

 Programmed Visions

 Software Studies
 Matthew Fuller, Lev Manovich, and Noah Wardrip-Fruin, editors

 Expressive Processing: Digital Fictions, Computer Games, and Software Studies

 Noah Wardrip-Fruin, 2009

 Code/Space: Software and Everyday Life

 Rob Kitchin and Martin Dodge, 2011

 Programmed Visions: Software and Memory

 Wendy Hui Kyong Chun, 2011

 Programmed Visions

 Software and Memory

 The MIT Press

 Cambridge, Massachusetts

 London, England

 Wendy Hui Kyong Chun

 © 2011 Massachusetts Institute of Technology

 All rights reserved. No part of this book may be reproduced in any form by any electronic or

mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

 For information about special quantity discounts, please email special_sales@mitpress.mit.edu

 This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited. Printed

and bound in the United States of America.

 Library of Congress Cataloging-in-Publication Data

 Chun, Wendy Hui Kyong, 1969 –

 Programmed visions : software and memory / Wendy Hui Kyong Chun.

 p. cm. — (Software studies)

 Includes bibliographical references and index.

 ISBN 978-0-262-01542-4 (hardcover : alk. paper)

 1. Computer software — Development — Social aspects. 2. Software architecture — Social

aspects. 3. Computer software — Human factors. I. Title.

 QA76.76.D47C565 2011

 005.1 — dc22

 2010036044

 10 9 8 7 6 5 4 3 2 1

 Contents

 Series Foreword vii

 Preface: Programming the Bleeding Edge of Obsolescence xi

 Introduction: Software, a Supersensible Sensible Thing 1

 You 13

 I Invisibly Visible, Visibly Invisible 15

 1 On Sourcery and Source Codes 19

 Computers that Roar 55

 2 Daemonic Interfaces, Empowering Obfuscations 59

 II Regenerating Archives 97

 3 Order from Order, or Life According to Software 101

 The Undead of Information 133

 4 Always Already There, or Software as Memory 137

 Conclusion: In Medias Res 175

 Epilogue: In Medias Race 179

 You, Again 181

 Notes 183

 Index 233

 Series Foreword

 Software studies aims to fi nd ways of expanding and intensifying refl ection on
software and computational culture in general. The problems it works on are rather
unavoidable since software, and the underlying ideas and techniques that it embod-
ies, is a crucial, if underacknowledged, element of everyday life. Few parts of human
culture remain untouched by software, but there are relatively fewer means by
which to evaluate it. The Software Studies book series aims to contribute to a certain
balancing out of this ratio.

 The ability to understand its preconditions and basal factors is in turn essential
for any fi eld of endeavor to prosper and to renew itself. To ally such an understand-
ing with a synthetic approach, which brings together some of the iterations of a
foundational set of ideas as they move through different fi elds and are changed by
them as they in turn change those that they provide new insights to, is crucial.
As this book shows, the ideas of code and of programmability underlie software.
In turn, they form a set of idioms and techniques to shape and make possible other
areas of life.

 While Programmed Visions operates as a sustained introduction to the ideas of soft-
ware, code, and programmability as they work in relation to computation, the book
is also a meditation on how this model proliferates, by various means, into systems
such as living materials that are in turn understood to be bearers of a form of code
that instructs their growth and that can, by further convolution, be read as a print
out of the truth of an organism. Indeed, Chun ’ s book shows how, in nuanced and
intriguing ways, the idea of code in biology anticipates that in computing. Thus, the
idea of programmability proliferates into other pasts.

 That computing is something that has a history is, three generations removed from
the fi rst electronic computers, relatively well established. The study of that history
itself has grown from a focus on canonical surveys and detailed and vivid oral histories
to a very fruitful proliferation of focuses, problematics, and methodological scope.
 Programmed Visions places the fi eld of software studies in direct dialogue with that of
computing history, but it also suggests that in order to work through history, we need

viii Series Foreword

to be able to bring other scales into account, from feelings to geopolitics and the
conceptual and ideological orderings that are operative in them.

 One of the operations evaluated here is the idea that one thing can stand in for,
or be seen as equivalent to, another. This is the essential idea of a code. Systems of
equivalence and codifi cation such as capitalism, the universal Turing machine, man-
agement, structuralism, each has its own idiosyncrasies, and each, as constructive
systems, has its own capacities for invention. Chun ’ s claim, in an interlude text in
this book, is that the computer, and software in particular, has gone one step further,
becoming a metaphor for metaphor, a means by which other metaphors are fi ltered
and arranged, becoming in turn a system of universal experiential machining. This is
one reason the computer cannot be written off, or lauded, as a simply crazily rational-
ist machine. There is a velocity, idiosyncrasy, and thickness to the changes wrought
by software that makes it a fundamentally tricky phenomenon, potentially rich rather
than inherently reductive, but not automatically so.

 One other set of phenomena that these qualities couple with are the means of
assigning value to things. The degradation experienced in the neoliberal moment is
partly in the abstractions it operates by: that relations, singular qualities of inherence
in the world, are exchanged for equivalences; that money becomes the secret means
by which a table may be transmogrifi ed into a meal and a house may be turned into
a debt. In the secret ironic engine undergirding economics, equivalences are exchanged
for sames. These sames may be goods, the same dull coffee places in cities across the
overdeveloped world, the same infrastructure of contracts, law, and possession, and
the same operating systems that accompany them.

 The ability of numbers, statements, currencies, or other signs to stand in for all
kinds of things gives systems of abstraction and generalization immense power, espe-
cially when they can be made to line up into larger-scale structures, producing veri-
table machines. Programmed Visions gives us a means of understanding such processes,
but also importantly understanding how software is the code that works to disinter-
mediate these systems. Thus, to understand the contemporary situation, it is not
enough solely to recognize the operations of the economy, or even to be able to inter-
rogate the morphological expressivity of a genetic array, but also to understand the
very mechanisms that conjoin them. And here, software ’ s capacity to handle relations,
equivalences,and sames is also something that, as well as bearing the capacity for
indefensible reductions, also makes it deeply productive. Software, in its relations with
other things, brings a capacity of synthesis to multiple scales of reality, acting as a
condition of thought, of imagination, investing them with multiple kinds of motility
and conjunction. In turn, one of the imaginaries that invests this synthetic domain
is a technocratic dreamwork of understanding, interpretability, ambivalent optimiza-
tion, but also of instrumentalisation and restructuration running in a recursive mode
that reinforces systems of sames.

Series Foreword ix

 This is a necessarily complicated, highly intriguing, series of transitions and the
elegance with which Chun marks these moments of the waxing and waning of inte-
grations and encodings is testament both to the expressivity of the systems that she
interprets and to the skill with which her analyses are assembled. The very dynamic
range of the materials that the book discusses indeed compels what the book both
celebrates and exemplifi es: a means of thinking “ in the middle of things. ” This feel
for both immanence and abstraction drives Programmed Visions in its fi guring out of
the relations between the different loci that it inhabits, and it is one that is marked
by multiple resonances of vicissitude and pleasure. It is in these transitions too that
the book engenders its relation to memory, the regenerative capacity that is needed
when one does not have an absolute overview. Memory allows us to see patterns, to
unlock codes, even in a world of ongoing change. Programmed Visions sets such a
capacity in contrast to the fi gure of memory as simple storage, or “ hardened ” informa-
tion, and offers a new reading of the relationship between them. In broader terms,
the book commends us to keep looking at what becomes soft, that which ossifi es or
proliferates by staying the same, what multiplies and what grows anew. With an
urgency that cannot be rushed, we are here presented with the materials to carry out
such work.

 Matthew Fuller

 Preface: Programming the Bleeding Edge of Obsolescence

 This book was inspired by the many lives of new media — by the ways that it not only
survives, but also thrives on, cycles of obsolescence and renewal.

 In the early 2000s, new media seemed to be dead, and the utopian and dystopian
discourses around the World Wide Web and Y2K were exposed for what they were:
hype. Gone were the celebrations of the “ new economy, ” virtual reality, and cyber-
space. The term new media even seemed “ old ” : the New York New Media Association
folded in 2003, and many New Media Groups within corporate structures (Apple,
Gannett, etc.), and many new media companies disappeared. 1 Everyone was on the
Internet — new media was everywhere — but new media seemed boring; the reality of
surfi ng the net did not compare to the glitzy cyberpunk visions touted by Mondo 2000 .

 By 2008, however, the future was, once more, in fashion, and there was a growing
impatience with the so-called critical hindsight that fl ourished after the dot.bombs
and 9/11. Rather than sobering if banal reassessments of the Internet as a “ double-
edged sword ” that aids both terrorists and victims, the main strain of both popular
and scholarly new media analysis stressed future possibilities and sought to outline
the next big thing: mobile mobs, Web 3.0, cloud computing, radical topsight, and so
on. A sense that something had really changed, as well as a desire to capitalize on this
change, fueled this renewal: the returns of new media are linked to the promise of
fi nancial returns. Silicon Valley, if not Alley, had recovered from the demise of the
 “ new economy ” ; Google was everywhere in every possible form; iPhones and BlackBer-
ries had proliferated; even Granny was on Facebook.com. Every social movement,
every social protest appeared to be wired; newspaper companies were folding and
television stations laid off staff as content migrated online; everyone, it appeared, was
bombarding one another with 140-character-long tweets, and no one seemed to care.

 This future 2.0, like Web 2.0 or 3.0, was not as utopian or as bold as its mid-1990s
predecessor, the future. No one was prophesying the end of all brick-and-mortar busi-
nesses; there were no upbeat yet paranoid commercials promising the end to racial
discrimination and the beginnings of a happy global village; there were no must-read
cyberpunk novels or fi lms outlining cyberspace ’ s gritty, all-encompassing nature,

xii Preface

although new media does now encompass the bio- and nanotech. Instead, even within
this optimism, there was a dim yet gnawing sense that this too will pass, that every
next big thing is also the next big bubble (if it ’ s anything at all). To call something
new, after all, is to guarantee its obsolescence, and this hopeful return to the future
as future simple — as what will be, as what you will do, as a programmed upgrade to
your already existing platform — constantly recedes and disappears. Although this
cycle of the ever-returning and ever-receding new mirrors the economic cycle it
facilitates, the undeadness of new media is not a simple consequence of economics;
rather, this book argues, this cycle is also related to new media ’ s (undead) logic of
programmability. New media proliferates “ programmed visions, ” which seek to shape
and to predict — indeed to embody — a future based on past data.

 This book addresses this concept of programmability through the surprising mate-
rialization of software as a thing in its own right. It argues that the hardening of
programming into software and of memory into storage is key to understanding new
media as a constantly inspiring yet disappointing medium of the future. It links this
hardening to several factors: computing ’ s gendered and military history, foundational
parallels between the fi elds of genetics and computing technology, long-standing
visions of a stable archive of knowledge as driving human progress, and a general,
neoliberal trend to personalize power (to make power touch each and all). All this has
made the computer, understood as networked software and hardware machines, both
an instrument and a symptom of neoliberal governmental power. It has made it an
instrument of both causal pleasure and extreme frustration, a means of navigation
and obfuscation.

 This book, however, does not seek to condemn computers as simple neoliberal tools
or to view user empowerment as a form of imprisonment. Computers are mediums
of power in the fullest senses of both words. Through them, we can pleasurably create
visions that go elsewhere, specters that reveal the limitations and possibilities of user
and programmer, choices that show how we can rework neoliberal formulations of
freedom and fl exibility. Specters haunt us through our interfaces — by working with
them we can collectively negotiate the dangers and pleasures of the worlds they
encapsulate and explode.

 Acknowledgments

 I am very grateful to all those who have read and sponsored various parts of this book.
I owe special thanks to Matthew Fuller and Florian Cramer who read drafts of the
whole book, and to Lisa Gannett, N. Katherine Hayles, Adrian Mackenzie, the editors
of Grey Room , the editorial board of Critical Inquiry , and the Critical Code Studies
Working Group, who all read and offered critiques of portions of it. Their comments
have immeasurably improved this book. I have learned much and received great

Preface xiii

support from my colleagues in the Department of Modern Culture and Media. To Chris
Csikszentmihalyi, Arindam Dutta, Liz Canner, Lynn Festa, Thomas Keenan, and Mary
Ann Doane, I owe much inspiration and good cheer. I am also grateful to my incred-
ible research assistant Ioana Jucan for her impeccable work and to Robin Davis for her
assistance with the images. To the fantastic editorial machine at MIT — Doug Sery, Katie
Helke, and Kathleen Caruso — I owe an enormous thanks. Without the love and
support of my sweetie Paul Moorcroft, this book would not have been possible.

 Research for this book was supported by grants, fellowships and leave from Brown
University (in particular, a Henry Merritt Wriston Fellowship and a Edwin and Shirley
Seave Faculty Fellowship from the Pembroke Center for Teaching and Research on
Women) — I am grateful to Brown University for its fi nancial and academic support.
A fellowship from the Radcliffe Institute for Advanced Study was crucial to conceiving
the manuscript, and a travel award from the Lemelson Center at the National Museum
of American History, Smithsonian Institute made it possible for me to do archival
work. I began writing in earnest while a visiting scholar in Harvard University ’ s
History of Science Department — I would like to thank Harvard and my hosts for their
invaluable support.

 Fragments of the book have been published in Confi gurations , Grey Room , and
 Critical Inquiry .

 Boston, Massachusetts
 August 2010

 Introduction: Software, a Supersensible Sensible Thing

 Debates over new media resonate with the parable of the six blind men and the ele-
phant. Each man seizes a portion of the animal and offers a different analogy: the
elephant is like a wall, a spear, a snake, a tree, a palm, a rope. Refusing to back down
from their positions since they are based on personal experience, the wise men engage
in an unending dispute with each “ in his own opinion / Exceeding stiff and strong /
Though each was partly in the right, / And all were in the wrong! ” The moral, accord-
ing to John Godfrey Saxe ’ s version of this tale, is: “ So oft in theologic wars, / The
disputants, I ween, / Rail on in utter ignorance / Of what each other mean, / And
prate about an Elephant / Not one of them has seen! ” 1 It is perhaps irreverent to
compare a poem on the incomprehensibility of the divine to arguments over new
media, but the invisibility, ubiquity, and alleged power of new media (and technology
more generally) lend themselves to this analogy. It seems impossible to know the
extent, content, and effects of new media. Who can touch the entire contents of the
World Wide Web or know the real size of the Internet or of mobile networks? Who
can read and examine all time-based online interactions? Who can expertly move
from analyzing social networking sites to Japanese cell phone novels to hardware
algorithms to databases? Is a global picture of new media possible?

 In response to these diffi culties, many within the fi eld of new media studies have
moved away from specifi c content and technologies toward what seems to be common
to all new media objects and moments: software. All new media objects allegedly rely
on — or, most strongly, can be reduced to — software, a visibly invisible or invisibly
visible essence. Software seems to allow one to grasp the entire elephant because it is
the invisible whole that generates the sensuous parts. Based on and yet exceeding our
sense of touch — based on our ability to manipulate virtual objects we cannot entirely
see — it is a magical source that promises to bring together the fractured fi eld of new
media studies and to encapsulate the difference this fi eld makes. To know software
has become a form of enlightenment: a Kantian release from self-incurred tutelage.

 This notion of knowing software as a form of enlightenment — as a way to com-
prehend an invisible yet powerful whole — is not limited to the fi eld of new media

2 Introduction

studies. Based on metaphor, software has become a metaphor for the mind, for
culture, for ideology, for biology, and for the economy. Cognitive science, as Paul
Edwards has shown, initially comprehended the brain/mind in terms of hardware/
software. 2 Molecular biology conceives of DNA as a series of genetic “ programs. ”
More broadly, culture itself has been posited as “ software, ” in opposition to nature,
which is “ hardware. ” 3 Although technologies, such as clocks and steam engines,
have historically been used metaphorically to conceptualize our bodies and culture,
software is unique in its status as metaphor for metaphor itself. As a universal
imitator/machine, it encapsulates a logic of general substitutability: a logic of order-
ing and creative, animating disordering. Joseph Weizenbaum has argued that com-
puters have become metaphors for all “ effective procedures, ” that is, for anything
that can be solved in a prescribed number of steps, such as gene expression and
clerical work. 4

 The clarity offered by software as metaphor — and the empowerment allegedly
offered to us who know software — however, should make us pause, because software
also engenders a sense of profound ignorance. Software is extremely diffi cult to com-
prehend. Who really knows what lurks behind our smiling interfaces, behind the
objects we click and manipulate? Who completely understands what one ’ s computer
is actually doing at any given moment? Software as metaphor for metaphor troubles
the usual functioning of metaphor, that is, the clarifi cation of an unknown concept
through a known one. For, if software illuminates an unknown, it does so through an
unknowable (software). This paradox — this drive to grasp what we do not know
through what we do not entirely understand — this book argues, does not undermine,
but rather grounds software ’ s appeal. Its combination of what can be seen and not
seen, can be known and not known — its separation of interface from algorithm, of
software from hardware — makes it a powerful metaphor for everything we believe is
invisible yet generates visible effects, from genetics to the invisible hand of the
market, from ideology to culture.

 Every use entails an act of faith, and this book tries to understand what
makes this trust possible not in order to condemn and move “ beyond ” computer
software and interfaces, but rather to understand how this combination of visibility
and invisibility, of past experiences with future expectation, makes new media
such a powerful thing for each and all. It also takes seriously new media ’ s modes
of repetition and transmission in order to understand how they open up gaps
for a future beyond predictions based on the past. Computers — understood as
software and hardware machines — this book argues, are mediums of power. This
is not only because they create empowered users, but also and most importantly,
because software ’ s vapory materialization and its ghostly interfaces embody —
 conceptually, metaphorically, virtually — a way to navigate our increasingly complex
world.

Introduction 3

 How Soft Is Software?

 Software is, or should be, a notoriously diffi cult concept. Historically unforeseen,
barely a thing, software ’ s ghostly presence produces and defi es apprehension, allowing
us to grasp the world through its ungraspable mediation.

 Computer scientist Manfred Broy describes software as “ almost intangible, gener-
ally invisible, complex, vast and diffi cult to comprehend. ” Because software is
 “ complex, error-prone and diffi cult to visualize, ” Broy argues, many of its “ pioneers ”
have sought to make “ software easier to visualize and understand, and to represent
the phenomena encountered in software development in models that make the
often implicit and intangible software engineering tasks explicit. ” 5 Software chal-
lenges our understanding not only because it works invisibly, but also because it is
fundamentally ephemeral — it cannot be reduced to program data stored on a hard
disk. Historian Michael Mahoney describes software as “ elusively intangible. In
essence, it is the behavior of the machines when running. It is what converts their
architecture to action, and it is constructed with action in mind; the programmer
aims to make something happen. ” 6 Consequently, software is notoriously diffi cult
to study historically: most “ archived ” software programs can no longer be executed,
and thus experienced, since the operating systems and machines, with which they
merge when running, have disappeared. Although these systems can be emulated,
what is experienced is a reconstruction. 7 Hence, not only does software ’ s ephemeral-
ity make analysis diffi cult, so does the lack of clear boundaries between running
programs and between running software and live hardware. Theorist Adrian Mac-
kenzie aptly calls software a “ neighbourhood of relations ” ; “ in code and coding, ”
he argues, “ relations are assembled, dismantled, bundled and dispersed within and
across contexts. ” 8 Software “ pioneers ” Herman H. Goldstine and John von Neumann,
in their 1940s explication of programming, similarly described it as “ the technique
of providing a dynamic background to control the automatic evolution of a
meaning. ” 9

 To be apprehended, software ’ s dynamic porousness is often conceptually trans-
formed into well-defi ned layers. Software ’ s temporality, in other words, is converted
in part to spatiality, process in time conceived in terms of a process in space. Historian
Paul Ceruzzi likens software to an onion, “ with many distinct layers of software over
a hardware core. ” 10 Application on top of operating system, on top of device drivers,
and so on all the way down to voltage charges in transistors. What, however, is the
difference between an onion ’ s layers and its core? Media archeologist Friedrich Kittler,
taking this embedded and embedding logic to its limit, has infamously declared “ there
is no software, ” for everything, in the end, reduces to voltage differences. More pre-
cisely, he contends, “ there would be no software if computer systems were not
surrounded . . . by an environment of everyday languages. This environment . . . since

4 Introduction

a famous and twofold Greek invention, consists of letters and coins, of books and
bucks. ” 11 Less controversially, Mahoney has argued that software “ is an artifact of
computing in the business and government sectors during the ’ 50s ” ; software, as Paul
Ceruzzi and Wolfgang Hagen have shown, was not foreseen: the engineers building
high-speed calculators in the mid-1940s did not plan or see the need for software. 12

 At fi rst, software encompassed everything that was not hardware, such as services.
The term soft , as this book elaborates, is gendered. Grace Murray Hopper claims that
the term software was introduced to describe compilers, which she initially called
 “ layettes ” for computers; J. Chuan Chu, one of the hardware engineers for the ENIAC,
the fi rst working electronic digital computer, called software the “ daughter ” of Fran-
kenstein (hardware being the son). 13 Software, as a service, was initially priced in terms
of labor cost per instruction. 14 Herbert D. Benington remarks that attendees at the
1956 symposium on advanced programming methods for digital computers were hor-
rifi ed that his Lincoln Laboratory group, working on what would become the ground-
breaking SAGE (Semi-Automatic Ground Environment) Air Defense System, could do
no better than $50 per instruction. In that 1956 address Benington also stresses the
growing importance of software: “ our colleagues who build computers, ” he notes,
 “ have come to realize that a computer is not useful until it has been programmed. ” 15
As this statement reveals, the word program , at that time, was predominantly a verb,
not a noun. 16

 Legal battles over software copyrights and patents make clear the stakes of this
transformation of software from a service, priced per instruction, to a thing. Not
surprisingly, software initially was considered neither patentable nor copyrightable
because of its functional, intangible, and “ natural ” status. The U.S. Supreme Court
in 1972 fi rst rejected engineers Gary Benson and Arthur Tabbot ’ s claim to patent
an algorithm for converting digital into binary digits. It decided, as legal scholar
Pamela Samuelson argues, that “ mathematical innovations should be treated like
scientifi c truths and laws of nature, and scientifi c truths and laws of nature are
unpatentable subject matter. ” 17 Software algorithms, in other words, were “ natural ”
mental processes, not artifi cial things. As Samuelson and as legal scholar Margaret
Jane Radin both note, key to the eventual patenting of software was its transforma-
tion from a set of instructions to a machine. 18 In 1981, the Supreme Court in
 Diamond v. Diehr, 450 U.S. 175 (1981) upheld the patenting of an algorithmic-based
process for curing rubber because the algorithm resulted in a tangible physical
process: it cured rubber. By 1994, the U.S. Court of Appeals Federal Circuit held in
 In re Alappat (1994) that all software was inherently machinic, since it changed the
material nature of a computer: “ a general purpose computer in effect becomes a
special purpose computer once it is programmed to perform particular functions
pursuant to instructions from program software. ” 19 A change in memory, it seems,
a change in machine.

Introduction 5

 As a physical process, however, software would seem uncopyrightable. 20 Copyright
seeks to protect creative expression; as Radin notes, patents and copyrights were sup-
posed to be mutually exclusive: “ Copyright is supposed to exclude works that are
functional; patent is supposed to focus on functionality and exclude texts. ” 21 To
address this contradiction, the U.S. Congress changed the law in 1975, so that expres-
sions, as opposed to the actual processes or methods, adopted by the programmer
became copyrightable. 22 The difference, however, between expression and methods
has been diffi cult to determine, especially since the expression of software has not
been limited to source code.

 Further, copyright law insists on the tangibility of the copy, where a copy is a “ fi xa-
tion in a tangible medium of expression. ” Performances thus were initially considered
to be outside the purview of copyright. 23 Although information is often considered to
be immaterial, the forces behind copyrighting (and taxing) software stress the fact
that, regardless of information ’ s ephemerality, information is always embodied; it
always, as Matthew Kirschenbaum argues, leaves a trace. 24 Indeed, digital information
has divorced tangibility from permanence, with “ courts and commentators in the
United States adopt[ing] the notion that the momentary arrangement of electrons in
a computer memory, which we might have thought of as intangible information,
amounts to a tangible physical object, a copy. ” 25 Since, as I have argued elsewhere,
computer reading is a writing elsewhere, viewing the momentary arrangement of
electrons in memory as a tangible copy technically makes all computer reading a
copyright infringement. Indeed, this redefi nition of copy as thing, as Radin notes, has
had far-reaching consequences since “ a great many activities that were not covered
by copyright in the offl ine environment are being brought under copyright — that is,
under control of an owner — in the online environment. . . . The physical analogy to
browsing in a bookstore is obliterated by the more powerful assimilation of the activity
involved in a physical object — the production of physical ‘ copies ’ by a computer. ” 26
This defi nition also muddies questions of responsibility: given that every networked
computer regularly downloads all materials in a network and then erases those not
directly addressed to it, should everyone whose computer has unwittingly downloaded
child pornography or pirated media be prosecuted?

 These changes, brought about by the “ hardening ” of software as textual or machinic
thing through memory, point toward a profound change in our understanding of what
is internal and external, subject and object. According to Radin, “ the distinction
between tangible objects and intangible information is a distinction upon which
much of our modern understanding of the world was built, and hence, from which a
great many legal categorizations derive, ” for this traditional distinction “ owes much
to the ‘ modernist ’ dichotomies of the Enlightenment — between subject and object,
between autonomous persons and heteronomous things. ” 27 The notion of intellectual
property, which seems to break this dichotomy, was initially a compromise, she

6 Introduction

contends, between the Enlightenment notion that the intellect was internal and
property external. 28 (It is not simply, though, that information was once inside a
person and then externalized, but also that information was considered inseparable
from a person. Symptomatically, the meaning of information has moved from “ the
action of informing . . . the formation or moulding of the mind or character, training,
instruction, teaching ” to “ knowledge communicated concerning some particular fact,
subject, or event. ” 29) Crucially, Radin argues that the information age has compro-
mised the compromise that intellectual property represents, since, by breaking down
the distinction between tangibility and intangibility, it conceives of information,
whether internal or external, as always external to the self (hence the patentability of
genes). As I ’ ve argued elsewhere, the Internet and computers — which have offered
enlightenment for all — have exploded enlightenment by literalizing it.

 Software as thing has led to all “ information ” as thing. Software as thing recon-
ceptualizes society, bodies, and memories in ways that both compromise and extend
the subject, the user. Importantly, software as thing cannot be reduced to software as
a commodity: software as “ thing ” is a return to older defi nitions of thing as a “ gath-
ering, ” as pertaining to anything related to “ man. ” 30 Treating software as a thing
means treating it, again, as a neighborhood, as an amalgamation. It also means think-
ing through its simultaneous ambiguity and specifi city. Further, it means thinking
beyond this legal history, this legal framework, toward the historical and theoretical
stakes of the reemergence of things as relations. Indeed, this book argues that the
remarkable process by which software was transformed from a service in time to a
product, the hardening of relations into a thing, the externalization of information
from the self, coincides with and embodies larger changes within what Michel
Foucault has called governmentality . Software as thing is a response to and product of
changing relations between subjects and objects, of challenges brought about by
computing as a neoliberal governmental technology.

 Soft Government

 According to Foucault, governmentality and government broadly encompass acts
and institutions that govern, or steer, conduct and thus cannot be reduced to the
state. (Not coincidentally, the term cybernetics is derived from the Greek term “ kyber-
nete ” for governing.) As Colin Gordon notes, government for Foucault is “ the conduct
of conduct, ” that is, “ a form of activity aiming to shape, guide or affect the conduct
of some person or persons. ” Governmentality could concern “ the relation between
self and self, private interpersonal relations involving some form of control or guid-
ance, relations within social institutions and communities and, fi nally, relations
concerned with the exercise of political sovereignty. ” 31 The move from the Enlight-
enment, with its dichotomy of subjects and objects, to our current compromised

Introduction 7

situation corresponds to a transition from liberal to neoliberal governmentality (and,
even further, to a neoconservative one).

 Liberal governmentality, which emerged during the eighteenth century, is an “ eco-
nomic government ” : government that embraces both liberal political economy and
the principle of noninterference. It is based on two principles: the principle of blind
self-interest and the principle of freedom. According to its vision, actors, who cannot
know the whole picture, blindly and freely follow their own self-interests so that “ the
invisible hand of the market ” can magically incorporate their actions into a system
that benefi ts all. This unknowability is fundamental, for it enables a transition from
sovereign to liberal forms of governmentality. The liberal market undermines the
power of the monarch by undermining his or her knowledge: no one can have a
totalizing view. It also consumes freedom: it both produces freedom and seeks to
control it. 32 Liberal governmentality also makes possible biopolitical power: a collec-
tion of institutions and actions focused on “ taking care ” of a population, rather than
a territory, focused on masses rather than on sovereign subjects.

 Historically, computers, human and mechanical, have been central to the manage-
ment and creation of populations, political economy, and apparatuses of security. 33
Without them, there could be no statistical analysis of populations: from the process-
ing of censuses to bioinformatics, from surveys that drive consumer desire to social
security databases. Without them, there would be no government, no corporations,
no schools, no global marketplace, or, at the very least, they would be diffi cult to
operate. Tellingly, the beginnings of IBM as a corporation — the Herman Hollerith ’ s
 Tabulating Machine Company — dovetails with the mechanical analysis of the U.S.
census. 34 Before the adoption of these machines in 1890, the U.S. government had
been struggling to analyze the data produced by the decennial census (the 1880 census
taking seven years to process). Crucially, Hollerith ’ s punch-card-based mechanical
analysis was inspired by the “ punch photograph ” used by train conductors to verify
passengers. 35 Similarly, the Jacquard Loom, a machine central to the industrial revolu-
tion, inspired (via Charles Babbage ’ s “ engines ”) the cards used by the Mark 1, an early
electromechanical computer. Scientifi c projects linked to governmentality also drove
the development of data analysis: eugenics projects that demanded vast statistical
analyses, nuclear weapons that depended on solving diffi cult partial differential
equations. 36

 Importantly, though, computers in the period this book focuses on (post – World
War II) coincide with the emergence of neoliberalism. As well as control of “ masses, ”
computers have been central to processes of individualization or personalization.
Neoliberalism, according to David Harvey is “ a theory of political economic practices
that proposes that human well-being can best be advanced by liberating individual
entrepreneurial freedoms and skills within an institutional framework characterized
by strong private property rights, free markets, free trade. ” 37 Although neoliberals,

8 Introduction

such as the Chicago School economist Milton Friedman, claim merely to be resusci-
tating classical liberal economic theory, Foucault argues that neoliberalism differs from
liberalism in its stance that the market should be “ the principle, form, and model for
a state. ” 38 It contends that individual economic and political freedom are tied together:
competitive capitalism, Friedman writes, “ is a system of economic freedom and a
necessary condition for political freedom. ” 39 Harvey argues that neoliberalism has
thrived by creating a general “ culture of consent ” — even though it has harmed most
people economically by fostering incredible income disparities. In particular, it
has incorporated progressive 1960s discontent with government and, remarkably,
dissociated this discontent from its critique of capitalism and corporations.

 In a neoliberal society, the market has become an ethics: it has spread everywhere
so that all human interactions, from motherhood to education, are discussed as eco-
nomic “ transactions ” that can be assessed in individual cost – benefi t terms. The market,
as Margaret Thatcher argued, “ change[s] the soul ” 40 by becoming, Foucault argues, the
 “ grid of intelligibility ” for everything. 41 This transforms the homo oeconomicus — the
individual who lies at the base of neoliberalism — from “ the [liberal] man of exchange
or man the consumer ” to “ the man of enterprise and consumption. ” 42 It rests on the
 “ proposition that both parties to an economic transaction benefi t from it, provided the
transaction is bi-laterally voluntary and informed . ” 43 It focuses on discourses of empower-
ment in which the worker does not simply own his/her labor, but also possesses his/
her own body as a form of “ human capital. ” 44 Since everyone is in control of this form
of capital — the body — neoliberalism relies on voluntary, individual actions. 45 Thus,
this changed man who has imbibed the market ethic is thus eminently governable,
for homo oeconomicus is shaped through “ rational ” and empowering management
techniques that make him “ self-organized ” and “ self-controlling. ” 46

 Relatedly, “ user-friendly ” computer interfaces have been key to empowering and
creating “ productive individuals. ” As Ben Shneiderman, whose work has been key to
graphical user interfaces (GUIs), has argued, these interfaces succeed when they move
their users from grudging acceptance to feelings of mastery and eagerness. 47 Moreover,
this book argues, interfaces — as mediators between the visible and the invisible, as
a means of navigation — have been key to creating “ informed ” individuals who can
overcome the chaos of global capitalism by mapping their relation to the totality of
the global capitalist system. (Conversely, they enable corporations to track both
individuals and totalities, through the data traces produced by our mappings.) The
dream is: the resurgence of the seemingly sovereign individual, the subject driven to
know, driven to map, to zoom in and out, to manipulate, and to act. The dream is:
the more that an individual knows, the better decisions he or she can make. Goldman
Sachs and other investment companies, for instance, invest millions of dollars on
computer programs that can analyze data and execute trades milliseconds faster
than their competition. This “ informing ” is thus intriguingly temporal. New media
empowers individuals by informing them of the future, making new media the

Introduction 9

future. “ The future, ” as William Gibson famously and symptomatically quipped, “ is
already here. It’s just not very evenly distributed. ” 48 This future — as something that
can be bought and sold — is linked intimately to the past, to computers as capable
of being the future because, based on past data, they shape and predict it. 49 Comput-
ers as future depend on computers as memory machines, on digital data as archives
that are always there. This future depends on programmable visions that extrapolate
the future — or, more precisely, a future — based on the past. As chapter 1 elaborates,
computers, understood as software and hardware machines, have made possible a
dream of programmability, a return to a world of Laplaceian determinism in which
an all-knowing intelligence can comprehend the future by apprehending the past
and present. They have done so through a confl ation of words with things that both
externalizes knowledge and creates a position from which a subject can try to “ hack ”
the invisible hands and laws that drive the system.

 This book, therefore, links computers to governmentality neither at the level of
content nor in terms of the many governmental projects that they have enabled, but
rather at the level of their architecture and their instrumentality. 50 Computers embody
a certain logic of governing or steering through the increasingly complex world
around us. By individuating us and also integrating us into a totality, their interfaces
offer us a form of mapping, of storing fi les central to our seemingly sovereign —
 empowered — subjectivity. By interacting with these interfaces, we are also mapped:
data-driven machine learning algorithms process our collective data traces in order
to discover underlying patterns (this process reveals that our computers are now more
profound programmers than their human counterparts). This logic of program-
mability, it also argues, is not limited to computer technology; it also stems from and
bleeds elsewhere, in particular modern genetics, with its conceptualization of codes
and of programs as central to inheritance. Crucially, though, this knowledge is also
based on a profound ignorance or ambiguity: our computers execute in unforeseen
ways, the future opens to the unexpected. Because of this, any programmed vision
will always be inadequate, will always give way to another future. The rest of this
book unpacks this temporality and the odd combination of visibility and invisibility
these visions enable.

 In part I, chapters 1 and 2 focus on how software is invisibly visible. Chapter 1
argues that software emerged as a thing — as an iterable textual program — through an
axiomatic process of commercialization and commodifi cation that has made code
 logos : a word confl ated with and substituting for action . This formulation of instruc-
tion as source — source code as fetish — is crucial to understanding the power and thrill
of programming, in particular the fantasy of the all-powerful programmer, a subject
with magical powers to transform words into things. This separation of code from
execution, however, itself a software effect, is also constantly undone, historically
and theoretically. Thus, it concludes by analyzing how code as fetish can open up
surprising detours and ends.

10 Introduction

 Chapter 2 analyzes how this invisibly visible (or visibly invisible) logic works at the
level of the interface, at the level of “ personal computing. ” It investigates the extent to
which this paradoxical combination of rational causality and profound ignorance
grounds the computer as an attractive model for the “ natural ” world. Looking both at
the use of metaphor within the early history of human – computer interfaces and at the
emergence of the computer as metaphor, it contends that real-time computer inter-
faces are a powerful response to, and not simply an enabler or consequence of, post-
modernism and neoliberalism. Both conceptually and thematically, these interfaces
offer a simpler, more reassuring analog of power, one in which the user takes the place
of the sovereign “ source, ” code becomes law, and mapping produces the subject.

 Chapters 3 and 4 of part II examine the intertwining of computer technology and
biology, specifi cally the emergence of memory and its importance to notions of pro-
grammability. Through this focus on the relation between biology and computing
technology, part II explores how software, as an axiomatic, came to embody the logic
of the “ always already there. ” By exploring the ways in which biology and computer
technology have become complementary strands of a double helix, chapters 3 and 4
embed computer technology within the larger epistemological fi eld of programmabil-
ity, a larger drive for “ permanence ” that confl ates memory with storage and confl ates
the ephemeral with the enduring, or rather turns the ephemeral into the enduring
(the enduring ephemeral) through a process of constant regeneration.

 Chapter 3 argues that software was not foreseen, because the drive for software — for
an independent program that confl ates legislation with execution — did not arise solely
from within the fi eld of computation, but also from early Mendelian genetic and eugen-
ics. Through a reading of Erwin Schr ö dinger ’ s What Is Life , it contends that Mendelian
genetics and software envision a return to a reductionist, mechanistic understanding
of life, in which the human body becomes an archive. This chapter thus complicates
the standard narrative within the history of science that the notion of a program was
adapted by biologists from computer science, a narrative that rather remarkably treats
software as though it always already existed. It also shows how computers, not just in
terms of content but also of form, are deeply intertwined with questions of biopower.

 The fi nal chapter takes up this intertwining of biology and computer technology,
specifi cally in terms of memory and transmission. Revising the running hypothesis of
the fi rst three chapters, chapter 4 shows how digital hardware, which grounds soft-
ware, is itself axiomatic. Through the reading of early work on neural nets and of John
von Neumann ’ s work on automata, it reveals how logical hardware reduces events to
words. Analyzing the importance of the analog to conceptualizing the digital, it argues
that the digital emerged as a clean, precise logic through an analogy to an analogy.
Crucially, it argues that computer memory, as a constantly regenerating and degenerat-
ing archive, does not simply erase human agency, but rather makes possible new
dreams of human intervention and responsibility.

Introduction 11

 As this synopsis hopefully makes clear, understanding software as a thing does
not mean denigrating software or dismissing it as an ideological construction that
covers over the “ truth ” of hardware. It means engaging its odd materializations and
visualizations closely and refusing to reduce software to codes and algorithms —
 readily readable objects — by grappling with its simultaneous ambiguity and specifi city.
As Bill Brown has infl uentially argued, things designate “ the concrete yet ambiguous
within the everyday, ” that is, the thing “ functions to overcome the loss of other
words or as a place holder for some future specifying operation. . . . It designates
an amorphous characteristic or a frankly irresolvable enigma. . . . Things is a word
that tends, especially at its most banal, to index a certain limit or liminality, to
hover over the threshold between the nameable and unnameable, the fi gureable
and unfi gureable, the identifi able and unidentifi able. ” 51 Things thus “ lie both at
hand and somewhere outside the theoretical fi eld, beyond a certain limit, as a rec-
ognizable yet illegible remainder or as the entifi able that is unspecifi able. ” 52 Because
things simultaneously name the object and something else, they are both reducible
to and irreducible to objects. 53 Whereas we “ look through objects (to see what they
disclose about history, society, nature, or culture — above all, what they disclose about
 us), ” we “ only catch a glimpse of things. ” 54 We encounter, but do not entirely
comprehend, things. 55 According to Brown:

 A thing . . . can hardly function as a window. We begin to confront the thingness of objects

when they stop working for us: when the drill breaks, when the car stalls, when the windows

get fi lthy, when their fl ow within the circuits of production and distribution, consumption

and exhibition, has been arrested, however momentarily. The story of objects asserting them-

selves as things, then, is the story of a changed relation to the human subject and thus the

story of how the thing really names less an object than a particular subject-object relation. 56

 Crucially, this effort to rethink, and indeed theorize things, is intimately intertwined
with media: Martin Heidegger begins “ The Thing ” by outlining the shrinking of time
and space due to “ instant information ” (television being the peak of this abolition of
every possibility of remoteness); Brown argues, “ if the topic of things attained a new
urgency in the closing decades of that [twentieth] century, this may have been a
response to the digitization of our world — just as, perhaps, the urgency in the 1920s
was a response to fi lm. ” 57

 This book sees this renewed interest in things, things which always seem to be
disappearing, not simply as an effect of new media on other “ things, ” but rather as
central to the temporality of new media itself. New media, like the computer technology
on which it relies, races simultaneously toward the future and the past, toward the bleeding
edge of obsolescence . Software as thing is inseparable from the externalization of
memory, from the dream and nightmare of an all-encompassing archive that con-
stantly regenerates and degenerates, that beckons us forward and disappears before
our very eyes.

 You

 You. Everywhere you turn, it ’ s all about you — and the future. You, the produser. Having turned
off the boob tube, or at least added YouTube, you collaborate, you communicate, you link in,
you download, and you interact. Together, with known, unknown, or perhaps unknowable
others you tweet, you tag, you review, you buy, and you click, building global networks, build-
ing community, building databases upon databases of traces. You are the engine behind new
technologies, freely producing content, freely building the future, freely exhausting yourself
and others. Empowered. In the cloud. Telling Facebook and all your “ friends ” what ’ s on your
mind. Who needs surveillance when you constantly document your life?

 But, who or what are you? You are you, and so is everyone else. A shifter, you both
addresses you as an individual and reduces you to a you like everyone else. It is also singular
and plural, thus able to call you and everyone else at the same time. Hey you. Read this.
Tellingly, your home page is no longer that hokey little thing you created after your fi rst HTML
tutorial; it ’ s a mass-produced template, or even worse, someone else ’ s home page — Google ’ s,
Facebook ’ s, the New York Times ’ . You: you and everyone; you and no one.

 I Invisibly Visible, Visibly Invisible

 When enough seemingly insignifi cant data is analyzed against billions of data elements, the

invisible becomes visible.

 — Seisint 1

 Computers have fostered both a decline in and frenzy of visual knowledge. Opaque
yet transparent, incomprehensible yet logical, they reveal that the less we know the
more we show (or are shown). Two phenomena encapsulate this nicely: the prolifera-
tion of digital images (new media as “ visual culture ”) and “ total information ” systems
(new media as “ transparent ”).

 When digital cameras were introduced to the mass market in the 1990s, many
scholars and legal experts predicted the end of photography and fi lm. 2 The reasons
they offered were both material and functional: the related losses of celluloid and of
indexicality, the evidentiary link between artifact and event. If, as Roland Barthes
argues, the photograph certifi es that something has been — it is not a “ copy ” of a past
reality, but an “ emanation of a past reality ” 3 — and if, as Mary Ann Doane contends,
fi lm as a historical artifact and the fi lmic moment as historical event are inextricably
intertwined, 4 digital images by contrast break the temporal link between record and
event. Because a memory card can be constantly rewritten, there is, theoretically, no
fi xed relationship between captured event and image. Thus, it is not just that digital
images are easily manipulated, but also that the moments they refer to cannot be
chemically verifi ed. Digital images, in other words, challenge photorealism ’ s confl a-
tion of truth and reality: the notion that what is true is what is real and what is real
is what is true.

 Digital photographs, however, are hardly divorced from either the true or the real,
although they relate to them differently than did their celluloid predecessors. Truth
is not necessarily coupled to images captured with minimal machinic intervention,
but rather to images subject to high-tech manipulation. The so-called CSI effect exem-
plifi es this: because of the popular valorization of “ forensic ” identifi catory techniques
over deduction, juries are increasingly unwilling to convict based on circumstantial

16 Part I

evidence. 5 In addition, although digital photographs were initially treated with suspi-
cion because they were diffi cult to authenticate, they are now routinely used as evi-
dence both legally and colloquially in part due to their ubiquity: digital images and
devices have proliferated wildly. A critical literacy or smartness, verging on paranoia,
has also accompanied their use as evidenced by user-driven investigations revealing
the darkening of O. J. Simpson ’ s mug shot by Time Magazine , the darkening of skies
over war-torn Lebanon during the 2006 Isreal-Lebanon confl ict by Adnan Hajj, and
Dan Rather ’ s unintentional use of forged documents in his investigation of President
George W. Bush ’ s war record.

 This proliferation, paradoxically, has also fostered a growing belief that computers
enable total transparency. Jean Baudrillard in The Ecstasy of Communication has argued
 “ we no longer partake of the drama of alienation, but are in the ecstasy of communication .
And this ecstasy is obscene, ” because “ in the raw and inexorable light of information, ”
everything is “ immediately transparent, visible, exposed. ” 6 Although extreme, Baudril-
lard ’ s assessment resonates with public outrage over projects such as the George W.
Bush administration ’ s Total Information Awareness Program (TIA), a “ systems-level ”
program developed by the Defense Advanced Research Projects Agency ’ s (DARPA ’ s)
Information Awareness Offi ce (IAO) to create a virtual, centralized database, drawing
from multiple sources, that would enable the government to capture a person ’ s “ infor-
mation signature. ” The IAO ’ s motto — scientia est potentia (knowledge is power) — and
its logo resonated strongly with dystopian science fi ction: an eye affi xed to the apex
of a pyramid, shining a ray of light onto the globe (fi gure I.1). At all levels, TIA was
to enable “ topsight ” : “ the ability to ‘ see the whole thing ’ — and to plunge in and
explore the details. ” 7 Renamed the Terrorism Information Awareness Program, the
funding for this agency was partly revoked by Congress in 2003 in response to citizen
complaints, although many of the TIA initiatives, as of 2009, were still funded.

 Figure I.1
 Information Awareness Offi ce logo

Invisibly Visible, Visibly Invisible 17

 Crucially, this desire to bring together billions of data items was and is not limited
to governmental organizations. Google allegedly stores the search terms, linked to IP
addresses, of every search on its site; its cameras, designed to produce images for its
street view, cruise streets around the world; its “ interest-based advertising ” monitors
user activity in order to refi ne ads (a technique described by Tim Berners-Lee as similar
to allowing someone “ to put a television camera in your room, except it will tell them
a whole lot more about you than the television camera. ”) 8 Also, according to the 2009
 “ KnowPrivacy ” report by Joshua Gomez, Travis Pinnick, and Ashkan Soltani of UC
Berkeley ’ s iSchool, Google has “ a web bug on 92 of the top 100 sites, and on 88% of
the total domains reported in the data set of almost 400,000 unique domains. ” 9
Although Google claims that it does not aggregate these data into one large database,
its tracking of consumers through Doubleclick and Google Analytics means that even
people who avoid google.com are still tracked by Google. Google — and the Internet —
 are not the only sites of commercial surveillance. Cable companies use programs like
 “ The Visible World ” to target television advertisements to households based on
consumption pattern information gathered by fi rms such as Experian.

 This notion of the computer as rendering everything transparent, however, is
remarkably at odds with the actual operations of computation, for computers — their
hardware, software, and the voltage differences on which they rely — are anything but
transparent. When the computer does let us “ see ” what we cannot normally see, or
even when it acts like a transparent medium through video chat, it does not simply
relay what is on the other side: it computes. In order to become transparent, the fact
that computers always generate text and images rather than merely represent or repro-
duce what exists elsewhere must be forgotten. The current prominence of transparency
in product design and in political and scholarly discourse is a compensatory gesture.
As our machines increasingly read and write without us, as our machines become more
and more unreadable so that seeing no longer guarantees knowing (if it ever did), we
the so-called users are offered more to see, more to read. As our machines disappear,
getting fl atter and fl atter, the density and opacity of their computation increases. Every
use is also an act of faith: we believe these images and systems render us transparent
not for technological, but rather for metaphorical, or more strongly ideological,
reasons.

 As stated earlier, this paradox is not accidental to computing ’ s appeal, but rather
grounds the computer as a useful and provocative, indeed magical, model. Its combi-
nation of what can be seen and not seen, can be known and not known — its separation
of interface from algorithm; software from hardware — makes it a powerful metaphor
for everything we believe is invisible yet generates visible effects, from genetics to the
invisible hand of the market; from ideology to culture. Joseph Weizenbaum has argued
that computers have become metaphors for all “ effective procedures, ” that is, for
anything that can be solved in a prescribed number of steps, such as gene expression

18 Part I

and clerical work. 10 Weizenbaum also notes that the computer as metaphor is itself
based on “ only the vaguest understanding of a diffi cult and complex scientifi c concept.
. . . The public vaguely understands — but is nonetheless fi rmly convinced — that any
effective procedure can, in principle, be carried out by a computer. ” 11 Even a computer
programmer, Weizenbaum notes, cannot “ know the path of decision making within
his own program, let alone what intermediate or fi nal results it will produce. ” 12 But
critiques — even those as insightful as Joseph Weizenbaum ’ s — that condemn the com-
puter as a poor model because of its contradictory reductionism and incomprehensi-
bility miss the point. Revealing the illogical intertwining of computers we cannot
understand with understanding will not dispel the power of the computer as metaphor
because this intertwining grounds its appeal. The linking of rationality with mysticism,
knowability with what is unknown, makes it a powerful fetish that offers its program-
mers and users alike a sense of empowerment, of sovereign subjectivity, that covers
over — barely — a sense of profound ignorance.

 The following two chapters address this causal pleasure through software, or, to be
more precise, the curious separation of software from hardware. Software perpetuates
certain notions of seeing as knowing, of reading and readability, which were supposed
to have faded with the waning of indexicality, by producing WYSIWG (What You See
Is What You Get) interfaces that mimic both ideology and ideology critique, the
process of covering and uncovering. 13 As I explain in more detail in chapter 2, it offers
us a way to cognitively map our increasingly complex world, or at least to understand,
often pleasurably, our relation to its complexity. Software, through programming
languages that stem from a gendered system of command and control, creates an
invisible system of visibility, a system of causal pleasure. This system renders our
machine ’ s normal processes demonic and makes our computer truly a medium: some-
thing in between, mystical, channeling, and not entirely trustworthy. It becomes a
conduit that also amplifi es and selects what is at once real and unreal, true and untrue,
visible and invisible.

 1 On Sourcery and Source Codes

 The spirit speaks! I see how it must read,

 And boldly write: “ In the beginning was the Deed! ”

 — Johann Wolfgang Goethe 1

 Software emerged as a thing — as an iterable textual program — through a process
of commercialization and commodifi cation that has made code logos : code as
source, code as true representation of action, indeed, code as confl ated with, and
substituting for, action. 2 Now, in the beginning, is the word, the instruction.
Software as logos turns program into a noun — it turns process in time into process
in (text) space. In other words, Manfred Broy ’ s software “ pioneers, ” by making
software easier to visualize, not only sought to make the implicit explicit, they
also created a system in which the intangible and implicit drives the explicit.
They thus obfuscated the machine and the process of execution, making software
the end all and be all of computation and putting in place a powerful logic of
sourcery that makes source code — which tellingly was fi rst called pseudocode —
a fetish. 3

 This chapter investigates the implications of code as logos and the ways in which
this simultaneous confl ation and separation of instruction from execution, itself a
software effect, is constantly constructed and undone, historically and theoretically.
This separation is crucial to understanding the power and thrill of programming, in
particular the nostalgic fantasy of an all-powerful programmer, a sovereign neoliberal
subject who magically transforms words into things. It is also key to addressing the
nagging doubts and frustrations experienced by programmers: the sense that we are
slaves, rather than masters, clerks rather than managers — that, because “ code is law, ”
the code, rather than the programmer, rules. These anxieties have paradoxically led to
the romanticization and recuperation of early female operators of the 1946 Electronic
Numerical Integrator and Computer (ENIAC) as the fi rst programmers, for they, unlike
us, had intimate contact with and knowledge of the machine. They did not even need
code: they engaged in what is now called “ direct programming, ” wiring connections

20 Chapter 1

and setting values. Back then, however, the “ master programmer ” was part of the
machine (it controlled the sequence of calculation); computers, in contrast, were
human. Rather than making programmers and users either masters or slaves, code as
logos establishes a perpetual oscillation between the two positions: every move to
empower also estranges.

 This chapter, however, does not call for a return to direct programming or hardware
algorithms, which, as I argue in chapter 4, also embody logos. It also does not endorse
such a call because the desire for a “ return ” to a simpler map of power drives source
code as logos. The point is not to break free from this sourcery, but rather to play with
the ways in which logos also invokes “ spellbinding powers of enchantment, mesmer-
izing fascination, and alchemical transformation. ” 4 The point is to make our comput-
ers more productively spectral by exploiting the unexpected possibilities of source code
as fetish. As a fetish, source code produces surprisingly “ deviant ” pleasures that do
not end where they should. Framed as a re-source, it can help us think through the
machinic and human rituals that help us imagine our technologies and their execu-
tions. The point is also to understand how the surprising emergence of code as logos
shifts early and still-lingering debates in new media studies over electronic writing ’ s
relation to poststructuralism, debates that the move to software studies has to some
extent sought to foreclose. 5 Rather than seeing technology as simply fulfi lling or
killing theory, this chapter outlines how the alleged “ convergence ” between theory
and technology challenges what we thought we knew about logos. Relatedly, engaging
source code as fetish does not mean condemning software as immaterial; rather, it
means realizing the extent to which software, as an “ immaterial ” relation become
thing, is linked to changes in the nature of subject-object relations more generally.
Software as thing can help us link together minute machinations and larger fl ows of
power, but only if we respect its ability to surprise and to move.

 Source Code as Logos

 To exaggerate slightly, software has recently been posited as the essence of new media
and knowing software a form of enlightenment. Lev Manovich, in his groundbreaking
 The Language of New Media , for instance, asserts: “ New media may look like media,
but this is only the surface. . . . To understand the logic of new media, we need to
turn to computer science. It is there that we may expect to fi nd the new terms, catego-
ries, and operations that characterize media that become programmable. From media
studies, we move to something that can be called ‘ software studies ’ — from media theory to
software theory . ” 6 This turn to software — to the logic of what lies beneath — has offered
a solid ground to new media studies, allowing it, as Manovich argues, to engage pres-
ently existing technologies and to banish so-called “ vapor theory ” — theory that fails
to distinguish between demo and product, fi ction and reality — to the margins. 7

On Sourcery and Source Codes 21

 This call to banish vapor theory, made by Geert Lovink and Alexander Galloway
among others, has been crucial to the rigorous study of new media, but this rush
away from what is vapory — undefi ned, set in motion — is also troubling because vapo-
riness is not accidental but rather essential to new media and, more broadly, to
software. Indeed, one of this book ’ s central arguments is that a rigorous engagement
with software makes new media studies more, rather than less, vapory. Software, after
all, is ephemeral, information ghostly, and new media projects that have never, or
barely, materialized are among the most valorized and cited. 8 (Also, if you take the
technical defi nition of information seriously, information increases with vapor, with
entropy). This turn to computer science also threatens to reify knowing software as
truth, an experience that is arguably impossible: we all know some software, some
programming languages, but does anyone really “ know ” software? What could this
knowing even mean? Regardless, from myths of all-powerful hackers who “ speak the
language of computers as one does a mother tongue ” 9 or who produce abstractions
that release the virtual 10 to perhaps more mundane claims made about the radicality
of open source, knowing (or using the right) software has been made analogous to
man ’ s release from his self-incurred tutelage. 11 As advocates of free and open source
software make clear, this critique aims at political, as well as epistemological, eman-
cipation. As a form of enlightenment, it is a stance of how not to be governed like
that, an assertion of an essential freedom that can only be curtailed at great cost. 12

 Knowing software, however, does not simply enable us to fi ght domination or
rescue software from “ evil-doers ” such as Microsoft. Software, free or not, is embedded
and participates in structures of knowledge-power. For instance, using free software
does not mean escaping from power, but rather engaging it differently, for free and
open source software profoundly privatizes the public domain: GNU copyleft — which
allows one to use, modify, and redistribute source code and derived programs, but
only if the original distribution terms are maintained — seeks to fi ght copyright by
spreading licences everywhere. 13 More subtly, the free software movement, by linking
freedom and freely accessible source code, amplifi es the power of source code both
politically and technically. It erases the vicissitudes of execution and the institutional
and technical structures needed to ensure the coincidence of source code and its execu-
tion. This amplifi cation of the power of source code also dominates critical analyses
of code, and the valorization of software as a “ driving layer ” conceptually constructs
software as neatly layered.

