to all the commands, and managing the I/O
buffers. After following these steps to implement mathematical routines, a sub-routine library,
and sorting programs, our task was to look at the larger programming process. We needed to
understand how we might reuse tested code and have the machine help in programming. As
we programmed, we examined the process and tried to think of ways to abstract these steps
to incorporate them into higher-level language. This led to the development of interpreters,
assemblers, compilers, and generators—programs designed to operate on or produce other

programs, that is, automatic programming.'"®

Automatic programming is an abstraction that allows the production of computer-
enabled human-readable code—key to the commodification and materialization of
software and to the emergence of higher-level programming languages.

Higher-level programming languages, unlike assembly language, explode one’s
instructions and enable one to forget the machine. In them, simple operations often
call a function, making it a metonymic language par excellence. These languages also
place everyone in the position of the planner, without the knowledge of the coder.
They enable one to run a program on more than one machine—a property now
assumed to be a “natural” property of software (“direct programming” led to a unique
configuration of cables; early machine language could be iterable but only on the same
machine—assuming, of course, no engineering faults or failures). In order to emerge

42 Chapter 1

as a language or a source, software and the “languages” on which it relies had to
become iterable. With programming languages, the product of programming would
no longer be a running machine but rather this thing called software—something
theoretically (if not practically) iterable, repeatable, reusable, no matter who wrote it
or what machine it was destined for; something that inscribes the absence of both the
programmer and the machine in its so-called writing.'"* Programming languages
enabled the separation of instruction from machine, of imperative from action, a move
that fostered the change in the name of source code itself, from “pseudo” to “source.”
Pseudocode intriguingly stood both for the code as language and for the code as
program (i.e., source code). The manual for UNIVAC’s A-2 compiler, for instance,
defines pseudocode as “computer words other than the machine (C-10) code, design
[sic] with regard to facilitating communications between programmer and computer.
Since a pseudo-code cannot be directly executed by the computer, there must be pro-
grammed a modification, interpretation or translation routine which converts the
pseudo-codes to machine instruction and routines.”'"* Pseudocode, which enables one
to move away from machine specificity, is called “information”—what later would
become a ghostly immaterial substance—rather than code.

According to received wisdom, these first attempts to automate programming—the
“pseudo”—were resisted by “real” programmers.''° John Backus, developer of FORTRAN,
claims that early machine language programmers were engaged in a “black art”; they
had a “chauvinistic pride in their frontiersmanship and a corresponding conservatism,
so many programmers of the freewheeling 1950s began to regard themselves as
members of a priesthood guarding skills and mysteries far too complex for ordinary
mortals.”""” Koss similarly argues, “without these higher-level languages and processes
..., which democratized problem solving with the computer, I believe programming
would have remained in the hands of a relatively small number of technically oriented
software writers using machine code, who would have been essentially the high priests
of computing.”'"®

This story of a “manly” struggle against automatic programming resonates with
narratives of mechanical computing itself as “feminizing” numerical analysis. Whirl-
wind team member Bob Everett offers the following summary of a tale describing two
different ways of approaching automatic computing, which was told at Aiken’s mid-
1940s meeting: “One was the woman who gets married, and that’s fine, and she looks
ahead to a life-time of three meals a day, 365 days a year, and dishes to wash after
each one of them. Her husband brings her home from the honeymoon, and she dis-
covers he’s bought her an automatic dishwasher. That’s one way. The other way is the
guy who decides to climb a mountain, and he buys all the rope, pitons, and one thing
and another, and he goes to the mountain and finds that somebody has built a funicu-
lar railway.”'" According to this description, automatic computing is feminine or
emasculating: an escape from domestic drudgery or the automation of a properly

On Sourcery and Source Codes 43

masculine enterprise. Thus, it is not just the introduction of automatic programming
that inspired narratives of masculine expertise under siege, but also the introduction
of—or, more properly, the appreciation of—the (automatic) computer.

In a related manner, Hopper (and perhaps only Hopper) experienced the U.S. Navy,
in particular her initial training as a thirty-seven-year-old woman, as “the most com-
plete freedom I'd ever had.” Whereas her younger counterparts rebelled “against the
uniforms and the regulations,” she embraced the Navy’s strict structure as a release
from domestic duties. As she relates, “All of a sudden I didn’t have to decide anything,
it was all settled. I didn’t even have to bother to decide what I was going to wear in the
morning, it was there. I just picked it up and put it on. So for me all of a sudden I was
relieved of all minor decisions. . . . I didn’t even have to figure out what I was going to
cook for dinner.” The difficulties of domestic life and sacrifice during World War 1I
colored Hopper’s enthusiasm, since “housekeeping had gotten to be quite a chore by
then to figure out how much meat you could have and could you give dad some sugar
‘cause he loved it and you might have some extra points. That’s when I learned to
drink most of my drinks without any sugar in them so that dad could have it. And we
had very little gasoline and we had to have a car and you had to plan every trip very
carefully. Well, all of a sudden I'm in midshipmen’s school and all of a sudden you
don’t have to do any of it.”® Importantly, though, this release was also an insertion
into a well-defined system, in which one both gave and received commands. When a
Voice of America interviewer asked, “You are supposed to command, but also to conform
and obey. How do you come to terms with those two extremes?” Hopper replied, “The
essential basic principle of the Navy is leadership. And leadership is a two-way street.
It is loyalty up and loyalty down. Respect your superior, keep him informed of what
you are doing, and take care of your crew. That is everyone’s responsibility.”'*!

Automatic programming, seen as freeing oneself from both drudgery and knowl-
edge, thus calls into question the simple narrative of it as dispersing a reluctant
“priesthood” of machine programmers. This narrative of resistance assumes that pro-
grammers naturally enjoyed tedious and repetitive numerical tasks and as well as
developing singular solutions for their clients. The “mastery” of computing can easily
be understood as “suffering.” Indeed, Hopper called her early days with the Harvard
Mark 1 her “sufferings” and argued, “experienced programmers are always anxious
to make the computer carry out as much routine work as they can.”'?* Harry Reed,
an early ENIAC programmer, relays, “the whole idea of computing with the ENIAC
was a sort of hair-shirt kind of thing. Programming for the computer, whatever it
was supposed to be, was a redemptive experience—one was supposed to suffer to do
it.” According to Reed, programmers were actively trying to convince people to write
small programs for themselves. In the 1970s, he “actually had to take my Division
and sit everybody down who hadn’t taken a course in FORTRAN, because, by God,
they were going to write their own programs now. We weren'’t going to get computer

44 Chapter 1

specialists to write simple little programs that they should have been writing.'* Also,
the first programmers were the first writers of reusable subroutines. Holberton, for
instance, developed the first SORT generator to save her colleagues’ time, “I felt
for all the work that Betty Jean and I had done on sorting methods, it was a shame
for people to have to sit down and re-do and re-code that same thing even though
they could use the books to do it, if it could be done by a machine. And that’s the
reason, and it only took six months to program the thing. That’s six more months.”'?*
Thus, rather than programmers circling the wagons to protect their positions, it
would seem that many programmers themselves welcomed and contributed to the
success of automatic programming.

As well, since programmers were in incredible demand in the 1950s through the
1960s, the need to create boundaries to protect jobs seems odd. Although compilers
and interpreters may not have been accepted immediately, especially by those already
trained in machine programming, the resistance may have stemmed more from the
work environment than from personal arrogance. Coders were under great pressure
to be as efficient as possible. As Holberton and Bartik relay in a 1973 interview, early
coders often developed a persecution complex, because machine time was the most
important and expensive thing:

BARTIK: The worst sin that you could commit was to waste that machine time. So that we really
became paranoid.

HOLBERTON: Mhm. Efficiency.

BARTIK: We thought everybody was after us.

TROPP: [Laughter]

BARTIK: For our inefficiency.

HOLBERTON: You wasted one add time, you were being inefficient.

BARTIK: So it was fine for us to struggle for two days to cut off the slightest amount on that
machine.'”

Compilers were arguably accepted because the demand for programmers meant a loss
in quality (an ever widening recruitment)—programming efficiently in machine
language therefore became a mark of expertise. In this sense, the introduction of
automatic programming, which set a certain standard of machine efficiency, helped
to produce the priesthood it was supposedly displacing.

Corporate and academic customers, for whom programmers were orders of magni-
tude cheaper per hour than computers, do seem to have resisted automatic program-
ming. Jean Sammet, an early female programmer, relates, in her influential Programming
Languages: History and Fundamentals, that customers objected to compilers on the
ground that they “could not turn out object code as good as their best programmers.
A significant selling campaign to push the advantages of such systems was underway
at that time, with the spearhead being carried for the numerical scientific languages
(i.e., FORTRAN) and for ‘English-language-like’ business data-processing languages by

On Sourcery and Source Codes 45

Remington Rand (and Dr. Grace Hopper in particular).”'* This selling campaign not
only pushed higher-level languages (by devaluing humanly produced programs), it
also pushed new hardware: to run these programs, one needed more powerful
machines. The government’s insistence on standardization, most evident in the devel-
opment and widespread use of COBOL, itself a language designed to open up program-
ming to a wider range of people, fostered the general acceptance of higher-level
languages, which again were theoretically, if not always practically, machine indepen-
dent or iterable. The hardware-upgrade cycle was normalized in the name of saving
programming time.