 Programmers, computer scientists, and critical theorists have reduced software to
a recipe, a set of instructions, substituting space/text for time/process. The current
common-sense defi nition of software as a “ set of instructions that direct a computer
to do a specifi c task ” and the OED defi nition of software as “ the programs and pro-
cedures required to enable a computer to perform a specifi c task, as opposed to the
physical components of the system ” both posit software as cause, as what drives

22 Chapter 1

computation. Similarly, Alexander Galloway argues, “ code draws a line between what
is material and what is active, in essence saying that writing (hardware) cannot do
anything, but must be transformed into code (software) to be effective. . . . Code is
a language, but a very special kind of language. Code is the only language that is execut-
able . . . code is the fi rst language that actually does what it says. ” 14 This view of
software as “ actually doing what it says ” (emphasis added) both separates instruction
from, and makes software substitute for, execution. It assumes no difference between
source code and execution, between instruction and result. That is, Galloway takes
the principles of executable layers (application on top of operating system, etc.) and
grafts it onto the system of compilation or translation, in which higher-level languages
are transformed into executable codes that are then executed line by line. By doing
what it “ says, ” code is surprisingly logos. Like the King ’ s speech in Plato ’ s Phaedrus ,
it does not pronounce knowledge or demonstrate it — it transparently pronounces
itself. 15 The hidden signifi ed — meaning — shines through and transforms itself into
action. Like Faust ’ s translation of logos as “ deed, ” code is action, so that “ in the
beginning was the Word, and the Word was with God, and the Word was God. ” 16

 Not surprisingly, many scholars critically studying code have theorized code as
performative. Drawing in part from Galloway, N. Katherine Hayles in My Mother Was
a Computer: Digital Subjects and Literary Texts distinguishes between the linguistic
performative and the machinic performative, arguing:

 Code that runs on a machine is performative in a much stronger sense than that attributed to

language. When language is said to be performative, the kinds of actions it “ performs ” happen

in the minds of humans, as when someone says “ I declare this legislative session open ” or “ I

pronounce you husband and wife. ” Granted, these changes in minds can and do reach in

behavioral effects, but the performative force of language is nonetheless tied to the external

changes through complex chains of mediation. By contrast, code running in a digital computer

causes changes in machine behavior and, through networked ports and other interfaces, may

initiate other changes, all implemented through transmission and execution of code. 17

 The independence of machine action — this autonomy, or automatic executability of
code — is, according to Galloway, its material essence: “ The material substrate of code,
which must always exist as an amalgam of electrical signals and logical operations
in silicon, however large or small, demonstrates that code exists fi rst and foremost
as commands issued to a machine. Code essentially has no other reason for being
than instructing some machine in how to act. One cannot say the same for the
natural languages. ” 18 Galloway thus concludes in “ Language Wants to Be Overlooked:
On Software and Ideology, ” “ to see code as subjectively performative or enunciative
is to anthropomorphize it, to project it onto the rubric of psychology, rather than
to understand it through its own logic of ‘ calculation ’ or ‘ command. ’ ” 19

 To what extent, however, can source code be understood outside of anthropomor-
phization? Does understanding voltages stored in memory as commands/code not

On Sourcery and Source Codes 23

already anthropomorphize the machine? The title of Galloway ’ s article, “ Language
 Wants to Be Overlooked ” (emphasis mine), inadvertently reveals the inevitability of
this anthropomorphization. How can code/language want — or most revealingly say —
 anything? How exactly does code “ cause ” changes in machine behavior? What media-
tions are necessary for this insightful yet limiting notion of code as inherently
executable, as confl ating meaning and action?

 Crafty Sources

 To make the argument that code is automatically executable, the process of execution
itself not only must be erased, but source code must also be confl ated with its execut-
able version. This is possible, Galloway argues, because the two “ layers ” of code can
be reduced to each other: “ uncompiled source code is logically equivalent to that
same code compiled into assembly language and/or linked into machine code. For
example, it is absurd to claim that a certain value expressed as a hexadecimal (base
16) number is more or less fundamental than that same value expressed as binary
(base 2) number. They are simply two expressions of the same value. ” 20 He later
elaborates on this point by drawing an analogy between quadratic equations and
software layers:

 One should never understand this “ higher ” symbolic machine as anything empirically differ-

ent from the “ lower ” symbolic interactions of voltages through logic gates. They are complex

aggregates yes, but it is foolish to think that writing an “ if/then ” control structure in eight

lines of assembly code is any more or less machinic than doing it in one line of C, just as the

same quadratic equation may swell with any number of multipliers and still remain balanced.

The relationship between the two is technical . 21

 According to Galloway ’ s quadratic equation analogy, the difference between a compact
line of higher-level programming code and eight lines written in assembler equals the
difference between two equations, in which one contains coeffi cients that are multi-
ples of the other. The solution to both equations is the same: one equation is the same
as the other.

 This reduction, however, does not capture the difference between the various
instantiations of code, let alone the empirical difference between the higher symbolic
machine and the lower interactions of voltages (the question here is: where does one
make the empirical observation?). To state the obvious, one cannot run source code:
it must be compiled or interpreted. This compilation or interpretation — this making
executable of code — is not a trivial action; the compilation of code is not the same as
translating a decimal number into a binary one. Rather, it involves instruction explo-
sion and the translation of symbolic into real addresses. Consider, for example, the
instructions needed for adding two numbers in PowerPC assembly language, which is
one level higher than machine language:

24 Chapter 1

 li r3,1 *load the number 1 into register 3

 li r4,2 *load the number 2 into register 4

 add r5,r4,r3 *add r3 to r4 and store the result in r5

 stw r5,sum(rtoc) *store the contents of r5 (i.e., 3) into the memory location

 *called “ sum ” (where sum is defi ned elsewhere)

 blr *end of this snippet of code 22

 This explosion is not equivalent to multiplying both sides of a quadratic equation by
the same coeffi cient or to the difference between E and 15. It is, instead, a breakdown
of the steps needed to perform a simple arithmetic calculation; it focuses on the move-
ment of data within the machine. The relationship between executable and higher-
level code is not that of mathematical identity but rather logical equivalence, which
can involve a leap of faith. This is clearest in the use of numerical methods to turn
integration — a function performed fl uidly in analog computers — into a series of
simpler, repetitive arithmetical steps.

 This translation from source code to executable is arguably as involved as the execu-
tion of any command, and it depends on the action (human or otherwise) of compil-
ing/interpreting and executing. Also, some programs may be executable, but not all
compiled code within that program is executed; rather, lines are read in as necessary.
Software is “ layered ” in other words, not only because source is different from object,
but also because object code is embedded within an operating system.

 So, to spin Galloway ’ s argument differently, a technical relation is far more complex
than a numerical one. Rhetoric was considered a techn ê in antiquity. Drawing on this
Paul Ricoeur explains, “ techn ê is something more refi ned than a routine or an empiri-
cal practice and in spite of its focus on production, it contains a speculative element. ” 23
A technical relation engages art or craft. A technical person is one “ skilled in or practi-
cally conversant with some particular art or subject. ” 24 Code does not always or auto-
matically do what it says, but it does so in a crafty, speculative manner in which
meaning and action are both created. It carries with it the possibility of deviousness:
our belief that compilers simply expand higher-level commands — rather than alter or
insert other behaviors — is simply that, a belief, one of the many that sustain comput-
ing as such. This belief glosses over the fact that source code only becomes a source after
the fact . Execution, and a whole series of executions, belatedly makes some piece of
code a source, which is again why source code, among other things, was initially called
pseudocode.

 Source code is more accurately a re-source , rather than a source. Source code becomes
the source of an action only after it — or more precisely its executable substitute —
 expands to include software libraries, after its executable version merges with code
burned into silicon chips; and after all these signals are carefully monitored, timed,

On Sourcery and Source Codes 25

and rectifi ed. Source code becomes a source only through its destruction, through its
simultaneous nonpresence and presence. 25 (Thus, to return to the historical diffi culties
of analyzing software outlined by Mahoney, every software run is to some extent a
reconstruction.) Source code as techn ê , as a generalized writing, is spectral. It is neither
dead repetition nor living speech; nor is it a machine that erases the difference
between the two. It, rather, puts in place a “ relation between life and death, between
present and representation, between two apparatuses. ” 26 As I elaborate throughout this
book, information — through its capture in memory — is undead.

 Source Code, after the Fact

 Early on, the diffi culties of code as source were obvious. Herman H. Goldstine and
John von Neumann emphasized the dynamic nature of code in their “ Planning and
Coding of Problems for an Electronic Computing Instrument. ” In it, they argued that
coding, despite the name, is not simply the static translation of “ a meaningful text
(the instructions that govern solving the problem under consideration) from one
language (the language of mathematics, in which the planner will have conceived the
problem, or rather the numerical procedure by which he has decided to solve the
problem) into another language (that of our code). ” 27 Because code does not unfold
linearly, because its value depends on intermediate results, and because code can be
modifi ed as it is run (self-modifying code), “ it will not be possible in general to foresee
in advance and completely the actual course of C [the sequence of codes]. ” Therefore,
 “ coding is . . . the technique of providing a dynamic background to control the auto-
matic evolution of a meaning. ” 28 Code as “ dead repetition, ” in other words, has always
been regenerative and interactive; every iteration alters its meaning. Even given the
limits to iterability that Hayles has presciently outlined in My Mother Was a Computer —
 limits due to software as axiomatic — coding still means producing a mark, a writing,
open to alteration/iteration rather than an airtight anchor. 29

 Much disciplinary effort has been required to make source code readable as the
source. Structured programming, which I examine in more detail later, sought to rein
in “ goto crazy ” programmers and self-modifying code. A response to the much-
discussed “ software crisis ” of the late 1960s, its goal was to move programming from
a craft to a standardized industrial practice by creating disciplined programmers who
dealt with abstractions rather than numerical processes. 30

 Making code the source also entails reducing hardware to memory and thus erasing
the existence and possibility of hardware algorithms. Code is also not always the
source because hardware does not need software to “ do something. ” One can build
algorithms using hardware. Figure 1.1 , for instance, is the logical statement: if notB
and notA, do CMD1 (state P); if notB and notA and notZ OR B and A (state Q) then
command 2.

26 Chapter 1

 Figure 1.1
 Logic diagram for a hardware algorithm

 To be clear, I am not valorizing hardware over software, as though hardware natu-
rally escapes this drive to make space signify time. Crucially, this schematic is itself
an abstraction. Logic gates can only operate “ logically ” — as logos — if they are carefully
timed. As Philip Agre has emphasized, the digital abstraction erases the fact that gates
have “ directionality in both space (listening to its inputs, driving its outputs) and in
time (always moving toward a logically consistent relation between these inputs and
outputs). ” 31 When a value suddenly changes, there is a brief period in which a gate
will give a false value. In addition, because signals propagate in time over space, they
produce a magnetic fi eld that can corrupt other nearby signals (known as crosstalk).
This schematic erases all these various time- and distance-based effects by rendering
space blank, empty, and banal. Thus hardware schematics, rather than escaping from
the logic of sourcery, are also embedded within this structure. Indeed, as chapter 4
elaborates, John von Neumann, the generally acknowledged architect of the stored-
memory digital computer, drew from Warren McCulloch and Walter Pitts ’ s confl ation
of neuronal activity with its inscription in order to conceptualize modern computers.
It is perhaps appropriate then that von Neumann, who died from a cancer stemming

On Sourcery and Source Codes 27

from his work at Los Alamos, spent the last days of his life reciting from memory Faust
Part 1 . 32 At the source of stored program computing lies the Faustian erasure of word
for action.

 The notion of source code as source coincides with the introduction of alphanu-
meric languages. With them, human-written, nonexecutable code becomes source
code and the compiled code, the object code. Source code thus is arguably symptom-
atic of human language’s tendency to attribute a sovereign source to an action, a
subject to a verb. 33 By converting action into language, source code emerges. Thus,
Galloway ’ s statement, “ To see code as subjectively performative or enunciative is to
anthropomorphize it, to project it onto the rubric of psychology, rather than to under-
stand it through its own logic of ‘ calculation ’ or ‘ command, ’ ” overlooks the fact that
to use higher-level alphanumeric languages is already to anthropomorphize the
machine. It is to embed computers in “ logic ” and to reduce all machinic actions to
the commands that supposedly drive them. In other words, the fact that “ code is
law ” — something legal scholar Lawrence Lessig emphasizes — is hardly profound. 34
After all, code is, according to the OED, “ a systematic collection or digest of the laws
of a country, or of those relating to a particular subject. ” What is surprising is the fact
that software is code; that code is — has been made to be — executable, and this execut-
ability makes code not law, but rather every lawyer ’ s dream of what law should be:
automatically enabling and disabling certain actions, functioning at the level of
everyday practice. 35

 Code is executable because it embodies the power of the executive, the power
of enforcement that has traditionally — even within classic neoliberal logic — been
the provenance of government. 36 Whereas neoliberal economist and theorist Milton
Friedman must concede the necessity of government because of the difference
between “ the day-to-day activities of people [and] the general customary and legal
framework within which these take place, ” code as self-enforcing law “ privatizes ”
this function, further reducing the need for government to enforce the rules by
which we play. 37 In other words, if as Foucault argues neoliberalism expands judicial
interventions by reducing laws to “ the rules for a game in which each remains
master regarding himself and his part, ” then “ code is law ” reins in this expansion
by moving enforcement from police and judicial functions to software functions. 38
 “ Code is law, ” in other words, automatically brings together disciplinary and sov-
ereign power through the production of self-enforcing rules that, as von Neumann
argues, “ govern ” a situation.

 “ Code is law ” makes clear the desire for sovereign power driving both source
code and performative utterances more generally. David Golumbia — looking more
generally at widespread beliefs about computers — has insightfully claimed: “ The
computer encourages a Hobbesian conception of this political relation: one is either
the person who makes and gives orders (the sovereign), or one follows orders. ” 39

28 Chapter 1

This conception, which crucially is also constantly undone by modern computa-
tion ’ s twinning of empowerment with ignorance, depends, I argue, on this confl a-
tion of code with the performative. As Judith Butler has argued in Excitable Speech ,
Austinian understandings of performative utterances as simply doing what they say
posit the speaker as “ the judge or some other representative of the law. ” 40 It resus-
citates fantasies of sovereign — that is executive (hence executable) — structures of power:
it is “ a wish to return to a simpler and more reassuring map of power, one in
which the assumption of sovereignty remains secure. ” 41 This wish for a simpler map
of power — indeed power as mappable — drives not only code as automatically execut-
able, but also, as the next chapter contends, interfaces more generally. This wish
is central to computers as machines that enable users/programmers to navigate
neoliberal complexity.

 Against this nostalgia, Butler, following Jacques Derrida, argues that iterability lies
behind the effectiveness of performative utterances. For Butler, iterability is the process
by which “ the subject who ‘ cites ’ the performative is temporarily produced as the belated
and fi ctive origin of the performative itself . ” 42 The programmer/user, in other words, is
produced through the act of programming. Moreover, the effectiveness of performa-
tive utterances, Butler also emphasizes, is intimately tied to the community one joins
and to the rituals involved — to the history of that utterance. Code as law — as a judicial
process — is, in other words, far more complex than code as logos. Similarly, as
Weizenbaum has argued, code understood as a judicial process undermines the
control of the programmer:

 A large program is, to use an analogy of which Minsky is also fond, an intricately connected

network of courts of law, that is, of subroutines, to which evidence is transmitted by other

subroutines. These courts weigh (evaluate) the data given to them and then transmit their

judgments to still other courts. The verdicts rendered by these courts may, indeed, often do,

involve decisions about what court has “ jurisdiction ” over the intermediate results then being

manipulated. The programmer thus cannot even know the path of decision-making within his

own program, let alone what intermediate or fi nal results it will produce. Program formulation

is thus rather more like the creation of a bureaucracy than like the construction of a machine

of the kind Lord Kelvin may have understood. 43

 Code as a judicial process is code as thing : the Latin term for thing, res , survives in
legal discourse (and, as I explain later, literary theory). The term res , as Heidegger
notes, designates a “ gathering, ” any thing or relation that concerns man. 44 The rela-
tions that Weizenbaum discusses, these bureaucracies within the machine, as the rest
of this chapter argues, mirror the bureaucracies and hierarchies that historically made
computing possible. Importantly, this description of computers as following a set of
rules that programmers must follow — Weizenbaum ’ s insistence on the programmer ’ s
ignorance — does not undermine the resonances between neoliberalism and computa-
tion; if anything, it makes these resonances more clear. It also clarifi es the desire

On Sourcery and Source Codes 29

driving code as logos as a solution to neoliberal chaos. Foucault, emphasizing the
rhetoric of the economy as a “ game ” in neoliberal writings, has argued, “ both for
the state and for individuals, the economy must be a game: a set of regulated activi-
ties . . . in which the rules are not decisions which someone takes for others. It is a
set of rules which determine the way in which each must play a game whose outcome
is not known by anyone. ” 45 Although small-s sovereigns proliferate through neolib-
eralism ’ s empowered yet endangered subjects, it still fundamentally denies the posi-
tion of the Sovereign who knows — a position that we nonetheless nostalgically desire
. . . for ourselves.

 Yes, Sir!

 This confl ation of instruction with result stems in part from software ’ s and comput-
ing ’ s gendered, military history: in the military there is supposed to be no difference
between a command given and a command completed — especially to a computer that
is a “ girl. ” For computers, during World War II, were in fact young women with some
background in mathematics. Not only were women available for work during that era,
they also were considered to be better, more conscientious computers, presumably
because they were better at repetitious, clerical tasks. They were also undifferentiated:
they were all unnamed “ computers, ” regardless of their mathematical training. 46 These
computers produced ballistics tables for new weapons, tables designed to control ser-
vicemen ’ s battlefi eld actions. Rather than aiming and shooting, servicemen were to
set their guns to the proper values (not surprisingly, these tables and gun governors
were often ignored or ditched by servicemen). 47

 The women who became the “ ENIAC girls ” (later the more politically correct
 “ women of the ENIAC ”) — Kathleen/Kay McNulty (Mauchly Antonelli), Jean Jennings
(Bartik), Frances Snyder (Holberton), Marlyn Wescoff (Meltzer), Frances Bilas (Spence),
and Ruth Lichterman (Teitelbaum) (married names in parentheses) — were computers
who volunteered to work on a secret project (when they learned they would be operat-
ing a machine, they had to be reassured that they had not been demoted). Program-
mers were former computers because they were best suited to prepare their successors:
they thought and acted like computers. One could say that programming became
programming and software became software when the command structure shifted
from commanding a “ girl ” to commanding a machine. Kay Mauchly Antonelli
described the “ evolution ” of computing as moving from female computers using
Marchant machines to fi ll in fourteen-column sheets (which took forty hours to com-
plete the job), to using differential analyzers (fi fteen minutes to do the job), to using
the ENIAC (seconds). 48

 Software languages draw from a series of imperatives that stem from World War
II command and control structures. The automation of command and control, which

30 Chapter 1

Paul Edwards has identifi ed as a perversion of military traditions of “ personal leader-
ship, decentralized battlefi eld command, and experience-based authority, ” 49 arguably
started with World War II mechanical computation. Consider, for instance, the rela-
tionship between the volunteer members of the Women’s Royal Naval Service (called
Wrens), and their commanding offi cers at Bletchley Park. The Wrens also (perhaps
ironically) called slaves by the mathematician and “ founding ” computer scientist
Alan Turing (a term now embedded within computer systems), were clerks responsible
for the mechanical operation of the cryptanalysis machines (the Bombe and then
the Colossus), although at least one of the clerks, Joan Clarke (Turing ’ s former fi anc é),
became an analyst. Revealingly, I. J. Good, a male analyst, describes the Colossus as
enabling a man – machine synergy duplicated by modern machines only in the late
1970s: “ the analyst would sit at the typewriter output and call out instructions to a
Wren to make changes in the programs. Some of the other uses were eventually
reduced to decision trees and were handed over to the machine operators (Wrens). ” 50
This man – machine synergy, or interactive real-time (rather than batch) processing,
treated Wrens and machines indistinguishably, while simultaneously relying on the
Wrens ’ ability to respond to the mathematician ’ s orders. This “ interactive ” system
also seems evident in the ENIAC ’ s operation: in fi gure 1.2 , a male analyst issues
commands to a female operator.

 The story of the initial meeting between Grace Murray Hopper (one of the fi rst and
most important programmer-mathematicians) and Howard Aiken would also seem to
buttress this narrative. Hopper, with a PhD in mathematics from Yale, and a former
mathematics professor at Vassar, was assigned by the U.S. Navy to program the Mark
1, an electromechanical digital computer that made a sound like a roomful of knitting
needles. According to Hopper, Aiken showed her “ a large object with three stripes . . .
waved his hand and said: ‘ That ’ s a computing machine. ’ I said, ‘ Yes, Sir. ’ What else
could I say? He said he would like to have me compute the coeffi cients of the arc
tangent series, for Thursday. Again, what could I say? ‘ Yes, Sir. ’ I didn ’ t know what on
earth was happening, but that was my meeting with Howard Hathaway Aiken. ” 51
Computation depends on “ Yes, Sir ” in response to short declarative sentences and
imperatives that are in essence commands. Contrary to Neal Stephenson, in the
beginning — marking the possibility of a beginning — was the command rather than the
command line. 52 The command line is a mere operating system (OS) simulation. Com-
mands have enabled the slippage between programming and action that makes soft-
ware such a compelling yet logically “ trivial ” communications system. 53 Commands
lie at the core of the cybernetic confl ation of human with machine. 54 I. J. Good ’ s and
Hopper ’ s recollections also reveal the routinization at the core of programming: the
analyst ’ s position at Bletchley Park was soon replaced by decision trees acted on by the
Wrens. Hopper, self-identifi ed as a mathematician (not programmer), became an
advocate of automatic programming. Thus routinization or automation lies at the

On Sourcery and Source Codes 31

 Figure 1.2
 ENIAC programmers, late 1940s. U.S. military photo, Redstone Arsenal Archives, Huntsville,

Alabama.

core of a profession that likes to believe it has successfully automated every profession
but its own. 55

 This narrative of the interchangeability of women and software, however, is not
entirely true: the perspective of the master, as Hegel famously noted, is skewed.
(Tellingly, Mephistopheles offers to be Faust ’ s servant.) 56 The master depends on the
slave entirely, and it is the slave ’ s actions that make possible another existence. Execu-
tion is never simple. Hopper ’ s “ Yes, Sir ” actually did follow in the military command
tradition. It was an acceptance of responsibility; she was not told how to calculate the
trajectory. Also, the “ women of the ENIAC, ” although an afterthought, played an
important role in converting the ENIAC into a stored-program computer and in deter-
mining the trade-off between storing values and instructions: they did not simply
operate the machine, they helped shape it and make it functional. 57 Users of the ENIAC
usually were divided into pairs: one who knew the problem and one who knew the

32 Chapter 1

machine “ so the limitations of the machine could be fi tted to the problem and the
problem could be changed to fi t the limitations. ” 58 Programming the ENIAC — that is,
wiring the components together in order to solve a problem — was diffi cult, especially
since there were no manuals or exact precedents. 59 To solve a problem, such as how
to determine ballistics trajectories for new weapons, ENIAC “ programmers ” had fi rst
to break down the problem logically into a series of small yes/no decisions; “ the
amount of work that had to be done before you could ever get to a machine that was
really doing any thinking, ” Bartik relates, was staggering and annoying. 60 The unreli-
ability of the hardware and the fact that engineers and custodians would unexpectedly
change the switches and program cables compounded the diffi culty. 61

 These women, Holberton in particular, developed an intimate relation with the
 “ master programmer, ” the ENIAC ’ s control device. Although Antonelli fi rst fi gured out
how to repeat sections of the program, using the master programmer, Holberton, who
described herself as a logician, specialized in controlling its operation. 62 As Bartik
explains:

 We found it very easy to learn that you do this step, step one, then you do step two, step three,

but I think the thing that was the hardest for us to learn was transfer of control which the

ENIAC did have through the master programmer, so that you would be able to repeat pieces of

program. So, the techniques for dividing your program into subroutines that could be repeated

and things of this kind was the hardest for us to understand. I certainly know it was for me. 63

 Because logic diagrams did not then exist, Holberton developed a four-color pencil
system to visualize the workings of the master programmer. 64 This drive to visualize
also extended to the machine as a whole. To track the calculation, holes were drilled
in the panels over the accumulators so that “ when you were doing calculations these
lights were fl ashing as the numbers built up and as you transferred numbers and things
of this kind. So you had the feeling of excitement. ” 65 These lights not only were useful
in tracking the machine, they also were invaluable for the demonstration. Even
though the calculation for the demonstration was itself buggy, the fl ashing lights, the
cards being read and written, gave the press a (to them) incomprehensible visual
display of the enormity and speed of the calculation being done. In what would
become a classic programming scenario, the problem was “ debugged ” the day after
the demonstration. According to Holberton:

 I think the next morning, I woke up and in the middle of the night thinking what that

error was. I came in, made a special trip on the early train that morning to look at a certain

wire, and you know, it ’ s the same kind of programming error that people make today. It ’ s

the, the decision on the terminal end of a do loop, speaking Fortran language, had the wrong

value. Forgetting that zero was also one setting and the setting of the switch was one off.

And I ’ ll never forget that because there it was my fi rst do loop error. But it went on that

way and I remember telling Marlyn, I said, “ If anybody asks why it ’ s printing out that way,

say it ’ s supposed to be that way. ” [Laughter] 66

On Sourcery and Source Codes 33

 Programming enables a certain duplicity, as well as the possibility of endless actions
that animate the machine. Holberton, described by Hopper as the best programmer
she had known, would also go on to develop an infl uential SORT algorithm for the
UNIVAC 1 (the Universal Automatic Computer 1, a commercial offshoot of the
ENIAC). 67 Indeed, many of these women were hired by the Eckert – Mauchly company
to become the fi rst programmers of the UNIVAC, and were transferred to Aberdeen to
train more ENIAC programmers.

 Drawing from the historical importance of women and the theoretical resonances
between the feminine and computing (parallels between programming and what
Freud called the quintessentially feminine invention of weaving, between female sexu-
ality as mimicry and Turing ’ s vision of computers as universal machines/mimics) Sadie
Plant has argued that computing is essentially feminine. Both software and feminine
sexuality reveal the power that something that cannot be seen can have. 68 Women,
Plant argues, “ have not merely had a minor part to play in the emergence of digital
machines. . . . Theirs is not a subsidiary role which needs to be rescued for posterity,
a small supplement whose inclusion would set the existing records straight. . . . Hard-
ware, software, wetware — before their beginnings and beyond their ends, women have
been the simulators, assemblers, and programmers of the digital machines. ” 69 Because
of this and women ’ s early (forced) adaptation to “ fl exible ” work conditions, Plant
argues, women are best prepared to face our digital, networked future: “ sperm count, ”
she writes, “ falls as the replicants stir and the meat learns how to learn for itself.
Cybernetics is feminisation. ” 70 Responding to Plant ’ s statement, Alexander Galloway
has argued, “ the universality of [computer] protocol can give feminism something
that it never had at its disposal, the obliteration of the masculine from beginning to
end. ” 71 Protocol, Galloway asserts, is inherently antipatriarchy. What, however, is the
relationship between feminization and feminism, between so-called feminine modes
of control and feminism? What happens if you take seriously Grace Murray Hopper ’ s
claims that the term software stemmed from her description of compilers as “ layettes ”
for computers and the claim of J. Chuan Chu, one of the hardware engineers for the
ENIAC, that software is the “ daughter ” of Frankenstein (hardware being the son)? 72

 To address these questions, we need to move beyond recognizing these women as
programmers and the resonances between computers and the feminine. Such recogni-
tion alone establishes a powerful sourcery, in which programming is celebrated at the
exact moment that programmers become incapable of “ understanding ” — of seeing
through — the machine. The move to reclaim the ENIAC women as the fi rst program-
mers in the mid- to late-1990s occurred when their work as operators — and the visual,
intimate knowledge of machine operations this entailed — had become entirely incor-
porated into the machine and when women “ coders ” were almost defi nitively pushed
out of the workplace. It is love at last (and fi rst) sight, not just for these women but
also for these interfaces, which really were transparent holes, in which inside and

34 Chapter 1

outside coincided. Also, reclaiming these women as the fi rst programmers and as
feminist fi gures glosses over the hierarchies within programming — among operators,
coders, and analysts — that defi ned the emergence of programming as a profession and
as an academic discipline. 73 To put Hopper and the “ ENIAC girls ” together is to erase
the difference between Hopper, a singular hero who always defi ned herself as a math-
ematician, and nameless disappearing computer operators. It is also to deny personal
history: Hopper, a social conservative from a privileged background, stated many times
that she was not a feminist, and Hopper ’ s stances could be perceived as antifeminist
(while the highest-ranking female offi cer in the Navy, she argued that women were
incapable of serving in combat duty). 74 Not accidentally, Hopper ’ s dream, her drive
for automatic computing, was to put the programmer inside the computer and thus
to rehumanize the mathematician: pseudocode was to free the mathematician and
her brain from the shackles of programming. 75

 Bureaucracies within the Machine

 TROPP: We talked about Von Neumann and I would like to talk about how you saw people like

John Mauchly and the role that they played, and Goldstine and Burks and others that you came

in contact with [including] Clippinger, and Frankel, and how, how they looked from your vantage

point?

 HOLBERTON: Well, we were lowly programmers, so I looked up to all these gentlemen.

 TROPP: [Laughter] 76

 The confl ation of instruction with action, which makes computers understood as
software and hardware machines such a compelling model of neoliberal governmen-
tality and which resuscitates dreams of sovereign power, depends on incorporating
historical programming hierarchies within the machine.

 Programming, even at what has belatedly been recognized as its origin, was a hier-
archical affair. Herman H. Goldstine and John von Neumann, in “ Planning and
Coding of Problems for an Electronic Computing Instrument, ” separated the task of
planning (dealing with the dynamic nature of code through extensive fl ow charting)
from that of coding (the microproduction of the actual instructions). Regarding
dynamic or macroscopic aspects, they argued, “ every mathematician, or every mod-
erately mathematically trained person should be able to do this in a routine manner,
if he has familiarized himself with the main examples that follow in this report, or if
he has had some equivalent training in this method. ” Regarding the static or micro-
scopic work, they asserted, “ we feel certain that a moderate amount of experience with
this stage of coding suffi ces to remove from it all diffi culties, and to make it a perfectly
routine operation. ” 77 The dropping of the pronoun he was not accidental: as Nathan
Ensmenger and William Aspray note, the dynamic analysis was to be performed by
 “ the ‘ planner, ’ who was typically the scientifi c user and overwhelmingly often was

On Sourcery and Source Codes 35

male; the sixth task was to be carried out by ‘ coders ’ — almost always female. ” 78
Although this separation between operators, coders, and planners was not immedi-
ately accepted everywhere — the small Whirlwind group viewed itself more as a “ model
shop ” in which coding, programming, and operations were mixed together — this
hierarchical separation between what Philip Kraft calls the “ head and the hand ”
became dominant as programming became a mass, commercial enterprise. 79

 SAGE (the Semi-Automatic Ground Environment) air defense system, widely con-
sidered the fi rst large software project, was programmed by the Systems Development
Corporation (SDC), an offshoot of the RAND Corporation. SDC had expanded from
a few programmers to more than eight hundred by the late 1950s, making it by
far the largest employer of programmers. Because its programmers went on to form
the industry (it was dubbed the “ university of programmers ”), SAGE had a wide
impact on the fi eld ’ s development. SAGE, however, not only taught people how to
code but also inculcated a strict division of programming in which senior program-
mers (later systems analysts), who developed program specifi cations, were separated
from programmers, who worked on coding specifi cations; they in turn were separated
from the coders who turned coding specifi cations into documented machine code. 80
This separation, as Kraft has recorded, was still thriving in the 1970s. 81 This separa-
tion was also gendered. As Herbert D. Benington, one of the managers of SAGE,
later narrated, “ women turned out to be very good for the administrative programs.
One reason is that these people tend to be fastidious — they worry how all the details
fi t together while still keeping the big picture in mind. I don ’ t want to sound sexist,
but one of our strongest groups had 80 percent women in it; they were doing the
right kind of thing. The mathematicians were needed for some of the more complex
applications. ” 82 Not accidentally, the SDC was spun off from the System Training
Program, a group comprised of RAND psychologists focused on producing more
effective groups. 83

 Buttressing this hierarchy was a strict system of control, “ tools of a very complex
nature ” that did not survive SAGE. As Benington explains, these tools enabled man-
agers to track and punish coders: “ You could assign an individual a job, you could
control the data that that individual had access to, you could control when that
individual ’ s program operated, and you could fi nd out if that individual was playing
the game wrong and punish that person. So we had a whole set of tools for design,
for controlling of the team, for controlling of the data, and for testing the programs
that were really quite advanced. ” 84 Because of this system of control, Benington
viewed symbolic addressing and other moves to automate programming as “ danger-
ous because they couldn ’ t be well-disciplined. ” However, although automatic pro-
gramming has been linked to empowerment, it has also led to the more thorough
(because subtle and internalized) disciplining of programmers, which simultaneously
empowers and disempowers programmers.

36 Chapter 1

 Indeed, this overt system of control and punishment was replaced by a “ softer ”
system of structured programming that makes source code source. As Mahoney has
argued, structured programming emerged as a “ means both of quality control and of
disciplining programmers, methods of cost accounting and estimation, methods of
verifi cation and validation, techniques of quality assurance. ” 85 Kraft targets structured
programming as de-skilling: through it, programming was turned from a craft to an
industrialized practice in which workers were reduced to interchangeable detail
workers. 86 Structured programming limits the logical procedures coders can use and
insists that the program consist of small modular units, which can be called from the
main program. Structured programming (also generally known as “ good program-
ming ” when I was growing up) hides, and thus secures, the machine. It focuses on
and enables abstraction — and abstraction from the specifi c uses of and for the
machine — thereby turning programming from a numerical- to a problem-based task.

 Not surprisingly, having little to no contact with the actual machine enhances one ’ s
ability to think abstractly rather than numerically. Edsger Dijkstra, whose famous
condemnation of “ goto ” statements has encapsulated to many the fundamental
tenets of structured programming, believes that he was able to “ pioneer ” structured
programming precisely because he began his programming career by coding for ghosts:
for machines that did not yet exist. 87 In “ Go To Statement Considered Harmful, ”
Dijkstra argues, “ the quality of programmers is a decreasing function of the density
of go to statements in the programs they produce ” because goto statements work
against the fundamental tenet of what Dijkstra considered to be good programming,
namely, the necessity to “ shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between the program (spread out
in text space) and the process (spread out in time) as trivial as possible. ” 88 This is
important because, if a program suddenly halts because of a bug, gotos (statements
that tell a program to go to a specifi c line if a condition is met) make it diffi cult to
fi nd the place in the program that corresponds to the buggy code. Gotos make diffi cult
the confl ation of instruction with its product — the reduction of process to command —
 that grounds the emergence of software as a concrete entity and commodity. That is,
gotos make it diffi cult for the source program to act as a legible source. 89 As this
example makes clear, structured programming moves away from issues of program
effi ciency — the time it takes to run a program — and more toward the problem of
minimizing all the costs involved in producing and maintaining large programs. This
move also makes programming an “ art. ” As Dijkstra argues in his letter justifying
structured programming, “ it is becoming most urgent to stop to consider program-
ming primarily as the minimization of cost/performance ratio. We should recognize
that already now programming is much more an intellectual challenge: the art of
programming is the art of organizing complexity, of mastering multitude and avoiding
its bastard chaos as effectively as possible. ” 90 Again, this depends on making “ the

On Sourcery and Source Codes 37

structure of the program text [refl ect] the structure of the computation. ” 91 It means
moving away from assembly and other languages that routinely offer bizarre exits and
self-modifying code to languages that feature clear and well-documented repetitions
(while . . . do . . .) that end in one clear place, that return control to the main program.

 Structured programming languages “ save ” programmers from themselves by pro-
viding good security, where security means secure from the programmer (increasingly,
 “ securing ” the machine means making sure programmers cannot access or write over
key systems). 92 Indeed, structured programming, which emphasizes programming as
a problem of fl ow, is giving way to data abstraction, which views programming as a
problem of interrelated objects, and hides far more than the machine. Data abstraction
depends on information hiding, on the nonrefl ection of changeable facts in software.
As John V. Guttag, a “ pioneer ” in data abstraction explains, data abstraction is all
about forgetting, about hiding information about how a type is implemented behind
an interface. 93 Rather than “ polluting ” a program by enabling invisible lines of contact
between supposedly independent modules, data abstraction presents a clean or “ beau-
tiful ” interface by confi ning specifi cities, and by reducing the knowledge and power
of the programmer. Knowledge, Guttag insists, is dangerous: “ ‘ Drink deep, or taste not
the Pierian Spring, ’ is not necessarily good advice. Knowing too much is no better,
and often worse, than knowing too little. People cannot assimilate very much infor-
mation. Any programming method or approach that assumes that people will under-
stand a lot is highly risky. ” 94 Abstraction — the “ erasure of difference in the service of
likeness or equality ” — also erases, or “ forgets, ” knowledge, rendering it, like the
machine, ghostly. 95

 Thus abstraction both empowers the programmer and insists on his/her igno-
rance — the dream of a sovereign subject who knows and commands is constantly
undone. Because abstraction exists “ in the mind of the programmer, ” abstraction gives
programmers new creative abilities. Computer scientist David Eck argues, “ every pro-
gramming language defi nes a virtual machine, for which it is the machine language.
Designers of programming languages are creating computing machines as surely as
the engineer who works in silicon and copper, but without the limitations imposed
by materials and manufacturing technology. ” 96 However, this abstraction — this move
away from the machine specifi cities — hands over, in its virtual separation of machine
into software and hardware, the act of programming to the machine itself. Mildred
Koss scoffed at the early notion of computers as brains because “ they couldn ’ t think
in the way a human thinks, but had to be given a set of step-by-step machine instruc-
tions to be executed before they could provide answers to a specifi c problem ” — at that
time software was not considered to be an independent object. 97 The current status
of software as a commodity, despite the nonrivalrous nature of “ instructions, ” indi-
cates the triumph of the software industry, an industry that fi rst struggled not
only fi nancially but also conceptually to defi ne its product. The rise of software

38 Chapter 1

depends both on historical events, such as IBM ’ s unbundling of its services from its
products, and on abstractions enabled by higher-level languages. Guttag ’ s insistence
on the unreliability and incapability of human beings to understand underscores the
cost of such an abstraction. Abstraction is the computer ’ s game, as is programming
in the strictest and newest sense of the word: with “ data-driven ” programming, for
instance, machine learning/artifi cial intelligence (computers as source of source code)
has become mainstream.

 Importantly, this stratifi cation and disciplining of labor has a much longer history:
human computing itself, as David Grier has documented, moved from an art to a
routinized procedure through a separation of planners from calculators. 98 Whereas
the mathematician Alexis-Claude Clairaut called on two of his colleagues/friends,
Joseph Lalande, Nicole-Reine Lapaute, in 1757 to calculate the date of Halley ’ s comet ’ s
1758 return, Gaspard Clair Fran ç ois Marie Riche de Prony, director of the Bureau du
Cadastre, devised a system of intellectual labor to calculate metric tables in 1791.
Not accidentally, the tables were part of a revolutionary governmental project: the
move to the metric system by the National Assembly in order to gain control of the
French economy. 99 De Prony, inspired by Adam Smith, divided the group into manual
workers (unemployed pre-Revolutionary wig makers or servants who had basic arith-
metic skills) and planners (experienced computers who planned the calculation). This
system in turn inspired Charles Babbage ’ s difference and analytic engines, in which
the engines would replace the manual workers: according to Grier, de Prony ’ s system
showed Babbage that “ the division of labor was not restricted to physical work but
could be applied to ‘ some of the sublimest investigations of the human mind, ’
including the work of calculation. ” 100 This routinized calculation was not smoothly
adopted; for a long time within the United States, such a model was resisted and,
even during World War I, computers were graduate students and young assistant
professors. In order to produce calculations necessary for governmental projects (such
as eugenics, census, navigation, weapons, etc.) in the twentieth century, however,
mass computation became the norm.

 The U.S. wholesale embrace of mass calculation also coincides with a governmental
project. Begun during the Great Depression as a way to put unemployed high school
graduates to work, the Work Progress Administration ’ s (WPA) Math Tables Project
(MTP) produced some of the fi nest error-free tables in the world. 101 Indeed, it was not
until the Roosevelt administration and the New Deal that the United States became
seriously involved in producing mathematical tables. Since it was a WPA project, many
established academics refused to be involved with it. To gain credibility, those in
charge (themselves “ less desirable ” or unconventional PhDs) were determined to
produce the most accurate tables possible. Gertrude Blanch, who ran the program with
Milton Abramowitz, insists that most of the people they hired were qualifi ed. 102 In
contrast, Ida Rhodes, another PhD hired by the MTP, claims: “ [Most] of the people

On Sourcery and Source Codes 39

[who] came to us really knew nothing at all about mathematics or [even] arithmetic.
Gertrude Blanch says that they were all High School graduates, and they may have
been. I never checked on that. But if they were, very few of them had remembered
anything about the arithmetic or the algebra or whatever mathematics they had
[studied]. ” 103 By the end, however, they were transformed. According to Rhodes,
Blanch performed miracles, “ welding a malnourished, dispirited crew of people,
coming from [the] Welfare Rolls, [into] a group that Leslie J. Comrie said was the
 ‘ mightiest computing team the world had ever seen. ’ ” 104 To Rhodes, the social work
involved in this project — “ [salutary benefi t conferred on] the spirit of those people
[by] raising them from abject and self-despising people into a team that [acquired] a
magnifi cent esprit de corps ” — has been overlooked. 105 As Rhodes ’ s rhetoric indicates,
this was a patronizing if admirable project, run by “ saints. ” Rhodes, herself partially
deaf, would become an advocate for including physically challenged people in pro-
gramming work. (Blanch interestingly had a more edgy view of sainthood. Describing
Rhodes, she remarked, “ if there are saints on earth, she ’ s one of them. Saints may be
diffi cult to live with but . . . it ’ s nice to have a few around ”). 106

 This saintly salutary work comprised dividing the group into four categories,
listed in ascending ability — the adders, the multipliers, the dividers, and the check-
ers — and creating worksheets so that “ people who knew nothing about mathematics
could [do advanced functions] by just following one step at a time. ” 107 The fl awless-
ness of these tables stemmed both from these worksheets, created by Blanch, and
from the degree to which these tables were checked (the Bessel function, for instance,
was checked more than twenty-two times). Since the goal of the project was to
keep these people busy, as well as to produce tables, accuracy was stressed over
expediency and over sophistication of numerical techniques. Accuracy, according
to Rhodes, became an obsession. ” 108

 Not surprisingly, though, the MTP computers were sometimes suspicious of their
oversight. Rhodes relates, “ we had impressed upon our workers over and over and
over again that we were not watching them. We were not counting their output. ”
Rather, “ the only thing we asked of them is complete accuracy. ” This accuracy was
also inscribed in the worksheets themselves in a nontransparent, repetitive manner.
Rhodes and Blanch created worksheets, “ in which every operation had to be done
at least twice ” and in which this duplicity was hidden. Rhodes explains, “ for example,
if we added a and b we wouldn’t immediately say: add b and a. But some time
later we saw to it that b got added to a, and we had arrows connecting the answers
saying that these two answers should agree to, say one or two [units in] the last
place. If they did not get such an agreement, then they were to [erase the pertinent
portion] and [re-compute it]. ” 109 Again, the fact that these tables were largely
unnecessary — and hence not time-sensitive — made this emphasis on accuracy over
timeliness possible.

40 Chapter 1

 According to Rhodes, only two girls did not internalize the accuracy-ethic and
cheated. 110 Rhodes revealingly narrates the dishonesty of the “ colored ” girl who joined
the group after claiming that she was being discriminated against in another project:

 [Being] a softy, [I swallowed her story.] I should have checked with [her] boss and found out

why she was not liked. But I didn’t. And so I asked Gertrude’s permission and she said, “ All

right, let’s give her a chance. ” [And] she started working for us.

 Well, she hadn’t been with us long enough apparently to absorb that feeling of accuracy,

although, of course, we also gave her the [same] lecture that we gave everybody else. She must

have thought that the more she produces, the more we will think of her and the more anxious

we will be to keep her. [Her checker] reported to us that the girl was a whiz, she handed in

many more sheets than anyone else; and I began to feel very proud of myself, thinking, oh, I

got [me a] good girl, working so hard.

 You see, all that the [checker did was to examine the values, connected by the] arrows and

if they agreed within one or two [units,] he was satisfi ed. In her case he once mentioned, “ It’s

remarkable, they agree to the very last place. ” That should have given me an idea, but I was

too busy with other things. Well, one evening Gertrude and I sat down to do our regular job

of checking the sheets, and [when] we got [to] hers, [no values] differenced, absolutely nothing

differenced. That was something we couldn’t believe. How could [they] not difference? The

arrows showed perfect agreement — too perfect, as a matter of fact.

 Well, lots of things can happen. First of all, the formula can be wrong. [Or we] could have

made a mistake [in breaking down] the formula [while preparing] the worksheet. [Or] we could

have made a mistake in [a sign.] We could have made a mistake in a constant. It happened to

be my worksheet, so I checked [it] over: no mistake there. [She had to] copy certain informa-

tion from other Tables. Maybe [I] gave her the wrong tables. [An examination showed] that

she copied the correct Tables. What else could have happened? The point [is] that we were so

innocent and so trusting, it never occurred to us that what really happened [could have

occurred.] What had happened was that she would get the fi rst answer, and then when she

got to [it] the second time — where the arrows showed that they had to agree — and [they]

didn’t agree, she merely erased the [second] answer and copied down the fi rst [one.] We found

that out [when] Gertrude and I recomputed all her sheets. 111

 This remarkable story reveals the contradictions in this disciplinary system: although
Rhodes denies that they judged performance by speed, she thinks she got herself a “ good
girl ” when the “ colored girl ” performs quickly. Also, although math presumably requires
some intellectual labor, intelligence is condemned. The “ colored girl ” ’ s ability to fi gure
out the system, the algorithm, is denounced as cheating, and the managers ’ faith in
their own nontransparent plans described as “ trusting. ” These worksheets were an early
form of programming: a breakdown of a complex operation into sequence of simple
operations that depends on accurate and single-minded calculation. As this example
makes clear, such programming depended on mind-numbingly repetitive operations
by the “ dumb ” and the downtrodden, whose inept or deceitful actions could disrupt
the task at hand. Modern computing replaces these with vacuum tubes and transistors.

On Sourcery and Source Codes 41

As Alan Turing contended, “ the class of problems capable of solution by the machine
can be defi ned fairly specifi cally . . . [namely] those problems which can be solved by
human clerical labour, working to fi xed rules, and without understanding. ” 112

 Source code become “ thing ” — the erasure of execution — follows from the mecha-
nization of these power relations, the reworking of subject-object relations through
automation as both empowerment and enslavement and through repetition as both
mastery and hell. Embedded within the notion of instruction as source and the
drive to automate computing — relentlessly haunting them — is a constantly repeated
narrative of liberation and empowerment, wizards and (ex-)slaves.

 Automation as Sourcery

 Automatic programming, what we could call programming today, reveals the extent
to which automation and the history of programming cannot be considered a simple
deskilling (Kraft ’ s argument) or a march toward greater human power. Rather, through
automation, expertise is both created and called into question: it is something that
coders did not simply fear, but also appreciated and drove.

 Automatic programming arose from a desire to reuse code and to recruit the com-
puter into its own operation — essentially, to transform singular instructions into a
language a computer could write. As Koss, an early UNIVAC programmer, explains:

 Writing machine code involved several tedious steps — breaking down a process into discrete

instructions, assigning specifi c memory locations to all the commands, and managing the I/O

buffers. After following these steps to implement mathematical routines, a sub-routine library,

and sorting programs, our task was to look at the larger programming process. We needed to

understand how we might reuse tested code and have the machine help in programming. As

we programmed, we examined the process and tried to think of ways to abstract these steps

to incorporate them into higher-level language. This led to the development of interpreters,

assemblers, compilers, and generators — programs designed to operate on or produce other

programs, that is, automatic programming. 113

 Automatic programming is an abstraction that allows the production of computer-
enabled human-readable code — key to the commodifi cation and materialization of
software and to the emergence of higher-level programming languages.

 Higher-level programming languages, unlike assembly language, explode one ’ s
instructions and enable one to forget the machine. In them, simple operations often
call a function, making it a metonymic language par excellence. These languages also
place everyone in the position of the planner, without the knowledge of the coder.
They enable one to run a program on more than one machine — a property now
assumed to be a “ natural ” property of software (“ direct programming ” led to a unique
confi guration of cables; early machine language could be iterable but only on the same
machine — assuming, of course, no engineering faults or failures). In order to emerge

42 Chapter 1

as a language or a source, software and the “ languages ” on which it relies had to
become iterable. With programming languages, the product of programming would
no longer be a running machine but rather this thing called software — something
theoretically (if not practically) iterable, repeatable, reusable, no matter who wrote it
or what machine it was destined for; something that inscribes the absence of both the
programmer and the machine in its so-called writing. 114 Programming languages
enabled the separation of instruction from machine, of imperative from action, a move
that fostered the change in the name of source code itself, from “ pseudo ” to “ source. ”
Pseudocode intriguingly stood both for the code as language and for the code as
program (i.e., source code). The manual for UNIVAC ’ s A-2 compiler, for instance,
defi nes pseudocode as “ computer words other than the machine (C-10) code, design
[sic] with regard to facilitating communications between programmer and computer.
Since a pseudo-code cannot be directly executed by the computer, there must be pro-
grammed a modifi cation, interpretation or translation routine which converts the
pseudo-codes to machine instruction and routines. ” 115 Pseudocode, which enables one
to move away from machine specifi city, is called “ information ” — what later would
become a ghostly immaterial substance — rather than code.

 According to received wisdom, these fi rst attempts to automate programming — the
 “ pseudo ” — were resisted by “ real ” programmers. 116 John Backus, developer of FORTRAN,
claims that early machine language programmers were engaged in a “ black art ” ; they
had a “ chauvinistic pride in their frontiersmanship and a corresponding conservatism,
so many programmers of the freewheeling 1950s began to regard themselves as
members of a priesthood guarding skills and mysteries far too complex for ordinary
mortals. ” 117 Koss similarly argues, “ without these higher-level languages and processes
. . . , which democratized problem solving with the computer, I believe programming
would have remained in the hands of a relatively small number of technically oriented
software writers using machine code, who would have been essentially the high priests
of computing. ” 118

 This story of a “ manly ” struggle against automatic programming resonates with
narratives of mechanical computing itself as “ feminizing ” numerical analysis. Whirl-
wind team member Bob Everett offers the following summary of a tale describing two
different ways of approaching automatic computing, which was told at Aiken ’ s mid-
1940s meeting: “ One was the woman who gets married, and that ’ s fi ne, and she looks
ahead to a life-time of three meals a day, 365 days a year, and dishes to wash after
each one of them. Her husband brings her home from the honeymoon, and she dis-
covers he ’ s bought her an automatic dishwasher. That ’ s one way. The other way is the
guy who decides to climb a mountain, and he buys all the rope, pitons, and one thing
and another, and he goes to the mountain and fi nds that somebody has built a funicu-
lar railway. ” 119 According to this description, automatic computing is feminine or
emasculating: an escape from domestic drudgery or the automation of a properly

On Sourcery and Source Codes 43

masculine enterprise. Thus, it is not just the introduction of automatic programming
that inspired narratives of masculine expertise under siege, but also the introduction
of — or, more properly, the appreciation of — the (automatic) computer.

 In a related manner, Hopper (and perhaps only Hopper) experienced the U.S. Navy,
in particular her initial training as a thirty-seven-year-old woman, as “ the most com-
plete freedom I ’ d ever had. ” Whereas her younger counterparts rebelled “ against the
uniforms and the regulations, ” she embraced the Navy ’ s strict structure as a release
from domestic duties. As she relates, “ All of a sudden I didn’t have to decide anything,
it was all settled. I didn ’ t even have to bother to decide what I was going to wear in the
morning, it was there. I just picked it up and put it on. So for me all of a sudden I was
relieved of all minor decisions. . . . I didn ’ t even have to fi gure out what I was going to
cook for dinner. ” The diffi culties of domestic life and sacrifi ce during World War II
colored Hopper ’ s enthusiasm, since “ housekeeping had gotten to be quite a chore by
then to fi gure out how much meat you could have and could you give dad some sugar
 ’ cause he loved it and you might have some extra points. That ’ s when I learned to
drink most of my drinks without any sugar in them so that dad could have it. And we
had very little gasoline and we had to have a car and you had to plan every trip very
carefully. Well, all of a sudden I ’ m in midshipmen ’ s school and all of a sudden you
don ’ t have to do any of it. 120 Importantly, though, this release was also an insertion
into a well-defi ned system, in which one both gave and received commands. When a
 Voice of America interviewer asked, “ You are supposed to command, but also to conform
and obey. How do you come to terms with those two extremes? ” Hopper replied, “ The
essential basic principle of the Navy is leadership. And leadership is a two-way street.
It is loyalty up and loyalty down. Respect your superior, keep him informed of what
you are doing, and take care of your crew. That is everyone ’ s responsibility. ” 121

 Automatic programming, seen as freeing oneself from both drudgery and knowl-
edge, thus calls into question the simple narrative of it as dispersing a reluctant
 “ priesthood ” of machine programmers. This narrative of resistance assumes that pro-
grammers naturally enjoyed tedious and repetitive numerical tasks and as well as
developing singular solutions for their clients. The “ mastery ” of computing can easily
be understood as “ suffering. ” Indeed, Hopper called her early days with the Harvard
Mark 1 her “ sufferings ” and argued, “ experienced programmers are always anxious
to make the computer carry out as much routine work as they can. ” 122 Harry Reed,
an early ENIAC programmer, relays, “ the whole idea of computing with the ENIAC
was a sort of hair-shirt kind of thing. Programming for the computer, whatever it
was supposed to be, was a redemptive experience — one was supposed to suffer to do
it. ” According to Reed, programmers were actively trying to convince people to write
small programs for themselves. In the 1970s, he “ actually had to take my Division
and sit everybody down who hadn ’ t taken a course in FORTRAN, because, by God,
they were going to write their own programs now. We weren ’ t going to get computer

44 Chapter 1

specialists to write simple little programs that they should have been writing. 123 Also,
the fi rst programmers were the fi rst writers of reusable subroutines. Holberton, for
instance, developed the fi rst SORT generator to save her colleagues ’ time, “ I felt
for all the work that Betty Jean and I had done on sorting methods, it was a shame
for people to have to sit down and re-do and re-code that same thing even though
they could use the books to do it, if it could be done by a machine. And that ’ s the
reason, and it only took six months to program the thing. That ’ s six more months. ” 124
Thus, rather than programmers circling the wagons to protect their positions, it
would seem that many programmers themselves welcomed and contributed to the
success of automatic programming.

 As well, since programmers were in incredible demand in the 1950s through the
1960s, the need to create boundaries to protect jobs seems odd. Although compilers
and interpreters may not have been accepted immediately, especially by those already
trained in machine programming, the resistance may have stemmed more from the
work environment than from personal arrogance. Coders were under great pressure
to be as effi cient as possible. As Holberton and Bartik relay in a 1973 interview, early
coders often developed a persecution complex, because machine time was the most
important and expensive thing:

 BARTIK: The worst sin that you could commit was to waste that machine time. So that we really

became paranoid.

 HOLBERTON: Mhm. Effi ciency.

 BARTIK: We thought everybody was after us.

 TROPP: [Laughter]

 BARTIK: For our ineffi ciency.

 HOLBERTON: You wasted one add time, you were being ineffi cient.

 BARTIK: So it was fi ne for us to struggle for two days to cut off the slightest amount on that

machine. 125

 Compilers were arguably accepted because the demand for programmers meant a loss
in quality (an ever widening recruitment) — programming effi ciently in machine
language therefore became a mark of expertise. In this sense, the introduction of
automatic programming, which set a certain standard of machine effi ciency, helped
to produce the priesthood it was supposedly displacing.

 Corporate and academic customers, for whom programmers were orders of magni-
tude cheaper per hour than computers, do seem to have resisted automatic program-
ming. Jean Sammet, an early female programmer, relates, in her infl uential Programming
Languages: History and Fundamentals , that customers objected to compilers on the
ground that they “ could not turn out object code as good as their best programmers.
A signifi cant selling campaign to push the advantages of such systems was underway
at that time, with the spearhead being carried for the numerical scientifi c languages
(i.e., FORTRAN) and for ‘ English-language-like ’ business data-processing languages by

On Sourcery and Source Codes 45

Remington Rand (and Dr. Grace Hopper in particular). ” 126 This selling campaign not
only pushed higher-level languages (by devaluing humanly produced programs), it
also pushed new hardware: to run these programs, one needed more powerful
machines. The government ’ s insistence on standardization, most evident in the devel-
opment and widespread use of COBOL, itself a language designed to open up program-
ming to a wider range of people, fostered the general acceptance of higher-level
languages, which again were theoretically, if not always practically, machine indepen-
dent or iterable. The hardware-upgrade cycle was normalized in the name of saving
programming time.

 This “ selling campaign ” led to what many have heralded as the democratization
of programming, the opening of the so-called priesthood of programmers. In Sammet ’ s
view, this was a partial revolution

 in the way in which computer installations were run because it became not only possible, but

quite practical to have engineers, scientists, and other people actually programming their own

problems without the intermediary of a professional programmer. Thus the confl ict of the open

versus closed shop became a very heated one, often centering [on] the use of FORTRAN as the

key illustration for both sides. This should not be interpreted as saying that all people with

scientifi c numerical problems to solve immediately sat down to learn FORTRAN; this is clearly

not true but such a signifi cant number of them did that it has had a major impact on the

entire computer industry. One of the subsidiary side effects of FORTRAN was the introduction

of FORTRAN Monitor System [IB60]. This made the computer installation much more effi cient

by requiring less operator intervention for the running of the vast number of FORTRAN

(as well as machine language) programs. 127

 The democratization or “ opening ” of computing, which gives the term open in open
source a different resonance, would mean the potential spread of computing to those
with scientifi c numerical problems to solve and the displacement of human operators
by operating systems. But the language of priests and wizards has hardly faded and
scientists have always been involved with computing, even though computing has
not always been considered to be a worthy scientifi c pursuit. The history of computing
is littered with moments of “ computer liberation ” that are also moments of greater
obfuscation. 128

 Higher level programming languages — automatic programming — may have been
sold as offering the programmer more and easier control, but they also necessitated
blackboxing even more the operations of the machine they supposedly instructed.
Democratization did not displace professional programmers but rather buttressed their
position as professionals by paradoxically decreasing their real power over their
machines, by generalizing the engineering concept of information.

 So what are we to do with these contradictions and ambiguities? As should be clear
by now, these many contradictions riddling the development of automatic program-
ming were key to its development, for the automation of computing is both an

46 Chapter 1

acquisition of greater control and freedom, and a fundamental loss of them. The
narrative of the “ opening ” of programming reveals the tension at the heart of pro-
gramming and control systems: are they control systems or servomechanisms (Norbert
Wiener ’ s initial name for them)? Is programming a clerical activity or an act of
Hobbesian mastery? Given that the machine takes care of “ programming proper ” — the
sequence of events during execution — is programming programming at all? What is
after all compacted in the coinciding changes in the titles of “ operators ” to “ program-
mers ” and of “ mathematicians ” to “ programmers ” ? The notion of the priesthood of
programming erases this tension, making programming always already the object of
jealous guardianship, and erasing programming ’ s clerical underpinnings. 129

 Programming in the 1950s does seem to have been fun and fairly gender balanced,
in part because it was so new and in part because it was not as lucrative as hardware
design or even sales: the profession was gender neutral in hiring if not pay because it
was not yet a profession. 130 The “ ENIAC girls ” were fi rst hired as subprofessionals, and
some had to acquire more qualifi cations in order to retain their positions. As many
female programmers quit to have children or get married, men (and compilers) took
their increasingly lucrative positions. Programming ’ s clerical and arguably feminine
underpinnings — both in terms of personnel and of command structure — became
buried as programming sought to become an engineering and academic fi eld in its
own right. 131 Democratization did not displace professional programmers but rather
buttressed their position as professionals by paradoxically decreasing their real power
over their machines. It also, however, made programming more pleasurable.

 Causal Pleasure

 The distinction between programmers and users is gradually eroding. With higher-
level languages, programmers are becoming more like simple users. Crucially, though,
the gradual demotion of programmers has been offset by the power and pleasure of
programming. To program in a higher-level language is to enter a magical world — it
is to enter a world of logos, in which one ’ s code faithfully represents one ’ s intentions,
albeit through its blind repetition rather than its “ living ” status. 132 Edwards argues,
 “ programming can produce strong sensations of power and control ” because the
computer produces an internally consistent if externally incomplete microworld, a
 “ simulated world, entirely within the machine itself, that does not depend on instru-
mental effectiveness. That is, where most tools produce effects on a wider world of
which they are only a part, the computer contains its own worlds in miniature. . . .
In the microworld, as in children ’ s make-believe, the power of the programmer is
absolute. ” 133 Joseph Weizenbaum, MIT professor, creator of ELIZA (an early program
that imitated a Rogerian therapist) and member of the famed MIT AI (Artifi cal Intel-
ligence) lab, similarly contends:

On Sourcery and Source Codes 47

 The computer programmer . . . is a creator of universes for which he alone is the lawgiver. So,

of course, is the designer of any game. But universes of virtually unlimited complexity can be

created in the form of computer programs. Moreover, and this is a crucial point, systems so

formulated and elaborated act out their programmed scripts. They compliantly obey their laws

and vividly exhibit their obedient behavior. No playwright, no stage director, no emperor,

however powerful, has ever exercised such absolute authority to arrange a stage or a fi eld of

battle and to command such unswervingly dutiful actors or troops. 134

 The progression from playwright to stage director to emperor is telling: programming
languages, like neoliberal economics, model the world as a “ game. ” 135 To return to the
notion of “ code is law, ” programming languages establish the programmer as a sov-
ereign subject, for whom there is no difference between command given and command
completed. As a lawgiver more powerful than a playwright or emperor, the program-
mer can “ say ” “ let there be light ” and there is light. Iterability produces both language
and subject. Importantly, Weizenbaum views the making performative or automati-
cally executable of words as the imposition of instrumental reason, inseparable from
the process of “ enlightenment ” critiqued by the Frankfurt school. 136 Instrumental
reason, he argues, “ has made out of words a fetish surrounded by black magic. And
only the magicians have the rights of the initiated. Only they can say what words
mean. And they play with words and they deceive us. ” 137

 Programming languages offer the lure of visibility, readability, logical if magical
cause and effect. As Brooks argues, “ one types the correct incantation on the keyboard,
and a display screen comes to life, showing things that never were nor could be. ” 138
One ’ s word creates something living. Consider this ubiquitous “ hello world ” program
written in C++ (“ hello world ” is usually the fi rst program a person will write):

 // this program spits out “ hello world ”

 #include < iostream.h >

 int main ()

 {

 cout < < “ Hello World! ” ;

 return 0;

 }

 The fi rst line is a comment line, explaining to the human reader that this program
spits out “ Hello World!. ” The next line directs the compiler ’ s preprocessor to include
iostream.h, a standard fi le to deal with input and output to be used later. The third
line, “ int main (), ” begins the main function of the program; “ cout < < ‘ Hello World! ’ ; ”
prints “ Hello World! ” to the screen (“ cout ” is defi ned in iostream.h); “ return 0 ” ter-
minates the main function and causes the program to return a 0 if it has run correctly.

48 Chapter 1

Although not immediately comprehensible to someone not versed in C++, this
program nonetheless seems to make some sense, and seems to be readable. It comprises
a series of imperatives and declaratives that the computer presumably understands
and obeys. When it runs, it follows one ’ s commands and displays “ Hello World!. ”

 It is no accident that “ hello world ” is the fi rst program one learns because it is
easy, demonstrating that we can produce results immediately. This ease, according to
Weizenbaum, is what makes programming so seductive and dangerous:

 It happens that programming is a relatively easy craft to learn. . . . And because programming

is almost immediately rewarding, that is, because a computer very quickly begins to behave

somewhat in the way the programmer intends it to, programming is very seductive, especially

for beginners. Moreover, it appeals most to precisely those who do not yet have suffi cient

maturity to tolerate long delays between an effort to achieve something and the appearance

of concrete evidence of success. Immature students are therefore easily misled into believing

that they have truly mastered a craft of immense power and of great importance when, in fact,

they have learned only its rudiments and nothing substantive at all. 139

 The seeming ease of programming hides a greater diffi culty — executability leads to
unforeseen circumstances, unforeseen or buggy repetitions. Programming offers a
power that, Weizenbaum argues, corrupts as any power does. 140 What corrupts, Weizen-
baum goes on to explain, however, is not simply ease, but also this combination of ease and
diffi culty . Weizenbaum argues that programming creates a new mental disorder: the
compulsion to program, which he argues hackers, who “ hack code ” rather than
 “ work, ” suffer from (although he does note that not all hackers are compulsive
programmers). 141

 To explain this addiction, Weizenbaum explains the parallels between “ the magical
world of the gambler ” and the magical world of the hacker — both entail megalomania
and fantasies of omnipotence, as well as a “ pleasureless drive for reassurance. ” 142 Like
gambling, programming can be compulsive because it both rewards and challenges
the programmer. It is driven by “ two apparently opposing facts: fi rst, he knows that
he can make the computer do anything he wants it to do; and second, the computer
constantly displays undeniable evidence of his failures to him. It reproaches him.
There is no escaping this bind. The engineer can resign himself to the truth that there
are some things he doesn ’ t know. But the programmer moves in a world entirely of
his own making. The computer challenges his power, not his knowledge. ” 143 According
to Weizenbaum, because programming engages power rather than truth, it can induce
a paranoid megalomania in the programmer. 144 Because this knowledge is never
enough, because a new bug always emerges, because an unforeseen wrinkle causes
divergent unexpected behavior, the hacker can never stop. Every error seems correct-
able; every error points to the hacker ’ s lack of foresight; every error leads to another.
Thus, unlike the “ useful programmer, ” who “ works ” by solving the problem at hand
and carefully documents his code, the hacker aimlessly hacks code: programming

On Sourcery and Source Codes 49

becomes a technique, a game without a goal and thus without an end. Hackers ’ skills
are thus “ disembodied ” and this disembodiment transforms their physical appearance:
Weizenbaum describes them as “ bright young men of disheveled appearance, often
with sunken glowing eyes . . . sitting at computer consoles, their arms tensed and
waiting to fi re their fi ngers, already poised to strike, at the buttons and keys on which
their attention seems to be as riveted as a gamer ’ s on the rolling dice. 145

 Although Weizenbaum is quick to pathologize hackers as pleasureless pitiful crea-
tures, hackers themselves emphasize programming as pleasurable — and their lack of
 “ usefulness ” can actually be what is most productive and promising about program-
ming. Linus Torvalds, for instance, argues that he, as an eternal grad student, decided
to build the Linux operating system core just “ for fun. ” Torvalds further views the
decisions programming demands as rescuing programming from becoming tedious.
 “ Blind obedience on its own, while initially fascinating, ” he writes, “ obviously does
not make for a very likable companion. In fact, that part gets boring fairly quickly.
What makes programming so engaging is that, while you can make the computer
do what you want, you have to fi gure out how . ” 146 Richard Stallman, who fi ts
Weizenbaum ’ s description of a hacker (and who was in the AI lab, probably building
those indispensable functions) likewise emphasizes the pleasure, but more important
the “ freedom ” and “ freeness ” associated with programming — something that stems
from programming as not simply the production of a commercial (or contained)
product. Hacking reveals the extent to which source code can become a fetish:
something endless that always leads us pleasurably, as well as anxiously, astray.

 Source Code as Fetish

 Source code as source means that software functions as an axiom, as “ a self-evident
proposition requiring no formal demonstration to prove its truth, but received and
assented to as soon as it is mentioned. ” 147 In other words, whether or not source code
is only a source after the fact or whether or not software can be physically separated
from hardware, 148 software is always posited as already existing, as the self-evident
ground or source of our interfaces. Software is axiomatic. As a fi rst principle, it fastens
in place a certain neoliberal logic of cause and effect, based on the erasure of execution
and the privileging of programming that bleeds elsewhere and stems from elsewhere as
well. 149 As an axiomatic, it, as Gilles Deleuze and F é lix Guattari argue, artifi cially limits
decodings. 150 It temporarily limits what can be decoded, put into motion, by setting up
an artifi cial limit — the artifi cial limit of programmability — that seeks to separate infor-
mation from entropy, by designating some entropy information and other “ non-
intentional ” entropy noise. Programmability, discrete computation, depends on
the disciplining of hardware and programmers, and the desire for a programmable
axiomatic code. Code, however, is a medium in the full sense of the word. As a

50 Chapter 1

medium, it channels the ghost that we imagine runs the machine — that we see as we
don ’ t see — when we gaze at our screen ’ s ghostly images.

 Understood this way, source code is a fetish. According to the OED, a fetish was
originally an ornament or charm worshipped by “ primitive peoples . . . on account
of its supposed inherent magical powers. ” 151 The term fetisso stemmed from the trade
of small wares and magic charms between the Portuguese merchants and West
Africans; Charles de Brosses coined the term fetishism to describe “ primitive religions ”
in 1757. According to William Pietz, Enlightenment thinkers viewed fetishism as a
 “ false causal reasoning about physical nature ” that became “ the defi nitive mistake of
the pre-enlightened mind: it superstitiously attributed intentional purpose and desire
to material entities of the natural world, while allowing social action to be determined
by the . . . wills of contingently personifi ed things, which were, in truth, merely the
externalized material sites fi xing people ’ s own capricious libidinal imaginings. ” 152 That
is, fetishism, as “ primitive causal thinking, ” derived causality from “ things ” — in all
the richness of this concept — rather than from reason:

 Failing to distinguish the intentionless natural world known to scientifi c reason and motivated

by practical material concerns, the savage (so it was argued) superstitiously assumed the exis-

tence of a unifi ed causal fi eld for personal actions and physical events, thereby positing reality

as subject to animate powers whose purposes could be divined and infl uenced. Specifi cally,

humanity ’ s belief in gods and supernatural powers (that is, humanity ’ s unenlightenment) was

theorized in terms of prescientifi c peoples ’ substitution of imaginary personifi cations for the

unknown physical causes of future events over which people had no control and which they

regarded with fear and anxiety. 153

 A fetish allows one to visualize what is unknown — to substitute images for causes.
Fetishes allow the human mind both too much and not enough control by establish-
ing a “ unifi ed causal fi eld ” that encompasses both personal actions and physical
events. Fetishes enable a semblance of control over future events — a possibility of
infl uence, if not an airtight programmability — that itself relies on distorting real social
relations into material givens.

 This notion of fetish as false causality has been most important to Karl Marx ’ s
diagnosis of capital as fetish. Marx famously argued:

 the commodity-form . . . is nothing but the determined social relation between men themselves

which assumes here, for them, the phantasmagoric form of a relation between things. In order,

therefore, to fi nd an analogy we must take a fl ight into the misty realm of religion. There the

products of the human head appear as autonomous fi gures endowed with a life of their own,

which enter into relations both with each other and with the human race. So it is in the world

of commodities with the products of men ’ s hands. I call this the . . . fetishism. 154

 The capitalist thus confuses social relations and the labor activities of real individuals
with capital and its seemingly magical ability to reproduce. For, “ it is in interest-

On Sourcery and Source Codes 51

bearing capital . . . that capital fi nds its most objectifi ed form, its pure fetish form.
. . . Capital — as an entity — appears here as an independent source of value; a some-
thing that creates value in the same way as land [produces] rent, and labor wages. ” 155
Both these defi nitions of fetish also highlight the relation between things and men:
men and things are not separate, but rather speak with and to one another. That is,
things are not simply objects that exist outside the human mind, but are rather tied
to events, to the timing of events.

 The parallel to source code seems obvious: we “ primitive folk ” worship source
code as a magical entity — as a source of causality — when in truth the power lies
elsewhere, most importantly, in social and machinic relations. If code is performa-
tive, its effectiveness relies on human and machinic rituals. Intriguingly though, in
this parallel, Enlightenment thinking — a belief that knowing leads to control, to a
release from tutelage — is not the “ solution ” to the fetish, but, rather, what grounds
it, for source code historically has been portrayed as the solution to wizards and
other myths of programming: machine code provokes mystery and submission; source
code enables understanding and thus institutes rational thought and freedom. Knowl-
edge, according to Weizenbaum, sustains the hacker ’ s aimless actions. To offer a
more current example of this logic than the FORTRAN one cited earlier, Richard
Stallman, in his critique of nonfree software, has argued that an executable program
 “ is a mysterious bunch of numbers. What it does is secret. ” 156 Against this magical
execution, source code supposedly enables an understanding and a freedom — the
ability to map and know the workings of the machine, but, again, only through a
magical erasure of the gap between source and execution, an erasure of execution
itself. If we consider source code as fetish, the fact that source code has hardly
deprived programmers of their priestlike/wizard status makes complete sense. If any-
thing, such a notion of programmers as superhuman has been disseminated ever
more and the history of computing — from direct manipulation to hypertext — has
been littered by various “ liberations. ”

 But clearly, source code can do and be things: it can be interpreted or compiled; it
can be rendered into machine-readable commands that are then executed. Source code
is also read by humans and is written by humans for humans and is thus the source
of some understanding. Although Ellen Ullman and many others have argued, “ a
computer program has only one meaning: what it does. It isn ’ t a text for an academic
to read. Its entire meaning is its function, ” source code must be able to function, even
if it does not function — that is, even if it is never executed. 157 Source code ’ s readability
is not simply due to comments that are embedded in the source code, but also due to
English-based commands and programming styles designed for comprehensibility.
This readability is not just for “ other programmers. ” When programming, one must
be able to read one ’ s own program — to follow its logic and to predict its outcome,
whether or not this outcome coincides with one ’ s prediction.

52 Chapter 1

 This notion of source code as readable — as creating some outcome regardless of its
machinic execution — underlies “ codework ” and other creative projects. The Internet
artist Mez, for instance, has created a language called mezangelle that incorporates
formal code and informal speech. Mez ’ s poetry deliberately plays with programming
syntax, producing language that cannot be executed, but nonetheless draws on the
conventions of programming language to signify. 158 Codework, however, can also work
entirely within an existing programming language. Graham Harwood ’ s perl poem, for
example, translates William Blake ’ s nineteenth-century poem “ London ” into London.
pl, a script that contains within it an algorithm to “ fi nd and calculate the gross lung-
capacity of the children screaming from 1792 to the present. ” 159 Regardless of whether
or not it can execute, code can be — must be — worked into something meaningful.
Source code, in other words, may be the source of things other than the machine
execution it is “ supposed ” to engender.

 Source code as fetish, understood psychoanalytically, embraces this nonteleologi-
cal potential of source code, for the fetish is a deviation that does not “ end ” where
it should. It is a genital substitute that gives the fetishist nonreproductive pleasure.
It allows the child to combat castration — his inscription within the world of paternal
law and order — for both himself and his mother, while at the same time accom-
modating to his world ’ s larger oedipal structure. It both represses and acknowledges
paternal symbolic authority. According to Freud, the fetish, formed the moment
the little boy discovers his mother ’ s “ lack, ” is “ a substitute for the woman ’ s (moth-
er ’ s) phallus which the little boy once believed in and does not wish to forego. ” 160
As such, it both fi xes a singular event — turning time into space — and enables a
logic of repetition that constantly enables this safeguarding. As Pietz argues, “ the
fetish is always a meaningful fi xation of a singular event; it is above all a ‘ histori-
cal ’ object, the enduring material form and force of an unrepeatable event. This
object is ‘ territorialized ’ in material space (an earthly matrix), whether in the form
of a geographical locality, a marked site on the surface of the human body, or a
medium of inscription or confi guration defi ned by some portable or wearable
thing. ” 161 Even though it fi xes a singular event, the fetish works only because it
can be repeated, but again, what is repeated is both denial and acknowledgment,
since the fetish can be “ the vehicle both of denying and asseverating the fact of
castration. ” 162 Slavoj Ž i ž ek draws on this insight to explain the persistence of the
Marxist fetish:

 When individuals use money, they know very well that there is nothing magical about

it — that money, in its materiality, is simply an expression of social relations . . . on an

everyday level, the individuals know very well that there are relations between people behind

the relations between things. The problem is that in their social activity itself, in what they

are doing , they are acting as if money, in its material reality is the immediate embodiment

of wealth as such. They are fetishists in practice, not in theory. What they “ do not know, ”

On Sourcery and Source Codes 53

what they misrecognize, is the fact that in their social reality itself — in the act of commodity

exchange — they are guided by the fetishistic illusion. 163

 Fetishists, importantly, know what they are doing — knowledge, again, is not an answer
to fetishism, but rather what sustains it. The knowledge that source code offers is no
cure for source code fetishism: if anything, this knowledge sustains it. As the next
chapter elaborates, the key question thus is not “ what do we know? ” but rather “ what
do we do? ”

 To make explicit the parallels, source code, like the fetish, is a conversion of event
into location — time into space — that does affect things, although not necessarily in
the manner prescribed. Its effects can be both productive and nonexecutable. Also, in
terms of denial and acknowledgment, we know very well that source code in that state
and without the intercession of other “ layers ” is not executable, yet we persist in
treating it as so. And it is this glossing over that makes possible the ideological belief
in programmability.

 Code as fetish means that computer execution deviates from the so-called source,
as source program does from programmer. Turing, in response to the objection that
computers cannot think because they merely follow human instructions, contends:

 Machines take me by surprise with great frequency. . . . The view that machines cannot give

rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are

particularly subject. This is the assumption that as soon as a fact is presented to a mind all

consequences of that fact spring into the mind simultaneously with it. It is a very useful

assumption under many circumstances, but one too easily forgets that it is false. A natural

consequence of doing so is that one then assumes that there is no virtue in the mere working

out of consequences from data and general principles. 164

 This erasure of the vicissitudes of execution coincides with the confl ation of data
with information, of information with knowledge — the assumption that what is most
diffi cult is the capture, rather than the analysis, of data. This erasure of execution
through source code as source creates an intentional authorial subject: the computer,
the program, or the user, and this source is treated as the source of meaning. The
fact that there is an algorithm, a meaning intended by code (and thus in some way
knowable), sometimes structures our experience with programs. When we play a
game, we arguably try to reverse engineer its algorithm or at the very least link its
actions to its programming, which is why all design books warn against coincidence
or random mapping, since it can induce paranoia in its users. That is, because an
interface is programmed, most users treat coincidence as meaningful. To the user, as
with the paranoid schizophrenic, there is always meaning: whether or not the user
knows the meaning, s/he knows that it regards him or her. To know the code is to
have a form of “ X-ray vision ” that makes the inside and outside coincide, and the
act of revealing sources or connections becomes a critical act in and of itself. 165 Code

54 Chapter 1

as source leads to that bizarre linking of computers to visual culture, to transparency,
which constitutes the subject of chapter 2.

 Code as fetish thus underscores code as thing: code as a “ dirty window pane, ”
rather than as a window that leads us to the “ source. ” Code as fetish emphasizes
code as a set of relations, rather than as an enclosed object, and it highlights both
the ambiguity and the specifi city of code. Code points to, it indicates, something
both specifi c and nebulous, both defi ned and undefi nable. Code, again, is an abstrac-
tion that is haunted, a source that is a re-source, a source that renders the machinic —
 with its annoying specifi cities or “ bugs ” — ghostly. As Thomas Keenan argues,
 “ haunting can only be thought as the diffi cult (simultaneous and impossible) move-
ment of remembering and forgetting, inscribing and erasing, the singular and the
different. ” 166 Embracing software as thing, in theory and in practice, opens us to the
ways in which the fact that we cannot know software can be an enabling condition:
a way for us to engage the surprises generated by a programmability that, try as it
might, cannot entirely prepare us for the future.

 Computers that Roar

 Computers, like other media, are metaphor machines: they both depend on and per-
petuate metaphors. More remarkably, though, they — through their status as “ universal
machines ” — have become metaphors for metaphor itself.

 From fi les to desktops, windows to spreadsheets, metaphors dominate user inter-
faces. In the 1990s (and even today), textbooks of human – computer interface (HCI)
design described metaphors as central to “ user-friendly ” interfaces. Metaphors make
abstract computer tasks familiar, concrete, and easy to grasp, since through them we
allegedly port already existing knowledge to new tasks (for instance, experience with
documents to electronic word processing). Metaphors proliferate not only in inter-
faces, but also in computer architecture: from memory to buses, from gates to the
concept of architecture itself. Metaphors similarly structure software: viruses, UNIX
daemons, monitors, back orifi ce attacks (in which a remote computer controls the
actions of one ’ s computer), and so on. At the contested “ origin ” of modern computing
lies an analogy turned metaphor: John von Neumann deliberately called the major
components of modern (inhuman) computers “ organs, ” after cybernetic understand-
ings of the human nervous system. Drawing from the work of Alan Turing and Charles
Babbage, Jon Agar has argued that the computer, understood as consisting of software
and hardware, is a “ government machine. ” Like the British Civil Service, it is a
 “ general-purpose ‘ machine ’ governed by a code. ” 1

 The role of metaphor, however, is not simply one way. Like metaphor itself, it
moves back and forth. Computers have become metaphors for the mind, for culture,
for society, for the body, affecting the ways in which we experience and conceive of
 “ real ” space: from the programmed mind running on the hard-wired brain to repro-
grammable culture versus hard-wired nature, from neuronal networks to genetic pro-
grams. Paul Edwards has shown how computers as metaphors and machines were
crucial to the Cold War and to the rise of cognitive psychology, an insight developed
further by David Golumbia in his analysis of computationalism. As cited earlier, Joseph
Weizenbaum has argued that computers have become metaphors for all “ effective
procedures, ” that is, for anything that can be solved in a prescribed number of steps,

56 Computers that Roar

such as gene expression and clerical work. 2 Weizenbaum also notes that the power of
computer as metaphor is itself based on “ only the vaguest understanding of a diffi cult
and complex scientifi c concept. . . . The public vaguely understands — but is nonethe-
less fi rmly convinced — that any effective procedure can, in principle, be carried out
by a computer . . . it follows that a computer can at least imitate man, nature, and
society in all their procedural aspects. ” 3 Crucially, this means that, at least in popular
opinion, the computer is a machine that can imitate, and thus substitute for, all others
based on its programming. This vaguest understanding — software as thing — is neither
accidental to nor a contradiction of the computer as metaphor, but rather grounds
its appeal.

 Because computers are viewed as universal machines, they have become meta-
phors for metaphor itself: they embody a logic of substitution, a barely visible con-
ceptual system that orders and disorders. Metaphor is drawn from the Greek terms
 meta (change) and phor (carrying): it is a transfer that transforms. Aristotle defi nes
metaphor as consisting “ in giving the thing a name that belongs to something else;
the transference being either from genus to species, or from species to genus, or
from species to species, or on grounds of analogy. ” 4 George Lakoff and Mark Johnson
argue, “ The essence of metaphor is understanding and experiencing one kind of thing in
terms of another . ” 5 Metaphor is necessary “ because so many of the concepts that are
important to us are either abstract or not clearly delineated in our experience (the
emotions, ideas, time, etc.), we need to get a grasp on them by means of other
concepts that we understand in clearer terms (spatial orientations, objects, etc.). ” 6
Lakoff and Johnson argue that we live by metaphors (such as “ argument is war, ”
 “ events are objects, ” and “ happy is up ”), that they serve as the basis for our thoughts
and our actions. 7 Metaphors govern our actions because they are also “ grounded in
our constant interaction with our physical and cultural environments. ” 8 That is, the
similarities that determine a metaphor are based on our interactions with various
objects — it is therefore no accident that metaphors are thus prominent in “ interac-
tive ” design. Crucially, metaphors do not simply conceptualize a preexisting reality;
they also create reality. 9 Thus, they are not something we can “ see beyond, ” but
rather things necessary to seeing. Even to see beyond certain metaphors, they argue,
we need others. 10 Metaphor is an “ imaginative rationality ” : “ Metaphor . . . unites
reason and imagination. Reason, at the very least, involves categorization, entail-
ment, and inference. Imagination, in one of its many aspects, involves seeing one
kind of thing in terms of another kind of thing — what we have called metaphorical
thought. ” 11 This imaginative seeing one kind of thing in terms of another thing also
involves hiding: a metaphor, Thomas Keenan argues, means that “ something . . .
shows itself by hiding itself, by announcing itself as something else or in another
form. ” 12

Computers that Roar 57

 Paul Ricoeur, focusing more on metaphor as a linguistic entity, similarly stresses
the centrality and creative power of metaphor. To Ricoeur, metaphor grounds the pos-
sibility of logical thought. Ricoeur, drawing from Aristotle ’ s defi nition, argues that
change, movement, and transposition (and thus deviation, borrowing, and substitu-
tion) characterize metaphor. 13 By transposing an “ alien ” name, metaphor is a “ cate-
gorical transgression . . . a kind of deviance that threatens classifi cation itself. ” 14 Since
metaphor, however, also “ ‘ conveys learning and knowledge through the medium of
the genus, ’ ” Ricoeur contends, “ metaphor destroys an order only to invent a new one;
and that the category-mistake is nothing but the complement of a logic of discovery. ” 15
It is a form of making, of poesis, that grounds all forms of classifi cation. 16 This disor-
dering that is also an ordering, a dismantling that is also a redescription, is also
instructive and pleasurable — it offers us “ the pleasure of understanding that follows
surprise. ” 17 This movement from surprise to understanding is mirrored in metaphor
itself, which is a mode of animation, of change — it makes things visible, alive, and
actual by representing things in a state of activity. 18

 Computers, understood as universal machines, stand in for substitution itself.
Allegedly making possible the transformation of anything into anything else via
the medium of information, they are transference machines. They do not simply
change X into Y, they also animate both terms. They create a new dynamic reality:
the fi les they offer us are more alive; the text that appears on their screens invites
manipulation, addition, animation. Rather than stable text on paper, computers
offer information that is fl exible, programmable, transmissible, and ever-changing.
Even an image that appears stably on our screen is constantly refreshed and regen-
erated. Less obviously, computers — software in particular — also concretize Lakoff
and Johnson ’ s notion of metaphors as concepts that govern, that form consistent
conceptual systems: software is an invisible program that governs, that makes pos-
sible certain actions. But if computers are metaphors for metaphors, they also
(pleasurably) disorder, they animate the categorical archival system that grounds
knowledge.

 If theories of metaphor regularly assume that the vehicle (the image expressly
used) makes the abstract tenor (the idea represented) concrete — that one makes
something unfamiliar familiar through a known concrete vehicle — software as meta-
phor combines what we only vaguely understand with something equally vague.
It is not simply, then, that one part of the metaphor is “ hidden, ” but rather that
both parts — tenor and vehicle — are invisibly visible. This does not mean, however,
that software as metaphor fails. It is used regularly all the time because it succeeds
as a way to describe an ambiguous relation between what is visible and invisible,
for invisible laws as driving visible manifestations. Key to understanding the power
of software — software as power — is its very ambiguous thingliness, for it grounds

58 Computers that Roar

software ’ s attractiveness as a way to map — to understand and conceptualize — how
power operates in a world marked by complexity and ambiguity, in a world fi lled
with things we cannot fully understand, even though these things are marked by,
and driven by, rules that should be understandable, that are based on understand-
ability. Software is not only necessary for representation; it is also endemic of
transformations in modes of “ governing ” that make governing both more personal
and impersonal, that enable both empowerment and surveillance, and indeed make
it diffi cult to distinguish between the two.

 2 Daemonic Interfaces, Empowering Obfuscations

 Interfaces, in particular interactive GUIs (graphical user interfaces), are widely assumed
to have transformed the computer from a command-based instrument of torture to a
user-friendly medium of empowerment. From Douglas Engelbart ’ s vision of a system
to “ augment human intellect ” to Ben Shneiderman ’ s endorsement of “ direct manipu-
lation ” as a way to produce “ truly pleased users, ” GUIs have been celebrated as
enabling user freedom through (perceived) visible and personal control of the screen.
This freedom, however, depends on a profound screening: an erasure of the computer ’ s
machinations and of the history of interactive operating systems as supplementing —
 that is, supplanting — human intelligence. It also coincides with neoliberal manage-
ment techniques that have made workers both fl exible and insecure, both empowered
and wanting (e.g., always in need of training). 1

 Rather than condemning interfaces as a form of deception, designed to induce false
consciousness, this chapter investigates the extent to which this paradoxical combina-
tion of visibility and invisibility, of rational causality and profound ignorance, grounds
the computer as an attractive model for the “ real ” world. Interfaces have become
functional analogs to ideology and its critique — from ideology as false consciousness
to ideology as fetishistic logic, interfaces seem to concretize our relation to invisible
(or barely visible) “ sources ” and substructures. This does not mean, however, that
interfaces are simply ideological. Looking both at the use of metaphor within the early
history of human – computer-interfaces and at the emergence of the computer as meta-
phor, it contends that real-time computer interfaces are a powerful response to, and
not simply an enabler or consequence of, postmodern/neoliberal confusion. Both
conceptually and thematically, these interfaces offer their users a way to map and
engage an increasingly complex world allegedly driven by invisible laws of late capital-
ism. Most strongly, they induce the user to map constantly so that the user in turn
can be mapped. They offer a simpler, more reassuring analog of power, one in which
the user takes the place of the sovereign executive “ source, ” code becomes law, and
mapping produces the subject. These seemingly real-time interfaces emphasize the
power of user action and promise topsight for all: they allow one to move from the

60 Chapter 2

local detail to the global picture — through an allegedly traceable and concrete path —
 by simply clicking a mouse. Conceptually drawn from auto navigation systems, these
interfaces follow in the tradition of cybernetics (named after the Greek term kybernete
for steersmen or governor) as a way to navigate or control, through a process of
blackboxing.

 Because of this, they render central processes for computation — processes not under
the direct control of the user — daemonic: orphaned yet “ supernatural ” beings “ between
gods and men . . . ghosts of deceased persons, esp . deifi ed heroes. ” 2 Indeed, the inter-
face is “ haunted ” by processes hidden by our seemingly transparent GUIs that make
us even more vulnerable online, from malicious “ back doors ” to mundane data gather-
ing systems. Similar to chapter 1, this chapter thus does not argue we need to move
beyond specters and the undead, but rather contends that we should make our inter-
faces more productively spectral — by reworking rather than simply shunning the usual
modes of “ user empowerment. ”

 Interface, Intrafaith

 Interactive interfaces — live screens between man and machine — stem from military
projects, such as SAGE discussed in chapter 1. SAGE, according to Paul Edwards,
was “ a metaphor for total defense, ” a Cold War project that enclosed “ the United
States inside a radar ‘ fence ’ and an air-defense bubble. ” 3 Edwards describes SAGE
as both based on and the basis for the world as a closed world, “ an inescapably
self-referential space where every thought, word, and action is ultimately directed
back toward a central struggle. ” 4 (The opposite of a closed world is a green world,
in which “ the limits of law and rationality are surpassed. ”) 5 SAGE began as a uni-
versal cockpit simulator, but quickly evolved into a real-time network of digital
computers, designed to detect incoming Soviet missiles. Unfortunately, yet not atypi-
cally, it was obsolete by the time it was completed in 1963 due to the introduction
of intercontinental ballistic missiles. Despite this, SAGE is considered central to the
development of computing because it fostered many new technologies, including
digital real-time control systems, core-memory devices, and most importantly for
this chapter, graphical user displays.

 These graphical CRT interfaces were simulations of an analog technology: radar
(see fi gure 2.1). 6 Divided into X-Y coordinates, these displays allowed the users —
 military personnel tracking air space — to deploy a light pen to select potential hostile
aircraft tracks. This user ’ s control of the interface and the system depended on a
selective mapping that fi ltered as much as it represented, reducing all air traffi c to
blinking lines. Because of this direct real-time contact between user and computer,
SAGE and the test machines associated with it are widely considered to be predeces-
sors to personal interactive computing, albeit discontinuously (they were initially

Daemonic Interfaces, Empowering Obfuscations 61

 Figure 2.1
 SAGE operator at console, 1958, National Archives photo no. 342-B-003-14-K-43548

displaced by mainframes). 7 This screen, however, was an input device for the user,
not for the programmers/coders, who produced taped programs that operators would
load and run.

 Interactive operating systems, key to making screens serve as part of an input
system for all users (thus chipping away at the boundary between user and program-
mer), also stemmed from military funding, in particular projects related to artifi cial
intelligence (AI). Interactivity entailed giving over to the machine tasks that humans
could not accomplish. As John McCarthy, key to both AI and time-sharing operating
systems (OS), explains, the LISP programming language, used in early AI projects,
was designed “ in such a way that working with it interactively — giving it a command,
then seeing what happened, then giving it another command — was the best way to

62 Chapter 2

work with it. ” 8 Interactivity was necessary because of the limitations of procedural
programming and of early neural networks. That is, by the 1960s, the naivet é behind
John von Neumann ’ s declaration that “ anything that can be exhaustively and unam-
biguously described, anything that can be completely and unambiguously put into
words, is ipso facto realizable by a suitable fi nite neural network ” was becoming
increasingly apparent. 9 Since exhaustive and unambiguous description was diffi cult,
if not impossible, one needed to work “ interactively ” — not just automatically — with
a computer. The alleged father of the Internet J. C. R. Licklider ’ s vision of “ Man-
Computer Symbiosis ” encapsulates this intertwining of interactivity and human fal-
libility nicely. Describing the partnership between men and computers, Licklider
predicts, “ man-computer symbiosis is probably not the ultimate paradigm for complex
technological systems. It seems entirely possible that, in due course, electronic or
chemical ‘ machines ’ will outdo the human brain in most functions we now consider
exclusively within its province. ” 10 Similarly Jay Forrester, the force behind SAGE ’ s
development, contended, “ the human mind is not adapted to interpret[] how
social systems behave . . . the mental model is fuzzy . . . incomplete . . . imprecisely
stated. ” 11 The goal, then, was to develop artifi cial systems to combat human frailty
by usurping the human.

 Given this background and the ways in which the screen screens, the emergence
of user-friendly interfaces as a form of “ computer liberation ” seems dubious at best
and obfuscatory at worst. So, why and how is it that interactive systems have become
synonymous with user and machine freedom? What do we mean by freedom here?
What do these systems offer and what happens when we use them?

 Direct Manipulation

 The notion of interfaces as empowering is driven by a dream of individual control: of
direct personal manipulation of the screen, and thus, by extension, of the system it
indexes or represents. Consider, for instance, the interface to Google Earth. Offering
us a god ’ s eye view, it allows us to zoom in on any location, to fl y from place to place,
and to even control the amount of sunshine in any satellite photo. Google Earth,
however, hardly represents the world as it is, but rather a more perfectly spherical one
in which it hardly ever rains (even when the Google Earth weather layer shows rain),
and in which nothing ever moves, even as time goes by. Viewing these divergences
from reality as failures, however, misses what makes this program so compelling: the
actions it enables, the kind of dynamic mapping actions, the “ top sight ” — overview
and zooming — it facilitates.

 Google Earth, and interactive interfaces in general, follow in the tradition of “ direct
manipulation. ” According to Ben Shneiderman, who coined the term in the 1980s,
 “ certain interactive systems generate glowing enthusiasm among users — in marked

Daemonic Interfaces, Empowering Obfuscations 63

contrast with the more common reaction of grudging acceptance or outright hostil-
ity. ” In these systems, the users reported positive feelings, such as “ mastery ” over the
system and “ confi dence ” in their continuing mastery, “ competence ” in performing
their tasks, “ ease ” in learning the system, “ enjoyment ” in using it, “ eagerness ” to help
new users, ” and the “ desire ” to engage the more complex parts of the system. Changes
in visibility and causality seem central to the creation of a truly pleased user, in par-
ticular, “ visibility of the object of interest; rapid, reversible, incremental actions; and
replacement of complex command language syntax by direct manipulation of the
object of interest — hence the term ‘ direct manipulation. ’ ” 12

 Crucially, Shneiderman posits direct manipulation as a means to overcome users ’
resistance: as a way to dissipate hostility and grudging acceptance and instead to foster
enthusiasm by developing feelings of mastery. Direct manipulation does this by
framing the problem of work from the perspective of the worker — more precisely of
the neoliberal worker who decides to work — and by replacing commands with more
participatory structures. 13 Direct manipulation is thus part of the “ new spirit of capital-
ism ” that the French sociologists Luc Boltanski and Eve Chiapello outline in their
book of the same title. This new spirit of capitalism fosters commitment and enthu-
siasm — emotions not guaranteed by pay or working under duress — through manage-
ment techniques that stress “ versatility, job fl exibility, and the ability to learn and
adapt to new duties. ” 14 As Catherine Malabou notes, in such a system “ ‘ the leader
has no need to command, ’ because the personnel are ‘ self-organized ’ and ‘ self-
controlling. ’ ” 15 In such a system, Malabou underscores, drawing from Boltanski and
Chiapello, fl exibility is capitulation and normative, and “ everyone lives in a state
of permanent anxiety about being disconnected, rejected, abandoned. ” 16

 Not surprisingly, the term direct manipulation also draws from cognitive psychology:
George Lakoff and Ben Johnson use the term in relation to Jean Piaget ’ s argument
that infants “ fi rst learn about causation by realizing that they can directly manipulate
objects around them. ” 17 That is, infants ’ repeated manipulations of certain objects are
key to their eventual grasping of causality: that doing X will always (or usually) cause
Y to happen. Relatedly, Lakoff and Johnson argue that interactions with objects also
ground metaphor, since “ interactional properties are prominent among the kinds of
properties that count in determining suffi cient family resemblance. ” 18 Shneiderman
also offers examples of direct manipulation outside (or at least at that point outside)
of computer interfaces, most importantly the steering wheel of a car:

 Driving an automobile is my favorite example of direct manipulation. The scene is directly

visible through the windshield, and actions such as braking or steering have become common

skills in our culture. To turn to the left, simply rotate the steering wheel to the left. The response

is immediate, and the changing scene provides feedback to refi ne the turn. Imagine trying to

turn by issuing a LEFT 30 DEGREES command and then issuing another command to check

your position, but this is the operational level of many offi ce automation tools today. 19

64 Chapter 2

 Direct manipulation is thus a metaphor based on real-time analog technologies, such
as a drive shaft, and their integration into a visual system. (These analog technologies,
which linked steering wheel to car wheel in a mechanical cause-and-effect relation,
of course are themselves being replaced by computerized drive shafts.) HCI ’ s version
of direct manipulation is never “ direct, ” only simulated, and the mastery, as Shneider-
man notes, is “ felt ” not possessed. This emphasis on feelings, however, reveals that
the visibility of the object of interest matters less than the affective relationship
established though rapid, reversible, incremental actions.

 Brenda Laurel has argued this point most infl uentially in her classic Computer as
Theater . According to Laurel, direct manipulation is not and has never been enough,
and the strand of HCI focused on producing more and more realistic interface meta-
phors is wrongheaded. 20 People realize when they double-click on a folder that it is
not really a folder; making a folder more “ life-like ” (following the laws of gravity,
having it open by the user fl ipping over the front fl ap, etc.) would be more annoying
than helpful. What does help, though, is direct engagement: an interface designed
around plausible and clear actions. Direct engagement, Laurel contends, “ shifts the
focus from the representation of manipulable objects to the ideal of enabling people
to engage directly in the activity of choice, whether it be manipulating symbolic tools
in the performance of some instrumental tasks or wandering around the imaginary
world of a computer game. ” This ideal engagement “ emphasizes emotional as well as
cognitive values. It conceives of human-computer activity as a designed experience ” 21 —
 an experience designed around “ activities of choice ” or, more properly, making these
activities feel like activities of choice.

 As a designed experience, Laurel astutely insists, computer activity is artifi cial and
should remain so. 22 That is, fabricating computer interfaces entails “ creating imaginary
worlds that have a special relationship to reality — worlds in which we can extend,
amplify, and enrich our own capacities to think, feel, and act. ” 23 The computer inter-
face thus should be based on theater rather than psychology because “ psychology
attempts to describe what goes on in the real world with all its fuzziness and loose ends,
while theatre attempts to represent something that might go on , simplifi ed for the pur-
poses of logical and affective clarity. Psychology is devoted to the end of explaining
human behavior, while drama attempts to represent it in a form that provides intel-
lectual and emotional closure. ” 24 Importantly, Laurel ’ s argument, even as it condemns
metaphor, is itself based on metaphor, or more precisely simile: computers as theater.
It displaces rhetorical substitution from the level of the interface (objects to be manip-
ulated) to the interface as a whole; it also makes the substitution more explicit (simile,
not metaphor).

 Laurel ’ s move to theater is both interesting and interested, and it resonates strongly
both with Weizenbaum ’ s parallel between programmer as lawgiver/playwright dis-
cussed previously and with Edwards ’ s diagnosis of the computer as a metaphor of the

Daemonic Interfaces, Empowering Obfuscations 65

Action

Character

Thought

Language

Pattern

Enactment

m
at

er
ia

l c
au

se

form
al cause

 Figure 2.2
 Causal relations among elements of quantitative structure. A reproduction of Brenda Laurel ’ s

illustration in Computers as Theater , 51.

 closed world , a term also drawn from literary criticism. 25 The Aristotelian model Laurel
uses provides her structuralist theory with the kind of emotional and intellectual
closure she contends interfaces should create: clear defi nitions of causality, of
the means to produce catharsis and, most important, of theater — like interfaces and
computers — as following laws. ” 26 Clear, law-abiding causality drives every level of
Laurel ’ s system (see fi gure 2.2): action is the formal cause of character and so on down
to enactment; enactment is the material cause of pattern and so on up to action.

 Because events happen so logically, users accept them as probable and then as
certain. Consequently, this system ensures that users universally suspend their dis-
belief. This narrowing also creates pleasure: the creation and elimination of uncer-
tainty — the “ stimulation to imagination and emotion created by carefully crafted
uncertainty ” and the “ satisfaction provided by closure when action is complete ” —
 Laurel contends, drives audience pleasure. 27

 The fact that users are not simply the audience, but also the actors, makes causality
in computer interfaces more complicated. Thus, the designer must not simply create
 “ good ” characters that do what they intend (character, she argues, is solely defi ned
by action), but also create intrinsic constraints so that users can become good char-
acters too and follow the “ laws ” of the designer. 28 The designer is both scriptwriter
and set designer: Laurel ’ s description of the designer ’ s power seems less extreme than
Weizenbaum ’ s; however, Laurel ’ s vision — focused on the relationship between designer
and user, rather than programmer and program — is not less but rather differently
coercive. In Laurel ’ s view, the constraints the designer produces do not restrict freedom;
they ensure it. Complete freedom does not enhance creativity; it stymies it. Addressing
fantasies by gamers and science fi ction writers of “ magical spaces where they can
invent their own worlds and do whatever they wish — like gods, ” she argues that the
experience of these spaces “ might be more like an existential nightmare than a dream
of freedom ” :

66 Chapter 2

 A system in which people are encouraged to do whatever they want will probably not produce

pleasant experiences. When a person is asked to “ be creative ” with no direction or constraints

whatever, the result is, according to May, often a sense of powerlessness — or even complete

paralysis of the imagination. Limitations — constraints that focus creative efforts — paradoxically

increase our imaginative power by reducing the number of possibilities open to us. 29

 A green world, in other words, in which action fl ows “ between natural, urban, and
other locations and centers [on] magical, natural forces ” produces paralysis and night-
mares. Yet constraints — the acceptance of certain interface conventions as self-enforced
rules — enable agency and an arguably no less magical feeling of power: a sense that
users control the action and make free and independent choices within a set of rules,
again the classic neoliberal scenario. (The goal of interface design, Laurel tellingly
states, is to “ build a better mousetrap. ”) 30 To buttress this feeling of mastery, discon-
certing coincidences and irrelevant actions that can expose the inner workings of
programs must be eliminated. For users as for paranoid schizophrenics (my observa-
tion, not Laurel ’ s), everything has meaning: there can be no coincidences but only
causal pleasure in this closed world.

 Laurel ’ s conception of freedom, however, is disturbingly banal: the true experi-
ence of freedom may indeed be closer to an existential nightmare than to a pleasant
paranoid dream. Indeed, the challenge, as I argue in Control and Freedom: Power and
Paranoia in the Age of Fiber Optics (2006), is to take freedom seriously, rather than
to reduce it to control (and thus reduce the Internet to a gated community). Freedom
grounds control, not vice versa. Freedom makes control possible, necessary, and
never enough. Not surprisingly, the system Laurel describes — focused on getting
users to suspend disbelief and to act in certain prescribed ways — resonates widely
with defi nitions of ideology.

 Interfaces as Ideology

 To elaborate on an argument I have made before, GUIs are a functional analog to
ideology. 31 In a formal sense computers understood as comprising software and hard-
ware are ideology machines. They fulfi ll almost every formal defi nition of ideology
we have, from ideology as false consciousness (as portrayed in the 1999 Wachowski
Brothers ’ fi lm The Matrix) to Louis Althusser ’ s defi nition of ideology as “ a ‘ representa-
tion ’ of the imaginary relation of individuals to their real conditions of existence. ” 32
According to Althusser, ideology reproduces the relations of production by “ ‘ constitut-
ing ’ concrete individuals as subjects . ” 33 Ideology, he stresses, has a material existence: it
shapes the practices and consciousness of individual subjects. It interpellates subjects:
it yells “ hey you, ” and subjects turn around and recognize themselves in that call.

 Interfaces offer us an imaginary relationship to our hardware: they do not represent
transistors but rather desktops and recycling bins. Interfaces and operating systems

Daemonic Interfaces, Empowering Obfuscations 67

produce “ users ” — one and all. Without OS there would be no access to hardware;
without OS there would be no actions, no practices, and thus no user. Each OS, in its
extramedial advertisements, interpellates a “ user ” : it calls it a name, offering it a name
or image with which to identify. So Mac users “ think different ” and identify with
Martin Luther King and Albert Einstein; Linux users are open-source power geeks,
drawn to the image of a fat, sated penguin (the Linux mascot); and Windows users
are mainstream, functionalist types perhaps comforted, as Eben Moglen argues, by
their regularly crashing computers. Importantly, the “ choices ” operating systems offer
limit the visible and the invisible, the imaginable and the unimaginable. You are not,
however, aware of software ’ s constant constriction and interpellation (also known as
its “ user-friendliness ”), unless you fi nd yourself frustrated with its defaults (which
are remarkably referred to as your preferences) or unless you use multiple operating
systems or competing software packages.

 Interfaces also produce users through benign interactions, from reassuring sounds
that signify that a fi le has been saved to folder names such as “ my documents, ” which
stress personal computer ownership. Computer programs shamelessly use shifters —
 pronouns like “ my ” and “ you ” — that address you, and everyone else, as a subject.
Interfaces make you read, offer you more relationships and ever more visuals. They
provoke readings that go beyond reading letters toward the nonliterary and archaic
practices of guessing, interpreting, counting, and repeating. Interfaces are based on a
fetishistic logic. Users know very well that their folders and desktops are not really
folders and desktops, but they treat them as if they were — by referring to them as
folders and as desktops. This logic is, according to Slavoj Ž i ž ek, crucial to ideology. 34
As mentioned previously, Ž i ž ek (through Peter Sloterdjik) argues that ideology persists
in one ’ s actions rather than in one ’ s beliefs: people know very well what they are
doing, but they still do it. The illusion of ideology exists not at the level of knowledge
but rather at the level of action: this illusion, maintained through the imaginary
 “ meaning of the law ” (causality), screens the fact that authority is without truth — that
one obeys the law to the extent that it is incomprehensible. Is this not computation?
Through the illusion of meaning and causality — the idea of a law-driven system — do
we not cover over the fact that we do not and cannot fully understand or control
computation? That computers increasingly design each other and that our use is — to
an extent — a supplication, a blind faith?

 Operating systems also create users more literally, for users are an OS construction.
User logins emerged with time-sharing operating systems, such as UNIX, which
encourage users to believe that the machines they are working on are their own
machines (before this, computers mainly used batch processing; before that, a person
really did run the computer, so there was no need for operating systems — one had
human operators). As many historians have argued, the time-sharing operating systems
developed in the 1970s spawned the “ personal computer. ” 35 That is, as ideology creates

68 Chapter 2

subjects, interactive and seemingly real-time interfaces create users who believe they
are the “ source ” of the computer ’ s action.

 Real-time Sourcery

 According to the OED, real time is “ the actual time during which a process or event
occurs, especially one analyzed by a computer, in contrast to time subsequent to it
when computer processing may be done, a recording replayed, or the like. ” Crucially,
hard and soft real-time systems are subject to a “ real-time constraint. ” That is, they
need to respond, in a forced duration, to actions predefi ned as events. The measure
of real time, in computer systems, is their reaction to the live; it is their liveness — their
quick acknowledgment of and response to our actions.

 The notion of real time always points elsewhere — to “ real-world ” events, to user ’ s
actions — thereby introducing indexicality to this supposedly nonindexical medium.
That is, whether or not digital images are supposed to be “ real, ” real time posits the
existence of a source — coded or not — that renders our computers transparent. Real-
time operating systems create an “ abstraction layer ” that hides the hardware details of
the processor from application software; real-time images portray computers as unme-
diated connectivity. SAGE, for instance, linked computer-generated images to lines on
a screen; unlike in the case of radar images, there was no “ footprint ” relation between
screen and incoming signal. As RealPlayer reveals, the notion of real time is bleeding
into all electronic moving images, not because all recordings are live, but because
grainy moving images have become a marker of the real. 36 What is authentic or real is
what transpires in real time, but real time is real not only because of this indexicality —
 this pointing to elsewhere — but also because of its quick reactions to users ’ inputs.

 Dynamic changes to web pages in real time, seemingly at the bequest of users ’
desires or inputs, create what Tara McPherson has called “ volitional mobility. ”
Creating “ Tara ’ s phenomenology of websurfi ng, ” McPherson argues:

 When I explore the web, I follow the cursor, a tangible sign of presence implying movement.

This motion structures a sense of liveness, immediacy, of the now . . . yet this is not just the

same old liveness of television: this is liveness with a difference. This liveness foregrounds

volition and mobility, creating a liveness on demand. Thus, unlike television which parades

its presence before us, the web structures a sense of causality in relation to liveness, a liveness

which we navigate and move through, often structuring a feeling that our own desire drives

the movement. The web is about presence but an unstable presence: it ’ s in process, in motion. ” 37

 This liveness, McPherson carefully notes, is more the illusion — the feel or sensation —
 of liveness, rather than the fact of liveness; the choice yoked to this liveness is similarly
a sensation rather than the real thing (although one might ask: What is the difference
between the feel of choice and choice itself? Is choice alone not a limited agency?).
The real-time moving cursor and the unfolding of an unstable present through our

Daemonic Interfaces, Empowering Obfuscations 69

digital (fi nger) manipulations make us crane our necks forward, rather than sit back
on our couches, causing back and neck pain. The extent to which computers turn the
most boring activities into incredibly time-consuming and even enjoyable ones is
remarkable: one of the most popular computer games to date, The Sims , focuses on
the mundane; action and adventure games reduce adventure to formulaic motion-
restricted activities, yet the delights of interpreting these interfaces by interacting
with them makes them pleasurable and never-ending. This volitional mobility,
McPherson argues, reveals that the “ hype ” surrounding the Internet does have some
phenomenological backing. This does not necessarily make the Internet an empower-
ing medium, but at the very least means that it can provoke a desire for something
better: true volitional mobility, true change. 38 Crucially, this fostering of a belief in
true change — in the ability to change, in the direct causality between one ’ s actions
and a result — is programmed into the interface. That is, change, rather than being a
radical act, is now the norm; we click, we change.

 Interactive pleasure does not simply derive from a representation of user actions in
a causally plausible manner; it also comes from “ user amplifi cation. ” Lev Manovich
explains “ user amplifi cation ” in terms of the Super Mario computer game: “ When you
tell Mario to step to the left by moving a joystick, this initiates a small delightful nar-
rative: Mario comes across a hill; he starts climbing the hill; the hill turns to be too
steep; Mario slides back onto the ground; Mario gets up, all shaking. None of these
actions required anything from us; all we had to do is just to move the joystick once.
The computer program amplifi es our single action, expanding it into a narrative
sequence. ” 39 This user amplifi cation mimics the “ instruction explosion, ” described in
the previous chapter, central to higher-level programming languages (one line of high-
level code corresponds to more than one line of machine code). User amplifi cation
also maps our actions to movements on the screen.

 In essence, real-time interfaces map user actions to screened changes, making our
machines seem transparent and rendering our screen into a map. Maps dominate
interfaces, from our “ desktop ” to the clickable image maps on web pages, and map-
ping — the act of making and outlining connections — drives our actions online, from
creating social maps based on Facebook friends to following links within web pages.
Julian Dibbell has argued eloquently that online spaces are themselves essentially
maps, that is, diagrams that we seek to inhabit. 40 Maps and mapping are also the
means by which we “ fi gure out ” power and our relation to a larger social entity.
Touchgraph ’ s mapping of relationships between Facebook photos, Amazon books,
and web pages, for instance, allegedly reveals the hidden interconnections driving
consumption and social bonding (see fi gure 2.3).

 The much celebrated theyrule.net, which allows users to map connections between
people on company boards, exemplifi es this notion of mapping as a form of
ideology critique (see fi gure 2.4).