This “selling campaign” led to what many have heralded as the democratization
of programming, the opening of the so-called priesthood of programmers. In Sammet’s
view, this was a partial revolution

in the way in which computer installations were run because it became not only possible, but
quite practical to have engineers, scientists, and other people actually programming their own
problems without the intermediary of a professional programmer. Thus the conflict of the open
versus closed shop became a very heated one, often centering [on] the use of FORTRAN as the
key illustration for both sides. This should not be interpreted as saying that all people with
scientific numerical problems to solve immediately sat down to learn FORTRAN; this is clearly
not true but such a significant number of them did that it has had a major impact on the
entire computer industry. One of the subsidiary side effects of FORTRAN was the introduction
of FORTRAN Monitor System [IB60]. This made the computer installation much more efficient
by requiring less operator intervention for the running of the vast number of FORTRAN
(as well as machine language) programs.'”

The democratization or “opening” of computing, which gives the term open in open
source a different resonance, would mean the potential spread of computing to those
with scientific numerical problems to solve and the displacement of human operators
by operating systems. But the language of priests and wizards has hardly faded and
scientists have always been involved with computing, even though computing has
not always been considered to be a worthy scientific pursuit. The history of computing
is littered with moments of “computer liberation” that are also moments of greater
obfuscation.'?®

Higher level programming languages—automatic programming—may have been
sold as offering the programmer more and easier control, but they also necessitated
blackboxing even more the operations of the machine they supposedly instructed.
Democratization did not displace professional programmers but rather buttressed their
position as professionals by paradoxically decreasing their real power over their
machines, by generalizing the engineering concept of information.

So what are we to do with these contradictions and ambiguities? As should be clear
by now, these many contradictions riddling the development of automatic program-
ming were key to its development, for the automation of computing is both an

46 Chapter 1

acquisition of greater control and freedom, and a fundamental loss of them. The
narrative of the “opening” of programming reveals the tension at the heart of pro-
gramming and control systems: are they control systems or servomechanisms (Norbert
Wiener’s initial name for them)? Is programming a clerical activity or an act of
Hobbesian mastery? Given that the machine takes care of “programming proper”—the
sequence of events during execution—is programming programming at all? What is
after all compacted in the coinciding changes in the titles of “operators” to “program-
mers” and of “mathematicians” to “programmers”? The notion of the priesthood of
programming erases this tension, making programming always already the object of
jealous guardianship, and erasing programming’s clerical underpinnings.'®

Programming in the 1950s does seem to have been fun and fairly gender balanced,
in part because it was so new and in part because it was not as lucrative as hardware
design or even sales: the profession was gender neutral in hiring if not pay because it
was not yet a profession.'*® The “ENIAC girls” were first hired as subprofessionals, and
some had to acquire more qualifications in order to retain their positions. As many
female programmers quit to have children or get married, men (and compilers) took
their increasingly lucrative positions. Programming’s clerical and arguably feminine
underpinnings—both in terms of personnel and of command structure—became
buried as programming sought to become an engineering and academic field in its
own right.””! Democratization did not displace professional programmers but rather
buttressed their position as professionals by paradoxically decreasing their real power
over their machines. It also, however, made programming more pleasurable.

Causal Pleasure

The distinction between programmers and users is gradually eroding. With higher-
level languages, programmers are becoming more like simple users. Crucially, though,
the gradual demotion of programmers has been offset by the power and pleasure of
programming. To program in a higher-level language is to enter a magical world—it
is to enter a world of logos, in which one’s code faithfully represents one’s intentions,
albeit through its blind repetition rather than its “living” status."”” Edwards argues,
“programming can produce strong sensations of power and control” because the
computer produces an internally consistent if externally incomplete microworld, a
“simulated world, entirely within the machine itself, that does not depend on instru-
mental effectiveness. That is, where most tools produce effects on a wider world of
which they are only a part, the computer contains its own worlds in miniature. . . .
In the microworld, as in children’s make-believe, the power of the programmer is
absolute.”'** Joseph Weizenbaum, MIT professor, creator of ELIZA (an early program
that imitated a Rogerian therapist) and member of the famed MIT Al (Artifical Intel-
ligence) lab, similarly contends:

On Sourcery and Source Codes 47

The computer programmer . . . is a creator of universes for which he alone is the lawgiver. So,
of course, is the designer of any game. But universes of virtually unlimited complexity can be
created in the form of computer programs. Moreover, and this is a crucial point, systems so
formulated and elaborated act out their programmed scripts. They compliantly obey their laws
and vividly exhibit their obedient behavior. No playwright, no stage director, no emperor,
however powerful, has ever exercised such absolute authority to arrange a stage or a field of
battle and to command such unswervingly dutiful actors or troops.'**

The progression from playwright to stage director to emperor is telling: programming
languages, like neoliberal economics, model the world as a “game.”'** To return to the
notion of “code is law,” programming languages establish the programmer as a sov-
ereign subject, for whom there is no difference between command given and command
completed. As a lawgiver more powerful than a playwright or emperor, the program-
mer can “say” “let there be light” and there is light. Iterability produces both language
and subject. Importantly, Weizenbaum views the making performative or automati-
cally executable of words as the imposition of instrumental reason, inseparable from
the process of “enlightenment” critiqued by the Frankfurt school.”*® Instrumental
reason, he argues, “has made out of words a fetish surrounded by black magic. And
only the magicians have the rights of the initiated. Only they can say what words
mean. And they play with words and they deceive us.”"*

Programming languages offer the lure of visibility, readability, logical if magical
cause and effect. As Brooks argues, “one types the correct incantation on the keyboard,
and a display screen comes to life, showing things that never were nor could be.”"**
One’s word creates something living. Consider this ubiquitous “hello world” program
written in C++ (“hello world” is usually the first program a person will write):

// this program spits out “hello world”
#include <iostream.h>
int main ()
{
cout << “Hello World!”;

return 0;

}

The first line is a comment line, explaining to the human reader that this program
spits out “Hello World!.” The next line directs the compiler’s preprocessor to include
iostream.h, a standard file to deal with input and output to be used later. The third
line, “int main (),” begins the main function of the program; “cout << ‘Hello World!";”
prints “Hello World!” to the screen (“cout” is defined in iostream.h); “return 0” ter-
minates the main function and causes the program to return a O if it has run correctly.

48 Chapter 1

Although not immediately comprehensible to someone not versed in C++, this
program nonetheless seems to make some sense, and seems to be readable. It comprises
a series of imperatives and declaratives that the computer presumably understands
and obeys. When it runs, it follows one’s commands and displays “Hello World!.”

It is no accident that “hello world” is the first program one learns because it is
easy, demonstrating that we can produce results immediately. This ease, according to
Weizenbaum, is what makes programming so seductive and dangerous:

It happens that programming is a relatively easy craft to learn. . . . And because programming
is almost immediately rewarding, that is, because a computer very quickly begins to behave
somewhat in the way the programmer intends it to, programming is very seductive, especially
for beginners. Moreover, it appeals most to precisely those who do not yet have sufficient
maturity to tolerate long delays between an effort to achieve something and the appearance
of concrete evidence of success. Immature students are therefore easily misled into believing
that they have truly mastered a craft of immense power and of great importance when, in fact,
they have learned only its rudiments and nothing substantive at all.'*

The seeming ease of programming hides a greater difficulty—executability leads to
unforeseen circumstances, unforeseen or buggy repetitions. Programming offers a
power that, Weizenbaum argues, corrupts as any power does.'** What corrupts, Weizen-
baum goes on to explain, however, is not simply ease, but also this combination of ease and
difficulty. Weizenbaum argues that programming creates a new mental disorder: the
compulsion to program, which he argues hackers, who “hack code” rather than
“work,” suffer from (although he does note that not all hackers are compulsive
programmers).'*!

To explain this addiction, Weizenbaum explains the parallels between “the magical
world of the gambler” and the magical world of the hacker—both entail megalomania
and fantasies of omnipotence, as well as a “pleasureless drive for reassurance.”'** Like
gambling, programming can be compulsive because it both rewards and challenges
the programmer. It is driven by “two apparently opposing facts: first, he knows that
he can make the computer do anything he wants it to do; and second, the computer
constantly displays undeniable evidence of his failures to him. It reproaches him.
There is no escaping this bind. The engineer can resign himself to the truth that there
are some things he doesn’t know. But the programmer moves in a world entirely of
his own making. The computer challenges his power, not his knowledge.”'** According
to Weizenbaum, because programming engages power rather than truth, it can induce
a paranoid megalomania in the programmer.'** Because this knowledge is never
enough, because a new bug always emerges, because an unforeseen wrinkle causes
divergent unexpected behavior, the hacker can never stop. Every error seems correct-
able; every error points to the hacker’s lack of foresight; every error leads to another.
Thus, unlike the “useful programmer,” who “works” by solving the problem at hand
and carefully documents his code, the hacker aimlessly hacks code: programming

On Sourcery and Source Codes 49

becomes a technique, a game without a goal and thus without an end. Hackers’ skills
are thus “disembodied” and this disembodiment transforms their physical appearance:
Weizenbaum describes them as “bright young men of disheveled appearance, often
with sunken glowing eyes . . . sitting at computer consoles, their arms tensed and
waiting to fire their fingers, already poised to strike, at the buttons and keys on which
their attention seems to be as riveted as a gamer’s on the rolling dice.'*

Although Weizenbaum is quick to pathologize hackers as pleasureless pitiful crea-
tures, hackers themselves emphasize programming as pleasurable—and their lack of
“usefulness” can actually be what is most productive and promising about program-
ming. Linus Torvalds, for instance, argues that he, as an eternal grad student, decided
to build the Linux operating system core just “for fun.” Torvalds further views the
decisions programming demands as rescuing programming from becoming tedious.
“Blind obedience on its own, while initially fascinating,” he writes, “obviously does
not make for a very likable companion. In fact, that part gets boring fairly quickly.
What makes programming so engaging is that, while you can make the computer
do what you want, you have to figure out how.”'*® Richard Stallman, who fits
Weizenbaum'’s description of a hacker (and who was in the Al lab, probably building
those indispensable functions) likewise emphasizes the pleasure, but more important
the “freedom” and “freeness” associated with programming—something that stems
from programming as not simply the production of a commercial (or contained)
product. Hacking reveals the extent to which source code can become a fetish:
something endless that always leads us pleasurably, as well as anxiously, astray.

Source Code as Fetish

Source code as source means that software functions as an axiom, as “a self-evident
proposition requiring no formal demonstration to prove its truth, but received and
assented to as soon as it is mentioned.”'*” In other words, whether or not source code
is only a source after the fact or whether or not software can be physically separated
from hardware,'*® software is always posited as already existing, as the self-evident
ground or source of our interfaces. Software is axiomatic. As a first principle, it fastens
in place a certain neoliberal logic of cause and effect, based on the erasure of execution
and the privileging of programming that bleeds elsewhere and stems from elsewhere as
well."* As an axiomatic, it, as Gilles Deleuze and Félix Guattari argue, artificially limits
decodings.'*’ It temporarily limits what can be decoded, put into motion, by setting up
an artificial limit—the artificial limit of programmability—that seeks to separate infor-
mation from entropy, by designating some entropy information and other “non-
intentional” entropy noise. Programmability, discrete computation, depends on
the disciplining of hardware and programmers, and the desire for a programmable
axiomatic code. Code, however, is a medium in the full sense of the word. As a

50 Chapter 1

medium, it channels the ghost that we imagine runs the machine—that we see as we
don’t see—when we gaze at our screen’s ghostly images.

Understood this way, source code is a fetish. According to the OED, a fetish was
originally an ornament or charm worshipped by “primitive peoples . . . on account
of its supposed inherent magical powers.”'*' The term fetisso stemmed from the trade
of small wares and magic charms between the Portuguese merchants and West
Africans; Charles de Brosses coined the term fetishism to describe “primitive religions”
in 1757. According to William Pietz, Enlightenment thinkers viewed fetishism as a
“false causal reasoning about physical nature” that became “the definitive mistake of
the pre-enlightened mind: it superstitiously attributed intentional purpose and desire
to material entities of the natural world, while allowing social action to be determined
by the . . . wills of contingently personified things, which were, in truth, merely the
externalized material sites fixing people’s own capricious libidinal imaginings.”'** That
is, fetishism, as “primitive causal thinking,” derived causality from “things”—in all
the richness of this concept—rather than from reason:

Failing to distinguish the intentionless natural world known to scientific reason and motivated
by practical material concerns, the savage (so it was argued) superstitiously assumed the exis-
tence of a unified causal field for personal actions and physical events, thereby positing reality
as subject to animate powers whose purposes could be divined and influenced. Specifically,
humanity’s belief in gods and supernatural powers (that is, humanity’s unenlightenment) was
theorized in terms of prescientific peoples’ substitution of imaginary personifications for the
unknown physical causes of future events over which people had no control and which they

regarded with fear and anxiety.'s?

A fetish allows one to visualize what is unknown—to substitute images for causes.
Fetishes allow the human mind both too much and not enough control by establish-
ing a “unified causal field” that encompasses both personal actions and physical
events. Fetishes enable a semblance of control over future events—a possibility of
influence, if not an airtight programmability—that itself relies on distorting real social
relations into material givens.

This notion of fetish as false causality has been most important to Karl Marx'’s
diagnosis of capital as fetish. Marx famously argued:

the commodity-form . . . is nothing but the determined social relation between men themselves
which assumes here, for them, the phantasmagoric form of a relation between things. In order,
therefore, to find an analogy we must take a flight into the misty realm of religion. There the
products of the human head appear as autonomous figures endowed with a life of their own,
which enter into relations both with each other and with the human race. So it is in the world

of commodities with the products of men’s hands. I call this the . . . fetishism.'**

The capitalist thus confuses social relations and the labor activities of real individuals
with capital and its seemingly magical ability to reproduce. For, “it is in interest-

On Sourcery and Source Codes 51

bearing capital . . . that capital finds its most objectified form, its pure fetish form.
. . . Capital—as an entity—appears here as an independent source of value; a some-
thing that creates value in the same way as land [produces] rent, and labor wages.”'*®
Both these definitions of fetish also highlight the relation between things and men:
men and things are not separate, but rather speak with and to one another. That is,
things are not simply objects that exist outside the human mind, but are rather tied
to events, to the timing of events.

The parallel to source code seems obvious: we “primitive folk” worship source
code as a magical entity—as a source of causality—when in truth the power lies
elsewhere, most importantly, in social and machinic relations. If code is performa-
tive, its effectiveness relies on human and machinic rituals. Intriguingly though, in
this parallel, Enlightenment thinking—a belief that knowing leads to control, to a
release from tutelage—is not the “solution” to the fetish, but, rather, what grounds
it, for source code historically has been portrayed as the solution to wizards and
other myths of programming: machine code provokes mystery and submission; source
code enables understanding and thus institutes rational thought and freedom. Knowl-
edge, according to Weizenbaum, sustains the hacker’s aimless actions. To offer a
more current example of this logic than the FORTRAN one cited earlier, Richard
Stallman, in his critique of nonfree software, has argued that an executable program
“is a mysterious bunch of numbers. What it does is secret.”'>® Against this magical
execution, source code supposedly enables an understanding and a freedom—the
ability to map and know the workings of the machine, but, again, only through a
magical erasure of the gap between source and execution, an erasure of execution
itself. If we consider source code as fetish, the fact that source code has hardly
deprived programmers of their priestlike/wizard status makes complete sense. If any-
thing, such a notion of programmers as superhuman has been disseminated ever
more and the history of computing—from direct manipulation to hypertext—has
been littered by various “liberations.”

But clearly, source code can do and be things: it can be interpreted or compiled; it
can be rendered into machine-readable commands that are then executed. Source code
is also read by humans and is written by humans for humans and is thus the source
of some understanding. Although Ellen Ullman and many others have argued, “a
computer program has only one meaning: what it does. It isn’t a text for an academic
to read. Its entire meaning is its function,” source code must be able to function, even
if it does not function—that is, even if it is never executed.'” Source code’s readability
is not simply due to comments that are embedded in the source code, but also due to
English-based commands and programming styles designed for comprehensibility.
This readability is not just for “other programmers.” When programming, one must
be able to read one’s own program—to follow its logic and to predict its outcome,
whether or not this outcome coincides with one’s prediction.

52 Chapter 1

This notion of source code as readable—as creating some outcome regardless of its
machinic execution—underlies “codework” and other creative projects. The Internet
artist Mez, for instance, has created a language called mezangelle that incorporates
formal code and informal speech. Mez’s poetry deliberately plays with programming
syntax, producing language that cannot be executed, but nonetheless draws on the
conventions of programming language to signify.'*® Codework, however, can also work
entirely within an existing programming language. Graham Harwood’s perl poem, for
example, translates William Blake’s nineteenth-century poem “London” into London.
pl, a script that contains within it an algorithm to “find and calculate the gross lung-
capacity of the children screaming from 1792 to the present.”'* Regardless of whether
or not it can execute, code can be—must be—worked into something meaningful.
Source code, in other words, may be the source of things other than the machine
execution it is “supposed” to engender.

Source code as fetish, understood psychoanalytically, embraces this nonteleologi-
cal potential of source code, for the fetish is a deviation that does not “end” where
it should. It is a genital substitute that gives the fetishist nonreproductive pleasure.
It allows the child to combat castration—his inscription within the world of paternal
law and order—for both himself and his mother, while at the same time accom-
modating to his world’s larger oedipal structure. It both represses and acknowledges
paternal symbolic authority. According to Freud, the fetish, formed the moment
the little boy discovers his mother’s “lack,” is “a substitute for the woman’s (moth-
er’s) phallus which the little boy once believed in and does not wish to forego.”'*
As such, it both fixes a singular event—turning time into space—and enables a
logic of repetition that constantly enables this safeguarding. As Pietz argues, “the
fetish is always a meaningful fixation of a singular event; it is above all a ‘histori-
cal’ object, the enduring material form and force of an unrepeatable event. This
object is ‘territorialized’ in material space (an earthly matrix), whether in the form
of a geographical locality, a marked site on the surface of the human body, or a
medium of inscription or configuration defined by some portable or wearable
thing.”'®" Even though it fixes a singular event, the fetish works only because it
can be repeated, but again, what is repeated is both denial and acknowledgment,
since the fetish can be “the vehicle both of denying and asseverating the fact of
castration.”'® Slavoj Zizek draws on this insight to explain the persistence of the
Marxist fetish:

When individuals use money, they know very well that there is nothing magical about
it—that money, in its materiality, is simply an expression of social relations . . . on an
everyday level, the individuals know very well that there are relations between people behind
the relations between things. The problem is that in their social activity itself, in what they
are doing, they are acting as if money, in its material reality is the immediate embodiment
of wealth as such. They are fetishists in practice, not in theory. What they “do not know,”

On Sourcery and Source Codes 53

what they misrecognize, is the fact that in their social reality itself—in the act of commodity
exchange—they are guided by the fetishistic illusion.'®®

Fetishists, importantly, know what they are doing—knowledge, again, is not an answer
to fetishism, but rather what sustains it. The knowledge that source code offers is no
cure for source code fetishism: if anything, this knowledge sustains it. As the next
chapter elaborates, the key question thus is not “what do we know?” but rather “what
do we do?”