70 Chapter 2

 Figure 2.3
 TouchGraph photos Facebook and Interactive Friends Graph, < http://blog.mememapper

.com/?p=56 > , accessed 8/8/2010

 Figure 2.4
 A screenshot from Theyrule.net

Daemonic Interfaces, Empowering Obfuscations 71

 Indeed, Manovich argues that theyrule.net exemplifi es a new rhetoric of inter-
activity that “ instead of presenting a packaged political message . . . gives us data
and the tools to analyze it. It knows that we are intelligent enough to draw the
right conclusion . . . we get convinced not by listening/watching a prepared message
but by actively working with the data: reorganizing it, uncovering the connections,
becoming aware of correlations. ” This passage intriguingly posits the program as
 “ knowing ” and the user as learning through acting. According to Manovich, this
new rhetoric of interactivity is further explored in UTOPIA:

 The cosmogony of this world refl ects our new understanding of our own planet — post Cold

War, Internet, ecology, Gaia, and globalization. Notice the thin barely visible lines that connect

the actors and the blocks. (This is the same device used in theyrule.net.) In the universe of

UTOPIA, everything is interconnected, and each action of an individual actor affects the system

as a whole. Intellectually, we know that this is how our Earth functions ecologically and

economically — but UTOPIA represents this on a scale we can grasp perceptually. 41

 UTOPIA seemingly enables what Fredric Jameson has called a “ cognitive map, ” a
concept that I will address in more detail shortly. Briefl y, it is “ a situational repre-
sentation on the part of the individual subject to that vaster and properly unrepre-
sentable totality which is the ensemble of society ’ s structures as a whole. ” 42 If cognitive
mapping is both diffi cult and necessary now because of invisible networks of capital,
these artists produce a cognitive map by exploiting the invisibility of information.
The functioning of these smart interfaces parallels Marxist ideology critique. The veil
of ideology is torn asunder by grasping the relations between the action of individual
actors and the system as a whole. Software enables this critique by representing it
at a scale — in a microworld — that we can make sense of and in which our actions
and connections are amplifi ed. This unveiling depends on our own actions, on us
manipulating in order to see, on us thinking like object-oriented programmers.

 It would seem thus that instead of a situation in which the production of cognitive maps
is impossible, we are locked in a situation in which we produce them — or at the very least
approximations of them — all the time, in which the founding gesture of ideology critique is
simulated by something that also pleasurably mimics ideology . Software and ideology fi t
each other perfectly because both try to map the tangible effects of the intangible and
to posit the intangible cause through visible cues. Both, in other words, promise
a vision of the whole elephant. Through this process the invisible whole emerges as
a thing, as something in its own right, and users emerge as mapping subjects.

 Although the parallel between software and ideology is compelling, it is important
that we not rest here, for reducing ideology to software ignores how theories of ideo-
logy critique power — something essential to any theory of ideology (these resonances,
however, arguably reveal the paucity of our theories of power). 43 The fact that software,
with its onion-like structure (a product of programming languages), acts both as ideo-
logy and as ideology critique — as a concealing and as a means of revealing — also breaks

72 Chapter 2

the analogy between software and ideology, or perhaps reveals the fact that ideology
always also contains within itself ideology critique. Indeed, to take this argument
further, we need to move beyond the remarkable likeness — and condemnation of
screens as ideological — and to ask: 44 Under what conditions have these likenesses
emerged? What, in other words, has made these likenesses and interfaces possible?
What makes interfaces such a compelling imaginary map of the real? And what makes
us believe that ideology is a map driven by invisible forces? Why interfaces now? And,
most probingly, to what extent do interfaces stand in for likeness, for metaphor itself,
and to what extent is this substitutability its most ideological aspect?

 Postmodern Confusion, Interface Clarity

 This drive to constantly map — and to understand through mapping — responds to
postmodernist disorientation. Postmodernism, according to Fredric Jameson and Jean-
Fran ç ois Lyotard, is/was driven by a loss of modernist certainty. 45 Lyotard defi nes
postmodernism as an incredulity toward metanarratives (grand stories that formerly
legitimated society and knowledge production). For Lyotard, this is positive because
it fundamentally undermines totalitarianism and fosters creative engagement, for all
actors know that legitimation — truth and justice — springs from their own creative
linguistic acts. Rather than signaling the demise of existing social bonds, postmodern-
ism promotes new social bonds since everyone (as active “ nodes ” in communications
networks) is now involved in multiple language games. Jameson ’ s view, however, is
less optimistic. To Jameson, postmodernism or the logic of late capitalism, “ is what
you get when the modernization process is complete and nature is gone for good. It
is a more fully human world than the older one, but one in which ‘ culture ’ has
become a veritable ‘ second nature. ’ ” 46 Postmodernism, Jameson contends, correlates
formal changes in cultural products to a new type of social life and to a new economic
order: it is “ the consumption of sheer commodifi cation as process, ” a transnational
world in which capitalism has been completely naturalized and traditional labor
placed in crisis. 47

 Postmodernism, Jameson argues, is experienced as a spatial dysfunction, as a new
space that “ involves the suppression of distance (in the sense of Benjamin ’ s aura) and
the relentless saturation of any remaining voids and empty places, to the point where
the postmodern body . . . is now exposed to a perceptual barrage of immediacy from
which all sheltering layers and intervening mediations have been removed. ” 48 This
spatial disorientation, Jameson argues, consists of “ symptoms and expressions of a
new and historically original dilemma, one that involves our insertion as individual
subjects into a multidimensional set of radically discontinuous realities, whose frames
range from the still surviving spaces of bourgeois private life all the way to the
unimaginable decentering of global capital itself. ” It is a new dilemma that confounds

Daemonic Interfaces, Empowering Obfuscations 73

all our normal means of modeling/comprehension, making it even more diffi cult to
understand the relation between our authentic experiences and their truth. Jameson
contends, “ not even Einsteinian relativity, or the multiple subjective worlds of the
older modernists, is capable of giving any kind of adequate fi guration to this process,
which in lived experience makes itself felt by the so-called death of the subject, or,
more exactly, the fragmented and schizophrenic decentering and dispersion of this
last. ” 49 The new spaces that surround us demand that we “ grow new organs . . . expand
our sensorium and our body to some new, yet unimaginable, perhaps ultimately
impossible, dimensions ” in order to grasp our relation to totality — to make sense of
the disconnect between, and possibly to reconnect, the real and the true. 50

 This decentering, this historically new dilemma, makes it impossible for us to cog-
nitively map our relations, to realize our place in the late capitalist system. 51 Cognitive
mapping combines the geographer Kevin Lynch ’ s discussion of the ability of citizens
to map the city around them with Althusser ’ s defi nition of ideology. More precisely,
 “ the conception of cognitive mapping proposed . . . involves an extrapolation of
Lynch ’ s spatial analysis to the real of social structure, that is to say, in our historical
moment, to the totality of class relations on a global (or should I say multinational)
scale. ” 52 Such a map, which Jameson in 1983 argues we did not yet have, is necessary
in order to understand the totality that is capitalism; because the profi t motive and
the logic of capitalism set absolute barriers and limits to social changes and transfor-
mations, we need a way to comprehend its totality and our relation to it. Of anyone
who does not believe that “ the profi t motive and the logic of capital accumulation
are not the fundamental laws of this world, ” Jameson asserts, “ such a person is living
in an alternative universe. ” 53

 Importantly, Jameson does argue that cyberpunk and other literature/art that deals
with the thematics of mechanical reproduction, as well as paranoid conspiracy theo-
ries, offer “ a degraded fi gure of the great multinational space that remains to be
cognitively mapped. ” 54 This is because they are fi gurations “ of something even deeper,
namely the whole world system of a present-day multinational capitalism. The tech-
nology of contemporary society is therefore mesmerizing and fascinating not so much
in its own right but because it seems to offer some privileged representational short-
hand for grasping a network of power and control even more diffi cult for our minds
and imaginations to grasp: the whole new decentered global network of the third
stage of capital itself. ” 55 A nondegraded fi gure, however, would be able to deal with
mapping at the level of form, rather than simply content. He stresses that the call
for an aesthetics of cognitive mapping

 is not . . . a call for a return to some older kind of machinery, some older and more transparent

national space, or some more traditional and reassuring perspectival or mimetic enclave: the

new political art (if it is possible at all) will have to hold to the truth of postmodernism, that

is to say, to its fundamental object — the world space of multinational capital — at the same time

74 Chapter 2

at which it achieves a breakthrough to some as yet unimaginable new mode of representing

this last, in which we may again begin to grasp our positioning as individual and collective

subjects and regain a capacity to act and struggle which is at present neutralized by our spatial

as well as our social confusion. 56

 This chapter has been arguing that interfaces — with their constant emphasis on the
act of making connections — would seem to instantiate an aesthetics of cognitive
mapping. They provide a mapping — a “ cognitive connectionism ” — that respects the
space of multinational capital and the ways in which that totality is not immediately
experienceable or knowable, and yet also enables agents to act as sources. Indeed,
many activists have argued that the Internet and text messaging offer effective ways
of intervening on global capitalism. Rather than immobilized subjects, we have a
surfeit of “ produsers, ” who diligently produce, post, and click, providing content
for “ free. ” 57

 Interfaces in general, however, are hardly radical and the demand that we map —
 and thus understand — often seems like the simple following of the network and its
paranoid logic rather than an insightful, clarifying act. Mapping often seduces us into
exposing what is “ secret ” or opaque, into drawing connections between visible effects
and invisible causes, rather than actually reading what one sees. It can become an
endless pursuit of things, aimed at robbing them of their thingliness, in order to create
a closed world in which every connection is exposed, every object reduced to a code.
Interfaces are not the cognitive maps called for by Jameson because they do not engage
the totality of class relations, but rather focus on totality differently fi gured (informa-
tion networks, etc.). Whether or not interfaces are really the cognitive maps Jameson
envisioned, however, is not the point here, for I do not simply want to condemn
interfaces as false consciousness/false maps, but rather to understand how the once
radical demand for cognitive mapping has become incorporated into the system of
global capitalism/neoliberalism. As David Harvey notes, neoliberalism “ requires tech-
nologies of information creation and capacities to accumulate, store, transfer, analyse,
and use massive databases to guide decisions in the global marketplace. ” 58 The incred-
ible proliferation of personal mapping interfaces coincides with neoliberalism ’ s spread:
these interfaces buttress notions of personal action, freedom, and responsibility.

 We are now constantly called on to map and to value mapping in order to
experience power/agency. This constant mapping signifi es a new/neo condition, one
that both recalls the power of the subject, supposedly dispersed by postmodernism,
and places the subject/user in a different position than the liberal subject with
respect to the “ invisible ” hands of the market. Liberalism traditionally challenged
sovereign power, because, in the liberal market, “ it is impossible for the sovereign
to have a point of view on the economic mechanism which totalizes every element
and enables them to be combined artifi cially or voluntarily. ” 59 Because knowledge
was impossible, each subject in a market economy was supposed to act blindly, and

Daemonic Interfaces, Empowering Obfuscations 75

through his or her selfi shness benefi t society. In a current neoliberal state (which
itself is a reaction to late capitalist chaos), however, each individual must “ know
thyself ” and others: he or she is constantly driven to make connections and to
relate his or her actions to the totality.

 The question then is: how can we have a form of cognitive mapping that does not
engage in nostalgia for sovereign power, for the subject (now multiplied everywhere)
who knows? Also: how necessary is cognitive mapping? And to what extent is the
desire to map not contrary to capitalism but rather integral to its current form, espe-
cially since it is through our mappings that we ourselves are mapped? That is, to what
extent is our historically novel position not our ignorance and powerlessness, but rather our
determination and our drive to know? Could it be that rather than resort to maps, we
need to immerse ourselves in networked fl ows — time-based movements that both
underlie and frustrate maps? To respond to these large questions, let us again return
to interfaces and to the dreams of progress and freedom and the minute actions that
buttress them.

 As We May Think

 Interfaces respond to a crisis of knowledge that calls into question scientifi c and
human progress. Designed to “ augment human intelligence, ” they are steeped in a
nostalgic view of machines as transparent. Interfaces recall analog machines that
worked by mapping: that is, by associating one element of a set to one or more
elements of another. Analog computers, which I discuss in more detail in chapter
4, were essentially models that, unlike digital computers, did not require the trans-
forming problems into small steps answerable by a yes or a no (analog integrators
actually integrated). Our digital interfaces are an analogy to an analogy. As David
Mindell argues, whenever we use a mouse or look at our screens, we are engaging
in activities that precede our digital computers. 60 The canonization of Vannevar
Bush ’ s article “ As We May Think ” within new media studies makes clear the nostalgia
for an analog future.

 “ As We May Think, ” published at the end of World War II when Bush was head
of the Offi ce of Scientifi c Research and Development (the U.S. government agency
tasked with coordinating wartime science projects, such as the Manhattan Project),
is often considered the ur-text of the Internet and dynamic personal media. As Linda
C. Smith among others has demonstrated, the memex, a machine for selecting and
preserving data described in “ As We May Think ” and discussed in more detail below,
is consistently and persistently cited as the inspiration for hypertext systems. 61 If
William Gibson ’ s 1984 novel Neuromancer , another commonly cited “ precursor ” to
the Internet, has disappeared from new media course syllabi as new media criticism
has moved away from the embarrassingly fi ctional and utopian, the equally fi ctional

76 Chapter 2

and utopian — the vapory — “ As We May Think ” has remained, because “ pioneers ” such
as Douglas Engelbart and Ted Nelson have consistently listed it as a direct inspiration.
The fact that the memex — the machine prophesized by Bush but never built — is
considered a precursor, however, should make us pause, because the memex is linked
to a mechanical, analog past/future that has not and arguably may not come to pass. 62

 “ As We May Think ” argues for the relevance of science to human progress. Its thesis,
according to Bush ’ s comments on an earlier draft, is that “ science and its applications
are not, on the whole, evil. ” Indeed, he ends his article by stating:

 The applications of science have built man a well-supplied house, and are teaching him to live

healthily therein. They have enabled him to throw masses of people against one another with

cruel weapons. They may yet allow him truly to encompass the great record and to grow in

the wisdom of race experience. He may perish in confl ict before he learns to wield that record

for his true good. Yet, in the application of science to the needs and desires of man, it would

seem to be a singularly unfortunate stage at which to terminate the process, or to lose hope

as to the outcome. 63

 The threat of termination and the loss of hope Bush discusses here do not stem from
politics (curiously, Bush does not mention the mounting political pressures to dis-
mantle the “ big science ” machinery he established during the war), but rather from
technological defi ciencies. Indeed, his secondary thesis is that gadgetry is not neces-
sarily trivial, since it “ may contribute substantially to man ’ s mental development in
the future as it has in the past. ” 64

 Along these lines, Bush imagines the diffi culties and opportunities that will face
scientists during the upcoming peace in terms of “ gadgetry ” designed to help the
scientist access the increasingly complex scientifi c record. A companion to Jameson ’ s
postmodern individual is the bewildered scientist, who is incapable of making sense
of — of mapping — the scientifi c archive:

 There is a growing mountain of research. But there is increased evidence that we are being

bogged down today as specialization extends. The investigator is staggered by the fi ndings and

conclusions of thousands of other workers — conclusions which he cannot fi nd time to grasp,

much less to remember, as they appear. Yet specialization becomes increasingly necessary for

progress, and the effort to bridge between disciplines is correspondingly superfi cial.

 Professionally our methods of transmitting and reviewing the results of research are genera-

tions old and by now are totally inadequate for their purpose. If the aggregate time spent in

writing scholarly works and in reading them could be evaluated, the ratio between these

amounts of time might well be startling. 65

 Unlike Jameson, Bush ’ s solution is mechanical rather than political, for in this article
and in subsequent commentaries upon it, this second thesis supplants the fi rst in
importance, or, rather, the second becomes necessary to proving the fi rst. 66 Without
this mechanization, the scientifi c archive may grow, but its value will be negated, for

Daemonic Interfaces, Empowering Obfuscations 77

 “ a record if it is to be useful to science, must be continuously extended, it must be
stored, and above all it must be consulted. ” However, “ publication has been extended
far beyond our present ability to make real use of the record. The summation of human
experience is being expanded at a prodigious rate, and the means we use for threading
through the consequent maze to the momentarily important item is the same as was
used in the days of square-rigged ships. ” 67 The solution Bush envisions is mechanized
access: the memex.

 The memex is a desk-like “ gadget ” with two projectors intended to enable users to
make permanent associative links between documents and to retrieve them at will. The
documents were to be stored as microfi lm and dropped into the machine as necessary.
Documents could also be added: depressing a lever would cause contents placed at the
top of the memex to be photographed into the next blank space in memex fi lm.
Although the compression offered by microfi lm was important, associative indexing
distinguished the memex. For Bush the prime issue was selection: the human record was
not being consulted because of cumbersome indexing systems. Unlike the normal
alphabetical indexing systems, the memex was to create more intuitive associative trails:

 When the user is building a trail, he names it, inserts the name in his code book, and taps it

out on his keyboard. Before him are the two items to be joined, projected onto adjacent

viewing positions. At the bottom of each there are a number of blank code spaces, and a

pointer is set to indicate one of these on each item. The user taps a single key, and the items

are permanently joined. In each code space appears the code word. Out of view, but also in

the code space, is inserted a set of dots for photocell viewing; and on each item these dots

by their positions designate the index number of the other item.

 Thereafter, at any time, when one of these items is in view, the other can be instantly recalled

merely by tapping a button below the corresponding code space. Moreover, when numerous

items have been thus joined together to form a trail, they can be reviewed in turn, rapidly or

slowly, by defl ecting a lever like that used for turning the pages of a book. It is exactly as

though the physical items had been gathered together from widely separated sources and

bound together to form a new book. It is more than this, for any item can be joined into

numerous trails. 68

 Importantly, the code space of the memex did not render these items into abstracted,
disembodied information, but rather linked them together within an invisible space
of place markers. The memex, in other words, was not a fi le system — it was not hyper-
text: it was a machine that did not acknowledge or create a difference between software
and hardware (i.e., software, as a set of instructions that runs the machine).

 The memex was an analog, mechanical — not digital — machine. Although one could
argue that this was an accident of history, since Bush mainly worked with analog
machines, this objection simply begs the question by assuming no substantial differ-
ence between analog and digital machines. It also ignores Bush ’ s continued insistence
that the memex was not a digital computer. Many years after the plans for the memex

78 Chapter 2

were fi rst published, Bush in his “ Memex Revisited, ” writes, “ in that essay [“ As We
May Think ”] I proposed a machine for personal use rather than the enormous com-
puters which serve whole companies. I suggested that it serve a man ’ s daily thoughts
directly, fi tting in with his normal thought processes, rather than just do chores for
him. ” 69 Further, in discussing the question of access, Bush insisted, “ for memex we
need only relatively slow access, as compared to that which the digital machines
demand: a tenth of a second to bring forward any item from a vast storage will do
nicely. For memex, the problem is not swift access, but selective access. ” Moreover,
he contended “ we will not expect our personal machine of the future, our memex, to
do the job of the great computers ” and, describing the future memex ’ s ability to
 “ learn ” and build its own trails for its master, he argued “ there are already powerful
mechanical [not electronic] aids. ” 70 This insistence on the memex as mechanical was
not simply a concession to cost, but also stemmed from an understanding of the
mechanical as more intuitive, more personal, as more analog and more lasting.

 The memex was analogous to then current (and now resurging) models of the
human mind, which, unlike models dominant during the 1960s and 1970s, did not
separate the mind (software) from the brain (hardware), or assume that memories were
bits of data to be manipulated algorithmically. The memex was not to model fl awlessly
the human mind — nor was it to be based on the fundamental “ algorithm ” that drove
the mind — but was instead to learn from and thus act like the mind. Describing the
human mind, Bush wrote, “ with one item in its grasp, it [the human mind] snaps
instantly to the next that is suggested by the association of thoughts, in accordance
with some intricate web of trails carried by the cells of the brain. It has other charac-
teristics, of course; trails that are not frequently followed are prone to fade, items are
not fully permanent, memory is transitory. ” 71 The trails carried by the cells of the
brain were not information — the web of trails was the mind. Further, the memex was
not only to learn from but also to improve the mind: “ it should be possible to beat
the mind decisively in regard to the permanence and clarity of the items resurrected
from storage ” — the memex ’ s traces were not to fade, making it even better than the
mind. Through its permanence, it was to make an individual ’ s “ excursions ” more
pleasurable, since it would enable him to “ reacquire the privilege of forgetting the
manifold things he does not need to have immediately at hand, with some assurance
that he can fi nd them again if they prove important. ” 72 This permanence of the
record — of microfi lm — would not only grant once more the privilege of forgetting (as
though any of us could ever be exempt from such a deprivation), it also would do so
while saving us from repetition: repetitive thought and repetitions in thought.

 According to Bush, “ man ” should not be burdened with repetitive thought pro-
cesses like arithmetic, for which there are powerful mechanical aids. The creative
aspect of thought, Bush writes, “ is concerned only with the selection of the data and
the process to be employed and the manipulation thereafter is repetitive in nature

Daemonic Interfaces, Empowering Obfuscations 79

and hence a fi t matter to be relegated to the machine. ” The memex could also prevent
repetitive discoveries, for the danger of nonmechanically induced forgetting is repeti-
tion. In “ Memex Revisited, ” which is itself an interesting repetition of “ As We May
Think, ” Bush contends, “ an Austrian monk, Gregor Mendel, published a paper in 1865
which stated the essential bases of the modern theory of heredity. Thirty years later
the paper was read by men who could understand and extend it. But for thirty years
Mendel ’ s work was lost because of the crudity with which information is transmitted
between men. ” What is crucial — he repeats almost verbatim from “ As We May Think ” —
 is that “ his [man ’ s] situation is not improving. The summation of human experience
is being expanded at a prodigious rate, and the means we use for threading through
the consequent maze to the momentarily important items are almost the same as in
the days of square-rigged ships. ” This lack of technological improvement means that
 “ we are being buried in our own product. Tons of printed material are dumped out
every week. In this are thoughts, certainly not often as great as Mendel ’ s, but impor-
tant to our progress. Many of them become lost; many others are repeated over and
over and over. ” 73 Thus, the scientifi c archive rather than leading us to the future is
trapping us in the past, making us repeat the present — and Bush repeat this argu-
ment — over and over again. Our product is burying us, and the dream of linear addi-
tive progress is limiting what we may think; but the phrase as we may think is richly
ambiguous. At one level, it refers to a technologically enhanced future: what we may
think if we develop prosthetic machines to supplement and access the human record,
or what we may think without these devices. The word may , however, also refers to
an authoritarian sanction — one is given the right to think X, one may think X, in
which case the authority would be the machines themselves, our supposedly loyal
servants. Most importantly for this argument, may is an uncertain link to the future:
one may think this, but one is not sure. Reading against the grain of Bush ’ s argument,
I contend that this uncertainty stems not from the lack of devices such as the memex,
but from the act of reading itself.

 In Bush ’ s writing, and in prognoses of the information revolution more generally,
there is no difference between access to and understanding of the record, between
what would be called, perhaps symptomatically, “ machine reading ” and human
reading and comprehension, between information and argument, between mapping
and understanding. The diffi culty supposedly lies in selecting the data, not in reading
it, for it is assumed that reading is a trivial act, a simple comprehension of the record ’ s
content. Once the proper record is selected and the proper map produced, there is no
misreading, no misunderstanding, only transparent information. If the scientifi c
record has not been advanced, if thought is repeated, it is because something has not
been adequately disseminated. Bush ’ s argument assumes that human records make
possible the construction of an over-arching archive of human knowledge in which
there is no gap, no absence: a summation of human knowledge. The scientifi c archive

80 Chapter 2

thus restores, or should restore, to “ mankind ” everything that has eluded it. 74 So, if
there is discontinuity in history, it is due to a historical accident, to our inability to
adequately consult the human record, to human fallibility. This accident, however,
can be solved by machines, which are viewed here as surprisingly accident-free and
permanent.

 A machine alone, however, cannot turn “ an information explosion into a knowledge
explosion ” ; 75 it cannot fulfi ll the promise of what Michel Foucault has called “ tradi-
tional history. ” Even media as stable as microfi lm fade and break, and this “ forgetting ”
of the physics of the storage medium — this conversion of medium into storage —
 grounds Bush ’ s progressivist and idealist ideology. Also, as the case of Mendel reveals,
the problem is not access, but rather larger epistemological frameworks. All three
researchers who performed similar experiments to Mendel ’ s thirty-fi ve years after him
consulted the scientifi c record and “ found ” Mendel, which means that Mendel ’ s paper
was not lost. The question is not why was Mendel forgotten, but rather, why, in 1900,
was he remembered (and exactly what was remembered) three times independently?
And why, in the history of science, is Mendel constantly being rediscovered? As Jann
Sapp argues in “ The Nine Lives of Gregor Mendel, ” this constant reinvocation is linked
to the desire, on the part of reformers, to pin Mendel down as the source of their
genetics. 76

 The example of Mendel as source is also revealing because this belief in sources —
 Mendel as the source of genetics, memex as the source of the Internet, code as the
source of our computers — ultimately is based on a confl ation of storage with access,
of memory with storage, of word with action. It reduces future progress to the search
for past origins. This belief also depends on our machines as being more stable and
permanent, and thus better record holders, than human memory; it depends on an
analogy between digital and analog media. This belief is remarkably at odds with the
material transience of discrete information and the Internet.

 Repetition, however, is not simply a sign of thought wasted, but also of thought
disseminated. Repetition, as Derrida has argued, both makes possible and impossible
the archival process: it both makes archives possible (what is contained is always an
iterable representation) and, as a marker of forgetfulness, it threatens to destroy
them. 77 The repetitions of Bush ’ s goals — their adoption as forerunners of what they
did not conceive — are important to understanding the emergence of interfaces as
devices that empower us by reducing the world ’ s complexity and by allowing us to
forget profoundly. Computers “ liberate ” us from memory through their undead mem-
ories, and their interfaces mimic the workings of simple analog systems in which there
is some actual connection between what we see and do, between different systems
being modeled. (The analog, in this sense, mimics the repeated “ citations ” in Bush ’ s
texts — it links two situations.) It is not an accident that Douglas Engelbart, inventor
of the mouse and widely considered to be a visionary in the development of the

Daemonic Interfaces, Empowering Obfuscations 81

computer as a media machine, was not only heavily inspired by Bush ’ s article, whose
argument he arguably repeats, but also by his experiences with radar technology
during World War II. In this sense, we are right to call the “ real world ” that our com-
puters approximate analog, for our digital computers approximate analog computers,
not only in terms of storage, but also in terms of a direct link between one ’ s actions
and the machine ’ s, between the machine ’ s visuals and its function. Through our
originally analog mice, which translate our movements to the screen, we navigate in
what seems to be “ real time. ”

 Repeating Bush

 Douglas Engelbart, one of the pioneers of dynamic interactive user interfaces, known
particularly for holding the patent on the mouse and for a 1968 demo now referenced
as simply “ the demo ” or “ the mother of all demos ” (since it allegedly changed the
lives of many who saw or even just heard of it), draws heavily from Bush for inspira-
tion and legitimation. Indeed, Engelbart, in a letter to Bush (seeking permission to
cite long sections of “ As We May Think ”), confessed, “ I re-discovered your article about
three years ago, and was rather startled to realize how much I had aligned my sights
along the vector you had described. I wouldn ’ t be surprised at all if the reading of this
article sixteen and a half years ago hadn ’ t had a real infl uence upon the course of my
thoughts and actions. ” 78 Engelbart ’ s confession reveals the extent to which technologi-
cal infl uences are rhetorical or “ vapory. ” In fact, although most historians and theo-
rists focus on the content of Engelbart ’ s work (comparing his early work to later
developments), the rhetorical devices used in his texts and the semiotics of his demo
are crucial to understanding the seductiveness of his vision of interactive interfaces,
a vision that many derided as insane and that took many years to come into
fruition.

 Drawing from Bush, Engelbart developed a conceptual framework to “ augment
human intellect ” in 1962. He fi rst desired to create such a framework, Engelbart
later explains, when he was doing odd-job electrical engineering work at Ames
Research Laboratory in Mountain View, California. He was at that point several years
out of school (where he studied electrical engineering) and had also had two years ’
experience as an electronics technician during World War II (he read Bush ’ s “ As We
May Think ” while stationed as a Navy boy working with radar in the Philippines).
Trying to fi gure out what to do with his life, Engelbart recalls he had three “ fl ashes ”
of insight: fl ash 1 was that “ the diffi culty of mankind ’ s problems was increasing at
a greater rate than our ability to cope. (We are in trouble.) ” Flash 2 regarded his
possible role in alleviating the complexity identifi ed in fl ash 1: “ boosting mankind ’ s
ability to deal with complex, urgent problems would be an attractive candidate as
an arena in which a young person might try to ‘ make the most difference. ’ (Yes,

82 Chapter 2

but there ’ s that question: of what does the young electrical engineer do about it?
Retread for role as educator, research psychologist, legislator, . . . ? Is there any
handle there that an electrical engineer could . . . ?). ” Flash 2, therefore, focused
on the question of “ human capital. ” Engelbart ’ s fl ash 3 answered the question of
what a young electrical engineer could do:

 FLASH-3: Ahah — graphic vision surges forth of me sitting at a large CRT console, working

in ways that are rapidly evolving in front of my eyes (beginning from memories of the

radar-screen consoles I used to service).

 Well, the imagery of FLASH-3 evolved within a few days to include mixed text and

graphic portrayals on the CRT, and on to extensions of the symbology and methodology

that we humans could employ to do our heavy thinking; and also, images of other people

at consoles attached to the same computer complex, simultaneously working in a collabora-

tion mode that would be much closer and more effective than we had ever been able to

accomplish. 79

 These fl ashes, overwhelming pulses of light that can cause blindness, are appropriately
about technological vision and images and their centrality to “ governing ” and improv-
ing human society. According to Engelbart, his plans to use computers as symbolic
machines fi rst met with little enthusiasm, even after he left academia to join the
Stanford Research Institute (SRI). Engelbart ’ s vision started becoming reality in 1962
when he formalized it in the SRI report “ Augmenting Human Intellect: A Conceptual
Framework, ” and in 1963 when Licklider, who had just published his article on man-
machine symbiosis, provided support for Engelbart ’ s project (while also insisting that
Engelbart ’ s system connect remotely to other computers).

 At the heart of this system of augmentation is a theory of practice, of training.
According to Engelbart, we are already augmented through our use of language,
customs, and tools (symbols and processes). The system, he states, “ we want to
improve can thus be visualized as a trained human being together with his artifacts,
language, and methodology. ” 80 Separating technological systems from human systems,
Engelbart ’ s system seeks to produce tools to increase “ the capability of a man to
approach a complex problem situation, to gain comprehension to suit his particular
needs, and to derive solutions to problems. ” This augmented system, importantly, was
not simply a set of isolated tools, but “ a way of life in an integrated domain where
hunches, cut-and-try, intangibles, and the human ‘ feel for the situation ’ usefully co-
exist with powerful concepts, streamlined terminology and notation, sophisticated
methods, and high-powered electronic aids. ” 81 This system was thus to augment the
human by producing more human cut-and-try technologies. Training, Engelbart
stresses, superfi cially divides human cultures. He states: “ while an untrained aborigine
cannot drive a car through traffi c, because he cannot leap the gap between his cultural
background and the kind of world that contains cars and traffi c, it is possible to
move step by step through an organized training program that will enable him to

Daemonic Interfaces, Empowering Obfuscations 83

drive effectively and safely. In other words, the human mind neither learns nor acts
by large leaps, but by steps organized or structured so that each one depends upon
previous steps. ” 82 At the base of Engelbart ’ s system is a trainable exemplary “ primitive ”
who can, through step-by-step (digital?) training, improve his or her skills.

 This example of navigating a car — this comparison between digital and analog
navigational systems — that was repeated by Shneiderman later is not accidental,
but rather central to the conceptualization of individual interfaces. Analog technol-
ogy is also embedded in what is considered to be Engelbart ’ s most important
contribution: the mouse. The mouse is based on the integraph (further discussed
in chapter 4), an “ analog ” device designed to integrate distance based on speed.
Engelbart tied his system conceptually to automobiles and to their transformation
of mass-transportation systems into mass-individual systems:

 I suggest that the parallel of the individually manned auto-motive vehicles will develop in the

computer fi eld, contributing to changes to our social structure that we can ’ t comprehend easily.

The man-machine interface that most people talk about is the equivalent of the locomotive-cab

controls (giving a man better means to contribute to the big system ’ s mission), but I want to

see more thought on the equivalent of the bulldozer ’ s cab (giving the man maximum facility

for directing all that power to his individual task). 83

 Rather than a system designed to move masses en masse, these interfaces personal-
ize mass movement and destruction. It is everyone and all in a bulldozer; everyone
and all ’ s actions amplifi ed. Engelbart ’ s system underscores the key neoliberal quality
of personal empowerment — the individual ’ s ability to see, steer, and creatively
destroy — as vital to societal development. Not surprisingly, he views his augmented
lifestyle as replacing our “ clerks ” or personal “ slaves ” with computers. 84

 The stress on the individual and individual understanding is underscored in an
intriguing “ hypothetical description ” section included in his report. Written “ to give
you (the reader) a specifi c sort of feel for our thesis, ” it describes “ what might happen
if you were being given a personal discussion-demonstration by a friendly fellow
(named Joe) who is a trained and experienced user of such an augmentation system. ”
This section, in other words, constantly interpellates “ you ” as a potential user of the
system. Starting with a description of Joe at his workstation, it narrates not just your
actions, but also your emotions. It scripts your involvement and pleasure in the
learning process. For instance, Joe says, “ Let ’ s actually work some examples. You help
me ” after which “ you become involved in a truly fascinating game. ” This fascinating
game, in which you “ help ” your teacher, asks “ you ” to summarize what you ’ ve learned
thus far about augmentation using augmentation (with a little coaching from Joe).
As ” you begin self-consciously to mumble some inane statements about what you
have seen, what they imply, what your doubts and reservations are, etc. ” Joe “ merci-
lessly ignores your obvious discomfort and gives you no cue to stop, until he drops
his hands to his lap after he has fi lled fi ve frames with these statements (the surplus

84 Chapter 2

fi lled frames disappeared to somewhere — you assume Joe knows where they went and
how to get them back). ” Through this procedure, Joe reveals “ how you wandered
down different short paths, and crisscrossed yourself a few times ” because “ you
haven ’ t been making use of the simple symbol-manipulation means that I showed
you — other than the shorthand for getting the stuff on the screens. ” Joe then goes
on to show you effective tricks that are deliberately not “ impressive, ” for Joe ’ s point
is to make you realize that new tricks are all based on lots of changes to the little
things you do. He gets you to edit, reword, compile, and delete, at which point:

 You are quite elated by this freedom to juggle the record of your thoughts, and by the way

this freedom allows you to work them into shape. You refl ected that this fl exible cut-and-try

process really did appear to match the way you seemed to develop your thoughts. Golly, you

could be writing math expressions, ad copy, or a poem, with the same type of benefi t. You

were ready to tell Joe that now you saw what he had been trying to tell you about matching

symbol structuring to concept structuring — when he moved on to show you a succession of

other techniques that made you realize you hadn ’ t yet gotten the full signifi cance of his pitch. 85

 This feeling of freedom “ you ” experience stems from an increase in productivity
made possible by the match, or analog, between the machine ’ s processes and your
own; this match is a “ benefi t ” that could improve all your activities, from work to
play. In typical neoliberal fashion, this report evaluates all activities in terms of a
cost – benefi t analysis. 86 Also, the system user is convinced not simply through doing
(even hypothetical doing), but rather through interpersonal interactions, in which
 “ you ” are relentlessly coached and cajoled. Key to “ human augmentation ” is the
establishment of users who act and through their actions believe — all via a linear
narrative that praises nonlinear processes as empowering.

 Figure 2.5
 A screenshot from Douglas Engelbart, “ The Demo, ” < http://video.google.com/videoplay?do

cid=-8734787622017763097 > , accessed 8/8/2010

Daemonic Interfaces, Empowering Obfuscations 85

 Engelbart ’ s demo, the famous “ mother of all demos, ” similarly interpellates the
viewer, using the linear conventions of live TV and cinema. Engelbart and his crew,
some of whom spoke live from their Silicon Valley location, appeared on a massive
twenty-two-by-eighteen-foot screen (see fi gure 2.5). Indeed, Engelbart begins by apolo-
gizing to his audience for addressing them mainly through the screen, and throughout
the demo his face and hands and those of his colleagues fade in and out with the
contents of their screen (see fi gures 2.6 and 2.7).

 The directness of Engelbart ’ s address, however, compensates for the screen. He
describes his research project with the question: “ If, in your offi ce, you, as an
intellectual worker, were supplied with a computer display backed up by a computer
that was alive for you all day and was instantly [sic] responsible . . . responsive
to every action that you had, how much value could you derive from that? ” To
answer this question, he shows you how he begins his workday, with a blank screen
(which becomes your monitor/interface). He then starts to input words into a fi le
to show you the various “ view control ” features of the NLS (online system); in this
scenario, Engelbart becomes both Joe and you the viewer. Using the mouse (its
fi rst public display), he copies and moves texts, gradually ordering a grocery list
allegedly created in response to a call from his wife; he also offers a map of his
journey home. He shows how the system logs ownership and changes to the fi les
(importantly, the NLS system also permanently saved all fi les). Switching to his
colleagues in Silicon Valley, he has them explain more features of the system and,
in one comic moment, loses the ability to speak to them, but they nonetheless
continue their explanations.

 Engelbart serves as our protagonist, with whom we as “ intellectual workers ” are
supposed to identify. The view of his hands, for instance, makes our and his gaze
coincide. Supplementing this cinematic call to identify with Engelbart, however, is a
televisual structure of technologically mediated liveness and interpersonal discourse. 87
Engelbart looks at us directly and, like a news anchor, controls the screen, determin-
ing which of his colleagues appear next. Intriguingly, the interface itself did not have
windows — everything is shown on one screen — but the notion of windowing exists
in the split screens and transfers. Our screen, in other words, becomes a window in
which Engelbart ’ s face appears and disappears: a medium in the medium. He addresses
us directly, making us part of his world, through his interface and through the NLS
system, which magically bring us all together. The demo, in other words, has been
so “ life changing ” not simply because of the technology it featured, but also because
of the images and visions of interconnectivity it established through its visual
presentation.

 Through our identifi cation with Engelbart via his demo we emerge as sovereign
subjects — subjects of fi les. Not accidentally, Engelbart ’ s tasks are administrative:
compiling lists, assigning ownership to fi les. Lists, according to Cornelia Vismann,

86 Chapter 2

 Figures 2.6
 A screenshot from Douglas Engelbart, “ The Demo ”

 Figure 2.7
 A screenshot from Douglas Engelbart, “ The Demo ”

are fundamentally administrative. They are about power through writing: they “ do
not communicate, they control transfer operations. ” 88 Similarly, fi les, which, Vismann
argues, “ at their core . . . are governed by lists, ” are central to legal institutions
and power. 89 Files “ are comprehensive recording devices that register everything
in the medium of writing, even that which is not writing. ” 90 The modern inter-
face, by putting everyone in control of their fi les, makes every system user a
 “ chancellor ” — again, an executive — and is part of an ongoing personalization of
bureaucracy: “ by condensing an entire administrative offi ce, the computer imple-
ments the basic law of bureaucracy according to which administrative techniques
are transferred from the state to the individual. ” 91 The personalizing of fi les — both

Daemonic Interfaces, Empowering Obfuscations 87

virtually and legally through various “ access to information ” laws — individualizes
and totalizes.

 This notion of individual yet total is also underscored in the Engelbart demo
format, in the ways it differs from live television and cinema. The “ view control ”
offered by the NLS system was mirrored intriguingly in the demo itself, with
the camera offering us views that were not under Engelbart ’ s control and featur-
ing moments of confusion and disconnection. Engelbart falters repeatedly in the
demo: in the rather telling slip of the tongue listed earlier he contends that the
machine is “ responsible for ” rather than “ responsive to ” our every action. He
also makes mistakes and claims that he (not the machine) has not yet “ warmed
up. ” All these errors combined with the various visual views of the team place
us, the viewers, in the position of control. Like the mouse that responds to
Engelbart ’ s movements, the viewer seemingly toggles, cuts, and pastes through
the various views. Engelbart is not only the subject, but also an object to be
manipulated.

 At the alleged origins of interactive real-time interfaces, then, is a desire to control,
to “ govern, ” based on a promise of transparent technologically mediated contact. It
is a vision of permanence and fl exibility: the fi les are permanently stored and the
user ’ s information tracked. Through this, this spectral interface has come to stand in
for the machine itself, erasing the medium as it proliferates its specters, making our
machines transparent producers of unreal visions — sometimes terrifying but usually
banal imitations or hallucinations of elsewhere, in which the uneasy relationship
between human agency and dependency is negotiated.

 Daemonic Media

 This spectrality makes our media daemonic: inhabited by invisible, orphaned processes
that, perhaps like Socrates ’ s daimonion , help us in our times of need. They make
executables magic. UNIX — that operating system seemingly behind our happy spectral
Mac desktops — runs daemons; daemons run our email, our web servers. Macs thus
not only proudly display that symbol of the Judeo-Christian seduction and fall from
grace — that sanitized but nonetheless tellingly bitten apple — it also inhabits its operat-
ing systems with daemons that make it a veritable “ Paradise Lost. ” The mascot for
FreeBSD, the robust operating system distributed via Berkeley Software Distribution
and descended from AT & T ’ s UNIX (also used by Apple OSX), nicely features the
daemon as its logo (see fi gure 2.8).

 These daemons called sendmail if not Satan are processes that run in the back-
ground without intervention by the user (usually initiated at boot time). They can
run continuously, or in response to a particular event or condition (for instance,
network traffi c), or at a scheduled time (every fi ve minutes or at 05:00 every day).

88 Chapter 2

 Figures 2.8
 The FreeBSD mascot, < http://www.zer0.org/daemons/wc/standing_daemon.jpg > , accessed 8/8/

2010. Copyright 1988 by Marshall Kirk McKusick, used with permission. Reprinted with

permission.

More technically, UNIX daemons are parentless — that is, orphaned — processes that
run in the root directory. You can create a UNIX daemon by forking a child process
and then having the parent process exit, so that INIT (the program that spawns
all other programs and thus the daemons of daemons) takes over as the parent
process. 92

 UNIX daemons supposedly stem from the Greek word daemon meaning, according
to the OED, “ a supernatural being of a nature intermediate between that of gods and
men; an inferior divinity, spirit, genius (including the souls or ghosts of deceased
persons, esp. deifi ed heroes). ” A daemon thus is already a medium, an intermediate
value albeit one that is not often seen. The most famous daemon is perhaps Socrates ’ s
 daimonion — a mystical inner voice that assisted the philosopher in times of crisis by
forbidding him to do anything rash. The other famous daemon, more directly related
to those spawning UNIX processes, is known as Maxwell ’ s daemon . According to Fer-
nando Corbato, one of the original members of the Project MAC group in 1963: “ Our
use of the word daemon was inspired by Maxwell ’ s daemon of physics and thermo-
dynamics. (My background is Physics.) Maxwell ’ s daemon was an imaginary agent
which helped sort molecules of different speeds and worked tirelessly in the back-
ground. We fancifully began to use the word daemon to describe background processes

Daemonic Interfaces, Empowering Obfuscations 89

which worked tirelessly to perform system chores. ” 93 Daemonic processes, therefore,
are slaves that work tirelessly and, like all slaves, defi ne and challenge the position of
the master.

 The introduction of multiuser command line processing — seeming if not actual
real-time operating systems — necessitates the mystifi cation of processes that appear
to operate automatically without user input, breaking the interfaces ’ “ diegesis. ” What
is not seen becomes daemonic, rather than what is normal, because the user is
supposed to be the cause and end of any process. Interactive operating systems,
such as UNIX, transform the computer from a machine run by human operators
in batch mode to “ alive ” personal machines, which respond to the user ’ s commands.
Real-time content, stock quotes, breaking news, and streaming video similarly trans-
form personal computers into personal media machines. These moments of “ inter-
activity ” buttress the notion of our computers as transparent. Real-time processes,
in other words, make the user the “ source ” of the action, but only by orphaning
those writing processes without which there could be no user. 94 By making the
interface “ transparent ” or “ rational, ” one creates daemons, which as autonomous
operations call into question the subject they allegedly support. It is not surprising
then that Friedrich Nietzsche condemned Socrates so roundly for his daemon (and,
similarly, language for its attribution of subject to verb), even though daemons are
symptoms rather than causes. According to Nietzsche, Socrates was himself a daemon
because he insisted on the transparency of knowledge, because he insisted that what
is most beautiful is also most sensible. Crucially, Socrates ’ s divine inner voice only
spoke to dissuade. Socrates introduced order and reifi ed conscious perception, making
instinct the critic, and consciousness the creator. As a symptom of this desire for
the transparency of knowledge, for the reigning of rationality, daemon is also a
backronym. Since the fi rst daemon automatically made tape backups for the fi le
system, it has been widely and erroneously assumed that daemon initially stood for
 “ Disk And Executive MONitor ” (this alleged “ source ” phrase was later adopted). The
fi rst daemon appropriately is about memory: an automated process that transfers
data between secondary and tertiary memory. Memory is what makes daemons
possible and what makes our media daemonic. Memory, as I elaborate later, grounds
code as logos.

 Ghostly Interfaces, Confused Mappings

 The drive to map seeks to clear up confusion and establish the user as the sovereign
subject, in control of what she sees: she controls technology that transparently reveals
her relationship to the invisible laws of computation. This compelling relationship
bleeds elsewhere, making the interface not simply based on metaphor, but also a
compelling metaphor for understanding all invisible laws. This mapping makes us

90 Chapter 2

believe that the world, like the computer, really comprises invisible hands and rules
that we can track via their visual manifestations. Hence the popularity of software as
a metaphor for almost everything — culture, genetics, life — and the reduction of every-
thing to transparent (and in Baudrillard ’ s term “ obscene ”) communication. Although
digital imaging certainly plays a role in the notion of computer networks as transpar-
ent, it is neither the only nor the key thing. Consider, for instance, “ The Matrix ”
(Multistate Anti-TerRrorism Information eXchange) data mining program that sifts
through databases of public and private information ostensibly to fi nd criminals or
terrorists. The Matrix works by integrating “ information from disparate sources, like
vehicle registrations, driver ’ s license data, criminal history and real estate records and
analyzing it for patterns of activity that could help law enforcement investigations.
Promotional materials for the company that developed The Matrix put it this way:
 ‘ When enough seemingly insignifi cant data is analyzed against billions of data ele-
ments, the invisible becomes visible. ’ ” 95 Although supporters claim that The Matrix
simply brings together information already available to law enforcement, “ opponents
of the program say the ability of computer networks to combine and sift mountains
of data greatly amplifi es police surveillance power, putting innocent people at greater
risk of being entangled in data dragnets. The problem is compounded, they say, in a
world where many aspects of daily life leave online traces. ” 96 By March 15, 2004, over
two-thirds of the states withdrew their support for The Matrix, citing budgetary and
privacy concerns. The Matrix was considered to be a violation of privacy or a making
of the invisible visible (again, the act of software itself) not because the computer
reproduced indexical images but rather because it enabled the police to make easy
connections and thus amplifi ed their power. As mentioned previously, the Total Infor-
mation Agency (TIA), formed to bring together the U.S. government ’ s various elec-
tronic databases, was similarly decried, although not terminated (many of its programs
were implemented by the NSA and continue in the Obama administration).

 This desire to see and to map, however, is not limited to governmental organiza-
tions; it is also key to the increasing personalization of commercial media. In spring
2009, Cablevision announced plans to use a targeting technology, “ Visible World, ”
to “ route ads to specifi c households based on data about income, ethnicity, gender
or whether the homeowner has children or pets ” to 500,000 homes in the Tri-State
region surrounding greater New York and encompassing the populated areas of New
York, New Jersey, and Connecticut (Cablevision has already been testing this new
technology within a sample urban population over the past year and a half). Visible
World ” aims to make television — not the user — smarter: “ Television was always big
and dumb, ” said Seth Haberman, the chief executive of Visible World. “ Now, hope-
fully, we can be big and slightly smarter. ” 97 In this defi nition, smart means tracking
users ’ actions: like the iTunes and Amazon.com user-driven product recommendation
systems, smart technologies automatically capture information about users ’ personal

Daemonic Interfaces, Empowering Obfuscations 91

preferences and usage and send it to a central database to be processed and
analyzed. 98

 To continue on a more personal level, computing as enabling connections and
making the invisible visible drives personal computing interfaces. By typing in
Microsoft Word, letters appear on my screen, representing what is stored invisibly
on my computer. My typing and clicking seem to have corresponding actions on
the screen. By opening a fi le, I make it visible. On all levels, then, software seems
to be about making the invisible visible — about translating between computer-readable
code and human-readable language. Manovich seizes on this translation and makes
 “ transcoding ” — the translation of fi les from one format to another, which he extrapo-
lates to the relationship between cultural and computer layers — his fi fth and last
principle of new media in The Language of New Media . Manovich argues that in
order to understand new media we need to engage both layers, for although the
surface layer may seem like every other media, the hidden layer, computation, is
where the true difference between new and old media — programmability — lies. He
thus argues that we must move from media studies to software studies, and the
principle of transcoding is one way to start to think about software studies. 99

 The problem with Manovich ’ s notion of transcoding is that it focuses on static
data and treats computation as a mere translation. Not only does programmability
mean that images are manipulable in new ways; it also means that one ’ s computer
constantly acts in ways beyond one ’ s control. To see software as merely transcoding
erases the computation necessary for computers to run. The computer ’ s duplicitous
reading does not simply translate or transcode code into text/image/sound, or vice
versa; its reading — which confl ates reading and writing (for a computer, to read is to
write elsewhere) — also partakes in other invisible readings. For example, when Micro-
soft ’ s Media Player plays a CD, it sends the Microsoft Corporation information about
that CD. When it plays a Real Media fi le, such as a CNN video clip, it sends CNN
its “ unique identifi er. ” You can choose to work offl ine when playing a CD and request
that your media player not transmit its “ unique identifi er ” when online, but these
choices require two changes to the default settings. By installing the Media Player,
you also agreed to allow Microsoft to “ provide security related updates to the OS
Components that will be automatically downloaded onto your computer. These secu-
rity related updates may disable your ability to copy and/or play Secure Content and
use other software on your computer. ” Basically, Microsoft can change components
of your operating system (OS) without notice or your explicit consent. Thus to create
a more “ secure ” computer, where secure means secure from the user, Microsoft can
disable pirated fi les and applications and/or report their presence to its main data-
base. 100 Of course, Microsoft ’ s advertisements do not emphasize the Media Player ’ s
tracking mechanisms but rather sell it as empowering and user friendly. So now you
can listen to both your CD and Internet-based radio stations with one click of a

92 Chapter 2

mouse: it is just like your boom box, but better. And now you can automatically
receive software updates and optimize your connection to remote sites. As mentioned
previously, this logic also drives Apple ’ s iTunes recommendation system; more trou-
blingly, it also appears in Apple ’ s DRM-free music tracks, which embeds personal
account information into these freely accessible tracks.

 To be clear: this chapter is not a call to a return to an age when one could see
and comprehend the actions of our computers. Those days are long gone. As Friedrich
Kittler argues, at a fundamental level we no longer write; through our use of word
processors we have given computers that task. 101 Neither is this chapter an indictment
of software or programming (I too am swayed by and enamored of the causal pleasure
of software). It is, however, an argument against common-sense notions of software
precisely because of their status as common sense (and in this sense they fulfi ll
Antonio Gramsci ’ s notion of ideology as hegemonic common sense); because of the
histories and gazes such notions erase; and because of the future they point toward.
Software has become a common-sense shorthand for culture, and hardware shorthand
for nature. (In the current debate over stem cell research, stem cells have been called
 “ hardware. ” Historically software also facilitated the separation of pattern from matter,
necessary for the separation of genes from DNA.) 102 In our so-called post-ideological
society, software sustains and depoliticizes notions of ideology and ideology critique.
People may deny ideology, but they don ’ t deny software — and they attribute to soft-
ware, metaphorically, greater powers than have been attributed to ideology. Our
interactions with software have disciplined us, created certain expectations about
cause and effect, offered us pleasure and power — a way to navigate our neoliberal
world — that we believe should be transferable elsewhere. It has also fostered our belief
in the world as neoliberal: as an economic game that follows certain rules. The notion
of software has crept into our critical vocabulary in mostly uninterrogated ways. 103
By interrogating software and the visual knowledge it perpetuates, we can move
beyond the so-called crisis in indexicality toward understanding the new ways in
which visual knowledge — seeing/visible reading as knowing — is being transformed
and perpetuated, not simply rendered obsolete or displaced.

 To do this, we need, again, to understand the ways in which the drive to map and
to promote transparency enables nontransparent data tracking that cuts across the
governmental, the political, the commercial, and the personal. For instance, Google ’ s
2009 decision to refuse to self-censor its search results in China seems a simple rejec-
tion of governmental transcoding and a laudable endorsement of transparency: by
refusing to censor results, Google makes visible what is usually invisible to or screened
from its Chinese users. Google made its decision, however, in response to the fact that
 “ Chinese hackers had penetrated some of its services, such as Gmail, in a politically
motivated attempt at intelligence gathering. ” 104 Importantly, Google ’ s complicity with
the U.S. government ’ s email surveillance program made possible this spying foray: the

Daemonic Interfaces, Empowering Obfuscations 93

hackers took advantage of the fact that, “ in order to comply with government search
warrants on user data, Google created a backdoor access system into Gmail accounts. ” 105
Similarly, the U.S. government ’ s celebration and endorsement of social networking
tools such as Twitter makes Twitter users open to governmental surveillance: by using
Twitter and other U.S. software, one makes it much easier for the U.S. government to
track one ’ s actions through “ back doors ” (back doors created in part through our belief
in our interfaces as simple windows).

 This does not mean, however, that one must simply condemn all attempts at politi-
cal transparency and mapping and all user actions as self-delusional capitulation. In
response to TIA, Chris Csikszentmihalyi ’ s group at the MIT Media Lab produced a
remarkable site, Government Information Awareness (GIA), which mobilized resis-
tance against TIA by reversing the gaze. Rather than facilitating information gathering
about citizens, GIA sought to create a sort of “ citizen ’ s intelligence agency ” that gath-
ered data on elected offi cials, empowering “ citizens by providing a single, comprehen-
sive, easy-to-use repository of information on individuals, organizations, and
corporations related to the government of the United States of America. ” 106 Although
the GIA is no longer functional, its drive to make information public regarding
governmental actions has been embraced by the Obama administration itself. This
administration — even as it supported “ back doors ” in email and social networking
software — created the Open Government Initiative, which is committed to making
government transparent, participatory, and collaborative. Csikszentmihalyi ’ s group
has further pursued these issues of participation and transparency through numerous
projects, such as Xtract, which give citizens access to data that is usually limited to
commercial and governmental organizations and, most important, gives them the
ability to manipulate and update these data. These projects are critical not simply for
the “ transparency ” or information they seem to offer, but also because they give users
the collective power to transform these databases and these debates over what counts
as evidence.

 This interrogation of interfaces also entails addressing how their mapping never
works as simply as projected: there is a reason why demos — with their directed narra-
tive and limited interactivity — are so compelling and so central to the computer
industry. Indeed, the action of clicking, and that of “ driving, ” from one site to another,
as I have argued elsewhere, is more like an itinerary — a journey without a global
view — than a map. That is, if our interfaces are maps, we don ’ t necessarily treat them
as such: we try to inhabit them, and, by inhabiting them, we turn them into some-
thing other than a map. Signifi cantly, though, these journeys, or tracings, can always
be reincorporated into a map, and every journey we take, through the storage and
sites we use, can be recompiled in a map that allegedly contains the truth of our
journey — hence Google ’ s ability to track fl u outbreaks based on search terms entered
into its database, although again, databases are not as infallible as they seem. 107 These

94 Chapter 2

databases, which drive computer “ mapping ” / machine intelligence, become “ dirty, ”
unreliable, when they do not actively erase information: they become fl ooded with
old and erroneous information that dilutes the maps they produce. Deliberately
making databases dirty — by providing too much or erroneous information — may be
the most effective way of preserving something like privacy.