To make explicit the parallels, source code, like the fetish, is a conversion of event
into location—time into space—that does affect things, although not necessarily in
the manner prescribed. Its effects can be both productive and nonexecutable. Also, in
terms of denial and acknowledgment, we know very well that source code in that state
and without the intercession of other “layers” is not executable, yet we persist in
treating it as so. And it is this glossing over that makes possible the ideological belief
in programmability.

Code as fetish means that computer execution deviates from the so-called source,
as source program does from programmer. Turing, in response to the objection that
computers cannot think because they merely follow human instructions, contends:

Machines take me by surprise with great frequency. . . . The view that machines cannot give
rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are
particularly subject. This is the assumption that as soon as a fact is presented to a mind all
consequences of that fact spring into the mind simultaneously with it. It is a very useful
assumption under many circumstances, but one too easily forgets that it is false. A natural
consequence of doing so is that one then assumes that there is no virtue in the mere working
out of consequences from data and general principles.'**

This erasure of the vicissitudes of execution coincides with the conflation of data
with information, of information with knowledge—the assumption that what is most
difficult is the capture, rather than the analysis, of data. This erasure of execution
through source code as source creates an intentional authorial subject: the computer,
the program, or the user, and this source is treated as the source of meaning. The
fact that there is an algorithm, a meaning intended by code (and thus in some way
knowable), sometimes structures our experience with programs. When we play a
game, we arguably try to reverse engineer its algorithm or at the very least link its
actions to its programming, which is why all design books warn against coincidence
or random mapping, since it can induce paranoia in its users. That is, because an
interface is programmed, most users treat coincidence as meaningful. To the user, as
with the paranoid schizophrenic, there is always meaning: whether or not the user
knows the meaning, s/he knows that it regards him or her. To know the code is to
have a form of “X-ray vision” that makes the inside and outside coincide, and the
act of revealing sources or connections becomes a critical act in and of itself.'* Code

54 Chapter 1

as source leads to that bizarre linking of computers to visual culture, to transparency,
which constitutes the subject of chapter 2.

Code as fetish thus underscores code as thing: code as a “dirty window pane,”
rather than as a window that leads us to the “source.” Code as fetish emphasizes
code as a set of relations, rather than as an enclosed object, and it highlights both
the ambiguity and the specificity of code. Code points to, it indicates, something
both specific and nebulous, both defined and undefinable. Code, again, is an abstrac-
tion that is haunted, a source that is a re-source, a source that renders the machinic—
with its annoying specificities or “bugs”—ghostly. As Thomas Keenan argues,
“haunting can only be thought as the difficult (simultaneous and impossible) move-
ment of remembering and forgetting, inscribing and erasing, the singular and the
different.”'®® Embracing software as thing, in theory and in practice, opens us to the
ways in which the fact that we cannot know software can be an enabling condition:
a way for us to engage the surprises generated by a programmability that, try as it
might, cannot entirely prepare us for the future.

Computers that Roar

Computers, like other media, are metaphor machines: they both depend on and per-
petuate metaphors. More remarkably, though, they—through their status as “universal
machines”—have become metaphors for metaphor itself.

From files to desktops, windows to spreadsheets, metaphors dominate user inter-
faces. In the 1990s (and even today), textbooks of human-computer interface (HCI)
design described metaphors as central to “user-friendly” interfaces. Metaphors make
abstract computer tasks familiar, concrete, and easy to grasp, since through them we
allegedly port already existing knowledge to new tasks (for instance, experience with
documents to electronic word processing). Metaphors proliferate not only in inter-
faces, but also in computer architecture: from memory to buses, from gates to the
concept of architecture itself. Metaphors similarly structure software: viruses, UNIX
daemons, monitors, back orifice attacks (in which a remote computer controls the
actions of one’s computer), and so on. At the contested “origin” of modern computing
lies an analogy turned metaphor: John von Neumann deliberately called the major
components of modern (inhuman) computers “organs,” after cybernetic understand-
ings of the human nervous system. Drawing from the work of Alan Turing and Charles
Babbage, Jon Agar has argued that the computer, understood as consisting of software
and hardware, is a “government machine.” Like the British Civil Service, it is a
“general-purpose ‘machine’ governed by a code.

The role of metaphor, however, is not simply one way. Like metaphor itself, it
moves back and forth. Computers have become metaphors for the mind, for culture,
for society, for the body, affecting the ways in which we experience and conceive of

n1

“real” space: from the programmed mind running on the hard-wired brain to repro-
grammable culture versus hard-wired nature, from neuronal networks to genetic pro-
grams. Paul Edwards has shown how computers as metaphors and machines were
crucial to the Cold War and to the rise of cognitive psychology, an insight developed
further by David Golumbia in his analysis of computationalism. As cited earlier, Joseph
Weizenbaum has argued that computers have become metaphors for all “effective
procedures,” that is, for anything that can be solved in a prescribed number of steps,

56 Computers that Roar

such as gene expression and clerical work.” Weizenbaum also notes that the power of
computer as metaphor is itself based on “only the vaguest understanding of a difficult
and complex scientific concept. . . . The public vaguely understands—but is nonethe-
less firmly convinced—that any effective procedure can, in principle, be carried out
by a computer . . . it follows that a computer can at least imitate man, nature, and
society in all their procedural aspects.”’ Crucially, this means that, at least in popular
opinion, the computer is a machine that can imitate, and thus substitute for, all others
based on its programming. This vaguest understanding—software as thing—is neither
accidental to nor a contradiction of the computer as metaphor, but rather grounds
its appeal.

Because computers are viewed as universal machines, they have become meta-
phors for metaphor itself: they embody a logic of substitution, a barely visible con-
ceptual system that orders and disorders. Metaphor is drawn from the Greek terms
meta (change) and phor (carrying): it is a transfer that transforms. Aristotle defines
metaphor as consisting “in giving the thing a name that belongs to something else;
the transference being either from genus to species, or from species to genus, or
from species to species, or on grounds of analogy.”* George Lakoff and Mark Johnson
argue, “The essence of metaphor is understanding and experiencing one kind of thing in
terms of another.”> Metaphor is necessary “because so many of the concepts that are
important to us are either abstract or not clearly delineated in our experience (the
emotions, ideas, time, etc.), we need to get a grasp on them by means of other
concepts that we understand in clearer terms (spatial orientations, objects, etc.).”®
Lakoff and Johnson argue that we live by metaphors (such as “argument is war,”
“events are objects,” and “happy is up”), that they serve as the basis for our thoughts
and our actions.” Metaphors govern our actions because they are also “grounded in
our constant interaction with our physical and cultural environments.”® That is, the
similarities that determine a metaphor are based on our interactions with various
objects—it is therefore no accident that metaphors are thus prominent in “interac-
tive” design. Crucially, metaphors do not simply conceptualize a preexisting reality;
they also create reality.” Thus, they are not something we can “see beyond,” but
rather things necessary to seeing. Even to see beyond certain metaphors, they argue,
we need others.'” Metaphor is an “imaginative rationality”: “Metaphor . . . unites
reason and imagination. Reason, at the very least, involves categorization, entail-
ment, and inference. Imagination, in one of its many aspects, involves seeing one
kind of thing in terms of another kind of thing—what we have called metaphorical
thought.”"" This imaginative seeing one kind of thing in terms of another thing also
involves hiding: a metaphor, Thomas Keenan argues, means that “something . . .
shows itself by hiding itself, by announcing itself as something else or in another
form.”"

Computers that Roar 57

Paul Ricoeur, focusing more on metaphor as a linguistic entity, similarly stresses
the centrality and creative power of metaphor. To Ricoeur, metaphor grounds the pos-
sibility of logical thought. Ricoeur, drawing from Aristotle’s definition, argues that
change, movement, and transposition (and thus deviation, borrowing, and substitu-
tion) characterize metaphor.” By transposing an “alien” name, metaphor is a “cate-
gorical transgression . . . a kind of deviance that threatens classification itself.”'* Since
metaphor, however, also “‘conveys learning and knowledge through the medium of
the genus,’” Ricoeur contends, “metaphor destroys an order only to invent a new one;
and that the category-mistake is nothing but the complement of a logic of discovery.”"
It is a form of making, of poesis, that grounds all forms of classification.'® This disor-
dering that is also an ordering, a dismantling that is also a redescription, is also
instructive and pleasurable—it offers us “the pleasure of understanding that follows
surprise.”"” This movement from surprise to understanding is mirrored in metaphor
itself, which is a mode of animation, of change—it makes things visible, alive, and
actual by representing things in a state of activity.'®

Computers, understood as universal machines, stand in for substitution itself.
Allegedly making possible the transformation of anything into anything else via
the medium of information, they are transference machines. They do not simply
change X into Y, they also animate both terms. They create a new dynamic reality:
the files they offer us are more alive; the text that appears on their screens invites
manipulation, addition, animation. Rather than stable text on paper, computers
offer information that is flexible, programmable, transmissible, and ever-changing.
Even an image that appears stably on our screen is constantly refreshed and regen-
erated. Less obviously, computers—software in particular—also concretize Lakoff
and Johnson'’s notion of metaphors as concepts that govern, that form consistent
conceptual systems: software is an invisible program that governs, that makes pos-
sible certain actions. But if computers are metaphors for metaphors, they also
(pleasurably) disorder, they animate the categorical archival system that grounds
knowledge.

If theories of metaphor regularly assume that the vehicle (the image expressly
used) makes the abstract tenor (the idea represented) concrete—that one makes
something unfamiliar familiar through a known concrete vehicle—software as meta-
phor combines what we only vaguely understand with something equally vague.
It is not simply, then, that one part of the metaphor is “hidden,” but rather that
both parts—tenor and vehicle—are invisibly visible. This does not mean, however,
that software as metaphor fails. It is used regularly all the time because it succeeds
as a way to describe an ambiguous relation between what is visible and invisible,
for invisible laws as driving visible manifestations. Key to understanding the power
of software—software as power—is its very ambiguous thingliness, for it grounds

58 Computers that Roar

software’s attractiveness as a way to map—to understand and conceptualize—how
power operates in a world marked by complexity and ambiguity, in a world filled
with things we cannot fully understand, even though these things are marked by,
and driven by, rules that should be understandable, that are based on understand-
ability. Software is not only necessary for representation; it is also endemic of
transformations in modes of “governing” that make governing both more personal
and impersonal, that enable both empowerment and surveillance, and indeed make
it difficult to distinguish between the two.

2 Daemonic Interfaces, Empowering Obfuscations

Interfaces, in particular interactive GUIs (graphical user interfaces), are widely assumed
to have transformed the computer from a command-based instrument of torture to a
user-friendly medium of empowerment. From Douglas Engelbart’s vision of a system
to “augment human intellect” to Ben Shneiderman’s endorsement of “direct manipu-
lation” as a way to produce “truly pleased users,” GUIs have been celebrated as
enabling user freedom through (perceived) visible and personal control of the screen.
This freedom, however, depends on a profound screening: an erasure of the computer’s
machinations and of the history of interactive operating systems as supplementing—
that is, supplanting—human intelligence. It also coincides with neoliberal manage-
ment techniques that have made workers both flexible and insecure, both empowered
and wanting (e.g., always in need of training).'

Rather than condemning interfaces as a form of deception, designed to induce false
consciousness, this chapter investigates the extent to which this paradoxical combina-
tion of visibility and invisibility, of rational causality and profound ignorance, grounds
the computer as an attractive model for the “real” world. Interfaces have become
functional analogs to ideology and its critique—from ideology as false consciousness
to ideology as fetishistic logic, interfaces seem to concretize our relation to invisible
(or barely visible) “sources” and substructures. This does not mean, however, that
interfaces are simply ideological. Looking both at the use of metaphor within the early
history of human—-computer-interfaces and at the emergence of the computer as meta-
phor, it contends that real-time computer interfaces are a powerful response to, and
not simply an enabler or consequence of, postmodern/neoliberal confusion. Both
conceptually and thematically, these interfaces offer their users a way to map and
engage an increasingly complex world allegedly driven by invisible laws of late capital-
ism. Most strongly, they induce the user to map constantly so that the user in turn
can be mapped. They offer a simpler, more reassuring analog of power, one in which
the user takes the place of the sovereign executive “source,” code becomes law, and
mapping produces the subject. These seemingly real-time interfaces emphasize the
power of user action and promise topsight for all: they allow one to move from the

60 Chapter 2

local detail to the global picture—through an allegedly traceable and concrete path—
by simply clicking a mouse. Conceptually drawn from auto navigation systems, these
interfaces follow in the tradition of cybernetics (named after the Greek term kybernete
for steersmen or governor) as a way to navigate or control, through a process of
blackboxing.

Because of this, they render central processes for computation—processes not under
the direct control of the user—daemonic: orphaned yet “supernatural” beings “between
gods and men . . . ghosts of deceased persons, esp. deified heroes.”” Indeed, the inter-
face is “haunted” by processes hidden by our seemingly transparent GUIs that make
us even more vulnerable online, from malicious “back doors” to mundane data gather-
ing systems. Similar to chapter 1, this chapter thus does not argue we need to move
beyond specters and the undead, but rather contends that we should make our inter-
faces more productively spectral—by reworking rather than simply shunning the usual
modes of “user empowerment.”

Interface, Intrafaith

Interactive interfaces—live screens between man and machine—stem from military
projects, such as SAGE discussed in chapter 1. SAGE, according to Paul Edwards,
was “a metaphor for total defense,” a Cold War project that enclosed “the United
States inside a radar ‘fence’ and an air-defense bubble.”? Edwards describes SAGE
as both based on and the basis for the world as a closed world, “an inescapably
self-referential space where every thought, word, and action is ultimately directed
back toward a central struggle.”* (The opposite of a closed world is a green world,
in which “the limits of law and rationality are surpassed.”)’ SAGE began as a uni-
versal cockpit simulator, but quickly evolved into a real-time network of digital
computers, designed to detect incoming Soviet missiles. Unfortunately, yet not atypi-
cally, it was obsolete by the time it was completed in 1963 due to the introduction
of intercontinental ballistic missiles. Despite this, SAGE is considered central to the
development of computing because it fostered many new technologies, including
digital real-time control systems, core-memory devices, and most importantly for
this chapter, graphical user displays.

These graphical CRT interfaces were simulations of an analog technology: radar
(see figure 2.1).° Divided into X-Y coordinates, these displays allowed the users—
military personnel tracking air space—to deploy a light pen to select potential hostile
aircraft tracks. This user’s control of the interface and the system depended on a
selective mapping that filtered as much as it represented, reducing all air traffic to
blinking lines. Because of this direct real-time contact between user and computer,
SAGE and the test machines associated with it are widely considered to be predeces-
sors to personal interactive computing, albeit discontinuously (they were initially

Daemonic Interfaces, Empowering Obfuscations 61

Figure 2.1
SAGE operator at console, 1958, National Archives photo no. 342-B-003-14-K-43548

displaced by mainframes).” This screen, however, was an input device for the user,
not for the programmers/coders, who produced taped programs that operators would
load and run.

Interactive operating systems, key to making screens serve as part of an input
system for all users (thus chipping away at the boundary between user and program-
mer), also stemmed from military funding, in particular projects related to artificial
intelligence (Al). Interactivity entailed giving over to the machine tasks that humans
could not accomplish. As John McCarthy, key to both Al and time-sharing operating
systems (OS), explains, the LISP programming language, used in early Al projects,
was designed “in such a way that working with it interactively—giving it a command,
then seeing what happened, then giving it another command—was the best way to

62 Chapter 2

work with it.”® Interactivity was necessary because of the limitations of procedural
programming and of early neural networks. That is, by the 1960s, the naiveté behind
John von Neumann's declaration that “anything that can be exhaustively and unam-
biguously described, anything that can be completely and unambiguously put into
words, is ipso facto realizable by a suitable finite neural network” was becoming
increasingly apparent.” Since exhaustive and unambiguous description was difficult,
if not impossible, one needed to work “interactively”—not just automatically—with
a computer. The alleged father of the Internet J. C. R. Licklider’s vision of “Man-
Computer Symbiosis” encapsulates this intertwining of interactivity and human fal-
libility nicely. Describing the partnership between men and computers, Licklider
predicts, “man-computer symbiosis is probably not the ultimate paradigm for complex
technological systems. It seems entirely possible that, in due course, electronic or
chemical ‘machines’ will outdo the human brain in most functions we now consider
exclusively within its province.”' Similarly Jay Forrester, the force behind SAGE’s
development, contended, “the human mind is not adapted to interpret[] how
social systems behave . . . the mental model is fuzzy . . . incomplete . . . imprecisely
stated.”"" The goal, then, was to develop artificial systems to combat human frailty
by usurping the human.

Given this background and the ways in which the screen screens, the emergence
of user-friendly interfaces as a form of “computer liberation” seems dubious at best
and obfuscatory at worst. So, why and how is it that interactive systems have become
synonymous with user and machine freedom? What do we mean by freedom here?
What do these systems offer and what happens when we use them?

Direct Manipulation

The notion of interfaces as empowering is driven by a dream of individual control: of
direct personal manipulation of the screen, and thus, by extension, of the system it
indexes or represents. Consider, for instance, the interface to Google Earth. Offering
us a god’s eye view, it allows us to zoom in on any location, to fly from place to place,
and to even control the amount of sunshine in any satellite photo. Google Earth,
however, hardly represents the world as it is, but rather a more perfectly spherical one
in which it hardly ever rains (even when the Google Earth weather layer shows rain),
and in which nothing ever moves, even as time goes by. Viewing these divergences
from reality as failures, however, misses what makes this program so compelling: the
actions it enables, the kind of dynamic mapping actions, the “top sight”—overview
and zooming—it facilitates.

Google Earth, and interactive interfaces in general, follow in the tradition of “direct
manipulation.” According to Ben Shneiderman, who coined the term in the 1980s,
“certain interactive systems generate glowing enthusiasm among users—in marked

Daemonic Interfaces, Empowering Obfuscations 63

contrast with the more common reaction of grudging acceptance or outright hostil-
ity.” In these systems, the users reported positive feelings, such as “mastery” over the
system and “confidence” in their continuing mastery, “competence” in performing
their tasks, “ease” in learning the system, “enjoyment” in using it, “eagerness” to help
new users,” and the “desire” to engage the more complex parts of the system. Changes
in visibility and causality seem central to the creation of a truly pleased user, in par-
ticular, “visibility of the object of interest; rapid, reversible, incremental actions; and
replacement of complex command language syntax by direct manipulation of the
object of interest—hence the term ‘direct manipulation.””'?