 Furthermore, the more an interface is programmed — the more it tries to meet and
anticipate users ’ needs and to direct their actions — the more confused and confusing
it becomes. As Matthew Fuller has argued in relation to Microsoft Word ’ s massive
feature mountain (opening all the possible menus and tools, for instance, completely
blocks the screen so we cannot see what we are writing), the more features that are
offered, the more the user can go astray. This going astray is not necessarily a bad
thing — it does not necessarily lead to an existential nightmare — or, if it does, perhaps
that is a good thing. What certain types of mapping and actions eradicate is the ways
in which we are not the only agents: as Adrian Mackenzie argues, software is a neigh-
borhood, an amalgam that brings together many different modes of action. 108 As a
neighborhood, software entails all those “ neighborhood effects ” — effects by individu-
als on others for which “ it is not feasible to charge or recompensate them ” — that even
neoliberals acknowledge belie freedom as a strictly voluntary exchange. 109

 In addition — as Csikszentmihalyi ’ s projects make clear — metaphor and mapping are
creative acts. That is, rather than simply condemning maps that seek to reduce the
earth to a spinning globe, we need to embrace the ways in which mapping and
metaphor — as artifi cial acts — create the world they represent. Friedrich Nietzsche, for
instance, has argued that all language — and truth — is basically metaphorical. What is
truth, he asks, if not

 a mobile army of metaphors, metonyms, and anthropomorphisms — in short, a sum of human

relations which have been enhanced, transposed, and embellished poetically and rhetorically,

and which after long use seem fi rm, canonical, and obligatory to a people: truths are illusions

about which one has forgotten that this is what they are; metaphors which are worn out and

without sensuous power; coins which have lost their pictures and now matter only as metal,

no longer as coins. 110

 Rather than forgetting this “ primitive world of metaphor ” and thus live securely and
consistently, Nietzsche calls for an embrace of the fundamental drive to form meta-
phors and thus to refashion the world. Understanding computers as metaphors for
metaphor also means engaging the artifi ciality of metaphor — producing new meta-
phors — that make strange and estranging the world around us. This aesthetic creation
would not seek to make a totality visible, so we can then navigate it, but rather,
through deliberately odd and artifi cial means, to create what we consider totality to
be. This, arguably, is the value of the many aesthetic “ detournements ” of mapping
produced by artists, from i/o/d ’ s WebStalker (which offers its “ surfers ” HTML code and
a map of a web pages rather than its “ content ”) to Jonah Brucker-Cohen ’ s Wireless

Daemonic Interfaces, Empowering Obfuscations 95

Hog (which offers users a way to interfere with private wireless networks). Liz Canner
and John Ewing ’ s 2001 Symphony of a City nicely demonstrates the possibilities of this
mapping. Canner and Ewing ’ s project addressed the housing crisis in Boston by attach-
ing portable cameras to the heads of eight nominated “ representatives ” of differently
affected communities (including a housing court lawyer, slum lord, homeless person,
and an artist). Canner and Ewing then streamed the camera views live on the Web
and projected them (as four quadrants) simultaneously on the side of Boston City
Hall. This move to reclaim a “ monument ” within Boston — a city crucial to Lynch ’ s
analysis — offers a provocative remapping of city space that links individual experience
to the larger issues of gentrifi cation and capital. It also allows one to “ follow ” this
issue by literally following the fl ow of the participants: there is no god ’ s eye view,
but rather a splitting of perspectives that demands both local attention and global
distraction.

 Last, this interrogation of transparency, mapping, and interfaces needs to address
the ways in which the digital rather than simply offering a stable material for memory
is also fundamentally ephemeral. The digital, if it is anything, is the enduring ephem-
eral. Digital media is not always there (accessible), even when it is (somewhere). We
suffer daily frustrations with digital “ sources ” that just disappear. Digital media is
degenerative, forgetful, erasable. This degeneration makes it both possible and impos-
sible for it to imitate analog media, making it perhaps a device for history, but only
through its ahistorical (or memoryless) functioning, through the ways in which it
constantly transmits and regenerates text and images. The question becomes: how did
constant regeneration become stable transmission?

 II Regenerating Archives

 The transience of new archives, their ever shorter half-life, is their fate, their curse, and their

opportunity.

 — Wolfgang Ernst 1

 Traces . . . produce the space of their inscription only by acceding to the period of their erasure.

 — Jacques Derrida 2

 A major — if not the major — category of new media is memory. 3 Memory, a metaphor
become essence, is assumed to be its ontology at all levels, from hardware to software,
from content to purpose. From CD ROMs (compact disc read-only memory) to memory
sticks, from RAM (random-access memory) to ROM (read-only memory), computer
hardware is riven by memory, which, as I elaborate later, makes porous the boundaries
of the machine. Memory underlies the emergence of the computer as we now know
it: the move from calculator to computer depended on “ regenerative memory. ” 4 The
Internet ’ s content, memorable or not, is similarly shot through with memory. Many
web sites and digital media projects focus on preservation: from online museums to
YouTube phenomenon Geriatic1927, from Bill Gates ’ s Corbis Image Database to the
Google databanks that store every search ever entered (and link them to an IP address,
allegedly making Google the “ stasi resource ” of the twenty-fi rst century). Memory
hardens information — turning it from a measure of possibility into a “ thing, ” while
also erasing the difference between instruction and data (computer memory treats
them indistinguishably). It seems to make digital media an ever-increasing archive in
which no piece of data is lost and thus central to progress.

 This always thereness of new media links it to the future as future simple. By saving
the past, it is supposed to make knowing the future easier. The future is technology
because technology enables us to see trends and hence to make projections — it allows
us to intervene on the future based on stored programs and data that compress time
and space. 5 Again, investment banks, such as Goldman Sachs, pay millions just to be
one millisecond closer to the future than their competitors. More damningly, new

98 Part II

media allegedly puts the future simple into place through the threat of constant expo-
sure. As a New York Times article questioned in response to the seminal posting of the
Senator George Allen macaca clip to YouTube in 2006: “ If . . . any moment of a can-
didate ’ s life can be captured on fi lm and posted on the Web, will the last shreds of
authenticity be stripped from our public offi cials? ” 6 Intriguingly, this formulation
assumes that racist slurs are the authentic and the true, and that public exposure
always makes behavior more banal. However, given the legion of students with com-
promising Facebook entries who seem oblivious to the fact that potential employers
can check these entries, and given that people increasingly record their own “ trans-
gressions ” (such as the English happy slappers who taped themselves accosting unsus-
pecting people in buses etc. and posted them to YouTube), it is not clear that this
assumption will hold, even for politicians. Allen, after all, directed his comment at a
public rally to an Indian-American man holding a video recorder. Regardless, digital
media was supposed — in its very functioning — to encapsulate the enlightenment ideal
that better information leads to better knowledge, which in turn guarantees better
decisions. 7 As a product of programming, digital media was to program the future.

 The next two chapters fl esh out the emergence of computer memory and its impor-
tance to notions of programmability. Focusing on the relation between biology and
computing technology, chapters 3 and 4 explore how something so initially “ vapory ”
as software came to embody the logic of the “ always already there. ” By exploring the
ways in which biology and computer technology have been reduced to complemen-
tary strands of a double helix, they embed computer technology within the larger
epistemic fi eld of programmability. Both are a return to a reductionist, mechanistic
understanding of life, in which the human body becomes an archive. Both are the
basis of a biopolitics that seeks to rationalize and optimize human populations and
capital.

 Chapters 3 and 4 also explore how permanence has become intertwined with
undead repetition and transmission, and how this repetition both grounds and threat-
ens computers as archive. Repetition, as Vannevar Bush and Jacques Derrida have
argued, is also a marker of forgetfulness. Drawing from Freud ’ s work on the death
drive, Derrida contends “ repetition itself, the logic of repetition, indeed the repetition
compulsion, remains . . . indissociable from . . . destruction. ” 8 This repetition also
relies on degeneration: as the epigraph states, a trace to be a trace must be erasable.
Because of this, it is also undead or spectral, neither human nor machine, “ neither
present nor absent ‘ in the fl esh, ’ neither visible nor invisible, a trace always referring
to another whose eyes can never be met. ” 9 It is, to tie it to the fi rst section, invisibly
visible, visibly invisible, a “ technical ” repetition that relates life and death, presence
and representation. 10

 By focusing on archives — on the relation between memory and repetition, repeti-
tion and forgetting, repetition and transmission — this section also addresses questions

Regenerating Archives 99

of power. Vannevar Bush ’ s insistence that accessing and wielding the archive is key to
the survival of the human race may seem hyperbolic, but archives have historically
been linked to questions of authority. As Howard Caygill, paraphrasing Aristotle,
explains:

 The institution of the archon originated in the ancient Greek transition from monarchic to

aristocratic rule, with the archons , unlike the kings, being constitutionally required to respect

precedent. On assuming offi ce an archon had to make a proclamation ‘ that whatever each man

possessed before his entry into offi ce he shall possess and control until the end of it. . . . ’ In

order to honour such a commitment it was necessary to preserve authoritative records of ‘ what

each possessed ’ at the beginning of each archonate, and these records, or rather the building

in which they were stored, became known as the archive. It is important to recall the origins

of the archive in oligarchic rule, because it is characteristic of such regimes that the laws be

public, but not available to all. 11

 The archive thus buttresses a certain defi nition of public as state authority through
the transformation, as Derrida notes, of a private domicile into a public one. It is also
based on a promise that links the past to the future: whatever is possessed at the
beginning of an archon ’ s term shall remain at the end; an archive conserves. This
conservative promise is tied to another: the promise to respect precedent, that is, to
follow past rules in order to guarantee a just future. Derrida thus argues, “ the archive
is a pledge to the future, it is not an issue of the past: it is a question of the future,
the question of the future itself, the question of a response, of a promise, and of a
responsibility for tomorrow. The archive: if we want to know what that will have
meant, we will only know it in times to come. ” 12 The meaning of an archive, like
source code, can only be determined after the fact. It is a promise to the future. 13
Derrida also argues, “ there is no political power without control of the archive, if not
of memory. Effective democratization can always be measured by this essential crite-
rion: the participation in and the access to the archive, its constitution, and its
interpretation. ” 14

 Linked to authority and the establishment of power, archives also carry with them
the threat of violence: a promise is also a threat. 15 Derrida, drawing from the etymol-
ogy of the term archive , underscores that the archive is always both institutive and
conservative: “ It keeps, it puts in reserve, it saves, but in an unnatural fashion, that
is to say in making the law (nomos) or in making people respect the law . . . it has the
force of law. ” 16 The archive is, he argues, toponomological : it “ coordinates two principles
in one: the principle according to nature or history, there , where things commence —
 physical, historical, or ontological principle — but also the principle according to the
law, there where men and gods command , there where authority, social order are
exercised. ” 17

 These questions of violence and authority, of the transformation of a private to a
public space, are key to understanding and assessing changes brought about by new

100 Part II

media. New media have made certain archives more accessible by increasing the
 “ domiciles ” in which they — or copies of them — can be kept, spreading democracy by
compromising privacy. At the same time, they have also made these fi les more volatile
in both content and form, complicating the task of both preserving and reserving
them. The fl ame wars and confl ict online combined with increasing corporate and
state surveillance — that is, our constant state of crisis — are not accidental to, or an
unfortunate and temporary side effect of, new media; rather, they are symptomatic of
changes in archival power, changes that underscore how new media can be the “ end ”
of the archive, in both senses of that word. To return to new media as metaphor, the
new media makes the archive metaphorical not only because, as Wolfgang Ernst has
shown, it is not an archive, but also because it brings archives alive, shot through with
change. Traces do not simply degenerate at a faster pace, they also transform them-
selves. This transformation challenges the process of consignation — of indexing and
organizing — that grounds the archive; it also fundamentally changes how archived
materials are retrieved, or “ reanimated ” and thus experienced. Perhaps, as Ernst has
so eloquently argued, it is time to archive the word archive , assuming, that is, that we
could separate its verb and noun forms. 18 Perhaps our very sense of the end of
archives — their promise and their threat — is embedded in their structure as undead,
as traces of the past we simultaneously integrate and forget as they endure and
disappear.

 3 Order from Order, or Life According to Software

 We ought to regard the present state of the universe as the effect of its antecedent state and as

the cause of the state that is to follow. An intelligence knowing all the forces acting in nature at

a given instant, as well as the momentary positions of all things in the universe, would be able

to comprehend in one single formula the motions of the largest bodies as well as the lightest

atoms in the world, provided that its intellect were suffi ciently powerful to subject all data to

analysis; to it nothing would be uncertain, the future as well as the past would be present to its

eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble

outline of such an intelligence.

 — Pierre-Simon Laplace 1

 To repeat, software is axiomatic. As a fi rst principle, it fastens in place a certain logic
of cause and effect, a causal pleasure that erases execution and reduces programming
to an act of writing. An axiomatic, as Gilles Deleuze and F é lix Guattari contend,
artifi cially limits decodings, it “ blocks all lines [of fl ight], subordinates them to a
punctual systems, and halts the geometric and algebraic writing systems that had
begun to run off in all directions. ” 2 Software seeks to limit what can be decoded
through an artifi cial boundary of programmability that renders hardware logical and
orderly. This causal pleasure both stems from and bleeds elsewhere, making software —
 itself based on metaphor — a metaphor for the mind, for genes, for culture, for the
economy, indeed for metaphor itself. Paul Edwards among others has outlined the
ways in which the computer as a software/hardware machine conceptually grounded
cognitive psychology, and it seems impossible to discuss biology without recourse to
computer technology (to circuits, information exchange, and programs). 3

 This intertwining of computer technology and biology is hardly new, although it
is constantly discovered as though it is. The history of computing and the history of
biology are littered with moments of deliberate connection and astonished revelation,
from computer storage as “ memory ” to regulatory genes as “ switches, ” from genetic
to evolutionary “ programs. ” Through generative misreadings, biology and computer
technology are constructed as complementary strands of a constantly unraveling and

102 Chapter 3

 Figure 3.1
 Stylized double helix

raveling stylized double helix (see fi gure 3.1). That is, they are reduced to shiny cor-
responding balls or strips through the sleek simplicity of programmability, a force of
attraction that binds the two together and enables them to reduplicate — to write each
other — even as they work in opposite directions.

 Richard Dawkins ’ s “ transformation ” of evolutionary biology through the rubric of
selfi sh genes exemplifi es this logic: “ we are, ” he writes, “ survival machines — robot
vehicles blindly programmed to preserve the selfi sh molecules known as genes. ” 4
Comparing neurons to transistors, he asserts, “ brains may be regarded as analogous
in function to computers. ” 5 This analogy makes clear the parallels not only between
computers and humans, but also between them and a capitalist economy in which
agents operate selfi shly; it further naturalizes this comparison by making “ nature ”
responsible for these actions. This analogy, which Dawkins claims still “ fi lls [him] with
astonishment, ” is also astonishing for its historical blindness, for Dawkins ’ s revelation
repeats John von Neumann ’ s foundational analogy between neurons and computer

Order from Order, or Life According to Software 103

components, as well as Nobel Prize winning geneticist Fran ç ois Jacob ’ s 1970 claim
that the involuntary aim of organisms is the reproduction of “ an identical programme
for the following generation. The aim is to reproduce. ” 6 In the fi rst published account
of modern stored program computing, the notorious 1945 “ First Draft of a Report on
the EDVAC, ” von Neumann asserts: “ the three specifi c parts CA [central arithmetic],
CC [central control] (together C) and M [memory] correspond to the associative
neurons in the human nervous system. . . . The equivalents of the sensory or afferent
and the motor or efferent neurons . . . are the input and output organs of the device. ” 7
Importantly, von Neumann ’ s neurons are already cyberneticized: they are, as chapter
4 elaborates, the idealized neurons of Warren McCulloch and Walter Pitts, who used
 “ neurons ” to instantiate Turing ’ s universal machine.

 Each instance of connection, though, is repetition with a difference — one that
creates a new linkage down the chain, but also poses the possibility of breakage or
mutation. Dawkins ’ s formulation, though, does not simply repeat Jacob ’ s because it
emphasizes the acts of individual “ selfi sh ” genes rather than the genetic program as
a whole. It also does not simply repeat von Neumann ’ s because it privileges a concept
foreign to von Neumann in 1945: software. Although von Neumann details the “ code ”
to be included in the memory in “ First Draft, ” most of the report is devoted to outlin-
ing the function of logical hardware devices. Software had not emerged by then as a
separate quantity; as outlined in chapter 1, the terms program and code in 1940s com-
puting were mainly verbs. Again, writing in 1947 with Herman Goldstine, von
Neumann insisted that coding was “ not a static process of translation, but rather the
technique of providing a dynamic background to control the automatic evolution of
a meaning. ” 8 In von Neumann ’ s analogy, code or program was not the pivot between
the machinic and the biological.

 As many have pointed out, the engineers who built the fi rst digital computers did
not foresee software; it was not foreseen, I wager in this chapter, because the drive
for software — for an independent program that confl ates legislation with execution —
 did not arise solely from within the fi eld of computation. Rather, code as logos existed
elsewhere and emanated from elsewhere — it was part of a larger epistemic fi eld of
biopolitical programmability. Part I of this book focuses on gendered and military
relations; this chapter examines the intertwined and intertwining importance of
Mendelian genetics and biopower more generally. 9

 To make this point, this chapter perhaps perversely reads Erwin Schr ö dinger ’ s
 What Is Life? — widely though controversially considered to be the ur-text of modern
genetics — as What Is Software? That is, What Is Life? epitomizes the drive for a code-
based causality detailed in the fi rst two chapters, a drive that software and not DNA
would (and only could) instantiate. It also resuscitates the possibility of an all-knowing
sovereign: a Laplaceian subject who could, by reading our genetic code-script, know
the results of all causal connections. Untangling the ways that software and heredity

104 Chapter 3

intersect to create what Fran ç ois Jacob would call the “ logic of life ” — a logic that
reduces action to word, life to a programmable code — this chapter argues that early
to mid-twentieth-century genetics and eugenics prefi gured the emergence of software.
Both Mendelian genetics and software are based on the return to a Laplaceian uni-
verse in which order stems from order. Both are a return to a reductionist, mecha-
nistic understanding of life, in which the human body becomes an archive. Part of
the goal of this chapter then is to complicate the standard narrative within the
history of science that biologists adapted the notion of a program from computer
science — a narrative that rather remarkably treats software as though it has always
existed. This chapter supplements the accounts of cybernetics ’ intrusion into the
biological sciences by underscoring the difference between fi rst-order cybernetic
control and programmability while still acknowledging their commonality.

 Software: Not Always Already There

 Software has become such a powerful conceptual tool that it is hard to remember that
it did not always exist. The privilege accorded to software as always already there is
remarkable, especially in terms of theorizing biological phenomena. For instance, to
explain the importance of experiments on bacterial cultures, Jacob has argued:

 Everything . . . leads one to regard the sequence contained in genetic material as a series of

instructions specifying molecular structures, and hence the properties of the cell; to consider

the plan of an organism as a message transmitted from generation to generation; to see the

combinative system of the four chemical radicals as a system of numeration to the base four.

In short, everything urges one to compare the logic of heredity to that of a computer. Rarely

has a model suggested by a particular epoch proved to be more faithful. 10

 Explaining Schr ö dinger ’ s 1943 formulation of a genetic code-script, Jacob similarly
states, “ heredity [in Schr ö dinger ’ s text] functions like the memory of a computer. ” 11
The ahistoricity of this analysis is remarkable, for Schr ö dinger could not have had this
comparison in mind. The fi rst stored program computer, outlined in von Neumann ’ s
draft (itself drawing from the human nervous system), was published years after
Schr ö dinger ’ s address. In 1943, with the exception of Konrad Zuse ’ s little-known
digital computer in Germany, all functional nonhuman computers were analog;
FORTRAN, the fi rst widely used higher-level programming language, was completed
in 1957.

 This emphasis on software and computers is also evident in the critical and histori-
cal literature. Historian Lily Kay, for instance, has insightfully argued that molecular
biology underwent a “ gestalt switch to information thinking ” in the 1950s. 12 This
informational discourse, fueled by the metaphorical adoption of concepts from the
communication technosciences (cybernetics, information theory, and computers),
displaced the rhetoric of “ biological specifi city, ” which was dominated by mechanical

Order from Order, or Life According to Software 105

lock-and-key analogies. After the 1950s, genes transferred “ information ” and the cor-
relation between nucleic acids and proteins catachrestically became a “ code. ” Kay ’ s
 Who Wrote the Book of Life? A History of the Genetic Code details this rhetorical trans-
formation and its fruitful misreadings of terms such as information and code in order
to explain how bodies became reduced to messages. In making this argument, she also
uses software as a theoretical tool. When describing “ the conceptual and semiotic
impact of cybernetics, ” she argues, “ such [closed feedback] mechanisms were not
confi ned to hardware; they also served as software for social technologies. Philoso-
phers and social theorists since the eighteenth century have visualized political, eco-
nomic, and physiological stabilizations and correctives through models of closed
cycles (reminding us of the diachronic and synchronic nature of metaphors). ” 13 In
this passage, Kay uses software as a theoretical construct to describe a historical reality.
Software becomes analogous to rhetoric itself.

 This notion of software as rhetoric is further developed by theorist Richard Doyle
in his important analysis of the postvital body in On Beyond Living: Rhetorical Trans-
formations of the Life Sciences . In it, he states, “ the object of biology has somehow been
displaced, with the molecule overtaking or territorializing the organism and getting
plugged into the computer. ” 14 That is, DNA has become the sovereign source of life,
and the surface and depth of the organism imploded into a new density of coding. 15
To make this argument, Doyle emphasizes the importance of language: “ rather than
a mere description or heuristic for the life sciences, the rhetorics of code, instruction,
and program materialized beliefs into sciences and technologies. ” 16 Language, he
stresses, “ serves as the repository of the unthought of science, its ‘ software. ’ ” 17 He
coins the term rhetorical software to “ foreground the relational and material interac-
tions that make possible the emergence of scientifi c statements. ” Rhetorical software,
he explains, “ while highlighting the textuality of scientifi c practices . . . avoids a
textual determinism: as any user of software knows, software is usable only within a
network of hardware and — this is frequently overlooked — ‘ wetware. ’ ” 18 Like many
metaphorical uses of software, Doyle ’ s draws on software ’ s ability to turn words into
actions; it does, however, also insist on a richer understanding of software, like rhetoric
itself, as dependent on context, on the audience and institutions. That Kay ’ s and
Doyle ’ s texts are two of the most brilliant and insightful on the intersections between
cybernetics and genetics is not irrelevant: in order to think genetics theoretically, it
seems necessary to assume software, and to assume a line of infl uence moving from
computers to biology.

 This assumption that software is always already there is embedded in the very logic
of software itself, which grounds, as chapter 4 contends, the current confl ation of
memory with storage. Software, in other words, is a device that makes possible the
 “ always already there ” : new media as somehow more lasting and more ubiquitous
than other media. What, however, happens when we treat software as a historical as

106 Chapter 3

well as a theoretical device and “ code ” within the fi eld of computing too as catachre-
sis? What if we apply Doyle ’ s insightful analysis back to itself and treat “ software ” (as
Doyle treats language) as the “ unthought ” of his argument?

 Importantly, cybernetics itself is based on a comparison between animals and
machines: it is the study of control and communication in both. Norbert Wiener
coined the term cybernetics in the 1940s, basing it, as mentioned previously, on the
Greek term kybernete (“ steersman ” or “ governor ”). Wiener, assumed by many (includ-
ing himself) to have founded the fi eld, brought together work on electronic control
systems — in particular negative feedback control — with studies of animal behavior. 19
Treating an animal ’ s nervous system as analogous to electrical circuits, cybernetics
modeled both as relaying messages (signals) that controlled action. Elaborating this
analogy further in The Human Use of Human Beings , his popular follow-up to his 1948
work Cybernetics, or, Control and Communication in the Animal and the Machine , Wiener
states:

 The physical functioning of the living individual and the operation of some of the newer

communication machines are precisely parallel in their analogous attempts to control entropy

through feedback. Both of them have sensory receptors as one stage in their cycle of operation;

that is, in both of them there exists a special apparatus for collecting information from the

outer world at low energy levels, and for making it available in the operation of the individual

or of the machine. In both cases these external messages are not taken neat , but through the

internal transforming powers of the apparatus, whether it be alive or dead. The information

is then turned into a new form available for the further stages of performance. In both the

animal and the machine this performance is made to be effective on the outer world. In both

of them, their performed action on the outer world, and not merely their intended action, is

reported back to the central regulatory apparatus. 20

 As this passage makes clear, cybernetics — although it insists that messages are “ coded ”
(i.e., signals) — does not necessitate software: Wiener could easily be discussing analog
computers, such as Bush ’ s differential analyzer. The source of the animal or machine ’ s
actions is not some “ programme, ” and messages are signals to be sampled and trans-
formed, not things that drive the machine. 21 Although the military communications
milieu was important to cybernetics ’ confl ation of control with communication, this
confl ation occurs not necessarily or initially because a command given is a command
executed, but rather because communications systems are control systems: control
operates by comparing output with input. 22 In cybernetics as fi rst conceived, there is
no separation between software and hardware, an impossible distinction during the
1940s; Wiener ’ s algorithms and instructions consist of relays. 23 What links the dead
and the alive — perhaps making them both undead — is feedback.

 Claude Shannon ’ s (and Warren Weaver ’ s) infl uential 1949 defi nition of information
also emphasizes communication. Information gauges what can be communicated; it
is “ a measure of one ’ s freedom of choice in selecting a message, ” not something that

Order from Order, or Life According to Software 107

drives action. 24 As Shannon states, “ the fundamental problem of communication is
that of reproducing at one point either exactly or approximately a message selected
at another point . . . the signifi cant aspect is that the actual message is one selected
from a set of possible messages. The system must be designed to operate for each pos-
sible selection, not just the one which will actually be chosen since this is unknown
at the time of design. ” 25 Communications engineers use information to determine the
necessary capacity of a channel, bus, or decoder. Thus the question unanswered by
cybernetics ’ infl uence on the life sciences is: how did DNA (and indeed software) arise
as the source? How was information transformed not only within the biological, but
also within the computational, sciences? Taking into consideration the fact that
initial computer punch cards, based on the Jacquard Loom, also worked via a physical
lock-and-key mechanism, how did computer codes become language?

 To unpack these questions, I begin with another: what happens if we take seriously
Jacob ’ s claim that Schr ö dinger ’ s idea of heredity coincides with computer memory,
years before such memory was developed? In other words, what if the text lauded as
launching modern genetics — because it postulated the existence of a genetic code-
script and because it inspired physicists such as Francis Crick and James Watson to
move into biology from physics (even though the text was widely considered to be
scientifi cally inaccurate or repetitive even at the time of its writing) — also inadver-
tently “ launched ” modern stored-program computers? What if the arrow of infl uence
is not so simply one-sided (program moving from computers to biology), but rather
part of a complex network of relations and productive, resonating misreadings? As I
elaborate in more detail later, to reverse this arrow is not to imply a direct relationship
between Schr ö dinger and von Neumann. Rather, it is to place both within a larger
epistemic and governmental drive to make sense of the visible through an invisible
program that links past to the present and that links individual to a population. As
Jacob notes, the idea of reproduction as a combination of both parents, initially devel-
oped in the eighteenth century, necessitated the intervention of a “ memory, ” a
hidden, third-order structure that guided heredity. 26 With modern genetics, changes
in this memory stemmed not from an invisible all-knowing “ mysterious hand, ” but
from the vagaries of population dynamics — what matters are not simply individuals,
but rather the relations between them; it is these relations that elucidate invisible
programs. 27 Both computer as memory machine and genetics as program are thus part
of what Richard Panek has provocatively called “ the invisible century, ” a move within
the sciences in the twentieth century away from studying what is simply visible and
experientially based — such as organization — toward speculation, toward theorizing
 “ that there is more to the universe than meets the eye . ” 28 Intriguingly, both Schr ö dinger
and Jacob described the “ governance ” within cells in industrial or military terms: for
Schr ö dinger, cells acted like an ideal military, in which each soldier had a full set of
orders; for Jacob, bacteria acted like chemical factories. 29

108 Chapter 3

 What Is Software?

 In What Is Life? , Schr ö dinger, writing as an amateur biologist or “ na ï ve physicist, ”
outlines the challenge human genetics poses to then-current chemical and physical
knowledge: given that statistical physics shows that Newtonian order only exists at
large scales, how is it that the barely microscopic chromosomes guarantee the orderly
succession of human traits? This question is, of course, one that only a modern
physicist, familiar with Mendelian genetics, would ask, and this text — like Norbert
Wiener ’ s 1948 Cybernetics, or, Control and Communication in the Animal and the Machine
 — grapples with the ways in which life seems to defy the predictions of modern
statistical physics. Life, Schr ö dinger writes,

 seems to be orderly and lawful behaviour of matter, not based exclusively on its tendency to

go over from order to disorder, but based partly on existing order that is kept up. To the

physicist — but only to him — I could hope to make my view clearer by saying: The living organ-

ism seems to be a macroscopic system which in part of its behaviour approaches to that purely

mechanical (as contrasted with thermodynamical) conduct to which all systems tend, as the

temperature approaches absolute zero and the molecular disorder is removed. 30

 More particularly, the regularity guaranteed by chromosomes defi es fundamental
assumptions, for at such a microscopic level, chromosomes should be destabilized by
the impact of heat motion from surrounding molecules. They should act statistically,
rather than mechanically. Given that they do not, Schr ö dinger argues, “ the arrange-
ments of the atoms in the most vital parts of an organism and the interplay of these
arrangements differ in a fundamental way from all those arrangements of atoms which
physicists and chemists have hitherto made the object of their experimental and
theoretical research. ” 31

 Importantly, although he argues that the regularity of heredity is evidenced by
certain constant features such as the Hapsburg lip, Schr ö dinger sees heredity as encom-
passing far more than the transmission of certain permanent traits. “ We must not
forget, ” Schr ö dinger writes,

 that what is passed on by the parent to the child is not just this or that peculiarity, a hooked

nose, short fi ngers, a tendency to rheumatism, haemophilia, dichromasy, etc. Such features we

may conveniently select for studying the laws of heredity. But actually it is the whole (four-

dimensional) pattern of the ‘ phenotype, ’ the visible and manifest nature of the individual,

which is reproduced without appreciable change for generations, permanent within centuries —

 though not within tens of thousands of years — and borne at each transmission by the material

in a structure of the nuclei of the two cells which unite to form the fertilized egg cell. 32

 The visible regeneration of certain traits points to a larger invisible transmitted struc-
ture. To explain this “ marvel ” of regularity, Schr ö dinger argues that genes (which
were then a hypothetical entity), and perhaps the chromosomes as a whole, must be

Order from Order, or Life According to Software 109

an aperiodic crystal, for such a structure would be both stable and suffi ciently complex
to hold the entire “ pattern ” of an individual. Just as Morse code enables a complex
message to be stored using just two signals — the dash and the dot — the gene could
create a great many numbers by employing a simple number of signs. Since all crystals
in the nonliving world are periodic, these structures would be peculiar to living
organisms, but, importantly, they would still follow the laws of quantum mechanics:
they would mutate into different isomers with the absorption of different quantae
of energy.

 Even if following quantum mechanics, living organisms — organisms that keep
 “ ‘ doing something ’ for a much longer period than we would expect of an inanimate
piece of matter to ‘ keep going ’ under similar circumstances ” 33 — Schr ö dinger postulates,
must have some other source than energy. Indeed Schr ö dinger speculates that, in order
for living organisms to create order from order, they “ feed ” on what he calls “ negative
entropy. ” That is, the living organism delays “ the rapid decay into the inert state of
 ‘ equilibrium ’ [death] ” by digesting “ extremely well-ordered state of matter in more or
less complicated organic compounds. ” 34 This idea, which resonates with Shannon ’ s
conception of information as negative entropy (a measure of randomness) and with
Wiener ’ s of information as positive entropy (a measure of order or structure), has led
many to see it as foreshadowing the concept of information itself. 35

 The living organism — through its consumption of negative entropy and its embed-
ded code-script — enables a return to the all-penetrating mind postulated by Pierre-
Simon Laplace: “ Every complete set of chromosomes contains the full code. . . . In
calling the structure of the chromosome fi bres a code-script we mean that the all-
penetrating mind, once conceived by Laplace, to which every causal connection lay
immediately open, could tell from their structure whether the egg would develop,
under suitable conditions, into a black cock or into a speckled hen, into a fl y or a
maize plant, a rhododendron, a beetle, a mouse or a woman. ” 36 This return to Laplace
is also a return to the possibility of a sovereign subject capable of “ knowing all ” : if
liberal governmentality, as stated previously, based itself on the repudiation of such a
position, Mendelian genetics — through its linking of the visible to the invisible via
the concept of code-script — signals a different relationship between individual and
society. Not accidentally, this cellular system is also framed by Schr ö dinger as an ideal
system of governance: in our bodies, every single cell has the instruction code for
every other cell. He compares our cells to the “ intelligent and reliable ” soldiers
engaged in General Montgomery ’ s African campaign, all of whom were allegedly
 “ meticulously informed of all his designs. ” 37 This, Schr ö dinger explains elsewhere,
made the cell-state utopian: “ A society which is organized on the principle that every
offi cial, every civil-servant, every person who has any duty at all within that organiza-
tion is, at least in principle, given the same universal training and is so well informed
about the plan of the whole, that every clerk could, in principle take over the duties

110 Chapter 3

of the prime-minister, every police-man that of a chief-surgeon, etc., etc. ” 38 Schr ö ding-
er ’ s ideal is the mirror image of the utopia of Engelbart, Bush, and Hopper, in which
the machine/code automates the position of the clerk, leaving the executives in place.
In either case, however, one has an empowered individual agent capable of governing
through enhanced knowledge.

 Part of the “ ideality ” of Schr ö dinger ’ s system stems from the fact that execution
is inscribed within these instructions. For Schr ö dinger, the code-script was not only
a plan but also execution. It was “ the entire pattern of the individual ’ s future devel-
opment and of its functioning in the mature state. ” 39 Because of this, Schr ö dinger
argues that the term code is inadequate: “ the term code-script is, of course, too narrow.
The chromosome structures are at the same time instrumental in bringing about the
development they foreshadow. They are law-code and executive power — or, to use
another simile, they are architect ’ s plan and builder ’ s craft — in one. ” 40 To refer back
to chapter 1, code-script is code as logos; it is Lessig ’ s “ code as [automatically execut-
ing and regulating] law, ” a knowledge/action that distorts liberalism ’ s blind “ game. ”

 This notion of code as both architect ’ s plan and builder ’ s craft in one clearly draws
from, even as it mutates, the seventeenth-century notion of nature as the Book of Life.
As Kay points out, few molecular biologists, even as they viewed life as a book, viewed
God as its author. 41 Rather, as this notion of code as both execution and legislation
makes clear, the writing becomes the writer; it becomes a powerful source that also
teases us with the possibility of sovereign power, with the possibility of editing, rewrit-
ing, and creating new genetic codes. 42 Describing the power of natural selection, Jacob
contends, “ without any thought to dictate it, without any imagination to renew it,
the genetic programme is transformed as it is carried out. ” 43 This sovereign power,
sans Sovereign, makes the world infi nitely malleable: what natural selection uncon-
sciously accomplishes, humans can do deliberately. Tellingly Jacob, describing his
embrace of atheism, writes, “ If God did not exist, it was necessary to do without him.
An empty heaven left an earth to fi ll, and it was up to me to fi ll it. A world to con-
struct, and it was up to me to construct it. ” 44 Jacob ’ s sentiment resonates with com-
ments made earlier regarding the power and pleasure of programming — programming
as a form of pleasurable megalomania.

 Assessments of the importance or accuracy of Schr ö dinger ’ s text vary widely — from
biologists Watson and Crick, who have listed it as a direct inspiration; to chemist Linus
Pauling, who viewed it as retarding the development of molecular biology by leading
biologists to concentrate on life as entropy; 45 to historian of science Lily Kay, who has
argued that Schr ö dinger ’ s concept of “ pattern ” does not correspond to modern molec-
ular biology, since it is aligned with the older, protein view of life. 46 According to his-
torian Donald Fleming, What Is Life? is “ a book that was in league with the future but
scientifi cally antiquated before it was written. ” 47 The only thing all the commentators
agree on — and are perhaps puzzled by — is its enduring popularity. As phage biologist

Order from Order, or Life According to Software 111

Gunther Stent puts it, “ just why this book should have made such an impact was never
quite clear. After all, in it Schr ö dinger presented ideas that were even then neither par-
ticularly novel nor original. ” By bringing biology to the attention of physicists,
however, Stent contends, What Is Life? became “ ‘ the Uncle Tom ’ s Cabin ’ of the revolu-
tion in biology that, when the dust had cleared, left molecular biology as its legacy. ” 48
Relatedly, Fleming argues that What Is Life? was emblematic of the impact of “ é migr é
physicists, ” whose move into biology inspired bold reductionist projects about “ the
secret of life. ” 49 In contrast to the biologists who, steeped in reverence for biological
specifi city, issued cautious statements, physicists proffered grand simplifi cations and
statements. According to Evelyn Fox Keller, this push toward all-encompassing rheto-
ric did not only stem from methodology: physics and physicists, such as Schr ö dinger,
supplied biology with social authority and social authorization, enabling biology to
borrow physics ’ agenda, language, and attitude, and even its names. 50 In response to
these confl icting interpretations, Leah Ceccarelli theorizes that What Is Life? negotiates
these different interests and beliefs through a strategic ambiguity that makes all these
readings possible. 51 Ceccarelli ’ s reading is convincing, especially if one considers
Schr ö dinger ’ s description of “ code-script. ” Even if Schr ö dinger ’ s concept of protein is
aligned with the older protein view of life, the term Morse code implies the transfer of
information. According to Ceccarelli ’ s rhetorical reading, Schr ö dinger ’ s text reveals the
value that untrue, unoriginal — “ vapory ” — science can have. 52

 The value of What Is Life? , nevertheless, varies signifi cantly with the “ future ” from
which What Is Life? is evaluated. Again, from the perspective of chemists or of those
assessing the impact of Schr ö dinger ’ s text from molecular biology ’ s later turn away
from physics toward chemistry, the value of What Is Life? is negative, or at the best
inspirational (Schr ö dinger himself argued that biochemists, not physicists, were going
to be responsible for the next advances in the study of heredity). For those working
from the perspective of late twentieth-century genomics, focused on cracking the code
of life, Schr ö dinger ’ s text is central. Doyle, for instance, contends that What Is Life?
made possible a “ post-vital body, ” “ a body in which the distinct, modern categories
of surface and depth, being and living, implode into the new density of coding, what
Jacob calls the ‘ algorithms of the living world. ’ ” 53 That is:

 No longer a refl ection or even a production of genotype, “ pattern ” is now literally inside geno-

type. By “ troping ” the trope of pattern, Schr ö dinger literally and grotesquely turns “ pattern ”

and the “ organism ” inside out. With this move — the metonymic substitution of “ code ” for

 “ organism ” — the entire future birth, life and death of the organism is “ contained ” or engulfed

by the chromosomes. . . . Schr ö dinger mistakes or displaces the pattern of the organism by its

 “ code-script, ” injecting the life of the organism into its description . . . Schr ö dinger places all

the power within the code and none within the development of the organism. 54

 This rhetorical move of “ troping the trope, ” Doyle claims, also made it thinkable,
practicable, for Watson and Crick to claim that “ decoding ” the structure of DNA equals

112 Chapter 3

decoding life. With the “ injection of ‘ law code and executive power ’ into DNA, code
becomes as much a verb as noun, the double helix becomes as much body as its
description. ” 55 Although Doyle is careful to point out that DNA as life is only possible
 “ after the articulation of the structure of DNA and the tropics of ‘ code ’ get played
out, ” his description does overlook the question of those other laws of nature that
Schr ö dinger posits as necessary to how genes and chromosomes operate. 56 To
Schr ö dinger, the main characteristic of life again was not the code, but the fact that
the living organism “ kept moving. ”

 Stepping aside from debates over the value of What Is Life? , I want to use Doyle ’ s
argument to outline another debate: the relevance of this text, and modern concep-
tions of heredity in general, to the emergence of software, for Schr ö dinger ’ s positing
of a code that is both law and execution arguably foreshadows code as computer.
Alexander Galloway ’ s notion that hardware does not do anything, addressed in chapter
1, itself depends on the tropics of code. Code-script is source code as logos. It axiom-
atically, temporarily, limits the entropic nightmare of decay that looms as an absolute
limit to capitalist progress through a privileging of causality that stems in part from
an acceptance of Mendelian laws of heredity — the fascination of the stability of hered-
ity reduced to the constancy of code. In other words, to understand the impact of
Schr ö dinger ’ s text on biology, we need to look at its coincidence with computer tech-
nology. We need to look at the ways in which genetics has put in place, while also
drawing from, dreams of programmability, dreams that computer technology and not
biology would, and could, only come to instantiate.

 Again, I am not arguing for a direct line, or secret meeting, between Schr ö dinger,
John von Neumann, Alan Turing, and Grace Murray Hopper, for this argument seeks
to break free from a logic that focuses solely on direct citations and that adjudicates the
scientifi c validity of such borrowings. The connection I ’ m making is more general,
almost archeological (in the Foucauldian sense). According to Michel Foucault, the
archive is “ fi rst the law of what can be said, the system that governs the appearance of
statements as unique events. ” The archive does not simply control the emergence of
statements, but also “ determines that all these things said do not accumulate endlessly
in an amorphous mass, nor are they inscribed in an unbroken linearity, nor do they
disappear at the mercy of chance external accidents; but they are grouped together in
distinct fi gures, composed together in accordance with multiple relations, maintained
or blurred in accordance with specifi c regularities. ” 57 Foucault emphasizes that these
laws that “ determine[] at the outset the system of its functioning ” neither emanate from
outside, nor from the object nor from an exterior idea (from what is not said), but
rather are immanent in discourse itself. 58 The archive is what Foucault earlier calls the
 “ positive unconscious of language ” in The Order of Things: An Archaeology of the Human
Sciences ; 59 that is, the well-defi ned regularity of empirical knowledge, which is part of
scientifi c discourses, even as it alludes to the consciousness of the scientist.

Order from Order, or Life According to Software 113

 As a system of regularities or the law that drives diverse statements, the archive is
not, however, aligned with continuity (and, thus, with traditional history) — it does
not place us in a realm of preserved discourse — but rather with discontinuities. The
archive, Foucault emphasizes, deprives us of the continuities necessary to establish a
stable temporal identity:

 It breaks the thread of transcendental teleologies; and where anthropological thought once

questioned man ’ s being or subjectivity, it now bursts open the other, and the outside. In this

sense, the diagnosis does not establish the fact of identity by the play of distinctions. It estab-

lishes that we are difference, that our reason is the difference of discourses, our history the

difference of times, our selves the difference of masks. That difference, far from being the

forgotten and recovered origin, is this dispersion that we are and make. 60

 Thus, regularity and subjectivity, for Foucault, are found in dispersion rather than
in continuity or in stability. Discontinuity is key and this emphasis on disconti-
nuity encapsulates archaeology ’ s difference from traditional history as the history
of (and as enabling) the continuity of human consciousness. Indeed Foucault
describes Archaeology of Knowledge as an enterprise to “ measure the mutations that
operate in general in the fi eld of history. ” 61 Gilles Deleuze, summarizing Foucault ’ s
archeological project, claims that each age has its own particular distribution of
the visible and the articulable. 62 The archeological project attempts to map what
is visible and what is articulable, and to understand how visibilities and language
operate.

 Crucially, the archeological project itself is not separate from the historical forma-
tion that makes possible What Is Life? as What Is Software? (or, in more Foucauldian
terms, that makes them the same statement); Foucault ’ s archive — his search for fun-
damental codes and laws — is deeply intertwined with these projects. That is, the desire
to map what is visible and what is articulable is key to understanding the impact
of code and programmability — to the linking of the two “ programmed visions. ”
Programmability is thus not only crucial to understanding the operation of language,
but also to how language comes more and more to stand in for — becomes the essence
or generator of — what is visible.

 Foucault ’ s reliance on notions of law and discontinuity, and the terms he uses to
describe them, resonate with mathematics and cybernetics. The archive, he argues, is
a “ complex volume, ” and order is one of the “ fundamental codes of a culture. ” 63 The
archeological project takes on this question: what “ if errors (and truths), the practice
of old beliefs, including not only genuine discoveries, but also the most na ï ve notions,
obeyed, at a given moment, the laws of a certain code of knowledge? ” 64 Later in his
writings, he describes power in terms of a “ network ” and archeology itself as a grid,
which places power on one axis and knowledge on the other. 65 Intriguingly, he
describes statements, the alleged fundamental elements of the archive, not as atomic
units, but rather as an

114 Chapter 3

 enunciative function that involved various units . . . and instead of giving a “ meaning ” to

these units . . . relates them to a fi eld of objects; instead of providing them with a subject,

it opens up for them a number of possible subjective positions; instead of fi xing their limits,

it places them in a domain of coordination and coexistence; instead of determining their

identity, it places them in a space in which they are used and repeated. In short, what has

been discovered is not the atomic statement — with its apparent meaning, its origin, its limits,

and its individuality — but the operational fi eld of the enunciative function and the conditions

according to which it reveals various units. 66

 This relation of what can be seen and what is not hidden yet driving — and which is
not terminal — coincides with our perception of the relationship between a program
and its interface. This is not to say that Foucault views statements as “ source code ” ;
this is the opposite of his approach. This is to say that this notion of an operational
fi eld of enunciative function resonates with von Neumann ’ s notion of code as a
dynamic “ context, ” as something that does not pin down a meaning, but rather
guides — makes possible — certain calculations.

 In other words, archeology, even as it admits to and emphasizes discontinuity and
dispersion, also seeks to make causal relations between what is seeable and what is
seen. This rhetoric and these coincidences are not accidental, but crucial to connecting
the lines between Foucault ’ s project and the twin projects of genetics and computer
technology. This chapter therefore does not simply “ discover ” the archeological link
between computer technology and genetics, but rather contends that computer tech-
nology, genetics, and archeology are part of the same archive. They similarly rely on,
they create, discontinuous rather than continuous knowledge and disperse knowledge
along parallel trajectories. As I elaborate later, we can arguably now recognize these
similarities, make sense of or outline this particular archive, because knowledge is
moving elsewhere: the archive is only visible as it recedes from us. As Foucault puts
it, “ it is the border of time that surrounds our presence . . . the description of the
archive deploys its possibilities (and the mastery of its possibilities) on the basis of the
very discourses that have just ceased to be ours. ” 67 Foucault importantly supplemented
archeology with genealogy and strategy. Quantum computing is closer to analog rather
than discrete computing; there is no one-to-one relation between genes and enzymes;
in fact the same DNA sequence can code more than one protein. Due to increased
research on retroviruses such as AIDS, RNA, rather than DNA, is more and more con-
sidered the source of life. 68 That is, as chapter 4 argues, rather than producing possible
actions and statements, the archive is a constantly rewritten storage system, driven
by the ephemeral.

 The Returns of Laplace

 Tellingly, this return to Laplace takes place in an equally classic, if far less controversial,
text in the fi eld that would become computer science: Alan Turing ’ s 1950 “ Computing

Order from Order, or Life According to Software 115

Machinery and Intelligence, ” in which he describes discrete state machines as univer-
sal mimics. 69 In discrete state machines, it is always possible to predict all future states,
given the initial state of the machine and the input signals. This is reminiscent, he
writes, of “ Laplace ’ s view that from the complete state of the universe at one moment
of time, as described by the positions and velocities of all particles, it should be pos-
sible to predict all future states. ” Discrete state machines, however, enable a return to
Laplace through a simplifi cation of mechanics. In “ the system of the ‘ universe as a
whole ’ . . . quite small errors in the initial conditions can have an overwhelming effect
at a later time. The displacement of a single electron by a billionth of a centimeter at
one moment might make the difference between a man being killed by an avalanche
a year later, or escaping. ” By contrast, in the mechanical systems Turing explicates,
this phenomenon does not occur. Even when we consider the actual physical machines
instead of the idealized machines, reasonably accurate knowledge of the state at one
moment yields reasonably accurate knowledge any number of steps later. 70 In discrete
state “ mechanical ” machines, that is, order follows from order. Signifi cantly, in this
passage, Turing is referring to hardware rather than to software — or, to be more precise,
he is not dealing with the separation of software from hardware, which would take
place much later, under commercial pressure. Discrete state machines are predictable
because hardware is used in particular ways: gates are carefully timed so that delays
do not produce signifi cant false positives or negatives, signals are rectifi ed so that they
can be read correctly, hardware is carefully built to cut down on voltage spikes and
crosstalk, and so on. Software is axiomatic, but only because our discrete hardware is
constructed to be so. In contrast to analog computing, which sets the conditions and
parameters for the analogy to run, discrete computing uses numerical methods, which
demand step-by-step control and accuracy. Discrete hardware, in other words, is con-
structed to follow (and store) instructions. As I argue in the next chapter, digital logic,
which makes software possible, is axiomatic.

 Although hardware grounds universality (or something close to universality, that
is, digitality), software, as an entity independent of hardware, is crucial to machines
as “ self-reproducing, ” that is, key to Jacob ’ s reading of Schr ö dinger ’ s notion of hered-
ity as memory. In fact, von Neumann, as chapter 4 elaborates, turns from his usual
cybernetic parallel between computing machines and the human nervous system
toward genetics and programs when addressing the question of self-reproducing
automata. As Kay notes, von Neumann ’ s interest in biology, “ in general, and genetics,
in particular, became closely linked to his mission of developing self-reproducing
machines. ” 71 In his outline of a general descriptive theory of these types of automata
in his 1951 “ General and Logical Theory of Automata, ” von Neumann postulates that
such automata contain within themselves an instruction set I D , which holds a descrip-
tion of itself. He argues: “ It is quite clear that the instruction I D is roughly effecting
the functions of a gene. . . . It is, of course, equally clear at which point the analogy
ceases to be valid. The natural gene probably does not contain a complete description

116 Chapter 3

of the object whose construction its presence stimulates. It probably contains only
general pointers, general cues. ” 72 This move toward what will become code as logos
is thus linked to genetic inheritance. It is intriguing that, to make this move, von
Neumann turns to a biological concept as fuzzy as memory for his analogy (like
software as metaphor, memory as metaphor explains an unknown through another
unknown). Thus to supplement Kay ’ s argument, it is not that von Neumann moves
toward biological systems when he begins investigating self-reproducing automata —
 his description of the computer already compared biological and machine systems
at the level of nerves and electricity — but that the move to self-reproduction and
thus programmability marks a signifi cant change in the ways in which both biological
and machine systems are compared, namely at the level of what would become
software. The question of self-reproduction, as posed by von Neumann, is largely a
question of transmission. That the instructions can effect development is already
assumed.

 But why is this move to genetics key to code as logos? Why this intertwining
of programmability — the production of constantly transmitted visible characteristics —
 with genetics and to what extent does it rely on a certain discrete logic? What is
the relationship between the transmissible, the programmable, and the discretely
invisible?

 Invisible Transmissions, Visible Results

 As noted earlier, Schr ö dinger himself assumes that the transmission of certain features,
such as the Hapsburg lip, is not only evidence of the stable transmission of that feature,
but also of human heredity in general (according to his biographer, when informing
his illegitimate daughter of her paternity, he pointed to their similar feet). This notion
of a discrete trait as evidence for larger processes of human heredity — as a marker of
history — is linked to the “ rediscovery ” of Mendel, itself an event, theorized by
Vannevar Bush in his essay “ As We May Think, ” as revealing the need for better means
of information archival and retrieval. As the rest of this section argues, Mendelian
genetics, with its emphasis on discrete units within a population and on the relation-
ship between genotype and phenotype, provided a compelling model for the continu-
ing relevance of mechanistic and reductionist understandings of nature. This
mechanism and reductionism not only made possible the description of heredity, but
also the possibility of effecting heredity, of a genetic program. That is, in order for
Mendelian genetics to operate as a science, it had to be able to make predictions. These
predictions in turn were predicated on active interference and experimentation in
model species such as drosophila, if not humans. As geneticist Hermann J. Muller in
an unappreciated Marxist analogy stated at the Second Annual International Confer-
ence on Eugenics: “ Beneath the imposing structure called ‘ Heredity ’ there has been a

Order from Order, or Life According to Software 117

dingy basement called ‘ Mutation. ’ ” 73 Mutation meant, especially for Muller, actively
mutating the animal ’ s genotype. The methodology of breeding — especially breeding
mutant lines — was thus fundamental to the establishment of genetics as a science.

 Programmability — the past as determining the future — in other words, is not just
the application of genetics, but also its proof and methodology. Mendelian genetics
was proven as a true predictive science through successful breeding experiments,
which visibly revealed invisible essences and mechanistic, causal laws. Eugenics was
not simply an application of genetics, but rather proof of genetics ’ predictive power;
early geneticists such as Muller were also eugenicists, and many early genetics texts
such as Muller ’ s address and R. C. Punnett ’ s Mendelism explicitly link them together. 74
When eugenics fell into scientifi c disrepute in part because human genetics was so
diffi cult to program, the desire for programmability became encapsulated within soft-
ware and, as Lily Kay has outlined, within molecular biology. Mendelian genetics, by
postulating a relationship between phenotype and genotype, also put into play a
relationship between what is invisible and visible; the ambiguous distinction between
the two would be generative for many years to come.

 The historical events and controversy surrounding the “ rediscovery ” of Mendel
have been well documented. Mendel ’ s experiments were “ rediscovered ” indepen-
dently by three different scientists at the end of the century, and each scientist, in
presenting his fi ndings, claimed Mendel as a lost predecessor. These claims of the
mythic, lone true experimentalist ignored by the scientifi c establishment, however,
are not limited to Hugo de Vries, Carl Correns, and Erich Tschermak von Seysenegg.
As Jan Sapp has revealed, Gregor Mendel seems to have (at least) nine lives. They are:

 1. Mendel was a non-Darwinian. Although he was an evolutionist, he did not entirely agree with

Darwin ’ s views and set out to disprove them. (Bateson 1909)

 2. Mendel was a good Darwinian. His experimental protocols and reported results can be

explained on the assumption that he had no objections to Darwinian selection theory. (R. A.

Fisher 1936)

 3. Mendel was not directly concerned with evolution at all. He placed it on the back burner

while he investigated the laws of inheritance. (Gasking 1959)

 4. Mendel rejected evolutionary theory. (Callender 1988)

 5. Mendel laid out the laws of inheritance, which justifi ably carry his name. (Standard view: see,

e.g., Zirkle 1951, Mayr 1982)

 6. Mendel was no Mendelian. He was not trying to discover the laws of inheritance, and several

Mendelian principles are lacking in his papers. (Callender 1988; Brannigan 1979, 1981; Olby

1979)

 7. Some of Mendel ’ s data was falsifi ed. (R. A. Fisher 1936)

 8. None of Mendel ’ s data was falsifi ed. (See, e.g., Beadle 1966, Dunn 1965, Olby 1966, Wright

1966, Thoday 1966, Mayr 1982, Pilgrim 1984, Edwards 1987, Van Valen 1987)

 9. Mendel ’ s reported experiments set out in his paper of 1866 are wholly fi ctitious. (Bateson

1909) 75

118 Chapter 3

 To explain these confl icting interpretations, Sapp claims that Mendel ’ s place in
history is not determined by his writings published in the 1860s, but rather
through posthumous stories about Mendel and his experiments. 76 At stake in these
interpretations, Sapp argues, “ is a defi nition of the concepts and/or movements
that can be legitimately associated with the genetics tradition, ” that is, Mendel
as source. 77

 Crucially — although this seems a trivial point — all these interpretations agree that
Mendel treated continuous traits discontinuously. Whether Mendel was a Mendelian
and thus considered these traits to prove the laws of heredity or whether he worked
in the tradition of plant hybridizers and thus focused on breeding “ true ” new species,
Mendel isolated traits — such as wrinkled (or not), round (or not) — and treated these
traits independently (a forerunner of the law of segregation). Following these discrete
characteristics rather than the organism as a whole, or more clearly continuous and
blended traits, allowed Mendel to focus on questions of stability rather than dynamic
change. This focus, Daniel J. Kevles has revealed, contributed to Mendel ’ s neglect,
since it ran counter to the then-current thinking in evolutionary biology, which cen-
tered on modes of adaptation and change. 78 Mendel also differed from his scientifi c
contemporaries in his focus on inter- rather than intraspecies (i.e., “ racial ”) hybrids.
Raphael Falk and Sahotra Sarkar argue that Mendel was responding to his Moravian
countrymen farmers ’ concern with the return in their new breeds of what would
become known as recessive traits. He thus sought to document the phenomenon of
dominance in hybrids and to formulate the laws of the reappearance and disappear-
ance of traits (regardless of whether or not he distinguished between phenotype and
genotype). 79 Most pointedly, Punnett — an early adapter and advocate of Mendelian
genetics — developed a theory of absence and presence, which made genetic traits
fundamentally binary: it was not that dominant and recessive factors produced dif-
ferent characteristics, but rather that dominance marked the presence of a factor and
the recessive its absence. 80

 This focus on discrete traits separated Mendelians, such as Punnett and William
Bateson, from the more established biometricians, such as Francis Galton, Karl
Pearson, and Walter Raphael Weldon, founders of British eugenics. The biometricians
viewed evolution as working through small continuous changes. The main tool of
Galton was the normal curve. Busily plotting graphs of various characteristics (such
as height), Galton believed that the mean represented the center of a trait and that
natural selection worked by moving this center elsewhere, although there was an
overwhelming tendency to regress to some “ racial center. ” Pearson, responding to
the empirical fact that humans did not seem to regress in this manner and that small,
seemingly statistically insignifi cant fl uctuations could effect change, argued that the
focus of regression was the immediately prior generation. Selective breeding could
thus easily change this center.