Crucially, Shneiderman posits direct manipulation as a means to overcome users’
resistance: as a way to dissipate hostility and grudging acceptance and instead to foster
enthusiasm by developing feelings of mastery. Direct manipulation does this by
framing the problem of work from the perspective of the worker—more precisely of
the neoliberal worker who decides to work—and by replacing commands with more
participatory structures." Direct manipulation is thus part of the “new spirit of capital-
ism” that the French sociologists Luc Boltanski and Eve Chiapello outline in their
book of the same title. This new spirit of capitalism fosters commitment and enthu-
siasm—emotions not guaranteed by pay or working under duress—through manage-
ment techniques that stress “versatility, job flexibility, and the ability to learn and
adapt to new duties.”'* As Catherine Malabou notes, in such a system “‘the leader
has no need to command,” because the personnel are ‘self-organized’ and ‘self-
controlling.””"® In such a system, Malabou underscores, drawing from Boltanski and
Chiapello, flexibility is capitulation and normative, and “everyone lives in a state
of permanent anxiety about being disconnected, rejected, abandoned.”"®

Not surprisingly, the term direct manipulation also draws from cognitive psychology:
George Lakoff and Ben Johnson use the term in relation to Jean Piaget’s argument
that infants “first learn about causation by realizing that they can directly manipulate
objects around them.”"” That is, infants’ repeated manipulations of certain objects are
key to their eventual grasping of causality: that doing X will always (or usually) cause
Y to happen. Relatedly, Lakoff and Johnson argue that interactions with objects also
ground metaphor, since “interactional properties are prominent among the kinds of
properties that count in determining sufficient family resemblance.”'® Shneiderman
also offers examples of direct manipulation outside (or at least at that point outside)
of computer interfaces, most importantly the steering wheel of a car:

Driving an automobile is my favorite example of direct manipulation. The scene is directly
visible through the windshield, and actions such as braking or steering have become common
skills in our culture. To turn to the left, simply rotate the steering wheel to the left. The response
is immediate, and the changing scene provides feedback to refine the turn. Imagine trying to
turn by issuing a LEFT 30 DEGREES command and then issuing another command to check
your position, but this is the operational level of many office automation tools today."

64 Chapter 2

Direct manipulation is thus a metaphor based on real-time analog technologies, such
as a drive shaft, and their integration into a visual system. (These analog technologies,
which linked steering wheel to car wheel in a mechanical cause-and-effect relation,
of course are themselves being replaced by computerized drive shafts.) HCI’s version
of direct manipulation is never “direct,” only simulated, and the mastery, as Shneider-
man notes, is “felt” not possessed. This emphasis on feelings, however, reveals that
the visibility of the object of interest matters less than the affective relationship
established though rapid, reversible, incremental actions.

Brenda Laurel has argued this point most influentially in her classic Computer as
Theater. According to Laurel, direct manipulation is not and has never been enough,
and the strand of HCI focused on producing more and more realistic interface meta-
phors is wrongheaded.” People realize when they double-click on a folder that it is
not really a folder; making a folder more “life-like” (following the laws of gravity,
having it open by the user flipping over the front flap, etc.) would be more annoying
than helpful. What does help, though, is direct engagement: an interface designed
around plausible and clear actions. Direct engagement, Laurel contends, “shifts the
focus from the representation of manipulable objects to the ideal of enabling people
to engage directly in the activity of choice, whether it be manipulating symbolic tools
in the performance of some instrumental tasks or wandering around the imaginary
world of a computer game.” This ideal engagement “emphasizes emotional as well as
cognitive values. It conceives of human-computer activity as a designed experience”*'—
an experience designed around “activities of choice” or, more properly, making these
activities feel like activities of choice.

As a designed experience, Laurel astutely insists, computer activity is artificial and
should remain so.” That is, fabricating computer interfaces entails “creating imaginary
worlds that have a special relationship to reality—worlds in which we can extend,
amplify, and enrich our own capacities to think, feel, and act.””* The computer inter-
face thus should be based on theater rather than psychology because “psychology
attempts to describe what goes on in the real world with all its fuzziness and loose ends,
while theatre attempts to represent something that might go on, simplified for the pur-
poses of logical and affective clarity. Psychology is devoted to the end of explaining
human behavior, while drama attempts to represent it in a form that provides intel-
lectual and emotional closure.”** Importantly, Laurel’s argument, even as it condemns
metaphor, is itself based on metaphor, or more precisely simile: computers as theater.
It displaces rhetorical substitution from the level of the interface (objects to be manip-
ulated) to the interface as a whole; it also makes the substitution more explicit (simile,
not metaphor).

Laurel’s move to theater is both interesting and interested, and it resonates strongly
both with Weizenbaum’s parallel between programmer as lawgiver/playwright dis-
cussed previously and with Edwards’s diagnosis of the computer as a metaphor of the

Daemonic Interfaces, Empowering Obfuscations 65

A Action

Character
Thought

Language

asned |ew.lo}

material cause

Pattern

Enactment V

Figure 2.2
Causal relations among elements of quantitative structure. A reproduction of Brenda Laurel’s
illustration in Computers as Theater, 51.

closed world, a term also drawn from literary criticism.> The Aristotelian model Laurel
uses provides her structuralist theory with the kind of emotional and intellectual
closure she contends interfaces should create: clear definitions of causality, of
the means to produce catharsis and, most important, of theater—like interfaces and
computers—as following laws.”*® Clear, law-abiding causality drives every level of
Laurel’s system (see figure 2.2): action is the formal cause of character and so on down
to enactment; enactment is the material cause of pattern and so on up to action.

Because events happen so logically, users accept them as probable and then as
certain. Consequently, this system ensures that users universally suspend their dis-
belief. This narrowing also creates pleasure: the creation and elimination of uncer-
tainty—the “stimulation to imagination and emotion created by carefully crafted
uncertainty” and the “satisfaction provided by closure when action is complete”—
Laurel contends, drives audience pleasure.?’

The fact that users are not simply the audience, but also the actors, makes causality
in computer interfaces more complicated. Thus, the designer must not simply create
“good” characters that do what they intend (character, she argues, is solely defined
by action), but also create intrinsic constraints so that users can become good char-
acters too and follow the “laws” of the designer.”® The designer is both scriptwriter
and set designer: Laurel’s description of the designer’s power seems less extreme than
Weizenbaum's; however, Laurel’s vision—focused on the relationship between designer
and user, rather than programmer and program—is not less but rather differently
coercive. In Laurel’s view, the constraints the designer produces do not restrict freedom;
they ensure it. Complete freedom does not enhance creativity; it stymies it. Addressing
fantasies by gamers and science fiction writers of “magical spaces where they can
invent their own worlds and do whatever they wish—Ilike gods,” she argues that the
experience of these spaces “might be more like an existential nightmare than a dream
of freedom”:

66 Chapter 2

A system in which people are encouraged to do whatever they want will probably not produce
pleasant experiences. When a person is asked to “be creative” with no direction or constraints
whatever, the result is, according to May, often a sense of powerlessness—or even complete
paralysis of the imagination. Limitations—constraints that focus creative efforts—paradoxically
increase our imaginative power by reducing the number of possibilities open to us.”

A green world, in other words, in which action flows “between natural, urban, and
other locations and centers [on] magical, natural forces” produces paralysis and night-
mares. Yet constraints—the acceptance of certain interface conventions as self-enforced
rules—enable agency and an arguably no less magical feeling of power: a sense that
users control the action and make free and independent choices within a set of rules,
again the classic neoliberal scenario. (The goal of interface design, Laurel tellingly
states, is to “build a better mousetrap.”)*® To buttress this feeling of mastery, discon-
certing coincidences and irrelevant actions that can expose the inner workings of
programs must be eliminated. For users as for paranoid schizophrenics (my observa-
tion, not Laurel’s), everything has meaning: there can be no coincidences but only
causal pleasure in this closed world.

Laurel’s conception of freedom, however, is disturbingly banal: the true experi-
ence of freedom may indeed be closer to an existential nightmare than to a pleasant
paranoid dream. Indeed, the challenge, as I argue in Control and Freedom: Power and
Paranoia in the Age of Fiber Optics (2006), is to take freedom seriously, rather than
to reduce it to control (and thus reduce the Internet to a gated community). Freedom
grounds control, not vice versa. Freedom makes control possible, necessary, and
never enough. Not surprisingly, the system Laurel describes—focused on getting
users to suspend disbelief and to act in certain prescribed ways—resonates widely
with definitions of ideology.

Interfaces as Ideology

To elaborate on an argument I have made before, GUIs are a functional analog to
ideology.*' In a formal sense computers understood as comprising software and hard-
ware are ideology machines. They fulfill almost every formal definition of ideology
we have, from ideology as false consciousness (as portrayed in the 1999 Wachowski
Brothers’ film The Matrix) to Louis Althusser’s definition of ideology as “a ‘representa-
tion’ of the imaginary relation of individuals to their real conditions of existence.”*
According to Althusser, ideology reproduces the relations of production by “‘constitut-
ing’ concrete individuals as subjects.”*® Ideology, he stresses, has a material existence: it
shapes the practices and consciousness of individual subjects. It interpellates subjects:
it yells “hey you,” and subjects turn around and recognize themselves in that call.
Interfaces offer us an imaginary relationship to our hardware: they do not represent
transistors but rather desktops and recycling bins. Interfaces and operating systems

Daemonic Interfaces, Empowering Obfuscations 67

produce “users”—one and all. Without OS there would be no access to hardware;
without OS there would be no actions, no practices, and thus no user. Each OS, in its
extramedial advertisements, interpellates a “user”: it calls it a name, offering it a name
or image with which to identify. So Mac users “think different” and identify with
Martin Luther King and Albert Einstein; Linux users are open-source power geeks,
drawn to the image of a fat, sated penguin (the Linux mascot); and Windows users
are mainstream, functionalist types perhaps comforted, as Eben Moglen argues, by
their regularly crashing computers. Importantly, the “choices” operating systems offer
limit the visible and the invisible, the imaginable and the unimaginable. You are not,
however, aware of software’s constant constriction and interpellation (also known as
its “user-friendliness”), unless you find yourself frustrated with its defaults (which
are remarkably referred to as your preferences) or unless you use multiple operating
systems or competing software packages.

Interfaces also produce users through benign interactions, from reassuring sounds
that signify that a file has been saved to folder names such as “my documents,” which
stress personal computer ownership. Computer programs shamelessly use shifters—
pronouns like “my” and “you”—that address you, and everyone else, as a subject.
Interfaces make you read, offer you more relationships and ever more visuals. They
provoke readings that go beyond reading letters toward the nonliterary and archaic
practices of guessing, interpreting, counting, and repeating. Interfaces are based on a
fetishistic logic. Users know very well that their folders and desktops are not really
folders and desktops, but they treat them as if they were—by referring to them as
folders and as desktops. This logic is, according to Slavoj Zizek, crucial to ideology.**
As mentioned previously, Zizek (through Peter Sloterdjik) argues that ideology persists
in one’s actions rather than in one’s beliefs: people know very well what they are
doing, but they still do it. The illusion of ideology exists not at the level of knowledge
but rather at the level of action: this illusion, maintained through the imaginary
“meaning of the law” (causality), screens the fact that authority is without truth—that
one obeys the law to the extent that it is incomprehensible. Is this not computation?
Through the illusion of meaning and causality—the idea of a law-driven system—do
we not cover over the fact that we do not and cannot fully understand or control
computation? That computers increasingly design each other and that our use is—to
an extent—a supplication, a blind faith?

Operating systems also create users more literally, for users are an OS construction.
User logins emerged with time-sharing operating systems, such as UNIX, which
encourage users to believe that the machines they are working on are their own
machines (before this, computers mainly used batch processing; before that, a person
really did run the computer, so there was no need for operating systems—one had
human operators). As many historians have argued, the time-sharing operating systems
developed in the 1970s spawned the “personal computer.”*® That is, as ideology creates

68 Chapter 2

subjects, interactive and seemingly real-time interfaces create users who believe they
are the “source” of the computer’s action.

Real-time Sourcery

According to the OED, real time is “the actual time during which a process or event
occurs, especially one analyzed by a computer, in contrast to time subsequent to it
when computer processing may be done, a recording replayed, or the like.” Crucially,
hard and soft real-time systems are subject to a “real-time constraint.” That is, they
need to respond, in a forced duration, to actions predefined as events. The measure
of real time, in computer systems, is their reaction to the live; it is their liveness—their
quick acknowledgment of and response to our actions.

The notion of real time always points elsewhere—to “real-world” events, to user’s
actions—thereby introducing indexicality to this supposedly nonindexical medium.
That is, whether or not digital images are supposed to be “real,” real time posits the
existence of a source—coded or not—that renders our computers transparent. Real-
time operating systems create an “abstraction layer” that hides the hardware details of
the processor from application software; real-time images portray computers as unme-
diated connectivity. SAGE, for instance, linked computer-generated images to lines on
a screen; unlike in the case of radar images, there was no “footprint” relation between
screen and incoming signal. As RealPlayer reveals, the notion of real time is bleeding
into all electronic moving images, not because all recordings are live, but because
grainy moving images have become a marker of the real.*® What is authentic or real is
what transpires in real time, but real time is real not only because of this indexicality—
this pointing to elsewhere—but also because of its quick reactions to users’ inputs.

Dynamic changes to web pages in real time, seemingly at the bequest of users’
desires or inputs, create what Tara McPherson has called “volitional mobility.”
Creating “Tara’s phenomenology of websurfing,” McPherson argues:

When I explore the web, I follow the cursor, a tangible sign of presence implying movement.
This motion structures a sense of liveness, immediacy, of the now . . . yet this is not just the
same old liveness of television: this is liveness with a difference. This liveness foregrounds
volition and mobility, creating a liveness on demand. Thus, unlike television which parades
its presence before us, the web structures a sense of causality in relation to liveness, a liveness
which we navigate and move through, often structuring a feeling that our own desire drives

the movement. The web is about presence but an unstable presence: it’s in process, in motion.”*’

This liveness, McPherson carefully notes, is more the illusion—the feel or sensation—
of liveness, rather than the fact of liveness; the choice yoked to this liveness is similarly
a sensation rather than the real thing (although one might ask: What is the difference
between the feel of choice and choice itself? Is choice alone not a limited agency?).
The real-time moving cursor and the unfolding of an unstable present through our

Daemonic Interfaces, Empowering Obfuscations 69

digital (finger) manipulations make us crane our necks forward, rather than sit back
on our couches, causing back and neck pain. The extent to which computers turn the
most boring activities into incredibly time-consuming and even enjoyable ones is
remarkable: one of the most popular computer games to date, The Sims, focuses on
the mundane; action and adventure games reduce adventure to formulaic motion-
restricted activities, yet the delights of interpreting these interfaces by interacting
with them makes them pleasurable and never-ending. This volitional mobility,
McPherson argues, reveals that the “hype” surrounding the Internet does have some
phenomenological backing. This does not necessarily make the Internet an empower-
ing medium, but at the very least means that it can provoke a desire for something
better: true volitional mobility, true change.*® Crucially, this fostering of a belief in
true change—in the ability to change, in the direct causality between one’s actions
and a result—is programmed into the interface. That is, change, rather than being a
radical act, is now the norm; we click, we change.

Interactive pleasure does not simply derive from a representation of user actions in
a causally plausible manner; it also comes from “user amplification.” Lev Manovich
explains “user amplification” in terms of the Super Mario computer game: “When you
tell Mario to step to the left by moving a joystick, this initiates a small delightful nar-
rative: Mario comes across a hill; he starts climbing the hill; the hill turns to be too
steep; Mario slides back onto the ground; Mario gets up, all shaking. None of these
actions required anything from us; all we had to do is just to move the joystick once.
The computer program amplifies our single action, expanding it into a narrative
sequence.”* This user amplification mimics the “instruction explosion,” described in
the previous chapter, central to higher-level programming languages (one line of high-
level code corresponds to more than one line of machine code). User amplification
also maps our actions to movements on the screen.

In essence, real-time interfaces map user actions to screened changes, making our
machines seem transparent and rendering our screen into a map. Maps dominate
interfaces, from our “desktop” to the clickable image maps on web pages, and map-
ping—the act of making and outlining connections—drives our actions online, from
creating social maps based on Facebook friends to following links within web pages.
Julian Dibbell has argued eloquently that online spaces are themselves essentially
maps, that is, diagrams that we seek to inhabit.** Maps and mapping are also the
means by which we “figure out” power and our relation to a larger social entity.
Touchgraph’s mapping of relationships between Facebook photos, Amazon books,
and web pages, for instance, allegedly reveals the hidden interconnections driving
consumption and social bonding (see figure 2.3).

The much celebrated theyrule.net, which allows users to map connections between
people on company boards, exemplifies this notion of mapping as a form of
ideology critique (see figure 2.4).

70 Chapter 2

Figure 2.3
TouchGraph photos Facebook and Interactive Friends Graph, <http://blog.mememapper
.com/?p=56>, accessed 8/8/2010

THEY RULE 2004 -
COMFPRHIES
DIRECTORS '
ST M Anthony N Bt Don Cornusel

DR MAP cFoul Vil George A Lorch
SAVE MAP
-LEAE IMAF
FIND COHNETTION i
ADD NOTE ML g © S teet, S
LOG=IN | Shihi-LIF
PRINT MAP
HELF
AROUT
Dana . Meqehiy) Sienmons Wikkorn R Howe
[l
Heny L FoKinnell, Jr
Goldman Sachs
Shankey 0 Benber ‘ Frankiin 0. Raines

Constance J Hom«* Michael S, Brown
Willorn H. Gray, I

Figure 2.4
A screenshot from Theyrule.net

Daemonic Interfaces, Empowering Obfuscations 71

Indeed, Manovich argues that theyrule.net exemplifies a new rhetoric of inter-
activity that “instead of presenting a packaged political message . . . gives us data
and the tools to analyze it. It knows that we are intelligent enough to draw the
right conclusion . . . we get convinced not by listening/watching a prepared message
but by actively working with the data: reorganizing it, uncovering the connections,
becoming aware of correlations.” This passage intriguingly posits the program as
“knowing” and the user as learning through acting. According to Manovich, this
new rhetoric of interactivity is further explored in UTOPIA:

The cosmogony of this world reflects our new understanding of our own planet—post Cold
War, Internet, ecology, Gaia, and globalization. Notice the thin barely visible lines that connect
the actors and the blocks. (This is the same device used in theyrule.net.) In the universe of
UTOPIA, everything is interconnected, and each action of an individual actor affects the system
as a whole. Intellectually, we know that this is how our Earth functions ecologically and
economically—but UTOPIA represents this on a scale we can grasp perceptually.*'

UTOPIA seemingly enables what Fredric Jameson has called a “cognitive map,” a
concept that I will address in more detail shortly. Briefly, it is “a situational repre-
sentation on the part of the individual subject to that vaster and properly unrepre-
sentable totality which is the ensemble of society’s structures as a whole.”** If cognitive
mapping is both difficult and necessary now because of invisible networks of capital,
these artists produce a cognitive map by exploiting the invisibility of information.
The functioning of these smart interfaces parallels Marxist ideology critique. The veil
of ideology is torn asunder by grasping the relations between the action of individual
actors and the system as a whole. Software enables this critique by representing it
at a scale—in a microworld—that we can make sense of and in which our actions
and connections are amplified. This unveiling depends on our own actions, on us
manipulating in order to see, on us thinking like object-oriented programmers.