Order from Order, or Life According to Software 119

 In many ways, the biometrician ’ s version of eugenics was more optimistic — or at
least more inclusive — than that of the Mendelians, since there were no pesky recessive
genes, which Mendelian eugenicists believed made a “ melting pot ” impossible.
Although many biometricians supported the sterilization of extreme statistical outliers
(Galton indeed coined the term eugenics as “ the science which deals with all infl uences
that improve the inborn qualities of a race; also with those that develop them to the
utmost advantage ”) and although they separated transmission from development,
their belief in the normal curve meant accepting those on either side of the norm as
part of the same curve and thus their offspring as possibly “ improvable, ” rather than
as carriers of recessive traits that could forever damage their spawn. 81 The focus was
not on the creation of pure lines. This curve, of course, was racialized — different races
were represented by different curves. 82 This “ optimism ” regarding the improvability
of the human race by the biometricians also did not translate into progressive politics.
Both biometrician and Mendelian eugenicists were politically diverse: Galton was a
conservative while Pearson a socialist; similarly, Charles Davenport a conservative
while Muller a radical.

 The biometricians, unlike the Mendelians, focused on what was visible. Even
though the norm was an abstract principle, enumeration, as Kevles contends, did
not mean penetrating beyond the phenomenological surface. 83 Heredity was a quan-
titative, correlative relationship between generations, not a causal one. As Galton
explains, whereas “ formerly the quantitative scientist could think only in terms of
causation, now he can think also in terms of correlation. ” 84 For this reason, the
biometricians were heavily involved in mass calculation. Mendelians too relied on
statistical analysis, but for the early Mendelian geneticist, statistics were used to
determine whether or not a trait was Mendelian. The seductiveness of early forms
of Mendelianism lay in their mechanistic, causal laws. 85

 Classical Mendelian genetics separated genotype from phenotype — that is, what was
transmissible from what was visible — as well as transmission from development (like
the biometricians). This distinction between genotype and phenotype was fi rst postu-
lated by Wilhelm Johannsen, who experimented with inbred beans. “ Natural ” selec-
tion, Johannsen showed, did not effect these beans ’ length and breadth: the progeny
of the beans consistently followed the same curve as that of their parents, proving the
constancy of genetic materials. Johannsen ’ s formulation of a genotype relied on treat-
ing a continuous characteristic — height — discontinuously, as a Mendelian feature that
was passed on or not. 86 Johannsen ’ s genotype, though, was not an actual entity. Accord-
ing to Nils Rolls-Hansen, his genotype was an ideal, inaccessible form, whose existence
was posited through inference. 87 Although this concept seems very close to the
biometricians ’ concept of a norm, Johannsen ’ s distinction between genotype
and phenotype suggested a new level of analysis and intervention for the Mendelians
that followed him. 88 That is, rather than quantifying the visible surface, the

120 Chapter 3

genotype implied that one had to penetrate the organism to understand the relation-
ship between what could or could not be seen. Indeed, most Mendelians believed that
the trait itself was not transmitted, but rather the potential for the trait: something
that could make this trait visible, something invisibly visible or visibly invisible.
Johannsen argued that the genotype, rather than the phenotype, was transferred
between parent and offspring: according to his argument, both shared the exact same
genotype, making the genotype, like computer memory, a strangely ahistorical entity
nonetheless key for any historical relationship. 89

 Eugenics as Nurture

 The understanding of genes as ahistorical also depends on the separation of transmis-
sion from development. It is a reduction of heredity to transmission, a clear separation
of nature from nurture, of germline from somatic cells. As George Stocking Jr. has
explained, the nineteenth century generally did not distinguish defi nitively between
race and nation:

 In 1896, the processes and the problems of heredity were little understood, and “ blood ” was

for many a solvent in which all problems were dissolved and all processes commingled.

 “ Blood ” — and by extension “ race ” — included numerous elements that we would today call

cultural; there was not a clear line between cultural and physical elements or between social

and biological heredity. The characteristic qualities of civilizations were carried from one

generation to another both in and with the blood of their citizens. 90

 Instead of race and nation standing for two different entities in the nineteenth
century, Stocking contends that they were separated by degree, with race implying a
greater degree of kinship. 91 Nineteenth-century views on race, in other words, included
what are now considered effects of culture; they were also far more Lamarckian, since
acquired characteristics were transmitted from generation to generation. Darwin, for
instance, condemned slavery as a major cause of the physical degradation of native
Africans. Darwin believed in “ pangenesis, ” that is, a hereditary mechanism in which
every cell in the body played a part in forming the reproductive cells by shedding
 “ gemmules. ” According to William Provine, Darwin ’ s attitude was heavily infl uenced
by animal breeders, who believed that virtually all physical and behavioral features
were partially hereditary. 92 As Stocking notes, this more Lamarckian view of race was
hardly less racist, and the subsequent separation of nature and nurture not only fos-
tered more overt racism, but also more antiracist positions, such as that of Franz Boas,
who emphasized the importance of nurture over nature. 93

 The nature – nurture divide, however, also originated in the nineteenth century, with
Galton ’ s refutation of what Ernst Mayr — in language clearly resonating with computer
technology — has called Darwin ’ s theory of “ soft inheritance. ” 94 Through an experi-
ment with blood transfusions and subsequent inbreeding in rabbits, Galton showed

Order from Order, or Life According to Software 121

that the color of the offspring of the transfused rabbits never deviated from the paren-
tal color. Rather than all cells contributing gemmules, Galton theorized a “ hard
inheritance, ” in which the reproductive “ stirp ” (germ plasm transmitted from parents
to child) was segregated from the rest of the body. August Weismann infl uentially
drew from Galton to theorize the “ continuity of the germ plasm, ” in which the “ germ
track ” is separated from the “ soma track ” from the very beginning. 95 Eugenics — both
biometrician and Mendelian — thus initiated the separation of nature (the hard) from
nurture (the soft) by positing inheritance as outside experience, although again, what
was considered hard versus soft is far different than it is today.

 The standard position on the nurture – nature divide is, of course, that it coincides
with a divide between what is and what is not under human control. Diane Paul offers
the following concise summary of this standard position: “ In the twentieth century,
to hold that differences among human groups are biologically-based is necessarily to
imply that those differences are largely outside of human control. . . . In this context,
the epithet ‘ racist ’ has come to be applied almost exclusively to those views which
ascribe non-trivial differences among human populations to biological, hence more
or less permanent, differences. ” 96 This popular opinion, however, misses the point.
The distinction between nature and nurture made possible by eugenics and by
advances in human physiology, which showed that the reproductive cells segregated
and formed at an early stage in human development, did not place nature outside of
human control. The battle between nature and nurture was a battle over what type
of control to use: eugenics or social welfare. In other words, the insightful observations
by Evelyn Fox Keller and Eve Kosofsky Sedgwick that now (with the possibility of
genetic engineering) nature is viewed as more fl exible than nurture/culture needs
to be pushed further, for the very positing of the nurture – nature divide established
nature as an object of control and manipulation. 97

 Genetics separated cultural and biological transmission, but in doing so also made
biological transmission a question of transmissible, cultural knowledge — a question
of and for the archive. Although both the biometricians and the Mendelians sepa-
rated the germline from somatic cells, the Mendelians ’ emphasis on invisible causal,
mechanistic laws, rather than on visible statistical relationships, made their theories
more pointed for theorizing the human body as archive. Punnett, for instance,
insisted that the effects of education and hygiene were salutary but had to be
renewed with each generation because they were not biologically inherited. He
compared the human hoard of knowledge to a bee ’ s store of honey: “ each genera-
tion in using it sifts, adds, and rejects, and passes it on to the next a little better
and a little fuller. ” This knowledge, however, is not an inheritance because

 the handing on of such knowledge has nothing more to do with heredity in the biological sense

than has the handing on from parent to offspring of a picture, or a title, or a pair of boots. All

these things are but the transfer from zygote to zygote of something extrinsic to the species. . . .

122 Chapter 3

 Better hygiene and better education, then, are good for the zygote, because they help him

to make the fullest use of his inherent qualities. But the qualities themselves remain unchanged

in so far as the gamete is concerned, since the gamete pays no heed to the intellectual

development of the zygote in whom he happens to dwell. 98

 Although this would seem to construct biological transmission (nature) as trumping
human control, it nevertheless places human evolution — as a matter of reproductive
choice — within human control. Punnett goes on to state, “ by regulating their mar-
riages, by encouraging the desirable to come together, and by keeping the undesirable
apart we could go far towards ridding the world of squalor and the misery that come
through disease and weakness and vice. ” 99 Key to doing this, however, is more knowl-
edge: “ Before we can be prepared to act, except, perhaps, in the simplest of cases, we
must learn far more about them. At present we are woefully ignorant of much, though
we do know that full knowledge is largely a matter of time and means. ” 100 Similarly,
Charles Davenport — the father of the U.S. eugenics movement and founding director
of the Station for Experimental Evolution at Cold Spring Harbor, Long Island (now
one of the most respected centers for the study of genetics) — ends his infl uential
eugenics textbook Heredity in Relation to Eugenics by arguing for the necessity of a state
eugenic survey. Eugenics is based on a fundamental belief in the knowability of the
human body, an ability to “ read ” its genes and to program humanity accordingly.

 The move from “ they ” to “ we ” in Punnett ’ s statement is telling: eugenics is a col-
lective program of controlling others and thus improving ourselves. With this “ we, ”
the knowledge of scientists and their capacities to intervene are confl ated with those
of society as a whole. Like cybernetics, eugenics is a means of “ governing, ” or navi-
gating nature. Similarly, Julian Huxley believed that the goal of eugenics was to
control the evolution of the species and to guide it in a desirable direction. 101 Curt
Stern, writing in the twentieth century in a textbook on human genetics claimed:
 “ Natural selection will be superseded by socially decreed selection. In the course of
time . . . the control by man of his own biological evolution will become imperative,
since the power which knowledge of human genetics will place in man ’ s hands cannot
but lead to action. Such evolutionary controls will be world wide in scope, since, by
its nature, the evolution of man transcends the concept of unrestricted national
sovereignty. ” 102 Thus, it is not simply, as Garland Allen argues (in “ The Social and
Economic Origins of Genetic Determinism: A Case Study of the American Eugenics
Movement 1900 – 1940 and Its Lessons for Today ”) that hereditarian thinking, stem-
ming from economic and social conditions, distracts us from the social solutions
before us by promising technological fi xes, but also that eugenics and hereditarian-
based political arguments more generally are themselves social solutions that demand
further development of the human archive of knowledge. 103

 Eugenics, in other words, is a key component of what Michel Foucault in his History
of Sexuality , volume 1, called biopower. According to Foucault, biopower is power

Order from Order, or Life According to Software 123

focused on administering life or disallowing it to the point of death; it is “ power bent
on generating forces, making them grow, and ordering them, rather than one dedicated
to impeding them, making them submit or destroying them. ” 104 Eugenics, according to
Galton, was a science focused on improving stock; Galton “ derived ” eugenics from
 eugenes , the Greek term meaning “ well born. ” Eugenics is biopower, situated and exer-
cised, as Foucault insisted, “ at the level of life, the species, the race, and the large-scale
phenomena of population. ” 105 It is based on “ the fundamental fact that human beings
are a species, ” 106 and it substitutes “ population ” for the rights and responsibilities of the
subject or the sovereign as the “ vis- à -vis of government, of the art of government. ” 107
Indeed, Davenport in Heredity in Relation to Eugenics debates whether or not an indi-
vidual who commits premeditated murder is “ responsible ” for the crime. Putting
himself in that situation, he argues, “ I am not responsible in the sense of ‘ deserving ’
pain because of the inadequacy of the determiners in my protoplasm. . . . I am not
responsible for my early culture nor for reactions determined by it; but that culture is
partly determined by my makeup, as when I fi nd pleasure in the society of bad com-
panions, and partly is imposed by formal ‘ good infl uences ’ that society has orga-
nized. ” 108 This, however, is no excuse to add another burden to society, and so organized
society must prevent the “ automatic ” effects of bad breeding through eugenics,
 “ preventing the mating that brings together the antisocial traits of the criminal. ” 109
In Davenport ’ s formulation, humans are both evaluated in terms of their economic
costs to society and viewed as a form of capital: breeding must control both “ innate ”
and acquired elements (innate qualities can be controlled through human, not techni-
cal, reproduction). 110 Sexuality knits the individual to the population and privileges the
population — and its betterment — over the individual, bizarrely absolving him of both
rights and responsibilities. Also, although moving responsibility from the individual to
society in general, eugenics offers the individual the means to “ map ” an otherwise
invisible system so that she can make the right marriage decisions.

 Eugenics, like biopower more generally, focuses on sexuality — the early eugenics
(and some early genetics) textbooks read like early twentieth-century marriage guides,
educating its middle-class readers on how to marry wisely. The most powerful and
long-lasting effect of the early eugenicist movement in the United States is the birth
control pill. Margaret Sanger, an important birth control advocate, argued in 1920:
 “ Birth control itself, often denounced as a violation of natural law, is nothing more
or less than the facilitation of the process of weeding out the unfi t, of preventing the
birth of defectives or of those who will become defectives. ” 111 According to Foucault,
biopower brings together a focus on the individual body (mechanisms of discipline)
with a focus on the general population “ through concrete arrangements, ” or technolo-
gies of power, of which the deployment of sexuality is the most important: “ at the
juncture of the ‘ body ’ and the ‘ population, ’ sex became a crucial target of a power
organized around the management of life rather than the menace of death. ” 112

124 Chapter 3

 Eugenics is clearly a means by which both individual and population were managed;
it is also a means by which biopower could focus on questions of death in order to
foster life. As a large-scale project, it is a manifestation of biopolitical governmentality,
wherein governmentality is “ a state of government that is no longer essentially defi ned
by its territoriality, by the surface occupied, but by a mass: the mass of the population,
with its volume, its density, and, for sure, the territory it covers, but which is, in a
way, only one of its components. ” 113 In such a state, one that “ takes life as both its
object and its objective, ” eugenics and state racism become ways of giving the state
the power of death. Racism, Foucault argues, “ is primarily a way of introducing a break
into the domain of life that is under power ’ s control: the break between what must
live and what must die. ” It introduces a difference — a discontinuity — that perpetuates
a lethal difference. In biopolitical governmentality, the death of the other is also linked
to the improvement of one ’ s “ race ” :

 Killing or the imperative to kill is acceptable only if it results not in a victory over political

adversaries, but in the elimination of the biological threat to and the improvement of the

species or race. . . . racism makes it possible to establish a relationship between my life and

the death of the other that is not a military or warlike relationship of confrontation, but a

biological-type relationship: “ The more inferior species die out, the more abnormal individuals

are eliminated, the fewer degenerates there will be in the species as a whole, and the more

I — as species rather than individual — can live, the stronger I will be, the more vigorous I will

be. I will be able to proliferate. ” 114

 Again, eugenics makes clear the impact of one ’ s individual actions and life to the
population as a whole. It allows the “ I ” to stand in for both the individual and the
species, while at the same time delineating the difference between this “ I ” and
the other. Negative eugenics — the sterilization or death of others — made this differ-
ence stark; eugenics, however, was not simply “ negative eugenics ” but also “ positive
eugenics ” — the creation of a better species through positive choices in breeding.
Indeed breeding encapsulates an early logic of programmability that inspired genetics
and recognition of heredity as physical transmission. Eugenics, in other words, was
not simply a factor driving the development of high-speed mass calculation
at the level of content (the statistical demands of the biometricians helped foster
mass calculation), but also at the level of logic or of operationality.

 Breeding Programs

 As Jann Sapp among others has claimed, genetics and eugenics were both intimately
intertwined with the less elite practice of breeding — the American Breeders ’ Magazine
(the offi cial journal of the American Breeders ’ Association), for instance, had the sub-
title A Journal of Genetics and Eugenics ; breeders viewed heredity as an important eco-
nomic force more wonderful than electricity since, once generated, it needed no

Order from Order, or Life According to Software 125

additional force to sustain it. 115 Heredity was a living perpetual motion machine.
Fran ç ois Jacob introduced the notion of a genetic program in The Logic of Life by
arguing for breeding as an early “ use ” of heredity: “ few phenomena in the living world
are so immediately evident as the begetting of like by like . . . mankind early learnt
to interpret and exploit the permanence of forms through successive generations. To
cultivate plants, to breed animals, to improve them for food or to domesticate them,
all require long experience. ” 116 Schr ö dinger, to repeat, used the steady transmission of
certain features, such as the Hapsburg lip, as evidence of a genetic code-script. Breed-
ing programs did not become separate, yet powerful, sources of power until after 1915,
with the institutionalization of genetics. 117 The methodology of breeding — especially
breeding mutant lines — was fundamental to the establishment of genetics as a science,
that is, as a fi eld that can produce hypotheses to be tested and predict future results
regarding the transmission of discrete traits.

 The interrelationship of eugenics, genetics, breeding, and capital was made most
explicit by Charles Davenport, who was also a founder of the American Breeders ’
Association. According to Davenport, in Heredity in Relation to Eugenics , “ eugenics is
the science of the improvement of the human race by better breeding ” ; “ human babies
born each year constitute the world ’ s most valuable crop ” ; and the goal of the eugeni-
cist is to induce young people “ to fall in love intelligently. ” 118 The references to breed-
ing and other species were deliberate, and Davenport used them to emphasize the
defi ciencies of human reproductive control. “ That marriage should be only an experi-
ment in breeding, while the breeding of many animals and plants has been reduced
to a science, ” he writes, “ is ground for reproach. Surely the human product is superior
to that of poultry; and as we may now predict with precision the characters of the
offspring of a particular pair of pedigreed poultry so may it sometime be with man. ” 119
To produce such a science of heredity, one needed to delineate the Mendelian units
responsible for — and the focus of — heredity. One needed to treat humans as carriers
of defi nable genetic inheritances, which determined their worth and the cost of
reproduction. Since direct human experimentation was not possible, Davenport and
his helpers produced copious charts, based on human “ history. ” Tracking everything
from eye color to criminality, Davenport saw his work as essentially determining the
independent unit characters and their impact on American society.

 Mendelism hence made it much easier and more diffi cult to predict human hered-
ity: easier because there were laws in place — most importantly, the law of dominance —
 but also harder because characters were not visible (but again, rather invisibly visible
or visibly invisible). Early Mendelian genetics, because it relied on mechanistic laws
rather than solely on statistics (in contrast to biometrics), could offer a strong notion
of causal programmability: the notion that an invisible marker was responsible for a
visible trait and that such a marker could be deleted through selective breeding pro-
grams. The goal of eugenics was to advise the government so that “ good ” blood could

126 Chapter 3

be fostered, especially with respect to immigration. The benefi t of such breeding, as
with domestic animals, was fi nancial. Following the descendants of the legendary
 “ Jukes ” family of New York State, Davenport explains:

 Thus, in the same environment, the descendents of the illegitimate son of Ada are prevailingly

 criminal ; the progeny of Bell are sexually immoral ; the offspring of Ellie are paupers . The differ-

ence in the germ plasm determines the difference in the prevailing trait. But however varied

the forms of non-social behavior of the progeny of the mother of the Jukes girls the result was

calculated to cost the State of New York over a million and a quarter of dollars in 75 years — up

to 1877, and their protoplasm has been multiplied and dispersed during the subsequent 34

years and is still marching on. 120

 Human genetics thus limited the effectiveness of government plans to “ uplift ” the
nation through social welfare programs such as universal education or healthcare.
 “ The expert teacher, ” Davenport claimed, “ can do much with good material; but his
work is closely limited by the protoplasmic makeup — the inherent traits — of his
pupils. ” 121 So, while education was important, the best way to improve society was
through better breeding:

 Indeed, while by good conditions we help the individual to make the most of himself, by good

breeding we establish a permanent strain that is strong in its very constitution. The experience

of animal and plant breeders who have been able by appropriate crosses to increase the vigor

and productivity of their stock and crops should lead us to see that proper matings are the

greatest means of permanently improving the human race — of saving it from imbecility,

poverty, disease and immorality. 122

 Breedability became the proof of programmability in a bizarre logic that assumed any
repetition evidence of inheritance, that is, repetition with no difference. It is program-
mability at its most rigorous. A self-propelled “ living ” repetition that also encapsulates
death by condemning some to immediate death, and others to nonreproduction
(thus ending repetition). This version of programmability also asserts a reverse-
programmability, that is, the ability to determine an original algorithm — a strategy,
or plan for action — based on interactions with unfolding events.

 Programmability Continued

 The fact that these claims could not be scientifi cally backed became clear as genetics
began to examine the complexities of human heredity and of human populations.
Many geneticists withdrew their early support of eugenics. By 1915, T. H. Morgan
quietly severed his ties to the eugenics movement, although he did not speak publicly
against the eugenics movement until many years later. According to Diane Paul,
however, throughout the 1920s and 1930s, most geneticists remained supportive of
eugenics, even though the scientifi c problems were well known by the 1920s. 123 As

Order from Order, or Life According to Software 127

Paul and William Provine among others have argued, the horrors of Nazi science
forced many geneticists to review their relationship to eugenics and its assumptions
and to speak publicly against it. According to Provine, however, the consensus that
races did not vary hereditarily in intelligence did not take place until the 1950s. 124

 Although eugenics was eventually repudiated — and eugenics and genetics cannot
be reduced to each other — the desire for the type of control openly embraced by
eugenics did not fade. The confi dence in and hope for a scientifi c future, Lily Kay
has explicated in The Molecular Vision of Life , became folded into the project of
molecular biology, which she reveals developed from the Rockefeller Foundation ’ s
 “ Science of Man ” agenda. This agenda sought to “ develop the human sciences as a
comprehensive explanatory and applied framework of social control grounded in the
natural, medical, and social sciences. Conceived during the late 1920s, the new agenda
was articulated in terms of the contemporary technocratic discourse of human engi-
neering, aiming toward an endpoint of restructuring human relations in congruence
with the social framework of industrial capitalism. ” 125 As a form of human engineer-
ing, which cut across the various disciplines, it was a form of biopolitical govern-
mentality. Even though the agenda changed in the 1930s, by which time eugenics
had become a liability, Kay contends “ the quest for rationalized human reproduction,
however, never quite lost its intuitive appeal (even when it was later modifi ed by the
Nazi experience) . . . eugenic goals played a signifi cant role in the conception and
design of the molecular biology program. ” In particular, the failure of the old eugen-
ics movement created a space for a new, more rigorous physiochemically based study
of human heredity and behavior still focused on social betterment: “ The molecular
biology program, through the study of simple biological systems and analyses of
protein structure, ” she writes, “ promised a surer, albeit much slower, way toward
social planning based on sounder principles of eugenic selection. ” 126

 The molecular vision of life, Kay relates, was amenable to strategies of control
because it was governed by a faith in technology and in the ultimate power of upward
causation. 127 It was control over nature through the study of the “ ultimate littleness
of things. ” 128 Molecular biology did not give up on mechanistic conceptions of life,
but rather depended on the causal explanations of physics and chemistry. 129 The
technological and the biological drove — and still drive — each other: “ The enormous
faith in the power of molecular genetics to explain human order and disorder has
paralleled the enormous investments in genetic engineering in agriculture and medi-
cine; the technological and cognitive realms drive and justify each other. This dialectic
process of knowing and doing, empowered by a synergy of laboratory, boardroom,
and federal lobby, has sustained the rise of molecular biology into the twenty-fi rst
century. ” 130 As Kay points out in her next book, Who Wrote the Book of Life? , this
molecular vision of life would become supplemented by an “ informational gaze, ”
causing a profound rupture in “ representations of life . . . from purely material and

128 Chapter 3

energetic to the informational. ” 131 As information displaced older visions of chemical
and biological specifi city and DNA was articulated as a programmed text, “ the material
control of life would be now supplemented by the promise of controlling its form and
 logos , its information. ” 132 In Who Wrote the Book of Life? , as noted earlier, Kay elegantly
and convincingly reveals the ways in which information was adopted as a metaphor
into biology in the period from 1953 to 1967.

 This chapter has sought to show how this faith in and desire for a clear causality
and programmability also dovetails with the rise of software as logos, as always already
there, as something that persists and enables persistence. Agreeing that the move
toward information changed discussions of biological control, it also argues that this
turn to information as source did not simply emerge from elsewhere. Rather, it
stemmed in part from the early eugenic belief in programmability, in an invisible
mechanistic causality. The belief that DNA could be coded instructions thus was not
simply a translation into biology of an idea already embedded within computer tech-
nology, but also something that preceded and indeed foreshadowed instructions
becoming something in their own right. The bold belief in a code-script that could
be both execution and plan found its real home in computers, which were constructed
to enable this dream and then rediscovered as this dream come true. To be clear, this
is not to say that computer programs are simply eugenic ones. Computer code-script
confl ates legislation with execution, but also reveals both the possibility and impos-
sibility of a eugenic programmability: although “ rules ” may be followed, goals often
are not. As well, code as logos resonates with the American eugenics movement ’ s
emphasis on individual decision making, rather than its overt message of social engi-
neering. Important to this parallel structure — to this larger epistemic and governmen-
tal structure of programmability — is heredity as storage (this further turn of the helix
is addressed in chapter 4). This dream of permanence, of something to be transferred
in tact from generation to generation, makes lasting what is only ever ephemeral. The
enduring ephemeral — that which repeats over and over again — becomes that which
guarantees stability.

 This chapter has also highlighted questions of neoliberal governmentality addressed
in chapters 1 and 2. Whereas part I of the book focused on issues of hierarchy and
bureaucracy, gender and labor, in part II, chapters 3 and 4 concentrate on how the
computer, understood as code come true, encapsulates a certain logic of arranging, of
taking care of, the relation between “ men and things. ” It links the computer, and
other projects of programmability, to biopower not simply in terms of content — the
eugenics-based push for statistical analysis — but also in terms of logic. Cybernetics is
a form of “ governing, ” of navigating, in more than one sense. As Jacob notes, “ the
isomorphism of entropy and information establishes a link between two forms of
power: the power to do and the power to direct what is done. . . . Information, an

Order from Order, or Life According to Software 129

abstract entity, becomes the point of junction of the different types of order. ” 133 This
juncture within neoliberalism becomes concentrated on the individual as human
capital and individual decisions; governmentality is not simply or ever a process of
overt engineering, of introducing death into a system focused on life and on freedom.
In its neoliberal form, the form most resonant with computers, governmentality con-
structs the individual as both driven by and needing certain freedoms and desires that
invisibly support a larger system. The term liberal contains within itself a reference to
liberty. Foucault, elaborating on this necessary relationship between liberalism and
liberty, claims that liberalism is “ a consumer of freedom ”

 inasmuch as it can only function insofar as a number of freedoms actually exist: freedom of

the market, freedom to buy and sell, the free exercise of property rights, freedom of discussion,

possible freedom of expression, and so on. . . . It consumes freedom, which means that it must

produce it. It must produce it, it must organize it. The new art of government therefore appears

as the management of freedom, not in the sense of the imperative: “ be free, ” with the immedi-

ate contradiction that this imperative may contain. The formula of liberalism is not “ be free. ”

Liberalism formulates simply the following: I am going to produce what you need to be free.

I am going to see to it that you are free to be free. 134

 Liberalism needs both to produce freedom and to devise mechanisms to control it.
Neoliberalism, Foucault goes on to argue, focuses on the production and control of
this freedom through competition. Thus, biopower as a form of power focused on
 “ yes ” rather than “ no, ” on fostering life rather than death, encourages and is encour-
aged by a certain drive for life and independence, albeit one that is also linked to a
tightly prescribed logic of programmability.

 Both eugenics and software as logos have moved away from overt restrictions and
toward a celebration of individual freedom and voluntary empowerment. Genetic
counseling and birth control are not “ negative eugenics ” — the forced sterilization of
the “ weak ” — but rather a framework for an informed decision that empowers those
who engage it. Computing is not submission to the machine, but rather a means by
which human intellect can be augmented (the race thus improved). This combination
of empowerment with restrictions, of feelings of power generated by systems initially
designed to restrict, drives the seductiveness of computing as a metaphor and as a way
of encapsulating and experiencing power.

 Relatedly, there have been movements in both biology and computation away
from strict models of programmability, from the notion that the program or the
map encapsulates the system or the organism. The rapidly growing discipline of
systems biology — biology allegedly for the twenty-fi rst century — for instance, empha-
sizes once more the importance of interactions or “ communication ” between cellular
components, rather than reducing everything to the genetic code. Although it reso-
nates with cybernetics and other early attempts to mathematically model biological

130 Chapter 3

systems, it stems from the “ success ” of the Human Genome Project, namely the
deluge of data that project has produced, which has made clear the limitations of
reductionism and traditional programmability (rather than producing algorithms
that “ explain ” or encapsulate a behavior, programming is increasingly focused on
using machine learning to “ reverse engineer ” the patterns driving data. Hence the
term data-driven programming).

 This turn to systems biology has also been driven by recent advances in math-
ematical models of biological systems, models that have been used to “ validate
hypotheses made from experimental data [and] designing and testing these models
has led to testable experimental predictions. There are now impressive cases in
which mathematical models have provided fresh insight into biological systems,
by suggesting, for example, how connections between local interactions among
system components relate to their wider biological effects. ” 135 This move away from
specifi c genes and their corresponding functions (the idea that the genome is a
code that can be cracked, that it is analogous to a software program that simply
drives protein expression) toward a more nuanced understanding of the cell as
comprised of various networks and signals (cell as an ecosystem) poses important
new questions to science and technology studies, including a serious challenge to
a politics that endorses the importance of nurture over nature. Considered for years
as the automatically progressive, antiracist position, this new work on the impor-
tance of the environment — of local interactions — brings forward new, explicitly
neoliberal questions of control. This is also clear in the move toward epigenetics.
The widely cited article by Weaver and colleagues, “ Epigenetic Programming by
Maternal Behavoir, ” 136 which showed that mice that were licked by their mothers
were less anxious than their unlicked counterparts, as Hannah Landecker has argued,
makes “ good mothers ” a focus of attention in problematic ways. 137 Catherine
Malabou has similarly outlined the parallels between current neuronal understand-
ings of the brain as a network and neoliberal management techniques, which
emphasize “ creativity, reactivity, and fl exibility ” and which also give the impression
that “ everyone . . . must take up the task of choosing everything and deciding every-
thing . ” 138 Both brain as network and neoliberal management techniques move away
from the notion of a central program or central power toward a decentralized
network of agents.

 Computing as well has moved toward less strictly “ programmable ” systems — in
theory if not yet in everyday practice. From quantum, nonuniversal computers that
lay down a path that can perhaps be taken to more software-based solutions such as
genetic programs, the non-strictly programmable, the randomly produced is becoming
ever more in vogue. The pressing question therefore is: What do we do with this
move away from the map that nonetheless presupposes the map in a fundamental
way? Another question then arises: What are both the drawbacks and the possibilities

Order from Order, or Life According to Software 131

of becoming and processes, rather than of being and identity? Crucially, Malabou
does not simply denunciate neurobiology, but rather engages it closely to argue for
the difference between fl exibility — which is capitulation — and plasticity. Plasticity,
situated between two extremes — “ the taking on of form ” and “ the annihilation of
form ” — enables a double movement, an explosive self-creation, that offers resistance
to global neoliberalism. 139 How might we understand plasticity in relation to the
ongoing transformation of programmable visions?

 The Undead of Information

 Computers have confl ated memory with storage, the ephemeral with the enduring.
Rather than storing memories, we now put things “ into memory, ” both consciously
and unconsciously. “ Memory ” — computer memory — has become surprisingly perma-
nent. As Matthew Kirschenbaum has argued, our digital traces remain far longer than
we suppose. 1 Hard drives fail, but can still be “ read ” by forensic experts (optically, if
not mechanically); our ephemeral documents and other “ ambient data ” are written
elsewhere — that is “ saved ” — constantly. Again, to read information is to write it else-
where. At the same time, however, the enduring is also the ephemeral. Not only
because even if data storage devices can be read forensically after they fail they still
eventually fail, but also because — and more crucially — what is not constantly upgraded
or “ migrated ” or both becomes unreadable. As well, our interactions with computers
cannot be reduced to the traces we leave behind. The experiences of using — the exact
paths of execution — are ephemeral. Information is “ undead ” : neither alive nor dead,
neither quite present nor absent.

 Memory and storage are different. Memory stems from the same Sanskrit root for
 martyr and is related to the ancient Greek term for baneful, fastidious. Memory con-
tains within it the act of repetition: it is an act of commemoration — a process of recol-
lecting or remembering. In contrast, a store, according to the OED, stems from the Old
French term estorer meaning “ to build, establish, furnish. ” A store — like an archive — is
both what is stored and its location. Stores look toward a future: we put something in
storage in order to use it again; we buy things in stores in order to use them. By bring-
ing memory and storage together, we bring together the past and the future; we also
bring together the machinic and the biological into what we might call the archive.

 Sigmund Freud famously modeled the human memory system, which he posited
as fundamentally unconscious, on a toy called the Mystic Writing Pad . Describing the
device, he wrote:

 The surface of the Mystic [Writing] Pad is clear of writing and once more capable of receiving

impressions. But it is easy to discover that the permanent trace of what was written is retained

upon the wax slab itself and is legible in suitable lights. Thus the Pad provides not only a

134 The Undead of Information

receptive surface that can be used over and over again, like a slate, but also permanent traces

of what has been written like an ordinary paper pad . . . this is precisely the way in which,

according to the hypothesis which I mentioned just now, our mental apparatus performs its

perceptual function. The layer which receives the stimuli — the system Pcpt.-Cs . [Perception-

Consciousness] — forms not permanent traces; the foundations of memory come about in other,

adjoining, systems. 2

 According to Derrida, Freud, through this formulation posits a “ prosthesis of the
outside, ” which makes psychoanalysis a theory of the archive as well as of memory.
It makes possible the “ idea of an archive properly speaking, of a hypomnesic or tech-
nical archive, of a substrate or the subjectile (material or virtual) which, in what is
already a psychic spacing , cannot be reduced to memory. ” 3 Memory in psychoanalysis
is not fi rst “ live ” and is not outside representation. Contemplating the importance of
technology to this theory, Derrida asks, “ Is the psychic apparatus better represented or
is it affected differently by all the technical mechanisms for archivization and for repro-
duction . . . (microcomputing, electronization, computerization, etc.)? ” 4 Intriguingly,
the Mystic Writing Pad — or more properly its modern version, the Etch A Sketch ® —
 returns as the model for the hard drive in a textbook on computer forensics. To explain
the “ unerasability ” of hard drives, Warren G. Kruse II and Jay G. Heiser compare them
to Etch A Sketches:

 When data is written onto magnetic media, a faint image of what was previously on the drive

remains. A hard drive is like the child ’ s drawing toy, the Etch A Sketch. Well, hard drives don ’ t

leak silver powder, but we are referring to the faint traces left after you erase an Etch A Sketch.

The Etch a Sketch is erased by turning it over and shaking it, allowing the silver powder to

coat the inside of the clear plastic window, preparing it for more drawings. But if you ’ ve used

this popular toy, you ’ ll remember that the faint traces of the previous drawing are always left

behind. . . . Magnetic media — including hard drives — are similar in that every write leaves faint

traces behind it, even when media have been overwritten numerous times. 5

 Data on a hard drive, Kruse and Heiser emphasize, leave a permanent trace, even
as the drive makes room for new “ impressions. ” This description of the hard drive,
written by information security experts, eerily repeats Freud ’ s description of the uncon-
scious. It also highlights the work that “ memory ” (in contrast to archiving) entails — to
be retrieved, these traces must be submitted to a rigorous process of reading.

 How are we to understand archives as linking the machinic to the human to the
written? As linking the ephemeral to the lasting? The alive to the dead? Two things
to consider:

 1. The RNA world As mentioned previously, scientists are considering RNA more and
more as primary. What is called the RNA world thesis argues that RNA is the “ origin ”
of life, since RNA can act as both genes and enzymes and because DNA replication
depends on “ an enormous amount of proteins ” (thus making DNA as origin unlikely). 6
Through retroviruses, RNA also rewrites DNA. This thesis fascinatingly questions the

The Undead of Information 135

confl ation of legislation with execution that grounds code as logos. RNA does not
simply code for proteins; DNA is no simple source.
 2. Cybernetics as memory Jacques Derrida, in Of Grammatology , linked together
writing and cybernetics: “ The entire fi eld covered by the cybernetic program will be
the fi eld of writing. If the theory of cybernetics is by itself to oust all metaphysical
concepts — including the concepts of soul, of life, of value, of choice, of memory —
 which until recently served to separate the machine from man, it must conserve the
notion of writing, trace, gramm è [written mark], or grapheme, until its own historico-
metaphysical character is also exposed. ” 7 Cybernetics, however, did not only have
to conserve the notion of writing, but also that of memory. Memory links together
the man and the machine. Memory also bridges across the machinic and human
unknowns.

 Moreover, to understand information as undead, we need to understand its relation
to that other undead thing — the commodity. If a commodity is, as Marx famously
argued, a “ sensible supersensible thing, ” information would seem to be its comple-
ment: a supersensible sensible thing. 8 The literature, of course, on the relationship
between information and the commodity is dense: from procapitalist celebrations of
information as the new commodity to neo-Marxist ruminations on the impact of
information on labor practices. Rather than rehearse these arguments, I want to
emphasize that this parallel between information (as a general, rather than technical
term) and commodities intersects with the emergence of source code as information
outlined in chapter 1. That is, if information is a commodity, it is not simply due to
historical circumstances or to structural changes; it is also because commodities, like
information, depend on a ghostly abstraction.

 Thomas Keenan, in “ The Point Is to (Ex)Change It: Reading Capital Rhetorically, ”
unpacks Marx ’ s use of ghostly rhetoric to explain capital, in particular the capitalist
exchange. Abstraction, Marx argues, transforms material things and their embedded-
use values, into things that can be exchanged: commodities. This transformation
fundamentally changes the “ atomic ” structure of things: “ as exchange-values, [things]
can be only different qualities, and thus not contain an atom . . . of use-value. ” Keenan
asks: What, after this abstraction, is left? If exchange value eviscerates use — if it must
eviscerate use to work — what makes possible exchange? What remains, Keenan con-
tends, is a “ ghost, gespenstige Gegenst ä ndlichkeit , spectral, haunting, surviving objectiv-
ity. ‘ There is nothing of them left over but this very same . . . ghostly objectivity, a
mere jelly . . . of undifferentiated human labor. ’ ” “ This very phantom, ” Keenan goes
on to insist, “ makes possible the relation between (or within) things or uses, grants
the common axis of similarity hitherto unavailable, precisely because it is a ghost and
no longer a thing or a labor. ” 9 That ghostly jelly, Keenan argues, is humanity — the
common humanity that survives in the things exchanged and, like language, makes
exchange possible.

 4 Always Already There, or Software as Memory

 Software — as instructions and information (the difference between the two being
erased by and in memory) — not only embodies the always already there, it also
grounds it. It enables a logic of “ permanence ” that confl ates memory with storage,
the ephemeral with the enduring. Through a process of constant regeneration, of
constant “ reading, ” it creates an enduring ephemeral that promises to last forever,
even as it marches toward obsolescence/stasis. The paradox: what does not change
does not endure, yet change — progress (endless upgrades) — ensures that what endures
will fade. Another paradox: digital media ’ s memory operates by annihilating memory.

 Remarkably, digital media has been heralded as “ saving ” analog media from
destruction and obscurity. Many users, blind to the limitations of electromagnetic
materials, assume that one can actually “ store ” things in memory. They assume that
data saved on their DVDs, hard drives, and jump drives will always be there, that
disk failure and the loss of memory it threatens are accidents instead of eventualities.
Digitization surprisingly emerged as a preservation method in the 1990s by becoming
a major form of “ reformatting, ” a procedure designed to save intellectual content
threatened by decaying materials — such as acidic wood-pulp paper and silver-nitrate
fi lm — by reproducing it. 1 Indeed, the National Endowment for the Humanities ’ 1988
 “ Brittle Books Program, ” which microfi lmed millions of books in peril of “ slow burn, ”
viewed digitization as the preferred preservation method, even given a computer fi le ’ s
fi ve-year shelf life. This celebration of the digital as archives ’ salvation stems in part
from how digital fi les address another key archival issue: access. From the Library of
Congress ’ s early attempt to digitize its collections, the American Memory Pilot program
(1990 – 1994), to Google ’ s plan to digitize over ten million unique titles through its
Book Search Program (announced in 2004), digitization has been trumpeted as a
way for libraries fi nally to fulfi ll their mission: to accumulate and provide access to
human knowledge. Digital archives are allegedly H. G. Wells ’ s “ World Brain ” and
Andr é Malraux ’ s museum without walls, among other dreams, come true.

 At the same time, however, computer archives have been targeted as the source of
archival decay and destruction, their liquidity threatening both the possibility and the

138 Chapter 4

authenticity of cultural memory. Digital media disrupt the archive because they them-
selves are diffi cult to archive or have not been properly archived or both. The 1999
Modern Languages Association (MLA) report, “ Preserving Research Collections: A Col-
laboration between Librarians and Scholars, ” summarizes the dual challenges of the
hard and the soft: “ Imagine a historian opening a late nineteenth-century text and
helplessly watching as the title page breaks in her hand. Imagine another scholar, ten
years from now, inserting a disk containing an important document into the computer
and reading only a “ fatal error ” message on his screen. These two examples illustrate
the Janus-like preservation challenge faced by research libraries today: fragility of the
print past and the volatility of the future. ” 2 The material limits of materials not only
cause the future to be volatile, but also, again, so do the ever-updating, ever-prolifer-
ating, and increasingly incompatible soft and hard technologies — the challenges to
the historical preservation of software outlined in the introduction to this book.
Moreover, digital imaging potentially destabilizes authenticity. If libraries and archives,
as Abby Smith has argued, “ serve not only to safeguard that information [which has
long-term value], but also to provide evidence of one type or another of the work ’ s
provenance, which goes to establishing the authenticity of that work, ” this function
is seriously undermined by electronic images and documents, which are easily changed
or falsifi ed. 3 The sheer plethora of digital fi les also calls into question the importance
of the libraries ’ and archives ’ traditional gatekeeping function. This is most clear in
the Internet Wayback Machine (IWM) ’ s approach to selection: this site creates a
 “ library of the Internet ” by backing up all accessible sites. If libraries and archives
traditionally distinguished between materials of enduring value and “ other bits of
recorded information, like laundry lists and tax returns, ” which were allowed to
vanish, the IWM has solved the extremely time-consuming task of selecting the endur-
ing from the ephemeral by saving everything. (Although it originally tried to save
only “ signifi cant ” material, it soon became an automatic archive of everything.) In
addition to all these diffi culties, attempts to digitize content have been frustrated by
copyright issues, with rights holders demanding compensation or refusing permission.
Digital copies — allegedly defi ned by their immateriality — are, as the introduction has
emphasized, more closely regulated than their material counterparts, especially since
their use can be controlled by private contracts rather than by copyright or patents.

 As this discussion makes clear, digital media ’ s promise is also its threat; the two
cannot be neatly divided into the good and the bad. Digital media, if it “ saves ”
anything, does so by transforming storage into memory, by making what decays
slowly decay more quickly, by proliferating what it reads. By animating the inani-
mate — crossing the boundary between the live and the dead — digital media poses
new challenges and opportunities for “ the archive. ”

 Taking up the intertwining of the biological and the technological addressed previ-
ously, this chapter investigates how something as admittedly “ soft ” (and vapory) as

Always Already There, or Software as Memory 139

software hardened into something that allegedly guarantees heredity, and perma-
nence. Looking in particular at von Neumann ’ s early formulation of stored-memory
computer architecture, chapter 4 argues that memory became confl ated with storage
through analogies to analogies: through analogies to cybernetic neurons, to genetic
programs, to what would become “ analog ” media itself. Through these analogies (and
their erasure), the new and the different have been reduced to the familiar. I uncover
these differences and analogies not to attribute blame, but rather to reveal the dreams
and hopes driving these misreadings: the desire to expunge volatility, obliterate
ephemerality, and neutralize time itself, so that our computers can become synony-
mous with archives. 4 These desires are key to stabilizing hardware so that it can
contain, regenerate, and thus reproduce what it “ stores. ” Further, they are central to
the twin emergence of neoliberalism and computer programs as strategic games.

 These analogies also ground one of the fundamental axioms of digital media,
namely that the digital reduces the analog — the real world — to 1s and 0s. By doing so
the digital allegedly releases and circulates information that before clung stubbornly
to material substances, effectively erasing the importance of context and embodiment.
The fact that this has become an axiom should make us pause, especially since the
evidence against it is substantial: the digital has proliferated, not erased, media types;
what has become the analog is not the opposite, but rather the “ ground ” of the digital;
and last, information is not naturally or inherently binary. Rather than making every-
thing universally equivalent, the digital has exploded differences among media
formats. Proprietary and nonproprietary electronic fi le formats such as jpeg, gif, mp3,
QuickTime, doc, txt, rtf, and so on, not only distinguish between image, sound, and
text, but also introduce ever more numerous differences among them. This explosion
is not accidental to the digital, but rather, as I argue later, central to it. Also, the term
 analog , based on the word analogy , does not simply refer to what is real. After the
emergence of electronic, arithmetically based computers, the term analog was adopted
to describe computers that solved problems using similar physical models, rather than
numerical methods. And fi nally, information is not simply digital, for information
stems from the transmission of continuous electronic signals. The information travel-
ing through computers is not 1s and 0s; beneath binary digits and logic lies a messy,
noisy world of signals and interference. Information — if it exists — is always embodied,
whether in a machine or an animal. To make information appear disembodied requires
a lot of work, work that is glossed over if we just accept the digital as operating
through 1s and 0s.

 Revising the working thesis of chapters 2 and 3 — software as axiomatic — chapter
4 contends that the digital is axiomatic. The digital emerges as a clean, precise logic
through an analogy to an analogy, which posits the analog as real/continuous.
Looking at the differences between analog and digital computers, this chapter reveals
how discrete logical devices work by restricting possibilities and possible decodings.

140 Chapter 4

It also examines how the development of these devices drives the need for “ memory, ”
a regenerating and degenerating archive that paradoxically, as Geoffrey C. Bowker
notes, annihilates memory by substituting generalized patterns for particular memo-
ries. 5 This does not simply erase human agency, however, but rather fosters new
dreams of human intervention, action, and incantation. It does not absolve us of
responsibility, but instead calls on us to respond constantly, to save actively, if we
are to save at all.

 Biological Abstractions

 John von Neumann ’ s mythic, controversial, and incomplete 1945 “ First Draft of a
Report on the EDVAC ” introduced the concept of stored program computing and
memory to the U.S. military and the academic “ public. ” This report is remarkably
abstract: rather than describing actually existing components, such as vacuum tubes
and mercury delay lines, it offers “ hypothetical elements. ” According to von
Neumann, it does so because, although dealing with real elements such as vacuum
tubes would be ideal, such specifi city would derail the process by introducing specifi c
radio engineering questions at too early a stage. Thinking concretely in terms of
types and sizes of vacuum tubes and other circuit elements “ would produce an
involved and opaque situation in which the preliminary orientation which we are
now attempting would be hardly possible. ” To avoid this, von Neumann bases his
consideration “ on a hypothetical element, which functions essentially like a vacuum
tube — e.g., like a triode with an appropriate associated RLC-circuit — but which can
be discussed as an isolated entity, without going into detailed radio frequency electro-
magnetic considerations. ” 6 The vagaries of the machinery (vacuum tubes etc.), which
are not necessarily digital but can be made to act digitally, threaten the clean sche-
matic logic needed to design this clean, logical machine. Von Neumann describes
this deferral as “ only temporary. ” 7 However, J. Presper Eckert and John Mauchly,
the original patent holders of stored program computing, would allege that von
Neumann did not touch on the “ true electromagnetic nature ” of the devices because
it was outside his purview: von Neumann, they contended, merely translated their
concrete ideas into formal logic. 8 In fact, rather than a temporary omission, abstract-
ness was von Neumann ’ s modus operandi, central to the “ axiomatic ” (blackboxing)
method of his general theory of natural and artifi cial automata and consonant with
his game theory work.

 This fateful abstraction, this erasure of the vicissitudes of electricity and magnetism,
surprisingly depends on an analogy to the human nervous system. As cited earlier,
von Neumann specifi es the major components of the EDVAC as corresponding to
different neurons: “ The three specifi c parts CA [central arithmetic], CC [central control]
(together C) and M [memory] correspond to the associative neurons in the human

Always Already There, or Software as Memory 141

nervous system. It remains to discuss the equivalents of the sensory or afferent and the
 motor or efferent neurons. These are the input and the output organs of the device. ” 9
These neurons, however, are not simply borrowed from the human nervous system.
They are the controversial, hypothetical neurons postulated by Warren McCulloch
and Walter Pitts in their “ A Logical Calculus of Ideas Immanent in Nervous Activity, ”
a text McCulloch claims von Neumann saved from obscurity. 10 (Von Neumann would
later describe these neurons as “ extremely amputated, simplifi ed, idealized. ”) 11 In
accordance with McCulloch and Pitts, von Neumann expunges the messy materiality
of these “ neurons ” :

 Following W. S. McCulloch and W. Pitts . . . we ignore the more complicated aspects of neuron

functioning: thresholds, temporal summation, relative inhibition, changes of the threshold by

after-effects of stimulation beyond the synaptic delay, etc. It is, however, convenient to con-

sider occasionally neurons with fi xed thresholds 2 and 3, that is, neurons which can be excited

only by (simultaneous) stimuli on 2 or 3 excitatory synapses (and none on an inhibitory

synapse). . . . It is easily seen that these simplifi ed neuron functions can be imitated by tele-

graph relays or by vacuum tubes. Although the nervous system is presumably asynchronous

(for the synaptic delays), precise synaptic delays can be obtained by using synchronous setups. 12

 This analogy thus depends on and enables a reduction of both technological and
biological components to blackboxes. In this simplifi ed analogy, the effects of time
are ignored to the extent that the synchronous can substitute for the asynchronous
and interactions or “ after effects ” are erased.

 So: to what extent are these abstractions and analogies necessary? What did
and do they make possible? Clearly, this blackboxing, by divorcing symbolic analysis
from material embodiment, has fostered a belief in information as immaterial, but
more is at stake in this move to “ biology. ” Notably, Claude Shannon ’ s infl uential
1936 masters thesis, which showed that relay and switching can be symbolically
analyzed (and designed) using Boolean logic, did not rely on an analogy between
relays and neurons. 13 In A Symbolic Analysis of Relay and Switching Circuits , Shannon
develops a means for simplifying and systematizing the development of complex
electrical systems. He argues, “ Any circuit is represented by a set of equations, the
terms of the equations corresponding to the various relays and switches in the
circuit. ” He then goes on to develop a calculus “ for manipulating these equations
by simple mathematical processes, most of which are similar to ordinary algebraic
algorisms. ” 14 Shannon neither turns to biology nor elaborates on the material
details of switches to ground his symbolic analysis. So why should the formal
schematic of an automatic stored-memory computer be biologically infl ected? And,
why does a logical calculus — Boolean, digital logic — necessitate the erasure of the
actual functioning of elements, such as vacuum tubes? To respond to these ques-
tions, I begin with another: How exactly are analog and digital related in electronic
computing?

142 Chapter 4

 Nothing but Analog, All the Way Down

 According to von Neumann in his 1948 “ General and Logical Theory of Automata, ”
a text that intriguingly reverses his initial analogy between vacuum tubes and neurons,
the difference between “ analogy and digital machines ” lies in the ways they produce
errors. Analogy machines, von Neumann contends, treat numbers as physical quanti-
ties. In order to perform a calculation, they thus fi nd “ various natural processes which
act on these quantities in the desired way, ” such as wheel and disk integrators (which
lie at the heart of the fi rst computer mice). According to von Neumann, the guiding
principle of analogy machines is the classic signal/information-to-noise ratio, a concept
Shannon addresses in his Mathematical Theory of Information . That is, “ the critical
question with every analogy procedure is this: How large are the uncontrollable fl uc-
tuations of the mechanism that constitute the ‘ noise, ’ compared to the signifi cant
 ‘ signals ’ that express the numbers on which the machine operates? ” 15 If the calculation
to be performed is complex and multistepped, such as the solving of partial differential
equations, noise is amplifi ed at every juncture, making it diffi cult to separate error
from answer. Digital machines, in contrast, treat numbers as “ aggregates of digits, ”
rather than as physical quantities or signals. Because of this, they are not subject to
noise constraints and offer the possibility of absolute precision, although von Neumann
points out that round-off errors (now largely addressed by fl oating-point arithmetic)
limit a digital machine ’ s accuracy. Regardless, “ the real importance of the digital pro-
cedure lies in its ability to reduce the computational noise level to an extent which
is completely unobtainable by any other (analogy) procedure. ” 16

 Crucially, this reduction in noise occurs by ignoring the “ analogy ” aspect of digital
components, for almost every element is a mixture of analogy and digit, as von
Neumann acknowledges in “ General and Logical Theory of Automata. ” In opposition
to his “ First Draft, ” this later article treats “ living organisms as if they were purely
digital automata. ” Responding to objections to this treatment, such as the fact that
neurons do not simply work in an all-or-none fashion, he contends:

 In spite of the truth of these observations, it should be remembered that they may represent

an improperly rigid critique of the concept of an all-or-none organ. The electromechanical

relay, or the vacuum tube when properly used, are undoubtedly all-or-none organs. Indeed,

they are the prototypes of such organs. Yet both of them are in reality complicated analogy

mechanisms, which upon appropriately adjusted stimulation respond continuously, linearly

or non-linearly, and exhibit the phenomena of “ breakdown ” or “ all-or-none ” response only

under very particular conditions of operation. 17

 The digit, in other words, often treats a quantity as a discrete number, its accuracy
resulting from a cut in a signal. The circularity of this passage, in which vacuum tubes
are declared prototypes for all-or-none machines, is remarkable. Based on an analogy
to computing elements, neurons, which themselves grounded computing elements as

Always Already There, or Software as Memory 143

digital, are declared digital: an initial analogy is reversed and turned into ontology. At
the base of this logic lies a redefi nition of analogy itself as a complicated mechanism
that operates on continuous quantities, rather than on discrete units.

 This redefi nition of analog as continuous, still present with us today whenever we
refer to fi lm and other media as “ analog media, ” reveals a fundamental ambiguity at
the core of what would become known as analog machines: does the analogy take
place at the level of the machine architecture or at the level of signal? Analog as model
emphasizes analogous differential equations and thus nonobvious analogous effects;
analog as continuous buries these likenesses and privileges data over process. Accord-
ing to Thomas D. Truitt and A. E. Rogers in their 1960 Basics of Analog Computers :

 The word “ analog ” (or “ analogue ”) has been used and misused. It has one meaning to some

people, and a variety of uses to others. Webster speaks of a thing which maintains “ a relation

of likeness with another, consisting in the resemblance not of the things themselves, but of

two or more attributes, or effects. . . . It is important to recognize that while analog computer

refers most commonly to this one specifi c type of analog computer [general purpose d-c elec-

tronic analog computer], it can just as well refer to certain mechanical and hydraulic devices,

to general purpose a-c electronic computers, and to a variety of special purpose computers. All

of these have one characteristic in common — that the components of each computer or device

are assembled to permit the computer to perform as a model, or in a manner analogous to

some other physical system. 18

 Truitt and Rogers contend that similarities in system behavior, rather than resem-
blances between individual components, are key. In this sense, analog machines are
simulation machines par excellence. Analog computers are based on similar physical
relationships between mechanical and electronic systems and emphasize quantities
over numbers. That is, the “ signal ” operated on and the result measured is a physical
quantity, such as the intensity of an electrical current, or the rotation of a disk. Impor-
tantly, the notion of these machines as “ analogy ” machines only became apparent
after the introduction of what would become digital computers, simulacra par
excellence.

 Analog to What?

 Analog elements, even as they “ ground ” digital ones such as transistors and neurons,
are not simple predecessors to digital computers. Analog and digital machines both
thrived in the 1940s through the 1960s. Analog computers were used regularly in
nuclear reactors for real-time data processing, as part of real-time control systems,
such as fl ight simulators, and to simulate guided missiles in 3D (they were used to
build the intercontinental ballistic missiles, which made the SAGE (Semi-Automatic
Ground Environment) air defense system obsolete by the time it was completed). 19
So-called analog computers were popular because of their speed: they could solve

144 Chapter 4

problems in parallel, rather than serially (one step at a time), and although digital
machines could complete one operation (such as subtraction) much more quickly
than analog machines, they were not necessarily faster at complex operations. Early
analog machines, as argued earlier, also offered a real-time graphical display that
allowed engineers to see immediately how changing a coeffi cient or variable would
alter a problem. Last, the fact that analog computers offered fewer decimal points in
their solutions than their digital counterparts was often not important, since the
accuracy of the calculation was frequently limited by other factors (measuring input,
inadequate equations, etc.) and since early digital computers had signifi cant digit
control problems.