It would seem thus that instead of a situation in which the production of cognitive maps
is impossible, we are locked in a situation in which we produce them—or at the very least
approximations of them—all the time, in which the founding gesture of ideology critique is
simulated by something that also pleasurably mimics ideology. Software and ideology fit
each other perfectly because both try to map the tangible effects of the intangible and
to posit the intangible cause through visible cues. Both, in other words, promise
a vision of the whole elephant. Through this process the invisible whole emerges as
a thing, as something in its own right, and users emerge as mapping subjects.

Although the parallel between software and ideology is compelling, it is important
that we not rest here, for reducing ideology to software ignores how theories of ideo-
logy critique power—something essential to any theory of ideology (these resonances,
however, arguably reveal the paucity of our theories of power).* The fact that software,
with its onion-like structure (a product of programming languages), acts both as ideo-
logy and as ideology critique—as a concealing and as a means of revealing—also breaks

72 Chapter 2

the analogy between software and ideology, or perhaps reveals the fact that ideology
always also contains within itself ideology critique. Indeed, to take this argument
further, we need to move beyond the remarkable likeness—and condemnation of
screens as ideological—and to ask:** Under what conditions have these likenesses
emerged? What, in other words, has made these likenesses and interfaces possible?
What makes interfaces such a compelling imaginary map of the real? And what makes
us believe that ideology is a map driven by invisible forces? Why interfaces now? And,
most probingly, to what extent do interfaces stand in for likeness, for metaphor itself,
and to what extent is this substitutability its most ideological aspect?

Postmodern Confusion, Interface Clarity

This drive to constantly map—and to understand through mapping—responds to
postmodernist disorientation. Postmodernism, according to Fredric Jameson and Jean-
Francois Lyotard, is/was driven by a loss of modernist certainty.*® Lyotard defines
postmodernism as an incredulity toward metanarratives (grand stories that formerly
legitimated society and knowledge production). For Lyotard, this is positive because
it fundamentally undermines totalitarianism and fosters creative engagement, for all
actors know that legitimation—truth and justice—springs from their own creative
linguistic acts. Rather than signaling the demise of existing social bonds, postmodern-
ism promotes new social bonds since everyone (as active “nodes” in communications
networks) is now involved in multiple language games. Jameson'’s view, however, is
less optimistic. To Jameson, postmodernism or the logic of late capitalism, “is what
you get when the modernization process is complete and nature is gone for good. It
is a more fully human world than the older one, but one in which ‘culture’ has
become a veritable ‘second nature.’””*® Postmodernism, Jameson contends, correlates
formal changes in cultural products to a new type of social life and to a new economic
order: it is “the consumption of sheer commodification as process,” a transnational
world in which capitalism has been completely naturalized and traditional labor
placed in crisis.*

Postmodernism, Jameson argues, is experienced as a spatial dysfunction, as a new
space that “involves the suppression of distance (in the sense of Benjamin’s aura) and
the relentless saturation of any remaining voids and empty places, to the point where
the postmodern body . . . is now exposed to a perceptual barrage of immediacy from
which all sheltering layers and intervening mediations have been removed.”* This
spatial disorientation, Jameson argues, consists of “symptoms and expressions of a
new and historically original dilemma, one that involves our insertion as individual
subjects into a multidimensional set of radically discontinuous realities, whose frames
range from the still surviving spaces of bourgeois private life all the way to the
unimaginable decentering of global capital itself.” It is a new dilemma that confounds

Daemonic Interfaces, Empowering Obfuscations 73

all our normal means of modeling/comprehension, making it even more difficult to
understand the relation between our authentic experiences and their truth. Jameson
contends, “not even Einsteinian relativity, or the multiple subjective worlds of the
older modernists, is capable of giving any kind of adequate figuration to this process,
which in lived experience makes itself felt by the so-called death of the subject, or,
more exactly, the fragmented and schizophrenic decentering and dispersion of this
last.”* The new spaces that surround us demand that we “grow new organs . . . expand
our sensorium and our body to some new, yet unimaginable, perhaps ultimately
impossible, dimensions” in order to grasp our relation to totality—to make sense of
the disconnect between, and possibly to reconnect, the real and the true.*

This decentering, this historically new dilemma, makes it impossible for us to cog-
nitively map our relations, to realize our place in the late capitalist system.>' Cognitive
mapping combines the geographer Kevin Lynch’s discussion of the ability of citizens
to map the city around them with Althusser’s definition of ideology. More precisely,
“the conception of cognitive mapping proposed . . . involves an extrapolation of
Lynch’s spatial analysis to the real of social structure, that is to say, in our historical
moment, to the totality of class relations on a global (or should I say multinational)
scale.”* Such a map, which Jameson in 1983 argues we did not yet have, is necessary
in order to understand the totality that is capitalism; because the profit motive and
the logic of capitalism set absolute barriers and limits to social changes and transfor-
mations, we need a way to comprehend its totality and our relation to it. Of anyone
who does not believe that “the profit motive and the logic of capital accumulation
are not the fundamental laws of this world,” Jameson asserts, “such a person is living
in an alternative universe.”>

Importantly, Jameson does argue that cyberpunk and other literature/art that deals
with the thematics of mechanical reproduction, as well as paranoid conspiracy theo-
ries, offer “a degraded figure of the great multinational space that remains to be
cognitively mapped.”** This is because they are figurations “of something even deeper,
namely the whole world system of a present-day multinational capitalism. The tech-
nology of contemporary society is therefore mesmerizing and fascinating not so much
in its own right but because it seems to offer some privileged representational short-
hand for grasping a network of power and control even more difficult for our minds
and imaginations to grasp: the whole new decentered global network of the third
stage of capital itself.”** A nondegraded figure, however, would be able to deal with
mapping at the level of form, rather than simply content. He stresses that the call
for an aesthetics of cognitive mapping

isnot . .. a call for a return to some older kind of machinery, some older and more transparent
national space, or some more traditional and reassuring perspectival or mimetic enclave: the
new political art (if it is possible at all) will have to hold to the truth of postmodernism, that
is to say, to its fundamental object—the world space of multinational capital—at the same time

74 Chapter 2

at which it achieves a breakthrough to some as yet unimaginable new mode of representing
this last, in which we may again begin to grasp our positioning as individual and collective
subjects and regain a capacity to act and struggle which is at present neutralized by our spatial
as well as our social confusion.*®

This chapter has been arguing that interfaces—with their constant emphasis on the
act of making connections—would seem to instantiate an aesthetics of cognitive
mapping. They provide a mapping—a “cognitive connectionism”—that respects the
space of multinational capital and the ways in which that totality is not immediately
experienceable or knowable, and yet also enables agents to act as sources. Indeed,
many activists have argued that the Internet and text messaging offer effective ways
of intervening on global capitalism. Rather than immobilized subjects, we have a
surfeit of “produsers,” who diligently produce, post, and click, providing content
for “free.””’

Interfaces in general, however, are hardly radical and the demand that we map—
and thus understand—often seems like the simple following of the network and its
paranoid logic rather than an insightful, clarifying act. Mapping often seduces us into
exposing what is “secret” or opaque, into drawing connections between visible effects
and invisible causes, rather than actually reading what one sees. It can become an
endless pursuit of things, aimed at robbing them of their thingliness, in order to create
a closed world in which every connection is exposed, every object reduced to a code.
Interfaces are not the cognitive maps called for by Jameson because they do not engage
the totality of class relations, but rather focus on totality differently figured (informa-
tion networks, etc.). Whether or not interfaces are really the cognitive maps Jameson
envisioned, however, is not the point here, for I do not simply want to condemn
interfaces as false consciousness/false maps, but rather to understand how the once
radical demand for cognitive mapping has become incorporated into the system of
global capitalism/neoliberalism. As David Harvey notes, neoliberalism “requires tech-
nologies of information creation and capacities to accumulate, store, transfer, analyse,
and use massive databases to guide decisions in the global marketplace.”*® The incred-
ible proliferation of personal mapping interfaces coincides with neoliberalism’s spread:
these interfaces buttress notions of personal action, freedom, and responsibility.

We are now constantly called on to map and to value mapping in order to
experience power/agency. This constant mapping signifies a new/neo condition, one
that both recalls the power of the subject, supposedly dispersed by postmodernism,
and places the subject/user in a different position than the liberal subject with
respect to the “invisible” hands of the market. Liberalism traditionally challenged
sovereign power, because, in the liberal market, “it is impossible for the sovereign
to have a point of view on the economic mechanism which totalizes every element
and enables them to be combined artificially or voluntarily.”* Because knowledge
was impossible, each subject in a market economy was supposed to act blindly, and

Daemonic Interfaces, Empowering Obfuscations 75

through his or her selfishness benefit society. In a current neoliberal state (which
itself is a reaction to late capitalist chaos), however, each individual must “know
thyself” and others: he or she is constantly driven to make connections and to
relate his or her actions to the totality.

The question then is: how can we have a form of cognitive mapping that does not
engage in nostalgia for sovereign power, for the subject (now multiplied everywhere)
who knows? Also: how necessary is cognitive mapping? And to what extent is the
desire to map not contrary to capitalism but rather integral to its current form, espe-
cially since it is through our mappings that we ourselves are mapped? That is, to what
extent is our historically novel position not our ignorance and powerlessness, but rather our
determination and our drive to know? Could it be that rather than resort to maps, we
need to immerse ourselves in networked flows—time-based movements that both
underlie and frustrate maps? To respond to these large questions, let us again return
to interfaces and to the dreams of progress and freedom and the minute actions that
buttress them.

As We May Think

Interfaces respond to a crisis of knowledge that calls into question scientific and
human progress. Designed to “augment human intelligence,” they are steeped in a
nostalgic view of machines as transparent. Interfaces recall analog machines that
worked by mapping: that is, by associating one element of a set to one or more
elem