 Not only were analog computers not viewed or accepted as stepping-stones toward
digital ones, but also the division itself between analog and digital electronic com-
puters was not clear. Electronic differential analyzers such as MADDIDA (Magnetic
Drum Digital Differential Analyzer), which operated using Boolean algebra and
digital electronic circuits, yet treated the signals to be operated as quantities rather
than numerical entities, muddied the boundary between analog and digital machines
 — a boundary that arguably did not then exist. Indeed, analyzers only became
analog computers rather than “ mechanical mathematical ” machines after electronics
had displaced electromechanics in the production of discrete and nondiscrete
machines. 20

 Electronics arguably marked a “ break ” between newer and older calculating
machines in the 1940s as signifi cant as the difference between digital and “ analogy. ”
In the May 1946 press release announcing the ENIAC (Electronic Numerical Integrator
and Computer — the fi rst working electronic digital computer), the U.S. War Depart-
ment introduced it as the fi rst “ all-electronic general purpose computer, ” and under-
scored its “ electronic methods. ” 21 Electronics marked the ENIAC ’ s difference from both
the mechanical “ analog ” differential analyzer and the “ digital ” (yet electromechanical)
Harvard Automatic Sequence Calculator (Mark 1). In Vannevar Bush ’ s 1945 Franklin
Institute article introducing the electromechanical Rockefeller Differential Analyzer
(RDA, built in 1942) 22 and in the press releases circulated that year, the RDA is never
described by its makers/promoters as an analog machine, but rather as a “ machine
approach ” to mathematics, 23 a “ computing machine which marks a signifi cant advance
in the fi eld of mechanized mathematics ” 24 or, more colloquially, as an “ electro-
mechanical giant, ” 25 a “ tireless ally of science. ” 26 In response to these publications
and to the War Department’s announcing the ENIAC, newspapers reported on the
machines together, calling them both “ Magic Brains ” 27 and “ Mathematical Robots. ” 28

 Electronic devices were an important breakthrough because of their speed, and
because they were built using nonspecialized labor. Mechanical differential analyzers
required trained operators to be present at all times and inadvertently “ taught ”
calculus to its “ uneducated ” operators. Bush claimed that the integraph (an early

Always Already There, or Software as Memory 145

electronic version of the differential analyzer) enabled operators/students to cope with
diffi cult mathematical questions by providing “ the man who studies it a grasp of the
innate meaning of the differential equation. ” For such a man, “ one part at least of
formal mathematics will become a live thing. ” 29 Seeing wheel and disk integrators in
action makes calculus “ live, ” moving it from formal writing to actual experience.
According to Larry Owens, differential analyzers offered engineering students a graphic
way to “ think straight in the midst of complexity ” — a type of thinking indebted to
an engineering “ graphical idiom, ” which operated as a universal language.

 At the core of early analog analyzers lie ordinary differential equations. Similar
ordinary differential questions describe seemingly disparate and unrelated electrical,
electromechanical, mechanical, and chemical phenomena, all of which can be under-
stood as closed “ circuits. ” Analog machines, in this sense, work because ordinary
differential equations are universal at a large scale, and because Newton ’ s laws describ-
ing force can also describe electrical charge and water capacity. 30 For instance, the
mechanical spring circuit represented in fi gure 4.1 corresponds to the RLC circuit in
fi gure 4.2 :

 The mechanical spring system corresponds to the following formula:

 m (d 2 x /d t 2) = F [force] − kx [oscillating force of spring] − D (d x /d t)
 [dissipative force of friction]

 The electrical system of fi gure 4.2 has the following analogous differential equation
(see table 4.1 for the corresponding quantities):

 L (d 2 q /d t 2) = V [voltage] − 1/ Cq [oscillating capacitor charge] − R (d q /d t)
 [charge lost over resistor]

 Figure 4.1
 Mechanical spring circuit

146 Chapter 4

 Figure 4.2
 RLC circuit

 Table 4.1
 Analogous entities in the two systems

 Mechanical Electrical

 force F voltage V

 mass m inductance L

 friction coeffi cient D resistance R

 displacement x charge q

 velocity d x /d t current I

 spring coeffi cient k reciprocal of capacity 1/ C

 All these equations could be put in the form

 D n−1 y /d x n−1 = ∫ d n y /d x n d x .

 For the mechanical spring system, this would be

 d x /d t [velocity] = (1/ m) ∫ (F − kx − D (d x /d t))d t .

 These equations are not usually solvable using normal analytic methods, but can be
solved using numerical methods (desk calculators generally produced tables of solu-
tions to differential equations before the popularization of machinic computers). MIT ’ s
differential analyzers employed a wheel and disc integrator to solve these differential

Always Already There, or Software as Memory 147

 Figure 4.3
 Schematic of a basic wheel and disk integrator

equations mechanically, using feedback to solve for values, which appeared on both
sides of the equation sign. Figure 4.3 gives the basic design and principle of the
integrator.

 As fi gure 4.4 makes clear, the distance y is not a static value, but rather a function
given determined by the rotation of another shaft.

 So that

 W = k ∫ v1 v U d V .

 To schematically represent the various operations, Bush used the following symbols
(see fi gure 4.5):

 So, using the equation d 2 y /d x 2 = f(x), in which case f(x) is known in order to solve
for y , one would build the setup outlined in fi gure 4.6.

 Crucially, the differential analyzer employed “ generative ” functions — that is, the
output could feed into itself. It could thus solve for variables on both sides of the equa-
tion. For instance, consider the solution for d 2 y /d x 2 = f(y), which is shown in fi gure 4.7.

 These generative functions mark a fundamental difference between digital machines,
which solve problems step by step, and analog machines.

148 Chapter 4

 Figure 4.4
 Integrator geometry

 Because of this mechanical yet “ live, ” analogous relationship, analog machines
have generally been conceptualized as more transparent and intuitive than digital
ones. Samuel Caldwell, director of MIT ’ s Center of Analysis, stated, “ There is a
vividness and directness of meaning of the electrical and mechanical processes
involved . . . [whereas] a Digital Electronic computer is bound to be a somewhat
abstract affair, in which the actual computational processes are fairly deeply sub-
merged. ” 31 Historian Paul Nyce has argued this mechanical mirroring made the
move from analogy to essence or ontology diffi cult: one always dealt with — made
visible — two analogous situations, rather than a universal solution. Nyce contends
that analog devices

 belong to a long tradition of scientifi c instruments, starting in the seventeenth century, that

 “ made visible what could not be seen ” . . . Unlike most scientifi c instruments, however, analog

devices supported both understanding (literally by measurement and number, like an astrolabe)

and investigation for they, like an orrery, were “ models ” of phenomena. . . . What also made

them persuasive is that they were both statements about and direct imitations of the things

they represented. Mimesis is “ hidden ” or absent in digital machines: analog machines represent

phenomena vividly and directly. ” 32

 Intriguingly, direct representation — or more accurately correspondence — makes analog
machines live, vivid, and direct. It is a representation that always is tethered to another
 “ source, ” which it does not try to hide. The differential analyzer was not, as the digital
computer would be, amenable to notions of “ universal ” disembodied information.
The differential analyzer simulated other phenomena, whereas digital computers, by

Always Already There, or Software as Memory 149

 Figure 4.5
 Symbols used in connection diagrams for a differential analyzer

150 Chapter 4

 Figure 4.7
 d 2 y /d x 2 = f(y)

 Figure 4.6
 d 2 y /d x 2 = f(x)

Always Already There, or Software as Memory 151

hiding mimesis, could simulate any other machine. That is, while both digital and
analog computers depend on analogy, digital computers, through their analogy to the
human nervous system (which we will see stemmed from a prior analogy between
neurons and Turing machines), simulate other computing machines using numerical
methods, rather than recreating specifi c mechanical/physical situations. They move
us from “ artifi cial representation ” or mechanical analysis (description) to simulacra or
 “ information ” (prescription). They move us from solving a problem by defi ning its
parameters to solving it by laying out a procedure to be followed step by step. Depend-
ing on one ’ s perspective, analog computers either offer a more direct, “ intuitive, ” and,
according to Vannevar Bush, “ soul-satisfying ” way of solving differential equations or
they are imprecise and noisy devices, which add extra steps — the translation of real
numbers into physical entities. 33 The fi rst, the engineer ’ s perspective, views computers
as models and differential equations as approximations of real physical processes; the
second, the mathematician’s perspective, treats equations as predictors, rather than
descriptors of physical systems — the computer becomes a simulacrum, rather than a
simulation.

 To be clear, though, analog machines did not simply operate via analogy; again,
the notion that they operated through analogy would only be apparent later. They
dealt with “ signals, ” from which the notion and the theory of information would
emerge, and further Vannevar Bush, as an electrical engineer, considered electricity
to be a universal principle. 34 As well, to return to the question of electronics, all
analog machines are not large, “ intuitively understood, ” ” live ” mechanical devices.
The electronic machines of the 1950s and 60s differed signifi cantly from their
mechanical predecessors. We thus need to be careful not to base arguments about
analog machines as a whole on Vannevar Bush ’ s early machines. 35 Indeed, Bush
and Caldwell argued that one benefi t of the electromechanical RDA was the fact
that a trained operator was not necessary. As they explained, the user no longer
had to “ keep up “ with the machine. 36 Op-amps as integrators, or even multipliers,
were not “ seeable ” and graspable in the same fashion as wheel and disks. 37 Last,
analog computational structures do not have to coincide perfectly with the problem
to be solved: one can reuse an integrator in the same way that one can reuse
an adder.

 The move to electronics not only deskilled operators, it also made computers mass
producible. The mechanical differential analyzers were steeped in the “ odor ” and the
specialized labor of the machine lab, and they used special cams hand-crafted by
highly skilled mechanics (the University of Pennsylvania Moore School Differential
Analyzer was a WPA [Works Progress Administration] project, designed to employ
mechanics). B. Holbrook, who worked at Bell Labs, argued that wire-wound potenti-
ometers “ offered the possibility of getting a completely new and relatively trainable
type of labor into the manufacture of these things instead of the very high precision

152 Chapter 4

mechanics that were necessary by using the prior method. ” 38 Electronic analog and
digital computers used mass-produced vacuum tubes and later transistors. Thus, both
electronic analog and digital “ machines ” participate in Fordist logic: they automate
calculation and production and make invisible the mathematics or calculations on
which they rely.

 Digital machines, however, are more profoundly Fordist than analog ones. The
War Department ENIAC press release states that the ENIAC will eliminate expensive
design processes: “ Many electrical manufacturing fi rms, for instance, spend many
thousands of dollars yearly in building ‘ analogy ’ circuits when designing equip-
ment. ” 39 Most signifi cant, they are more Fordist because their programming breaks
down problems into simple, repeatable discrete steps. It is in programming, or to
be more precise, programming in opposition to coding, that analog and digital
machines most differ. Douglass Hartree, in his 1949 Calculating Instruments and
Machines , reserves the terms programming and coding for digital machines, even
though the RDA used tapes to specify the required interconnections between the
various units, the values of ratios for the gearboxes, and the initial displacements
of the integrators. 40 These tapes, unlike ones used for digital electronic computers,
did not contain instructions necessary for sequencing a calculation; like von
Neumann, Hartree describes programming as the “ drawing up [of a] schedule of
[the] sequence of individual operations required to carry out the calculation, ” and
coding as the “ process of translating operations into instructions in the particular
form in which they are read by the machine. ” 41 Digital and analog electronic pro-
gramming both retained the iconographic language of the differential analyzers,
and in this sense were both grounded in mechanical methods or in their simula-
tion. However, whereas digital fl ow charts produce a sequence of individual opera-
tions, analog programming produces a “ circuit ” diagram of systematic relations (see
 fi gure 4.8). These differences in programming also point toward key internal dif-
ferences in representation, namely numbers versus quantities. Coded digital machines
are much easier to follow. At a certain level then, analog machines (especially
mechanical ones) were not simply more visual or transparent, but rather more
complicated.

 This complexity made it unlikely that analog computers could spawn or support
code as logo s . Code as logos — code as the machine — is intimately linked to digital
design, which enables a strict step-by-step procedure that neatly translates time into
space. Although later it would threaten to reduce all hardware to memory devices
in the minds of most of its users, code as logos depended on a certain “ hard ”
digital logic. This logic turns neurons and vacuum tubes themselves into logos and
produces an insatiable need for memory, understood as regenerative circuits. This
logic again stems from “ biology, ” or, rather, from technologically enhanced biology:
cybernetics.

Always Already There, or Software as Memory 153

 Figure 4.8
 An analog program diagram, based on an image from Albert S. Jackson, Analog Computation (New

York: McGraw-Hill Book Company, 1960), 266

 In the Beginning Was Logos (Again)

 In “ A Logical Calculus of the Ideas Immanent in Nervous Activity, ” McCulloch and Pitts
seek to explain the operation of the brain in logical terms. This paper is part of
McCulloch ’ s larger project of “ experimental epistemology, ” his effort to explain “ how
we know what we know . . . in terms of the physics and chemistry, the anatomy and
physiology, of the biological system. ” 42 This experimental epistemology did not shun
theory, but rather sought to weave together philosophy and neurophysiology. At its
heart lies the equation of “ the ‘ all-or-none ’ character of nervous activity ” with proposi-
tional logic. It reduces a neuronal action to a statement capable of being true or false,
 “ to a proposition which proposed its adequate stimulus. ” 43 This equation once more

154 Chapter 4

confl ates word with action: in this particular case, the fi ring of a neuron with the propo-
sition that “ made ” it fi re. (Not surprisingly, McCulloch describes his examination of the
human mind as a “ quest of the Logos. ”) 44 This equation also concretizes the mind and
ideas: “ With the determination of the net, ” McCulloch and Pitts write, “ the unknow-
able object of knowledge, the ‘ thing itself, ’ ceases to be unknowable. ” 45

 As the quotations around “ all-or-none ” imply, this description is a simplifi cation,
one coupled with assumptions such as: “ a certain fi xed number of synapses must be
excited within a period of latent addition in order to excite a neuron at any time, and
this number is independent of previous activity and position on the neuron. ” 46 Despite
this, they argue that the all-or-none behavior of neurons makes them the fundamental
psychic units or “ psychons, ” which can be compounded “ to produce the equivalents
of more complicated propositions ” in a causal manner. 47 Indeed, the goals of McCulloch
and Pitts ’ s logical calculus are to calculate the behavior of any neural net and to fi nd
a neural net that will behave in a specifi ed way. 48 Remarkably, their method to “ know
the unknowable ” not only simplifi es nervous activity, it also does not engage the
actual means by which inhibition or excitation occurs. This is because their method
considers circuits equivalent if their result — their perceived behavior — is the same (as
I explain later, this was crucial to cybernetic memory). Further, they erase actual altera-
tions that occur during facilitation and extinction (antecedent activity temporarily
alters responsiveness to subsequent stimulations of same part of the net) and
learning (activities concurrent at some previous time alters the net permanently)
via fi ctitious nets composed of ideal neurons whose connections and thresholds are
unaltered. 49 Even though they state that formal equivalence does not equal factual
explanation, they also insist that the differences between actual and idealized action
do not affect the conclusions that follow from their formal treatment, namely the
discovery/generation of a logical calculus of neurons.

 Importantly, this logic of equivalence between neural nets and propositional logic
was grounded, for McCulloch, in the nature of numbers themselves. In “ What Is a
Number, that Man May Know It, and a Man, that He May Know a Number?, ” he draws
from David Hume to argue that only numbers truly can be equal. McCulloch ’ s defi ni-
tion of numbers is Bertrand Russell ’ s, “ a number is the class of all those classes that
can be put into one-to-one correspondence to it. ” 50 McCulloch ’ s logical calculus, in
other words, could only be digital with 1s and 0s corresponding to true and false.
McCulloch later made this explicit, in his 1951 “ Why the Mind Is in the Head, ”
distinguishing the nervous system from sense organs in terms of digital versus analog.
 “ In so-called logical, or digital contrivances, ” he writes, “ a number to be represented
is replaced by a number of things — as we may tally grain in a barn by dropping a
pebble in a jug for each sheaf . . . the nervous system is par excellence a logical
machine. ” 51 To McCulloch, logical equals digital because they both rely on numbers.
Although analog machines also imply and are based on one-to-one models, McCulloch,

Always Already There, or Software as Memory 155

focusing on signals rather than on the machine, claims, “ in so-called analogical con-
trivances a quantity of something, say a voltage or a distance, is replaced by a number
of whatnots or conversely, quantity replaces the number. Sense organs and effectors
are analogical. ” 52 In this schema, analog to digital conversion takes place at the level
of data — the difference in machine technology is completely erased through a logic
of equivalence.

 By calling the cortex a digital machine, McCulloch sought to displace the then
popular theory of the mind as functioning mimetically. According to Seymour Papert,
McCulloch liberated the theory of perception from “ the idea that there must be in the
brain some sort of genetically faithful representation of the outside world. ” 53 This is
most clearly seen in his 1959 “ What the Frog ’ s Eye Tells the Frog ’ s Brain, ” (an article
with J. Y. Lettvin, H. R. Maturana, and W. H. Pitts). In it, they argue that because a
frog ’ s eye does not transmit a copy of what it sees but rather detects certain patterns
of light and their changes in time, the “ eye speaks to the brain in a language already
highly organized and interpreted, instead of transmitting some more or less accurate
copy. ” 54 Even earlier, though, and before von Neumann ’ s preliminary draft, the cortex
for McCulloch was a Turing machine. In “ A Logical Calculus, ” McCulloch and Pitts
state, “ Every net, if furnished with a tape, scanners connected to afferents and suitable
efferents to perform necessary motor-operations, can compute only such numbers as
can a Turing machine. ” 55 Neural nets are inspired by and aspire to be Turing machines. 56
Von Neumann ’ s use of McCulloch and Pitts ’ s analysis is thus an odd and circular way
of linking stored-memory digital computers to computing machines — once more, an
over-determined discovery of a linkage between biology and computer technology, yet
another turn of the double helix (before, of course, there was a double helix).

 This linkage not only establishes a common formal logic, it also enables the emer-
gence of computer “ memory. ” Moving away from ideas of fi eld-based, analogical
notions of memory, McCulloch ’ s neural nets produce transitory memories and ideas
through circular loops. Drawing from Wiener ’ s defi nition of information as order
(negative entropy), McCulloch argues that ideas are information: they are regularities
or invariants that conserve themselves as other things transform. 57 McCulloch conten-
tiously claims that this stability is produced by reverberating “ positive-feedback ”
circuits, that is, transitory memory (reverberatory memory cannot survive a “ shut
down, ” such as a deep sleep or narcosis). 58 These reverberatory circuits, though, even
as they enable memory, also render “ reference indefi nite as to time past, ” 59 for what
is retained is the memory, not all the events that led to that memory. In this sense,
they threaten to become “ eternal ideas, ” separated from context. This separation,
combined with the fact that the neural nets can specify the next but not the previous
state, means that “ our knowledge of the world, including ourselves, is incomplete as
to space and indefi nite as to time. ” 60 Causality runs only one way: one cannot
decisively “ reverse engineer ” a neural net ’ s prior state.

156 Chapter 4

 This emergence of memory is thus, as Bowker notes, also a destruction of memory.
Thinking through cybernetician Ross Ashby ’ s claim that “ memory is a metaphor
needed by a ‘ handicapped ’ observer who cannot see a complete system, ” Bowker
writes, “ The theme of the destruction of memory is a complex one. It is not that past
knowledge is not needed; indeed, it most certainly is in order to make sense of current
actions. However, a conscious holding of the past in mind was not needed: the actant
under consideration — a dog, a person, a computer — had been made suffi ciently differ-
ent that, fi rst, past knowledge was by defi nition retained and sorted and, second, only
useful past knowledge survived. ” 61 What is truly remarkable is that this destruction of
memory has spawned the seemingly insatiable need for computer memory. Memories
are rendered into context-free circuits freed from memory, circuits that are necessary
to the operation of the animal/machine.

 Although the past may not be determinable from the present, memories — as
context-free invariant patterns — ground our ability to predict the future. This pre-
diction — causality — according to McCulloch (drawing from Hume) is only a “ sus-
picion ” 62 that there is “ some law compelling the world to act hereafter as it did
of yore. ” 63 Like those of ideas, these predictive circuits persist. Indeed, McCulloch
argues, “ the earmark of every predictive circuit is that if it has operated long uni-
formly it will persist in activity, or overshoot; otherwise it could not project regu-
larities from the known past upon the unknown future. ” 64 The endurance of these
circuits, however, threatens closure, threatens to make the unknown imperceptible,
something that McCulloch “ as a scientist . . . dread[s] most, for as our memories
become stored, we become creatures of our yesterdays — mere has-beens in a chang-
ing world. This leaves no room for learning. ” 65 Memory, then, which enables a
certain causality as well as an uncertainty as to time and place, threatens to over-
whelm the system, creating networks that crowd out the new. A neural circuit, if
it persists — programmability — makes prediction possible. It, however, also puts in
jeopardy what for McCulloch is most interesting and vital about humanity: the
ability to learn and adapt to the unknown, that is, the future as future.

 This notion of memory as circuit/signal underscores McCulloch ’ s difference from
cognitive psychology, which, following developments in computer technology, would
consider the brain hardware and the mind software. 66 In McCulloch ’ s system, the mind
and body are intimately intertwined, with the mind becoming less “ ghostly ” — more
concrete — perhaps paradoxically by becoming signal. 67 Signals bridge mind and brain
because they have a double nature; they are both physical events and symbolic
values. 68 They are both statement and result. The logic of computers as logos stems
from the disciplining, the axiomatizing, of hardware. This in turn “ solidifi es ” instruc-
tions into things in and of themselves. Notably, McCulloch in his later work did
address software, or programs, but referred to them as instructions to be operated
on by data in memory, rather than as stored themselves in memory. 69 Instructions, in

Always Already There, or Software as Memory 157

other words, did not drive the system — the logic, the logos, happened at the level of
fi ring neurons.

 Thus, by turning to McCulloch and Pitts rather than to Shannon, von Neumann
gains a particular type of abstraction or logical calculus: an axiomatic abstraction and
schematic design that greatly simplifi es the behavior of its base components. Von
Neumann also gains a parallel to the human nervous system, key to his later work
on “ general automata. ” Last, he “ gains ” the concept of memory — a concept that
he would fundamentally alter by asserting the existence of biological organs not
known to exist. Through this hypothetical “ memory organ, ” and his discussion of
the relationship between orders and data, his model would profoundly affect the
development of cognitive science and artifi cial intelligence (AI) and life (AL). Through
this memory organ, von Neumann would erase the difference between storage and
memory, and also open up a different relationship between man and machine, one
that would incorporate instructions — as a form of heredity — into the machine, making
software fundamental. If word (as description) becomes event in McCulloch and Pitts ’ s
theory, in von Neumann ’ s theory event once again becomes word, word becomes
instruction.

 Memories to Keep in Mind

 Von Neumann ’ s work with natural and artifi cial automata in general reverses the arrow
of the analogy established in “ First Draft. ” Rather than explaining computers in terms
of the human nervous system, he elucidates the brain and its functioning in terms of
computational processes. This is most clear in von Neumann ’ s discussion of memory,
which he considered to be a “ much more critical and much more open ” issue than
logical processing. 70 In computer systems, memory was the bottleneck, for the limita-
tions of memory on the machine created an “ abnormal economy, ” in which the
computer is forced to store all the information it needs to solve a problem on the
equivalent of one page. 71

 The term memory organ clearly borrows from biology. This borrowing, however, was
not necessary. Prior to “ First Draft, ” mechanisms designed to store numbers and func-
tions necessary for computing were called storage devices or “ the store, ” following
Babbage ’ s terminology. J. Presper Eckert ’ s 1944 “ Disclosure of Magnetic Calculating
Machine, ” used as evidence in the patent trial, refers concretely to the disks or tapes
used to store data; his 1946 patent application, in contrast, employs the term electrical
memory . This movement from storage to memory lies at the heart of the computer
as archive, the computer as saving us from the past, from repetition through
repetition.

 Computer storage devices as memory is no simple metaphor, since it asserts the
existence of an undiscovered biological organ. Although von Neumann initially

158 Chapter 4

viewed memory as comprising afferent neurons, he soon changed his mind, based on
his own experience with computers, in particular with the number of vacuum tubes
needed to create the types of reverberatory circuits McCulloch and Pitts described. In
a reverse move, he postulated human memory as something unknown but logically
necessary, making clear that his fi rst analogy was based on a leap of faith. In The
Computer and the Brain , written ten years after “ First Draft, ” von Neumann writes, “ the
presence of a memory — or, not improbably, of several memories — within the nervous
system is a matter of surmise and postulation, but one that all our experience with
artifi cial automata suggests and confi rms. ” Von Neumann goes on to emphasize our
ignorance regarding this memory:

 It is just as well to admit right at the start that all physical assertions about the nature, embodi-

ment, and location of [human memory] are equally hypothetical. We do not know where in

the physically viewed nervous system a memory resides; we do not know whether it is a separate

organ or a collection of specifi c parts of other already known organs, etc. It may well be residing

in a system of specifi c nerves, which would then have to be a rather large system. It may well

have something to do with the genetic mechanism of the body. We are as ignorant of its nature

and position as were the Greeks, who suspected the location of the mind in the diaphragm.

The only thing we know is that it must be a rather large-capacity memory, and that it is hard

to see how a complicated automaton like the human nervous system could do without one. 72

 This passage reveals how quickly the computer moved from a system modeled on ideal
neurons to a concrete model for more complex biological phenomena. This statement,
which seems to be so careful and qualifi ed — we basically do not know what the
memory is or where it resides — at the same time asserts the existence of a memory
organ or set of organs based on an analogy to computers: “ The only thing we know
is that it must be a rather large-capacity memory, and that it is hard to see how a
complicated automaton like the human nervous system could do without one. ” This
guess regarding capacity assumes that the brain functions digitally, that it stores infor-
mation as bits, which are then processed by the brain, rather than functioning more
continuously in a “ fi eld-based ” manner. Again, this assumption was by no means
accepted whole-heartedly by biologists. Dr. Lashley, among others, responded to von
Neumann ’ s diffi culty with neuronal capacity by arguing that the memory was more
dynamic rather than static and that “ the memory trace is the capacity of many
neurons to work together in certain permutations. ” 73

 Neurons as switching elements drive von Neumann ’ s “ logical ” guess regarding
memory capacity, as well as his confusion over its location:

 In the human organism, we know that the switching part is composed of nerve cells, and we

know a certain amount about their functioning. As to the memory organs, we haven ’ t the faint-

est idea where or what they are. We know that the memory requirements of the human organ-

ism are large, but on the basis of any experience that one has with the subject, it ’ s not likely that

the memory sits in the nervous system, and it ’ s really very obscure what sort of thing it is. 74

Always Already There, or Software as Memory 159

 Digital switching devices, based on the reduction of all processes to true/false
propositions, insatiably demand memoryless memory. As von Neumann explains
in “ First Draft, ” the need for memory increases as problems are broken down into
long and complicated sequences of operations (described in chapter 1 of this book
by Bartik and Holberton). Digital computation needs to store and have access to
intermediate values, instructions, specifi c functions, initial conditions and boundary
conditions, etc. Prior to the EDVAC, these were stored in an outside recording
medium such as a stack of paper cards. The EDVAC was to increase the speed of
calculation by putting some of those values inside the memory organ, making
porous the boundaries of the machine. Memory instituted “ a prosthesis of the inside . ” 75
Memory was not simply sequestered in the “ organ ” ; it also bled into the central
arithmetic unit, which, like every unit in the system, needed to store numbers in
order to work.

 To contain or localize memory, von Neumann organized it hierarchically: there
were to be many memory organs, defi ned by access time rather than content. For
instance, in the 1946 work “ Preliminary Discussion of the Logical Design of an Elec-
tronic Computing Instrument, ” von Neumann and colleagues divide memory into
two conceptual forms — numbers and orders, which can be stored in the same organ
if instructions are reduced numbers — and into two types — primary and secondary. 76
The primary memory consists of registers, made of fl ip-fl ops or trigger circuits, which
need to be accessed quickly and ideally randomly. Primary memory, however, is very
expensive and cumbersome. A secondary memory or storage medium supplements
the fi rst, holding values needed in blocks for a calculation. Besides being able to store
information for periods of time, such a memory needs to be controllable automatically
(without the help of a person), easily accessed by the machine, and preferably rewrite-
able. Interestingly, the devices listed as possible secondary memories are other forms
of media: for instance, teletype tapes, magnetic wire or tapes, and movie fi lm. (The
primary media was also another medium — the Selectron was a vacuum tube similar
to one used for television.) 77 This gives a new resonance to McLuhan ’ s assertion that
new media do not make preexisting media obsolete but merely change their use. 78
Von Neumann and colleagues also outlined a third form of memory, “ dead storage, ”
which is an extension of secondary memory, since it is not initially integrated with
the machine. Not surprisingly, input and output devices eventually become part of
 “ dead storage. ” As von Neumann argues later in The Computer and the Brain , “ the very
last stage of any memory hierarchy is necessarily the outside world, that is, the outside
world as far as the machine is concerned, i.e. that part of it with which the machine
can directly communicate, in other words the input and the output organs of the
machine. ” 79 In this last step, the borders of the organism and the machine explode.
Rather than memory comprising an image of the world in the mind, memory
comprises the whole world itself as it becomes “ dead. ”

160 Chapter 4

 This last step renders the world dead by confl ating memory — which is traditionally
and initially regenerative and degenerative — with other more stable forms of media
such as paper storage, a comparison that is still with us today at the level of both
memory (fi les) and interface (pages and documents). This confl ation both relied on
and extended neurophysiological notions of memory as a trace or inscription, like the
grooves of a gramophone record. McCulloch, for instance, in 1951, in response to
objections posed by von Neumann over memory as reverberatory circuits, outlined a
hierarchical memory system that resonated with von Neumann ’ s schema. There are
fi rst temporary reverberations, and second, nervous nets that alter with use (central
to conditioned behaviors). The third type of memory, which he sees as an informa-
tional bottleneck, however, leaves him unhappily stumped; he is at a loss to describe
its location and its operation:

 I don ’ t see how we can tell where we have to look as yet, because in many of the experiments

in which there are lesions made in brains, we have had large amounts of territory removed.

However, usually we fail to destroy most fi xed memories: therefore, we cannot today locate the

fi ling cabinets. I think that sooner or later answers to the question of those fi ling cabinets, or

whatever it is on which is printed “ photographic records ” and what not, will have to be found. 80

 The term fi ling cabinet is drawn from von Neumann ’ s own terminology. In his
response to McCulluch ’ s paper, von Neumann, perhaps informed by psychoanalytical
arguments that memories never die (one of von Neumann ’ s uncles introduced psy-
choanalysis to Hungary and von Neumann apparently loved to analyze jokes) or by
his personal experience (he allegedly had a photographic memory and could recall
conversations word for word), presents the following “ negative ” and not entirely
 “ cogent ” argument against memory as residing in the neurons:

 There is a good deal of evidence that memory is static, unerasable, resulting from an irrevers-

ible change. (This is of course the very opposite of a “ reverberating, ” dynamic, erasable

memory.) Isn ’ t there some physical evidence for this? If this is correct, then no memory, once

acquired, can be truly forgotten. Once a memory-storage place is occupied, it is occupied

forever, the memory capacity that it represents is lost; it will never be possible to store anything

else there. What appears as forgetting is then not true forgetting, but merely the removal of

that particular memory-storage region from a condition of rapid and easy availability to one

of lower availability. It is not like the destruction of a system of fi les, but rather like the removal

of a fi ling cabinet into the cellar. Indeed, this process in many cases seems to be reversible.

Various situations may bring the “ fi ling cabinet ” up from the “ cellar ” and make it rapidly and

easily available again. 81

 Von Neumann ’ s “ negative argument ” relies on fi les and the human mind as the
owner/manipulator — or, to return to Cornelia Vismann ’ s argument outlined in chapter
2, chancellor — of fi les. It also depicts the human brain as surprisingly nonplastic: easily
used up and unerased, hence once more the need for great storage. It also moves away
from memory as based on erasable “ regenerative ” traces toward fantasies of traces

Always Already There, or Software as Memory 161

that do not fade: immortality within the mortal machine. 82 This is a far cry from Van-
nevar Bush ’ s description of the human mind in chapter 2 as fundamentally ephemeral
and prone to forgetting. The digital paradoxically produces memory as storage, in part
because logical algorithms need to read and write values. An entire process can fail if
one variable is erased.

 Memory as storage also allows von Neumann to describe genes as a form of human
memory. In The Computer and the Brain , he writes, “ another form of memory, which
is obviously present, is the genetic part of the body; the chromosomes and their con-
stituent genes are clearly memory elements which by their state affect, and to a certain
extent determine, the functioning of the entire system. ” 83 With this move toward
genes as memory — necessary for his theory of self-reproducing formula — neurons
would not stand in for words (true or false propositions), but words (instructions)
would come to stand in for neurons.

 Descriptions that Can

 The deed is everything, the Glory naught.

 — Faust , Part II

 According to William Poundstone, the last anecdote of von Neumann ’ s “ total recall ”
concerns his last days, when he lay dying of cancer at Walter Reed Hospital, a cancer
caused by his work on nuclear weapons (the drive for nuclear weapons also powered
the development of digital electronic computers; American computers and neoliberal-
ism are both reactions to Nazism). 84 His brother Michael read Faust in the original
German to von Neumann and, “ as Michael would pause to turn the page, von
Neumann would rattle off the next few lines from memory. ” 85 Converting to Catholi-
cism before his death, von Neumann was deeply infl uenced by the work of Goethe,
 Faust in particular. Said his brother Nicholas, “ We studied Faust in school very thor-
oughly, both parts, in original and in Hungarian translation. And we discussed it for
years and rereading it occasionally thereafter, throughout our respective lifetimes. ” 86
One of the three passages Nicholas describes as particularly important to his brother
was Faust ’ s grappling with logos: “ Faust ’ s monologue at the opening of the First Part:
 ‘ In the beginning was the Act, ’ and the corresponding statement in Part II: ‘ The deed
is everything, the Glory naught. ’ This we discussed in the context of the redeeming
value of action. ” 87 According to Nicholas, this passage led “ ultimately to John ’ s views
emphasizing the redeeming value of practical applications in his profession. ” 88 John
von Neumann as an unredeemed (although not yet fallen) Faust.

 This passage, however, has other resonances, intersecting with the question of logos
weaving through this book. Faust, seeking to translate the Bible into German pauses
over “ in the beginning was the Word ” :

162 Chapter 4

 I ’ m stuck already! I must change that; how?

 Is then “ the word ” so great and high a thing?

 There is some other rendering,

 Which with the spirit ’ s guidance I must fi nd.

 We read: “ In the beginning was the Mind. ”

 Before you write this fi rst phrase, think again;

 Good sense eludes the overhasty pen.

 Does “ mind ” set worlds on their creative course?

 It means: “ In the beginning was the Force. ”

 So it should be — but as I write this too,

 Some instinct warns me that it will not do.

 The spirit speaks! I see how it must read,

 And boldly write: “ In the beginning was the Deed! ” 89

 Faust, after a failed encounter with a spirit he conjured but cannot control, replaces
Word with Deed, which, rather than Word, Force, or Mind, creates and rules the hour.
Ironically, Faust, of course, is later saved by the Word — a technicality regarding his
statement of satisfaction. Regardless, this substitution of Word with Deed sums up
von Neumann ’ s axiomatic approach to automata and his attraction to McCulloch and
Pitts ’ s work. It also leads him to conceive of memory as storage: as a full presence that
does not fade, even though it can be misplaced. What is intriguing, again, is that this
notion of a full presence stems from a bureaucratic metaphor: fi ling cabinets in the
basement. This reconceptualization of human memory bizarrely offers immortality
through “ dead ” storage: information as undead.

 McCulloch and Pitts ’ s methodology again depends on axiomatizing idealized
neurons, where, according to von Neumann, “ axiomatizing the behavior of the ele-
ments means this: We assume that the elements have certain well-defi ned, outside,
functional characteristics; that is, they are to be treated as ‘ black boxes. ’ They are
viewed as automatisms, the inner structure of which need not be disclosed, but which
are assumed to react to certain unambiguously defi ned stimuli, by certain unambigu-
ously defi ned responses. ” 90 This controversial axiomatization, which von Neumann
would employ later in his theory of self-reproducing automata, reduces all neuronal
activities to true/false statements. 91 Neurons follow a propositional logic. Von
Neumann contends that this axiomatizing and the subsequent logical calculus it
allows means that McCulloch and Pitts have proven that “ any functioning . . . which
can be defi ned at all logically, strictly, and unambiguously in a fi nite number of words

Always Already There, or Software as Memory 163

can also be realized by such a formal neural network. . . . It proves that anything
that can be exhaustively and unambiguously described, anything that can be com-
pletely and unambiguously put into words, is ipso facto realizable by a suitable fi nite
neural network. ” 92 Words that describe objects, in other words, can be replaced by
mechanisms that act, and all objects and concepts, according to von Neumann, can
be placed in this chain of substitution. “ There is no doubt, ” he asserts, “ that any
special phase of any conceivable form of behavior can be described ‘ completely and
unambiguously ’ in words. This description may be lengthy, but it is always possible.
To deny it would amount to adhering to a form of logical mysticism which is surely
far from most of us. ” 93 This does not mean, however, that such a description is simple;
indeed, von Neumann stresses that McCulloch and Pitts ’ s theorizing is important for
its reverse meaning: “ there is a good deal in formal logics to indicate that the descrip-
tion of the functions of an automaton is simpler than the automaton itself, as long
as the automaton is not very complicated, but that when you get to high complica-
tions, the actual object is simpler than the literary description. ” 94

 This notion of an actual object is not outside of language, even if it is outside “ liter-
ary description, ” for, to von Neumann, producing an object and describing how to
build it were equivalent. For instance, he argues that the best way to describe a visual
analogy may be to describe the connections of the visual brain. 95 According to this
logic, the instructions to construct a machine can substitute for the machine itself, to
the extent that it can produce all the behaviors of the machine.

 This logic is most clear in von Neumann ’ s earliest model of self-reproduction, which
Arthur Burks later dubbed a “ robot ” or “ kinematic ” model. 96 In this model, “ construct-
ing automata ” A are placed in a “ reservoir in which all elementary components in
large numbers are fl oating. ” 97 Automaton A “ when furnished the description of [an]
other automaton in terms of appropriate functions will construct that entity. ” This
description “ will be called an instruction and denoted by a letter I All [A s] have
a place for an instruction I . ” 98 In this system, instruction drives construction. In addi-
tion to automata A , there are also automata B , which can copy any instruction I given
to them. The decisive step, von Neumann argues, is the following instruction to the
reader about embedding instructions:

 Combine the automata A and B with each other, and with a control mechanism C which

does the following. Let A be furnished with an instruction I Then C will fi rst cause A to

construct the automaton, which is described by this instruction I. Next C will cause B to copy

the instruction I referred to above, and insert the copy into the automaton referred to above,

which has just been constructed by A . Finally, C will separate this construction from the

system A + B + C and “ turn it loose ” as an independent entity. 99

 This independent entity is to be called D . Von Neumann then argues, “ In order to func-
tion, the aggregate D = A + B + C must be furnished with an instruction I , as described
above. This instruction, as pointed out above, has to be inserted into A . Now form an

164 Chapter 4

instruction I D , which describes this automaton D , and insert I D into A within D . Call
the aggregate which now results E . E is clearly self-reproductive. ” 100 This instruction I D
(which nicely resonates with ID and id), he claims, is roughly equivalent to a gene. He
also contends that B “ performs the fundamental act of reproduction, the duplication
of the genetic material, which is clearly the fundamental operation in the multiplica-
tion of living cells. ” This analogy fails, however, because “ the natural gene does prob-
ably not contain a complete description of the object whose construction its presence
stimulates. It probably contains only general pointers, general cues. ” 101 Thus, the
memory of the system — here postulated as a more vibrant form of memory than “ paper
tape ” — becomes the means by which the automaton can self-reproduce. 102

 This description is amazing for several reasons. In it, von Neumann transforms
McCulloch and Pitts ’ s schematic neural networks, in which there is no separation of
software from hardware, into the basis for code as logos for the instructions replace
the machine. What becomes crucial, in other words, and encapsulates the very being
of the machine, are the instructions needed to construct it. Furthermore, and insepa-
rable from the translation of event into instruction, this description — as a set of
instructions itself — contains a bizarre, almost mystical, address. For, when von
Neumann says, “ Now form an instruction I D , which describes this automaton D , and
insert I D into A within D , ” or “ Combine the automata A and B with each other, and
with a control mechanism C , ” who will do this forming and combining; who will
perform these crucial steps and how? What mystical force will respond to this call?
Like Faust before Mephistopheles arrives, are we to incant spells to create spirits? The
transformation of description into instruction leaves open the question: who will do
this? Who will create the magical description that goes inside? Remarkably, this call
makes clear the fact that humans are indistinguishable from automata, something that
bases von Neumann ’ s game theory as well.

 Games and Universes

 This replacement of descriptions by instructions (or choices among instructions) also
grounds von Neumann ’ s work in game theory, which corresponds to his work on
automata in many ways, as Arthur Burks has pointed out. “ There is a striking parallel, ”
Burks writes, “ between von Neumann ’ s proposed automata theory and his theory of
games. Economic systems are natural competitive systems; games are artifi cial com-
petitive systems. The theory of games contains the mathematics common to both
kinds of competitive systems, just as automata theory contains the mathematics
common to both natural and artifi cial automata. ” 103 This comparison, however, not
only occurs at the level of mathematics or mathematization, but also at the level of
heuristics, descriptions, and strategies. Game theory, which has been a key tool of
neoliberal economic theory, seeks to understand the problem of exchange through

Always Already There, or Software as Memory 165

the perspective of a “ game of strategy, ” in which participants create strategies in
response to others ’ moves, the rules of the game, and (objective) probabilities. 104
Similar to von Neumann ’ s “ First Draft, ” von Neumann and Oskar Morgenstern ’ s 1944
 Theory of Games and Economic Behavior (their preliminary discussion of game theory)
serves as a heuristic , a “ phase of transition from unmathematical plausibility consid-
erations to the formal procedure of mathematics. ” 105 Also like his theory of automata,
and indeed like most of von Neumann ’ s mathematical work, game theory is based on
an axiomatic method. Most importantly, von Neumann and Morgenstern introduce
the notion of strategy to replace or simplify detailed description. Describing the process
of giving an exact description of what comprises a game, they write, “ we reach — in
several successive steps — a rather complicated but exhaustive and mathematically
precise scheme. ” Their key move is “ to replace the general scheme by a vastly simpler
one, which is nevertheless equivalent to it. Besides, the mathematical device which
permits this simplifi cation is also of an immediate signifi cance for our problem: It is
 “ the introduction of the exact concept of a strategy. ” 106 A strategy is a complete plan
that “ specifi es what choices [the player] will make in every possible situation, for every
possible actual information which he may possess at that moment in conformity with
the pattern of information which the rules of the game provide for him for that
case. ” 107 This replacement of a complete description with a strategy is not analogous
to the replacement of machine code with a higher-level programming language, or
what von Neumann calls “ short code. ” This “ equivalence ” is not based on a simplifi -
cation through the creation of a language that reduces several events into one state-
ment, but rather on a fundamental transformation of a step-by-step description of
events into a description of the premises — the rules and related choices — driving the
player ’ s actions. This strategy, which game theory remarkably assumes every player
possesses before the game, is analogous to a program — a list of instructions to be fol-
lowed based on various conditions. A player ' s strategy is not a summary of the rules
of the game, but rather a list of choices to be followed — it is, to return to a distinction
introduced in chapter 1, a product of “ programming ” rather than coding. Or, to put
it slightly differently, understanding game strategy as a program highlights the fact
that a program does not simply establish a universe as Weizenbaum argues; it is one
possible strategy devised within an overarching structure of rules (a programming
language). A strategy/program thus emphasizes the programming/economic agent as
freely choosing between choices. 108

 This program/strategy has been the basis of much of the criticism directed against
game theory, such as Gregory Bateson ’ s contention:

 What applications of the theory of games do is to reinforce the player ’ s acceptance of the rules

and competitive premises, and therefore make it more and more diffi cult for the players to

conceive that there might be other ways of meeting and dealing with each other. . . . Von

Neumann ’ s “ players ” differ profoundly from people and mammals in that those robots totally

166 Chapter 4

lack humor and are totally unable to “ play ” (in the sense in which the word is applied to

kittens and puppies). 109

 Bateson is absolutely correct in his assessment: in outlining such a comprehensive
version of a strategy, game theory assumes a player who could only be — or later would
become — an automaton. Furthermore, von Neumann admits that game theory is
prescriptive rather than descriptive. He writes, “ the immediate concept of a solution
is plausibly a set of rules for each participant which will tell him how to behave in
every situation which may conceivably arise. ” 110 Thus, game theory presumes a strat-
egy and the production of a strategy, as well as the replacement of a detailed descrip-
tion of every action with a more general procedural one. A strategy is something an
automaton — or more properly a programmer — working non- “ interactively ” with a
computer has. Game theory ’ s assumptions again resonate with those of neoliberalism
(Milton Friedman, to take one example, theorizes the day-to-day activities of people
as analogous to those of “ the participants in a game when they are playing it ”). 111

 Words, as instructions that stand in for deeds, are also crucial to von Neumann ’ s
desire to make his machines “ universal. ” Von Neumann approaches the concept of
universality through an interpretation of Alan Turing ’ s “ On Computable Numbers,
with an Application to the Entscheidungsproblem, ” the 1936 paper that initially
inspired McCulloch and Pitts. 112 In this paper, Turing shows that Hilbert ’ s Entscheid-
ungsproblem (the decision problem) cannot have a solution through theoretical
machines, analogous to a “ man, ” that can compute any number. He also posits the
existence of a “ universal machine, ” “ a single machine which can be used to compute
any computable sequence. ” 113 Von Neumann, in a rather historically dubious move,
equates abstract or universal Turing machines with higher-level languages.

 To make this argument, von Neumann separates codes into two types: complete and
short. In computing machines, complete codes “ are sets of orders, given with all neces-
sary specifi cations. If the machine is to solve a specifi c problem by calculation, it will
have to be controlled by a complete code in this sense. The use of a modern computing
machine is based on the user ’ s ability to develop and formulate the necessary complete
codes for any given problem that the machine is supposed to solve. ” 114 Short codes, in
contrast, are based on Turing ’ s work, in particular his insight that “ it is possible to
develop code instruction systems for a computing machine which cause it to behave
as if it were another, specifi ed, computing machine. ” 115 Importantly, Turing himself
did not refer to short or complete codes, but rather to instructions and tables to be
mechanically — meaning faithfully — followed. Despite this, von Neumann argues that
a code following Turing ’ s schema must do the following:

 It must contain, in terms that the machine will understand (and purposively obey), instructions

(further detailed parts of the code) that will cause the machine to examine every order it gets

and determine whether this order has the structure appropriate to an order of the second

Always Already There, or Software as Memory 167

machine. It must then contain, in terms of the order system of the fi rst machine, suffi cient

orders to make the machine cause the actions to be taken that the second machine would have

taken under the infl uence of the order in question.

 The important result of Turing ’ s is that in this way the fi rst machine can be caused to imitate

the behavior of any other machine. 116

 Thus, in a remarkably circular route, von Neumann establishes the possibilities of
source code as logos: as something iterable and universal. Word becomes action
becomes word becomes the alpha and omega of computation.

 Enduring Ephemeral

 Crucially, memory is not a static but rather an active process. A memory must be held
in order to keep it from moving or fading. Again, memory does not equal storage.
Although one can conceivably store a memory, storage usually refers to something
material or substantial, as well as to its physical location: a store is both what is stored
and where it is stored. According to the OED, to store is to furnish, to build stock.
Storage or stocks always look toward the future. In computer speak, one reverses
common language, since one stores something in memory. This odd reversal and the
confl ation of memory and storage gloss over the impermanence and volatility of
computer memory. Without this volatility, however, there would be no memory. To
repeat, memory stems from the same Sanskrit root for martyr . Memory is an act of
commemoration — a process of recollecting or remembering.

 This commemoration, of course, entails both the permanent and the ephemeral.
Memory is not separate from questions of representation or enduring traces. Memory,
especially artifi cial memory, traditionally has brought together the permanent and the
ephemeral; for instance, the wax tablet with erasable letters (the inspiration for clas-
sical mnemotechnics). As Frances A. Yates explains, the rhetorician treated architecture
as a writing substrate onto which images, correlating to objects to be remembered,
were inscribed. Summarizing the Rhetorica Ad Herennium , the classic Latin text on
rhetoric, she states:

 The artifi cial memory is established from places and images . . . the stock defi nition to be

forever repeated down the ages. A locus is a place easily grasped by the memory, such as a

house, an intercolumnar space, a corner, an arch, or the like. Images are forms, marks or simu-

lacra . . . of what we wish to remember. For instance, if we wish to recall the genus of a horse,

of a lion, of an eagle, we must place their images on a defi nite loci .

 The art of memory is like an inner writing. Those who know the letters of the alphabet can

write down what is dictated to them and read out what they have written. Likewise those who

have learned mnemonics can set in places what they have heard and deliver it from memory.

 “ For the places are very much like wax tablets or papyrus, the images like the letters, the

arrangement and disposition of the images like the script, and the delivery is like the reading. ” 117

168 Chapter 4

 Visiting these memorized places, one revives the fact to be recalled. This discussion
of memory offers a different interpretation of the parallels between human and com-
puter memory. The rhetorician was to recall a physical space within her mind — the
image is not simply what is projected upon a physical space, but also the space for
projection. Similarly, computer memory (which, too, is organized spatially) is a storage
medium like but not quite paper. Both degenerate, revealing the limitations of the
simile.

 Memory as active process is seen quite concretely in early forms of “ regenerative
memory, ” from the mercury delay line to the Williams tube, the primary memory
mentioned earlier. The serial mercury delay line (fi gure 4.9) took a series of electrical
pulses and used a crystal to transform them into sound waves, which would make
their way relatively slowly down the mercury tube. At the far end, the sound waves
would be amplifi ed and reshaped. 118 One tube could usually store about a thousand
binary bits at any given moment.

 Another early memory device, the Williams tube (fi gure 4.10), derived from devel-
opments in cathode ray tubes (CRTs); the television set is not just a computer screen,
but was also once its memory. The Williams tube takes advantage of the fact that a
beam of electrons hitting the phosphor surface of a CRT not only produces a spot of
light, but also a charge. This charge will persist for about 0.2 seconds before it leaks

 Figure 4.9
 Schematic of the mercury delay line

Always Already There, or Software as Memory 169

 Figure 4.10
 Schematic of the Williams tube

away and can be detected by a parallel collector plate. Thus, if this charged spot can
be regenerated at least fi ve times per second, memory can be produced in the same
manner as the mercury delay tube. Current forms of computer memory also require
regeneration.

 Today ’ s RAM is mostly volatile and based on fl ip-fl op circuits and transistors and
capacitors, which require a steady electrical current. Although we do have forms of
nonvolatile memory, such as fl ash memory, made possible by better-insulated capaci-
tors, they have a limited read-write cycle. Memory traces, to repeat Derrida ’ s formula-
tion, “ produce the space of their inscription only by acceding to the period of their
erasure. ” 119

 Thus, as Wolfgang Ernst has argued, digital media is truly time-based media , which,
given a screen ’ s refresh cycle and the dynamic fl ow of information in cyberspace, turns
images, sounds, and text into a discrete moment in time. These images are frozen for
human eyes only. 120 Information is dynamic, however, not only because it must move
in space on the screen, but also, and more important, because it must move within
the computer and because degeneration traditionally has made memory possible while
simultaneously threatening it. Digital media, allegedly more permanent and durable
than other media (fi lm stock, paper, etc.), depends on a degeneration so actively
denied and repressed. This degeneration, which engineers would like to divide into

170 Chapter 4

useful versus harmful (erasability versus signal decomposition, information versus
noise), belies and buttresses the promise of digital computers as permanent memory
machines. If our machines ’ memories are more permanent, if they enable a perma-
nence that we seem to lack, it is because they are constantly refreshed — rewritten — so
that their ephemerality endures, so that they may “ store ” the programs that seem to
drive them. To be clear, this is not to say that information is fundamentally immate-
rial; as Matthew Kirschenbaum has shown in his insightful Mechanisms: New Media
and the Forensic Imagination , information (stored to a hard drive) leaves a trace that
can be forensically reconstructed, or again, as I ’ ve argued elsewhere, for a computer,
to read is to write elsewhere. 121 This is to say that if memory is to approximate some-
thing so long lasting as storage, it can do so only through constant repetition, a repeti-
tion that, as Jacques Derrida notes, is indissociable from destruction (or in Bush ’ s
terminology, forgetting). 122

 This enduring ephemeral — a battle of diligence between the passing and the repet-
itive — also characterizes content today. Internet content may be available 24/7, but
24/7 on what day? Further, if things constantly disappear, they also reappear, often
to the chagrin of those trying to erase data. When A3G (article III groupie), the gossipy
conservative and supposedly female author of underneaththeirrobes.blogs.com — a
blog devoted to Supreme Court personalities — came out as a thirty-year-old Newark-
based U.S. attorney named David Lat in an interview with the New Yorker , his site was
temporarily taken down by the U.S. government. 123 Archives of his site — and of every
other site that does not reject robots — however, are available at the Internet Wayback
Machine (IWM, web.archive.org) with a six-month delay.

 Like search engines, the Internet Wayback Machine comprises a slew of robots and
servers that automatically and diligently, and in human terms, obsessively, back up
most web pages. Also like search engines, they collapse the difference between the
Internet, whose breadth is unknowable, and their backups; however, unlike search
engines, the IWM does not use the data it collects to render the Internet into a library,
but rather use these backups to create what the creators of the IWM call a “ library of
the Internet. ” The library the IWM creates, though, certainly is odd, for it has no
coherent shelving system: the IWM librarians do not offer a card catalog or a compre-
hensive, content-based index. 124 This is because the IWM ’ s head librarian is a machine,
only capable of accumulating differing texts. That is, its automatic power of discrimi-
nation only detects updates within a text. The IWM ’ s greatest oddity, however, stems
from its recursive nature: the IWM diligently archives itself, including its archives,
within its archive.

 The imperfect archives of the IWM are considered crucial to the ongoing relevance
of libraries. The IWM ’ s creators state: “ Libraries exist to preserve society ’ s cultural arti-
facts and to provide access to them. If libraries are to continue to foster education and
scholarship in this era of digital technology, it ’ s essential for them to extend those

Always Already There, or Software as Memory 171

functions into the digital world. ” 125 The need for cultural memory drives the IWM and
libraries more generally. Noting the loss of early fi lm archives due to the recycling of
early fi lm stock, the archivists describe the imperative of building an “ internet library ” :

 Without cultural artifacts, civilization has no memory and no mechanism to learn from its

successes and failures. And paradoxically, with the explosion of the Internet, we live in what

Danny Hillis has referred to as our “ digital dark age. ”

 The Internet Archive is thus working to prevent the Internet — a new medium with major

historical signifi cance — and other “ born-digital ” materials from disappearing into the past.

Collaborating with institutions including the Library of Congress and the Smithsonian, we are

working to preserve a record for generations to come. 126

 The IWM is necessary because the Internet, which is in so many ways about memory,
has, as Ernst argues, no memory — at least not without the intervention of something
like the IWM. 127 Other media do not have a memory, but they do age and their degen-
eration is not linked to their regeneration. As well, this crisis is brought about because
of this blinding belief in digital media as cultural memory. This belief, paradoxically,
threatens to spread this lack of memory everywhere and plunge us negatively into a
way-wayback machine: the so-called “ digital dark age. ” The IWM thus fi xes the Inter-
net by offering us a “ machine ” that lets us control our movement between past and
future by regenerating the Internet at a grand scale. The Internet Wayback Machine
is appropriate in more ways than one: because web pages link to, rather than embed,
images, which can be located anywhere, and because link locations always change,
the IWM preserves only a skeleton of a page, fi lled with broken — rendered — links and
images (fi gure 4.11). The IWM, that is, only backs up certain data types. These “ saved ”

 Figure 4.11
 Screenshot of IWM backup of < http://www.princeton.edu/~whkchun/index.html >

172 Chapter 4

pages are not quite dead, but not quite alive either, for their proper commemoration
requires greater effort. These gaps not only visualize the fact that our constant regen-
erations affect what is regenerated, but also the fact that these gaps — the irreversibility
of this causal programmable logic — are what open the World Wide Web as archive to
a future that is not simply stored upgrades of the past.

 Repetition and regeneration open the future by creating a nonsimultaneous new
that confounds the chronological time these processes also enable. Consider, for
instance, the temporality of weblogs (also known as blogs). Blogs seem to follow the
timing of newspapers in their plodding chronology, but blogs contain within them-
selves archives of their posts, making the blog, if anything, like the epistolary novel.
Unlike the epistolary novel, which, however banal, was focused on a plot or a moral,
the blog entries are tied together solely by the presence of the so-called author. What
makes a blog “ uninteresting ” is not necessarily its content, which often reads like a
laundry list of things done or to do, but rather its immobility. The ever-updating,
inhumanly clocked time in which our machines and memories are embedded and
constantly refreshed makes the blog ’ s material stale. The chronology, seemingly
enabled by this time, is also compromised by these archives and the uncertainty of
their regular reception. An older post can always be “ discovered ” as new; a new post
is already old. This nonsimultaneousness of the new, this layering of chronologies,
means that the gap between illocutionary and perlocutionary in high-speed telecom-
munications may be dwindling, but — because everything is endlessly repeated —
 response is demanded over and over again. The new is sustained by this constant
demand to respond to what we do not yet know, by the goal of new media czars to
continually create desire for what one has not yet experienced.

 Digital media networks are not based on the regular obsolescence or disposability
of information, but rather on the resuscibility or the undead of information. Even text
messaging, which seems to be about the synchronous or the now, enables the endless
circulation of forwarded messages, which are both new and old. Reliability is linked
to deletion: a database is considered to be unreliable (to contain “ dirty data ”), if it
does not adequately get rid of older, inaccurate information. Also, this repetition,
rather than detracting from the message, often attests to its importance. Repetition
becomes a way to measure scale in an almost inconceivably vast communications
network.

 Rather than getting caught up in speed then, what we must analyze, as we try to
grasp a present that is always degenerating, are the ways in which ephemerality is
made to endure. Paul Virilio ’ s constant insistence on speed as distorting space-time
and on real-time as rendering us susceptible to the dictatorship of speed has gener-
ated much good work in the fi eld, but it can blind us to the ways in which images
do not simply assault us at the speed of light. 128 Just because images fl ash up all of
a sudden does not mean that response or responsibility is impossible, or that scholarly

Always Already There, or Software as Memory 173

analysis is no longer relevant. As the news obsession with repetition reveals, an image
does not fl ash up only once. The pressing questions are: why and how is it that the
ephemeral endures? And what does the constant repetition and regeneration of infor-
mation effect? What loops and what instabilities does the enduring ephemeral intro-
duce to the logic of programmability? What is surprising is not that digital media
fades, but rather that it stays at all and that we remain transfi xed at our screens as
its ephemerality endures.

 Conclusion: In Medias Res

 No matter how forewarned we are, thanks to the forearmaments of the knowledge of the secret

of commodity exchange and its resulting fetishism, as long as exchange (language) goes on we

are powerless to overcome its diffi culties. And knowing makes it more scary. “ Je sais bien, mais

quand m ê me. ” As Marx says, this is the path of madness: “ If I state that coats or boots stand in

a relation to linen because the former is the universal embodiment of abstract human labor, the

craziness . . . of the expression hits you in the eye. But when the producers of coats and boots

bring these commodities into relation with linen . . . the relation . . . appears to them in this

crazy . . . form. ” . . . “ Humanity ” is this madness, its subject and its object. It is not simply the

ignorance of not knowing what to do; it is rather the terror of still having to do, without knowing.

And we have no magic caps, only ghosts and monsters.

 — Thomas Keenan 1

 This book has traced the emergence of programmability through various theoretical
and historical threads: code — both computer and genetic — as logos, user as sovereign,
interfaces as “ enlightening ” maps, computer as metaphor for metaphor, and program-
mability as both thriving on and annihilating memory. It explores the extent to which
computers, understood as networked software and hardware machines, are — or perhaps
more precisely set the grounds for — neoliberal governmental technologies. And it
examines how computers accomplish this not simply through the problems (popula-
tion genetics, bioinformatics, nuclear weapons, state welfare, and climate) they make
it possible to both pose and solve, but also through their very logos, their embodiment
of logic.

 The book began in part I with the question of code as logos, that is, with a
 “ sourcery ” that posited code written in higher-level programming languages as auto-
matically and unfailingly “ doing what it says. ” As the perfect performative utterance,
code brought together two separate powers, the legislative and the executive, making
execution and hardware largely irrelevant. This sourcery also opened part II, which
posited genetics and computer code as complementary strands of a stylized double
helix. Notably, code as logo s within genetics precedes (rather than simply follows) its

176 Conclusion

appearance in computer technology: Erwin Schr ö dinger famously hypothesized a
genetic-code script that was “ law-code and executive power . . . architect ’ s plan and
builder ’ s craft — in one. ” 2 Both these cases, via their simplifi ed maps of power, made
possible the reemergence of a small- s sovereign subject, that is, one who could read
and “ speak ” /manipulate these codes cum laws. This subject — described by Joseph
Weizenbaum among others, as more powerful than emperors, playwrights, and chan-
cellors — is the ultimate creator and master of completely knowable worlds. Not acci-
dentally, both Alan Turing and Schr ö dinger, in explaining discrete computing and
genetic codes respectively, return to “ Laplace ’ s view that from the complete state of
the universe at one moment of time, as described by the positions and velocities of
all particles, it should be possible to predict all future states. ” 3 Crucially, this power to
know and create is not limited to programmers, but also spreads to users. Looking in
particular at graphical user interfaces (GUIs) (which, along with higher-level program-
ming languages, have been eroding the difference between users and programmers),
this book outlines the ways in which computer interfaces “ empower ” users by ampli-
fying their actions; this makes them the source of the action, putting them, in Douglas
Engelbart ’ s words, in the “ bull-dozer ’ s cab. ” Grounded on the principles of “ direct
manipulation ” and “ direct engagement, ” GUIs offer users a way to act and navigate
an increasingly complex world. The maps they offer, as well as the paths they outline,
seem to give individuals a way to comprehend their relationship to that “ vaster and
properly unrepresentable totality which is the ensemble of society ’ s structures as a
whole. ” 4 Fundamental to this mapping — which is offered by both computers and
genetics — is memory, for memory makes possible both programs that link the past to
the future and a “ memoryless ” inheritance. By storing programs and becoming
archives, computers make the future predictable; by enabling a “ hard ” unconscious
inheritance from generation to generation, genetics offers “ you, ” as a form of human
capital, powers (and “ disabilities ”) that exceed personal experience. All of these threads
together make the computer – genetics double helix a form of enlightenment: an
empowering knowledge that fi nally enables man to forego his self-incurred tutelage
and to be free. Freedom here stems from individual knowledge and actions, a central
tenet of neoliberal governmentality.

 At the same time, however, this book calls into question this narrative of overarch-
ing knowledge and freedom through these very concepts. Code as logos not only
extends the power of individual programmers, it also makes code itself both legisla-
tion and execution: it spreads a neoliberal empowerment through the embedding of
governmental enforcement into everyday situations, making us “ subjects ” of code.
The gendered, military and eugenic histories examined bear witness to the constant
anxiety that we programmers are not sovereigns, but slaves, that abstraction fosters
greater ignorance. Further, the maps offered by GUIs are fundamentally mediated: as
our interfaces become more “ transparent ” and visual, our machines also become more

Conclusion 177

dense and obscure. Indeed, the call to map may be the most obscuring of all: by
constantly drawing connections between data points, we sometimes forget that the
map should be the beginning, rather than the end, of the analysis. Through our clicks,
we perhaps always escape, but never leave, embroiled more strongly in an ideology
that persists through our changes rather than our knowledge. 5 Our archive of knowl-
edge as well seems to promise destruction and forgetfulness, as much as it promises
permanence and stability. Memory would seem to be dynamic: an enduring ephemeral
that disappears if it is not repeated (and also disappears through its repetition). So,
instead of being enlightened and free, we seem to be caught in a certain madness:
constantly acting without knowing, moving from crisis to crisis. 6 We seem to be free
only within certain constraints, within a “ mousetrap. ”

 Crucially, this book has sought neither to condemn nor to celebrate software.
Rather, it has been implicitly arguing that software can only be understood in media
res — in the middle of things. In media res is a style of narrative that starts in the middle
as the action unfolds. Rather than offering a smooth chronology, the past is introduced
through fl ashbacks — interruptions of memory. To return to the parable of the six blind
men relayed in the introduction, this means that the position of the blind men who
know without knowing is not one to be superseded, but rather it is the position from
which we can intervene and know. Software in media res also means that we can only
begin with things — things that we grasp and touch without fully grasping, things that
unfold in time, things that can only be rendered “ sources ” or objects (if they can)
after the fact. Further, it means addressing the move within programming toward
data-driven programming — a form of programming that, because it starts with data
and then seeks (through machine learning algorithms) to discover the pattern “ driving ”
behavior, is programming in media res. Last, in media res means taking seriously the
computer ’ s peculiar status as medium. It means grappling with the implications of the
fact that a means of computation has also become a channel of communication and
a storage device. Hence the emphasis on what is ghostly or undead, on what cuts
across the human and the machine, on how we can make our interfaces more, rather
than less, productively spectral; hence the emphasis on code as a re-source , rather than
a source. Source code becomes a source only through its destruction, through its
simultaneous nonpresence and presence. 7 Code (both biological and technological),
in other words, is “ undead ” writing, a writing that — even when it repeats itself — is
never simply a deadly or living repetition of the same. 8

 I thus want to end by addressing how being “ in the middle of things, ” rather than
in the driver ’ s seat, can enable freedom and movement. My last book, Control and
Freedom: Power and Paranoia in the Age of Fiber Optics , argued that freedom, rather than
being the fl ip side of control, makes control possible, necessary, and never enough.
In it I pondered freedom as an experience: as a giving over of ourselves to what is
unknown, as an immersion that makes relation possible. Tellingly, although Milton

178 Conclusion

Friedman in his highly infl uential neoliberal theorization, Capitalism and Freedom ,
initially linked economic and political freedom, by 2002 (after a visit to Hong Kong),
he delinked them, arguing “ while economic freedom is a necessary condition for civil
and political freedom, political freedom, desirable though it may be, is not a necessary
condition for economic and civil freedom. . . . political freedom, which under some
circumstances promotes economic and civic freedom, and under others, inhibits eco-
nomic and civic freedom. ” 9 Political freedom cannot always support neoliberal eco-
nomic freedom precisely because it is dangerous, because it is a dangerous experience
that undoes, as much as it supports, the autonomous subject.

 An anecdote relayed by Vicente Rafael in his insightful analysis of the 2001 People
Power II protest makes this point nicely. This peaceful protest, which overthrew the
government of Philippine President Joseph Estrada, in part was organized through text
messages: illustrating how computer and networked technology can foster the desire
for (and fear of) connection as much as they can for individualism. Neoliberalism is
being superseded by neoconservatism: a drive to compensate for neoliberal isolation
and chaos through a return to communal conservative values. 10 Neoconservatism,
however, is not the only way in which networks are being reimagined. Rafael repeats
the following online account of anonymous participant Flor C. ’ s encounter with the
streaming crowd of people during the protest:

 When I fi rst went to the fl yover, I was caught in the thick waves of people far from the center

of the rally. I could barely breathe from the weight of the bodies pressing on my back and

sides. I started to regret going to this place that was [so packed] that not even a needle could

have gone through the spaces between the bodies. After what seemed like an eternity of

extremely small movements, slowly, slowly, there appeared a clearing before me (lumuwag bigla

sa harap ko). I was grateful not because I survived but because I experienced the discipline and

respect of one for the other of the people — there was no pushing, no insulting, everyone even

helped each other, and a collective patience and giving way ruled (kolektibong pasensiya at

pagbibigayan ang umiral).

 The night deepened. Hungry again. Legs and feet hurting. I bought squid balls and sat on

the edge of the sidewalk. . . . While resting on the sidewalk, I felt such immense pleasure, safe

from danger, free, happy in the middle of thousands and thousands of anonymous buddies. 11

 For Flor C., freedom stems from a collective patience and giving way — a collective fl ow
in which one is immersed and imperiled. This freedom does not offer a feeling of
mastery; it neither relies on maps nor sovereign subjects nor strategies, but rather
depends on a neighborhood of relations and on unfolding actions. These actions,
these movements reveal that “ having to act without knowing ” does not simply inspire
terror — or if it does, it does not only do so; rather, such unknowing action makes
possible collective human freedom.

 Epilogue: In Medias Race

 I want to conclude (again) by referring to a thread that has been largely invisible and
yet central. This book initially was inspired by the striking parallels between software
 in medias res and race — that is, parallels between software and race as key terms in the
current frenzy of and decline in visual knowledge. Linked together in the early twen-
tieth century through the notion of a “ genetic program, ” software and race embody
two important ways of conceptualizing a seductively causal relationship between order
and vision, the visible and invisible, the imaginable and readable — a causal relation-
ship that contradicted early twentieth-century visions of a dark entropic future. Race
and software are both nebulous entities (race cannot be scientifi cally defi ned; software
cannot be physically separated from hardware), yet solid everyday experiences. We are
expected to be as blind to software as we are to race; but race and software both act:
both maintain visual literacy in an age of waning indexicality.

 Like software, race was, and still is, a privileged way of understanding the relation-
ship between the visible and invisible: it links visual cues to unseen forces. Interpreted
through the lens of Mendelian genetics in the early- to mid-twentieth century, the
consistent hereditability of racial features seemed to encapsulate an orderly transfer of
traits, which belied the disorderly future predicted by statistical physics. A dream of
order from order inspired conceptions of a strictly causal genetic code, which soft-
ware — and not genetics — would be able to fulfi ll. Changes to conceptualizations of race
are also key to understanding the vexed relationship between indexicality and causality
this book has addressed. Although race since World War II no longer credibly links
physical differences with innate mental differences, race remains a valid category. In
the work of population geneticists, racial groups have become “ breeding populations ” ;
in the work of molecular biologists, racial groups are defi ned by the probability of
having a combination of mainly unexpressed genetic material (the relationship between
phenotype and genotype, which race supposedly explained, has resolved into DNA,
and thus intersected with software). Culturally, as Toni Morrison has argued, race has
become more on display than ever, even as the question of what race indexes — cultural
or genetic differences, the results of economic injustice — remains unresolved. 1

180 Epilogue

 Race and software therefore mark the contours of our current understanding of
visual knowledge as “ programmed visions. ” As human vision is increasingly deval-
ued through technological mediation in the sciences and through ideals of “ color-
blindness, ” images, graphics, and simulations proliferate. While writing this book,
however, it became clear that the topic “ race as archive ” was too big to be included. 2
It has become a project in its own right, but I conclude with software in medias
 race because it has haunted this book and its vision.

 You, Again

 By now you should realize that there are many yous. Not simply because you adjoins the
singular and the plural, but also because every you is haunted by what remains: by what
remains as you read, by you as what remains.

 The question: how are we to imagine you? By tracing the moments of connection — the
ways in which the local unfolds to the global, constituting the “ glocal ” ? Or, by taking these
tracings as the beginnings of a more powerful imagining, a more powerful hallucination?

 Notes

 Preface

 1. As I state in “ Did Anyone Say New Media?, ” this demise does not coincide with the demise

of media once called new, but rather with industry ’ s quest to survive and thrive after the “ new

economy ” and after new media ’ s wide acceptance. Does it, after all, make sense to have a New

Media Group within Apple in 2004? See New Media, Old Media: A History and Theory Reader , ed.

Wendy Hui Kyong Chun and Thomas Keenan (New York: Routledge, 2006), 1 – 2.

 Introduction

 1. John Godfrey Saxe, “ Blind Men and the Elephant, ” < http://www.wordinfo.info/words/index/

info/view_unit/1/?letter=B & spage=3 > , accessed 6/1/2008.

 2. See Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War

America (Cambridge, Mass.: MIT Press, 1996).

 3. The geneticists Luigi Luca and Francesco Cavalli-Sforza, for instance, argue: “ It would be very

diffi cult to change our hardware, our genetic makeup. It is much easier to try improving our

software, our culture ” in The Great Human Diasporas: The History of Diversity and Evolution (New

York: Basic Books, 1995), 245.

 4. Edwards, Closed World ; Joseph Weizenbaum, Computer Power and Human Reason: From Judgment

to Calculation (San Francisco: W. H. Freeman, 1976), 157.

 5. Manfred Broy, “ Software Engineering — From Auxiliary to Key Technology, ” in Software Pio-

neers: Contributions to Software Engineering, ed. Manfred Broy and Ernst Denert (Berlin: Springer,

2002), 11, 12.

 6. Michael Mahoney, “ The History of Computing in the History of Technology, ” IEEE Annals of

the History of Computing 10, no. 2 (1988): 121.

 7. As I argue later, however, all software is a reconstruction, a repetition.

 8. Adrian Mackenzie, Cutting Code: Software and Sociality (New York: Peter Lang Pub. Inc., 2006),

169.

184 Notes

 9. Herman H. Goldstine and John von Neumann, “ Planning and Coding of Problems for an Elec-

tronic Computing Instrument, ” “ Report on the Mathematical and Logical Aspects of an Elec-

tronic Computing Instrument, ” Part II, Volume I (Princeton, N.J.: Institute for Advanced Study,

1947), 2.

 10. Paul Ceruzzi, A History of Modern Computing , 2nd ed. (Cambridge, Mass.: MIT Press, 2003), 80.

 11. Friedrich Kittler, “ There Is No Software, ” ctheory.net, October 18, 1995, < http://www.ctheory

.net/text_fi le.asp?pick=74>, accessed 8/5/2010.

 12. Mahoney, “ History of Computing, ” 121.

 13. Kathleen Broome Williams, Grace Murray Hopper: Admiral of the Cyber Sea (Annapolis, Md.:

Naval Institute Press, 2004), 89; J. C. Chu, “ Computer Development at Argonne National Labora-

tory, ” in A History of Computing in the Twentieth Century , ed. N. Metropolis et al. (New York:

Academic Press, 1980), 345.

 14. Martin Campbell-Kelly in From Airline Reservations to Sonic the Hedgehog: A History of the

Software Industry (Cambridge, Mass.: MIT Press, 2003) divides the software industry into three

period-based sectors: the software contractor (software as a service), software products, and

mass-market products (3).

 15. Herbert D. Benington, “ Production of Large Computer Programs, ” IEEE Annals of the History

of Computing 5, no. 4 (1983): 353.

 16. This notion of programming is even evident in Fred Brooks ’ s infl uential 1975 work The

Mythical Man-Month , an analysis of the pitfalls of software programming based on his disastrous

experiences with IBM ’ s System/360. In it, he argues, “ the purpose of a programming system is

to make a computer easy to use ” ; in Frederick P. Brooks, The Mythical Man-Month: Essays on Soft-

ware Engineering, 20th Anniversary Edition (New York: Addison-Wesley Professional, 1995), 43.

 17. Gottschalk v. Benson , 409 U.S. 63 (1972); Pamela Samuelson, “ Benson Revisited: The Case

Against Patent Protection for Algorithms and Other Computer Program-Related Inventions, ”

 Emory Law Journal 39 (Fall 1990): 1053.

 18. See Margaret Jane Radin, “ Information Tangibility, ” in Economics, Law, and Intellectual

Property: Seeking Strategies for Research and Teaching in a Developing Field , ed. Ove Granstrand

(Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003), 397.

 19. In re Alappat , 33 F.3d at 1545, 31 USPQ2d at 1558 (Fed. Cir. 1994).

 20. The U.S. Copyright Act of 1976 copyright states, “ In no case does copyright protection for

an original work of authorship extend to any idea, procedure, process, system, method of opera-

tion, concept, principle, or discovery, regardless of the form in which it is described, explained,

illustrated, or embodied in such work. ”

 21. Radin, “ Information Tangibility, ” 407.

 22. Rep. No. 473, 94th Cong., 1st Sess. 54 (1975).

 23. 17 U.S.C. § 102 (a).

Notes 185

 24. Matthew Kirschenbaum, Mechanisms: New Media and the Forensic Imagination (Cambridge,

Mass.: MIT Press, 2008).

 25. Radin, “ Information Tangibility, ” 406.

 26. Ibid.

 27. Ibid., 397.

 28. She writes, “ The compromise marries information to the external realm of objects. The

structure of compromise involves the process of externalizing the internal ideas and embodying

them in an object — a book. That is, the creative work starts out internal to the person, hence

unpropertizable, but becomes embodied in an external object, hence propertizable ” (Ibid., 398).

 29. The Oxford English Dictionary (OED), 2nd ed., S.V. “ information, n . ”

 30. Martin Heidegger, “ The Thing, ” Poetry, Language, Thought (New York: HarperCollins, 1971),

176 – 177.

 31. Colin Gordon, “ Governmental Rationality: An Introduction, ” in The Foucault Effect: Studies In

Governmentality , ed. Graham Burchell et al. (Chicago: Chicago University Press, 1991), 3. As

Gordon explains, “ Modern governmental rationalities consist, precisely, in the . . . ‘ daemonic ’

coupling of ‘ city-game ’ and ‘ shepherd-game ’ : the invention of a form of secular political pastorate

which couples ‘ individuation ’ and ‘ totalization ’ ” (Ibid., 8). Foucault viewed sexuality, or, more

broadly, technologies of the self, as crucial to the dual focus of both governmentality and his own

research.

 32. Foucault writes,

 If I deploy the word “ liberal, ” it is fi rst of all because this governmental practice in the process of establishing
itself is not satisfi ed with respecting this or that freedom, with guaranteeing this or that freedom. More pro-
foundly, it is a consumer of freedom. It is a consumer of freedom inasmuch as it can only function insofar as
a number of freedoms actually exist: freedom of the market, freedom to buy and sell, the free exercise of
property rights, freedom of discussion, possible freedom of expression, and so on. The new governmental
reason needs freedom, therefore the new art of government consumes freedom. It consumes freedom, which
means that it must produce it. It must produce it, it must organize it. The new art of government therefore
appears as the management of freedom, not in the sense of the imperative: “ be free, ” with the immediate
contradiction that this imperative may contain. The formula of liberalism is not “ be free. ” Liberalism formu-
lates simply the following: I am going to produce what you need to be free. I am going to see to it that you
are free to be free. And so, if this liberalism is not so much the imperative of freedom as the management and
organization of the conditions in which one can be free, it is clear that at the heart of this liberal practice is
an always different and mobile problematic relationship between the production of freedom and that which
in the production of freedom risks limiting and destroying it. . . . Liberalism as I understand it, the liberalism
we can describe as the art of government formed in the eighteenth century, entails at its heart a productive /
destructive relationship [with]* freedom. . . . Liberalism must produce freedom, but this very act entails the
establishment of limitations, controls, forms of coercion, and obligations relying on threats etcetera.
(Michel Foucault, The Birth of Biopolitics: Lectures at the College de France, 1978 – 1979 , trans. Graham Burchell
[Basingstoke, England, and New York: Palgrave Macmillan, 2008], 63 – 64)

 Foucault ’ s analysis of liberalism thus resonates strongly with my previous argument, in Control

and Freedom: Power and Paranoia in the Age of Fiber Optics (Cambridge, Mass.: MIT Press, 2006),

that computers have been intimately linked to the bizarre reduction of freedom to control and

186 Notes

control technologies; but freedom, that book argued, cannot be reduced to control: freedom

makes control possible, necessary, and never enough.

 33. Foucault writes,

 By this word [governmentality] I mean three things. First, by “ governmentality ” I understand the ensemble
formed by the institutions, procedures, analyses and refl ections, calculations and tactics that allow the exercise
of this very specifi c, albeit very complex, power that has as its target population, political economy as its major
form of knowledge, and apparatuses of security as it essential technical instrument. Second, by “ governmental-
ity, ” I understand the tendency, the line of force that, for a long time, and throughout the West, has constantly
led towards the pre-eminence over all other types of power — sovereign, discipline, and so on — of the type of
power which may be termed government, and which has led to the development of a series of specifi c govern-
mental apparatuses . . . on the other hand . . . to the development of a series of knowledges. Finally, by “ govern-
mentality, ” I think we should understand the process, or rather, the result of the process, by which the state of
justice of the Middle Ages became the administrative state during fi fteenth and sixteenth centuries and was
gradually “ governmentalized. ” (Michel Foucault, Security, Territory, Population: Lectures at the College de France,
1977 – 1978 , trans. Graham Burchell [Basingstoke, England, and New York: Palgrave Macmillan, 2007], 108 – 109)

 34. For more on this, see Martin Campbell-Kelly and William Aspray, Computer: A History of the

Information Machine (New York: Basic Books, 1996), 20 – 30.

 35. Ibid., 22.

 36. See David Alan Grier, When Computers Were Human (Princeton, N.J.: Princeton University

Press, 2005).

 37. David Harvey, A Brief History of Neoliberalism (Oxford: Oxford University Press, 2005), 2.

 38. Foucault, Birth of Biopolitics , 117.

 39. Friedman, Capitalism and Freedom , 4.

 40. As quoted by David Harvey, Brief History of Neoliberalism , 23.

 41. Foucault, Birth of Biopolitics , 252.

 42. Ibid., 147.

 43. Friedman, Capitalism and Freedom , 13; emphasis in original.

 44. In this system, innovation “ is nothing other than the income of . . . human capital, that is

to say, of the set of investments we have made at the level of man himself ” (Ibid., 231).

 45. An intriguing symptom of this is the popularity of the You book series by Michael F. Roizen

and Mehmet Oz. The fi rst book is called You: The Owner ’ s Manual: An Insider ’ s Guide to the Body

that Will Make You Healthier and Younger (New York: Harper, 2005).

 46. Catherine Malabou, What Should We Do with Our Brains , trans. Sebastian Rand (New York:

Fordham University Press, 2008), 44.

 47. Ben Shneiderman, “ Direct Manipulation: A Step Beyond Programming Languages, ” in The

New Media Reader , ed. Noah Wardrip-Fruin and Nick Montfort (Cambridge, Mass.: MIT Press,

2003), 486.

Notes 187

 48. As quoted in Fiona Morrow, “ The Future Catches Up with Novelist William Gibson, ” The

Globe and Mail , last updated April 3, 2009, < http://www.theglobeandmail.com/news/arts/

article786109.ece > , accessed 9/9/2009.

 49. See David Glovin and Christine Harper, “ Goldman Trading-Code Investment Put at

Risk by Theft, ” last updated July 6, 2009, bloomberg.com , < http://www.bloomberg.com/apps/

news?pid=20601087 & sid=a_6d.tyNe1KQ > , accessed 9/9/2009.

 50. Joseph Weizenbaum has argued,

 A large program is, to use an analogy of which Minsky is also fond, an intricately connected network of courts
of law, that is, of subroutines, to which evidence is transmitted by other subroutines. These courts weigh
(evaluate) the data given to them and then transmit their judgments to still other courts. The verdicts rendered
by these courts may, indeed, often do, involve decisions about what court has “ jurisdiction ” over the inter-
mediate results then being manipulated. The programmer thus cannot even know the path of decision-making
within his own program, let alone what intermediate or fi nal results it will produce. Program formulation is
thus rather more like the creation of a bureaucracy than like the construction of a machine of the kind Lord
Kelvin may have understood. (Computer Power and Human Reason: From Judgment to Calculation [San Francisco:
W. H. Freeman, 1976], 234)

 51. Bill Brown, “ Thing Theory, ” Critical Inquiry 28, no. 1, Things (Autumn 2001): 4 – 5.

 52. Ibid., 5.

 53. Ibid., 3.

 54. Ibid., 4.

 55. Ibid., 5.

 56. Ibid., 4.

 57. Brown, “ Thing Theory, ” 16; Heidegger, “ The Thing, ” 165.

 I Invisibly Visible, Visibly Invisible

 1. As quoted by John Schwartz, “ Privacy Fears Erode Support for a Network to Fight Crime, ” New

York Times , March 15, 2004, C1. Seisint is a corporation developing The Matrix, a computer

system described later in this section.

 2. For more on this debate, see Thomas Elsaesser, “ Early Film History and Multi-Media: An

Archaeology of Possible Futures?, ” in New Media, Old Media: A History and Theory Reader , ed.

Wendy Hui Kyong Chun and Thomas Keenan (New York: Routledge, 2006), 13 – 25; and Don E.

Tomlinson, “ One Technological Step Forward and Two Legal Steps Back: Digitalization and Televi-

sion Newspictures as Evidence and as Libel, ” Loyola of Los Angeles Entertainment Law Journal 9

(1989): 237.

 3. Roland Barthes, Camera Lucida (New York: Hill & Wang, 1981), 88.

 4. Mary Ann Doane, The Emergence of Cinematic Time: Modernity, Contingency, the Archive

(Cambridge, Mass., and London, England: Harvard University Press, 2002), 223.

188 Notes

 5. Crime Scene Investigation (CSI) is a popular U.S. television program (also syndicated internation-

ally), which features forensic investigations of crimes. Similarly, scientifi c digital animations of

subcellular activity are the closest thing we have to true representations of activities that can be

gleaned but not seen.

 6. Jean Baudrillard. The Ecstasy of Communication , trans. Bernard and Caroline Schutze (Brooklyn,

N.Y.: Autonomedia, 1988), 21 – 22; emphasis in original.

 7. Information Awareness Offi ce, Total Information Awareness Program (TIA) System Des-

cription Document, version 1.1 (July 19, 2002), < http://www.epic.org/privacy/profi ling/tia/

tiasystemdescription.pdf > , accessed 2/1/2007.

 8. As quoted by Seth Finkelstein, “ Google ’ s Surveillance Is Taking Us Further Down the Road to

Hell, ” The Guardian (March 26, 2009), < http://www.guardian.co.uk/technology/2009/mar/26/

seth-fi nkelstein-google-advertising > , accessed 4/1/2009.

 9. Joshua Gomez, Travis Pinnick, and Ashkan Soltani, “ KnowPrivacy, ” June 1, 2009, < http://www

.knowprivacy.org/report/KnowPrivacy_Final_Report.pdf > , 4, accessed 7/1/2009.

 10. Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America

(Cambridge, Mass.: MIT Press, 1996); Joseph Weizenbaum, Computer Power and Human Reason:

From Judgment to Calculation (San Francisco: W. H. Freeman, 1976), 157.

 11. Ibid.

 12. Ibid., 234.

 13. What, for instance, is Microsoft Word? Is it the encrypted executable — residing on a CD

or one ’ s hard drive — or its source code, or is it its execution? These, importantly, are not the

same, even though they are all called Word: not only are they in different locations, but also

two are programs while the other is a process. Structured programming, as discussed later, has

been key to the confl ation of program with process.

 1 On Sourcery and Source Code s

 1. Johann Wolfgang Goethe, “ 6. Faust ’ s Study (i), ” Faust, Part One , trans. David Luke (Oxford

and New York: Oxford University Press, 1987), line 1236 – 1237.

 2. As Barbara Johnson notes in her explanation of Jacques Derrida ’ s critique of logocentrism,

logos is the “ image of perfectly self-present meaning . . . , the underlying ideal of Western culture.

Derrida has termed this belief in the self-presentation of meaning, ‘ Logocentrism, ’ for the Greek

word Logos (meaning speech, logic, reason, the Word of God) ” in Translator ’ s Introduction,

 Dissemination , trans. Barbara Johnson (Chicago: University of Chicago, 1981), ix.

 3. For instance, The A-2 Compiler System Operations Manual prepared by Richard K. Ridgway and

Margaret H. Harper under the direction of Grace M. Hopper (Philadelphia: Remington Rand,

1953) explains that a pseudo-code drives its compiler, just as “ C-10 Code tells UNIVAC how to

proceed. This pseudo-code is a new language which is much easier to learn and much shorter

Notes 189

and quicker to write. Logical errors are more easily found in information than in UNIVAC coding

because of the smaller volume ” (1).

 4. Jacques Derrida, “ Plato ’ s Pharmacy, ” Dissemination , trans. Barbara Johnson (Chicago: Univer-

sity of Chicago, 1981), 115.

 5. For example, George Landow, Hypertext 2.0: The Convergence of Contemporary Literary Theory

and Technology (Baltimore, Md.: Johns Hopkins University Press, 1997); Sherry Turkle, Life on the

Screen: Identity in the Age of the Internet (New York: Simon and Schuster, 1997); and Greg Ulmer,

 Applied Grammatology: Post(e)-Pedagogy from Jacques Derrida to Joseph Beuys (Baltimore, Md.: Johns

Hopkins University Press, 1984). In her important work, N. Katherine Hayles has investigated

the differences between poststructuralist writing and code in My Mother Was a Computer: Digital

Subjects and Literary Texts (Chicago: University of Chicago Press, 2005).

 6. Lev Manovich, The Language of New Media (Cambridge, Mass.: MIT Press, 2001), 48; emphasis

in original.

 7. Vapor theory is a term coined by Peter Lunenfeld and used by Geert Lovink to designate

theory so removed from actual engagement with digital media that it treats fi ction as fact. This

term, however, can take on a more positive resonance, if one takes the nonmateriality of

software seriously. See Geert Lovink, “ Enemy of Nostalgia, Victim of the Present, Critic of the

Future Interview with Peter Lunenfeld, ” July 31, 2000, < http://www.nettime.org/Lists-Archives/

nettime-l-0008/msg00008.html > , accessed 2/1/2007.

 8. Consider, for instance, the effectiveness of Chris Csikszentmih á lyi ’ s largely unrealized Afghan

Explorer Robot — covered by numerous news sources, it raised fundamental questions about

restrictions on reporters covering war.

 9. Alexander Galloway, Protocol: How Power Exists after Decentralization (Cambridge, Mass.: MIT

Press, 2004), 164.

 10. McKenzie Wark, “ A Hacker Manifesto, ” version 4.0, < http://subsol.c3.hu/subsol_2/

contributors0/warktext.html > , accessed 1/1/2010.

 11. See Richard Stallman, “ The Free Software Movement and the Future of Freedom; March 9 th

2006, ” < http://fsfeurope.org/documents/rms-fs-2006-03-09.en.html > , accessed 6/1/2008. Imman-

uel Kant famously described the Enlightenment as “ mankind ’ s exit from its self-incurred imma-

turity ” in “ An Answer to the Question: What Is Enlightenment, ” in What Is Enlightenment?

Eighteenth-Century Answers and Twentieth-Century Questions , ed. James Schmidt (Berkeley: Univer-

sity of California Press, 1996), 58.

 12. For more on enlightenment as a stance of how not to be governed like that, see Michel

Foucault, “ What Is Critique?, ” in What Is Enlightenment? , ed. Schmidt, 382 – 398.

 13. GNU copyleft/Public Licence (GPL) is symptomatic of the move in contemporary society

away from the public/private dichotomy to that of open/closed. As Niva Elkin-Koren notes in

 “ Creative Commons: A Skeptical View of a Worthy Project, ” the Creative Commons strategy

 “ does not aim at creating a public domain, at least not in the strict legal sense of a regime that

190 Notes

is free of any exclusive proprietary rights. The strategy is entirely dependent upon a proprietary

regime and drives its legal force from its existence. The normative framework assumes that it is

possible to replace existing practices of producing and distributing informational works by relying

on the existing proprietary regime. The underlying assumption is that if intellectual property

rights remain the same, but rights are exercised differently by their owners, free culture would

emerge ” (< http://www.hewlett.org/NR/rdonlyres/6D4BFD1E-09BB-4F89-9208-7C1E4B141F2A/0/

Creative_Commons_Amsterdam_fi nal2006.pdf > , accessed 6/1/2008). Although Elkin-Koren is

writing about Creative Commons in this passage, she makes it clear that this strategy of extend-

ing and revising intellectual property rights is drawn from the Free Software Movement ’ s GPL.

 14. Galloway, Protocol , 165 – 166; emphasis in original. Given that the adjective executable applies

to anything that “ can be executed, performed, or carried out ” (the fi rst example of executable

given by the OED is from 1796), this is a strange statement.

 15. See Derrida ’ s analysis of The Phaedrus in “ Plato ’ s Pharmacy, ” 165 – 166.

 16. John 1:1, Bible, King James Version .

 17. Hayles, My Mother Was a Computer , 50. Hayles ’ s argument immediately poses the question:

What counts as internal versus external to the machine, especially given that, in John von

Neumann ’ s foundational description of stored program computing, the input and output

(the outside world to the machine) was a form of memory?

 18. Alexander Galloway, “ Language Wants to Be Overlooked: Software and Ideology, ” Journal of

Visual Culture 5, no. 3 (2006): 326.

 19. Ibid.

 20. Galloway, Protocol , 167.

 21. Galloway, “ Language Wants to Be Overlooked, ” 321.

 22. This example draws from the PowerPC Assembly Language Beginners Guide , < http://www

.lightsoft.co.uk/Fantasm/Beginners/Chapt1.html > , accessed 7/1/2009.

 23. Paul Ricoeur, The Rule of Metaphor , trans. Robert Czerny et al. (London and New York:

Routledge, 2003), 31.

 24. The Oxford English Dictionary (OED), 2nd ed., S.V. “ technical, a .(n .) ”

 25. Jacques Derrida stresses the disappearance of the origin that writing represents: “ To repeat:

the disappearance of the good-father-capital-sun is thus the precondition of discourse, taken this

time as a moment and not as a principle of generalized writing. . . . The disappearance of truth

as presence, the withdrawal of the present origin of presence, is the condition of all (manifesta-

tion of) truth. Nontruth is the truth. Nonpresence is presence. Differance, the disappearance of

any originary presence, is at once the condition of possibility and the condition of impossibility

of truth. At once ” (“ Plato ’ s Pharmacy, ” 168).

 26. Jacques Derrida, “ Freud and the Scene of Writing, ” Writing and Difference , trans. Alan Bass

(Chicago: University of Chicago Press, 1978), 228.

Notes 191

 27. Herman H. Goldstine and John von Neumann, “ Planning and Coding of Problems for an

Electronic Computing Instrument, ” “ Report on the Mathematical and Logical Aspects of an

Electronic Computing Instrument, ” Part II, Volume I (Princeton, N.J.: Institute for Advanced

Study, 1947), 2. They also state, “ A coded order stands not simply for its present contents at its

present location, but more fully for any succession or passages of C through it, in connection

with any succession of modifi ed contents to be found by C there, all of this being determined

by other orders of the sequence. ”

 28. Ibid.

 29. Jacques Derrida in “ Signature Event Context, ” in Limited Inc. , trans. Samuel Weber and Jeffrey

Mehlman (Evanston, Ill.: Northwestern University Press, 1988 [1977]), argues, “ every sign . . .

can be cited , put between quotation marks; in so doing it can break with every given context,

engendering an infi nity of new contexts in a manner which is absolutely illimitable. This does

not imply that the mark is valid outside of a context, but on the contrary that there are only

contexts without any center or absolute anchoring [ancrage]. This citationality, duplication or

duplicity, this iterability of the mark is neither an accident nor an anomaly, is that (normal/

abnormal) without which a mark could not even have a function called ‘ normal. ’ What would

a mark be that could not be cited? Or one whose origins would not get lost along the way? ”

(12). Against this, Hayles, in My Mother Was a Computer , contends that computer code is not

iterable because “ the contexts are precisely determined by the level and nature of the code. Code

may be rendered unintelligible if transported into a different context — for example, into a

different programming language. . . . Only at the high level of object-oriented languages such

as C++ does code recuperate the advantages of citability and iterability . . . and thus become

 ‘ grammatological ’ ” (48).

 30. For more on the software crisis and its relationship to software engineering, see Martin

Campbell-Kelly and William Aspray, Computer: A History of the Information Machine (New York:

Basic Books, 1996),196 – 203; Paul Ceruzzi, A History of Modern Computing , 2nd ed. (Cambridge,

Mass.: MIT Press, 2003), 105; and Frederick P. Brooks ’ s The Mythical Man-Month: Essays on Software

Engineering , 20th Anniversary Edition (New York: Addison-Wesley Professional, 1995).

 31. Philip E. Agre, Computation and Human Experience (Cambridge: Cambridge University Press,

1997), 92.

 32. Norman Macrae, John von Neumann (New York: Pantheon Books, 1992), 378.

 33. According to Friedrich Nietzsche, “ there is no ‘ being ’ behind the doing, effecting, becoming:

 ‘ the doer ’ is merely a fi ction added to the deed — the deed is everything. ” In The Birth of Tragedy

 & The Genealogy of Morals , trans. Francis Golffi ng (Garden City, N.Y.: Doubleday, 1956),

178 – 179.

 34. Lawrence Lessig, Code: And Other Laws of Cyberspace (New York: Basic Books, 1999).

 35. Code as automatically enabling and disabling actions is also code as police. I elaborate more

on this in the “ Crisis, Crisis, Crisis, or the Temporality of Networks ” chapter of Imagined Networks

(work in progress).

192 Notes

 36. Milton Friedman, for instance, argues “ the role of government just considered is to do some-

thing that the market cannot do for itself, namely, to determine, arbitrate, and enforce the rules

of the game. ” See Capitalism and Freedom , Fortieth Anniversary Edition (Chicago: Chicago

University Press, 2002), 27.

 37. Ibid., 25.

 38. Michel Foucault, The Birth of Biopolitics: Lectures at the Coll è ge de France, 1978 – 1979 , trans.

Graham Burchell (Basingstoke, England, and New York: Palgrave Macmillan, 2008), 175.

 39. David Golumbia, The Cultural Logic of Computation (Cambridge, Mass.: Harvard University

Press, 2009), 224.

 40. Judith Butler, Excitable Speech: A Politics of the Performative (New York: Routledge, 1997), 48.

 41. Ibid., 78.

 42. Ibid., 49; emphasis in original.

 43. Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation (San

Francisco: W. H. Freeman, 1976), 234.

 44. Martin Heidegger, “ The Thing, ” Poetry, Language, Thought (New York: HarperCollins, 1971),

176 – 177.

 45. Foucault, Birth of Biopolitics , 173.

 46. None were classifi ed as mathematicians, even though many of these women, hired to calcu-

late ballistic trajectories using Marchant machines and even the differential analyzer, did have

college degrees in mathematics (the “ ENIAC girls, ” however, were promoted quickly to “ math-

ematicians ” as the war progressed). Special training courses in calculus and other “ higher ” maths

were offered to those without college degrees by instructors such as Adele Goldstine, wife of

Herman Goldstine and documenter of the ENIAC, as well as Mary Mauchly, wife of John

Mauchly. This division between mathematicians and computers also existed during World War

I, with graduate students and young assistant professors labeled as “ computers, ” although the

relations between them were less rigid. See David Grier, When Computers Were Human (Princeton,

N.J.: Princeton University Press, 2005).

 This notion of women as ideal programmers also persisted after the war with SAGE

(discussed later) and projects such as Pacifi c Mutual ’ s “ Project Helpmate, ” a project that treated

wives as interchangeable labor units to meet short-run staffi ng needs:

 To do that, we had to make sure we didn ’ t say that Ann is better than Sue and Sue is better than Jane. We
employed them for the same salary amount, no matter what their experience, and for the same deal, which
was that they would get so much a month and if they stayed til the end of the agreed upon time they got a
bonus of so much. This was “ project Helpmate. ” It was the only way we could get people, because we needed
a lot of people for a limited period of time, and then wouldn ’ t need them. Not only we wouldn ’ t need them,
but we thought we would need fewer of our other staff. That whole process is another story in itself. (Richard.
D. Dotts, “ Interview, ” May 21, 1973, Computer Oral History Collection 1969 – 1973, 1977 , Archives Center,
National Museum of American History, Smithsonian Institution [box 82], 23)

Notes 193

 Women were also coders presumably because they would be more accepting of a job in which

advancement was not clearly defi ned. As Dotts notes, programmers were viewed as easily

expendible.

 47. Jean J. Bartik, Frances E. Snyder Holberton, and Henry S. Tropp, “ Interview, ” April 27, 1973,

 Computer Oral History Collection, 1969 – 1973, 1977 (Washington, D.C.: Archives Center, National

Museum of American History), < http://invention.smithsonian.org/downloads/fa_cohc_tr

_bart730427.pdf > , accessed 8/8/2009, 12 – 13.

 48. See “ Women of the ENIAC: An Oral History, ” February 23, 2005 < http://www.witi.com/

center/aboutwiti/videos/eniac_kay_qt_hi.php > , accessed 8/8/2009.

 49. Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America

(Cambridge, Mass.: MIT Press, 1996), 71.

 50. I. J. Good, “ Pioneering Work on Computers at Bletchley, ” in A History of Computing in the

Twentieth Century: A Collection of Essays , ed. N. Metropolis et al. (New York: Academic Press, 1980),

31 – 46.

 51. Quoted in Ceruzzi, A History of Modern Computing , 82.

 52. See Neal Stephenson, In the Beginning . . . Was the Command Line (New York: HarperCollins

Publishers Inc., 1999).

 53. See Heinz von Foerster, “ Epistemology of Communication, ” in The Myths of Information:

Technology and Postindustrial Culture , ed. Kathleen Woodward (Madison, Wisc.: Coda Press, 1980),

18 – 27.

 54. See Norbert Wiener, “ Cybernetics in History, ” The Human Use of Human Beings (New York:

Da Capo Press, 1950), 15 – 27.

 55. See Michael S. Mahoney, “ Finding a History for Software Engineering, ” IEEE Annals of the

History of Computing 26, no. 1 (January – March 2004): 8 – 19.

 56. Johann Wolfgang Goethe, “ 7. Faust ’ s Study (ii), ” Faust, Part One , trans. David Luke (Oxford

and New York: Oxford University Press, 1987), line 1648. The older translation by Philip Wayne

uses the term slave (Baltimore, Md.: Penguin Books, 1949), 86.

 57. According to Antonelli, they were hired after construction was well under way because it

was feared that the assembled crew would disband soon (the machine was only operational after

World War II).

 58. Bartik, Holberton and Tropp, “ Interview, ” 68.

 59. To learn how to operate it, they went to Aberdeen to learn IBM punch card and plug board

technology, and they studied the block diagrams fastidiously.

 60. Bartik, Holberton and Tropp, “ Interview, ” 54 – 55.

 61. Ibid., 51.

194 Notes

 62. Ibid., 38.

 63. Ibid., 31.

 64. Ibid., 33. Through this, she sought “ to design something [so] that we could visualize what

we were doing and also to devise something so that someone else could understand what we

were doing to check it. ”

 65. Ibid., 62. In essence, if you could take a motion picture of the machine, you would have

been able to reproduce the numbers. The term breakpoint stems from the fact that the ENIAC

programmers would actually pull the wire to stop the programs and read the accumulators (56).

 66. Ibid., 56.

 67. W. Barkley Fritz, “ The Women of ENIAC, ” IEEE Annals of the History of Computing 18, no. 3

(September 1996): 21.

 68. As argued earlier, although software produces visible effects, software itself cannot be seen.

Luce Irigaray, in This Sex Which is Not One , trans. Catherine Porter (Ithaca, N.Y.: Cornell Univer-

sity Press, 1985), has similarly argued that feminine sexuality is nonvisual: “ her sexual organ

represents the horror of nothing to see ” (emphasis in original, 26).

 69. Sadie Plant, Zeros + Ones: Digital Women + The New Technoculture (New York: Doubleday,

1997), 37.

 70. As quoted by Galloway, Protocol , 188.

 71. Ibid.

 72. Kathleen Broome Williams, Grace Murray Hopper: Admiral of the Cyber Sea (Annapolis, Md.:

Naval Institute Press, 2004), 89; J. C. Chu, “ Computer Development at Argonne National Labora-

tory, ” in History of Computing , ed. N. Metropolis et al., 345.

 73. For example, see Fritz, “ The Women of ENIAC, ” 13 – 28; Jennifer Light, “ When Computers

Were Women, ” Technology and Culture 40, no. 3 (July 1999): 455 – 483.

 74. She nonetheless insisted that a woman who wanted to pursue mathematics in the Navy was

a different story since “ women have always done mathematics, since the days of the Greeks ”

(Hopper, “ The Captain is a Lady, ” 60 Minutes Transcript , March 1983, 11).

 75. She states, “ The novelty of inventing programs wears off and degenerates into the dull labor

of writing and checking programs . . . this duty . . . looms as an imposition on the human brain. ”

See “ The Education of a Computer, ” IEEE Annals of the History of Computing 9, no. 3 (July –

 December 1987): 273. This rehumanizing of the mathematician was also to coincide with the

mechanization (or perhaps, given the legacy of the ENIAC ’ s “ master programmer, ” the remecha-

nization) of the professional computer.

 Thus by considering the professional programmer (not the mathematician), as an integral part of the computer,
it is evident that the memory of the programmer and all information and data to which he can refer is avail-
able to the computer subject only to translation into suitable language. And it is further evident that the

Notes 195

computer is fully capable of remembering and acting upon any instructions once presented to it by the
programmer.

 With some specialized knowledge of more advanced topics, UNIVAC at present has a well-grounded math-
ematical education fully equivalent to that of a college sophomore, and it does not forget and does not make
mistakes. It is hoped that its undergraduate course will be completed shortly and it will be accepted as a
candidate for a graduate degree. (Ibid., 280 – 281)

 The compiler was thus to enfold professional programmers within the machine itself,

by dumping their memory into the machine.

 76. Bartik, Holberton, and Tropp, “ Interview, ” 105 – 106.

 77. Goldstine and von Neumann, “ Planning and Coding, ” section 7.9, 20, < http://www.admin

.ias.edu/library/hs/da/ECP/Planning_Coding_Problems_v2p1.pdf > , accessed 8/1/2009.

 78. Nathan Ensmenger and William Aspray, “ Software as Labor Process, ” in Proceedings of the

International Conference on History of Computing: Software Issues (New York: Springer-Verlag, 2000),

158.

 79. Henry S. Tropp et al., “ A Perspective on SAGE: Discussion, ” IEEE Annals of the History of

Computing 5, no. 4 (October 1983): 387.

 80. Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software

Industry (Cambridge, Mass.: MIT Press, 2004), 68 – 69. There was some resistance, as Irwin Green-

wald points out, to this method: “ We always separated the machine function from the procedures

function or the programming function or what have you, which was very diffi cult for some

people that we hired to get accustomed to. Stan Rothman, for example, was used to doing the

whole job himself. I guess the years he was there he never did get to the point where he could

accept our style. I know three and four different people who tried to work with him and gave

up because he insisted on doing it the way he was used to, which was good, but not our style ”

(Greenwald and Robina Mapstone, “ Interview, ” April 3, 1973, Computer Oral History Collection

1969 – 1973, 1977, Archives Center, National Museum of American History, Smithsonian Institution ,

Box 8, Folder 10, 17 – 18).

 81. Philip Kraft, Programmers and Managers: The Routinization of Computer Programming in the

United States (New York: Springer-Verlag, 1984), 15 – 16.

 82. Tropp et al., “ A Perspective on SAGE, ” 386.

 83. Ibid., 385.

 84. Ibid., 387.

 85. Mahoney, “ Finding a History, ” 15.

 86. Kraft, Programmers and Managers , 99.

 87. Edsger W. Dijkstra, “ EWD 1308: What Led to ‘ Notes on Structure Programming, ’ ” in Software

Pioneers: Contributions to Software Engineering , ed. Manfred Broy and Ernst Denert (Berlin: Springer,

2002), 342.

196 Notes

 88. Edsger W. Dijkstra, “ Go To Statement Considered Harmful, ” in Software Pioneers , ed. Broy

and Denert, 352.

 89. Structured programming was introduced as a way to make the programs rather than the

programmer priest the source, although the term programmer priest complicates the notion of

 source: is the source the programmer or some mythic power she mediates?

 90. Edsger Dijkstra, “ Notes on Structured Programming, ” April 1970, < http://www.cs.utexas

.edu/~EWD/ewd02xx/EWD249.PDF > , accessed 8/8/2009, 7.

 91. Ibid., 21.

 92. John V. Guttag, “ Abstract Data Types, Then and Now, ” in Software Pioneers , ed. Broy and

Denert, 444.

 93. Ibid.

 94. Ibid., 445.

 95. Thomas Keenan, “ The Point Is to (Ex)Change It: Reading Capital Rhetorically, ” in Fetishism

as Cultural Discourse , ed. Emily Apter and William Pietz (Ithaca, N.Y.: Cornell University Press,

1993), 165.

 96. David Eck, The Most Complex Machine: A Survey of Computers and Computing (Natick, Mass.:

A. K. Peters, 2000), 329, 238.

 97. Adele Mildred Koss, “ Programming on the Univac 1: A Woman ’ s Account, ” IEEE Annals of

the History of Computing 25, no. 1 (January – March 2003): 49.

 98. Grier, When Computers Were Human .

 99. Ibid., 33.

 100. Ibid., 40.

 101. After the Depression, it evolved into a more sophisticated unit, which used more complex

numerical methods and Marchant machines to perform the basic mathematics.

 102. Gertrude Blanch and Henry Tropp, “ Interview, ” May 16, 1973, Computer Oral History Col-

lection 1969 – 1973, 1977, Archives Center, National Museum of American History, Smithsonian

Institution, < http://invention.smithsonian.org/downloads/fa_cohc_tr_blan730516.pdf > , accessed

8/8/2009, 3.

 103. Ida Rhodes and Henry Tropp, “ Interview, ” March 21, 1973, Computer Oral History Collec-

tion 1969 – 1973, 1977, Archives Center, National Museum of American History, Smithsonian Institu-

tion , < http://invention.smithsonian.org/downloads/fa_cohc_tr_rhod730321.pdf > , accessed 8/8/

2009, 2.

 104. Ibid.

 105. Ibid., 3.

 106. Blanch and Tropp, “ Interview, ” 32.

Notes 197

 107. Rhodes and Tropp, “ Interview, ” 9.

 108. “ We were obsessed — especially Gertrude, who had fallen in love with the marvelous

Tables of the British — with the idea that nothing but accuracy counts. And for this reason we

had made it very clear to everybody that it was all [we] asked of them — complete accuracy ”

(Ibid., 12).

 109. Ibid.

 110. Blanch and Tropp, “ Interview, ” 10.

 111. Ibid., 12 – 13.

 112. Alan Turing, “ Proposal for Development in the Mathematics Division of an Automatic

Computing Engine (ACE), ” in A. M. Turing ’ s ACE Report of 1946 and Other Papers , ed. B. E.

Carpenter and R. W. Doran (Cambridge, Mass.: MIT Press, 1986), 38 – 39.

 113. Koss, “ Programming on the Univac 1, ” 56.

 114. See Derrida, “ Signature Event Context, ” 1 – 23.

 115. The A-2 Compiler System Operations Manual prepared by Richard K. Ridgway and Margaret

H. Harper under the direction of Grace M. Hopper (Philadelphia: Remington Rand, 1953), 53.

This description makes it clear that pseudocode is not source. This manual, rather, refers to

pseudo-code as information:

 The A-2 Compiler is a programming system for UNIVAC which produces, as its output, the complete
coding necessary for the solution of a specifi c problem. If the problem has been correctly described to the
compiler the coding will be correct and checked (by UNIVAC) and the program tape may be immediately
run without any debugging The coding necessary for the solution of a specifi c problem is ordered
by the programmer in pseudo-code. This pseudo-code is called “ information ” and it is the information
which tells the compiler how to proceed just as C-10 Code tells UNIVAC how to proceed. This pseudo-
code is a new language which is much easier to learn and much shorter and quicker to write. Logical
errors are more easily found in information than in UNIVAC coding because of the smaller volume. (Ibid.,
1; emphasis in original)

 This passage nicely highlights the difference that pseudo-code makes: rather than dealing with

the minutiae of machine programming (which in the case of UNIVAC was much easier than

other machines because its native C-10 used alphanumerics rather than binary numbers), pseudo-

code enables the programmer to address the logical problem at hand. Pseudocode was thus not

conceived initially as “ source code, ” but rather as an artifi ce — a supplement — that produced

intermediate code that could be debugged.

 116. Hardware was also an important limiting factor: the languages produced by the UNIVAC

team did not penetrate widely because the UNIVAC did not; the Laining and Zierler system was

limited to the Whirlwind.

 117. John Backus, “ Programming in America in the 1950s — Some Personal Impressions, ” in

History of Computing , ed. N. Metropolis et al., 127.

 118. Koss, “ Programming on the Univac 1, ” 58.

198 Notes

 119. Bob Everett, “ Interview, ” May 29, 1970, Computer Oral History Collection 1969 – 1973, 1977 ,

Archives Center, National Museum of American History, Smithsonian Institution (box 7, folder

2), 23.

 120. Hopper goes on to say, “ I should have studied a little harder but it wasn ’ t that much that

weighed you down and I just promptly relaxed into it like a featherbed and gained weight and

had a perfectly heavenly time whereas the youngsters were very busy rebelling against the uni-

forms and the regulations and having to eat what was put in front of them and everything and I

was just tickled to pieces by that time to have a beautiful meal put in front of me and I’d eat it. ”

See Hopper and Tropp, “ Interview, ” July 1, 1968, Computer Oral History Collection 1969 – 1973, 1977 ,

Archives Center, National Museum of American History, Smithsonian Institution, < http://

invention.smithsonian.org/downloads/fa_cohc_tr_hopp680700.pdf > , 26, accessed 9/9/2009. This

freedom would make all the difference between her career trajectory (as a divorced woman with

no children) and that of the other females around her who mostly left computing when they

married or became pregnant.

 121. United States Information Agency, Voice of America Interviews with Eight American Women of

Achievement (College Park, Md.: National Archives and Records Administration, 1984), 9. Emblem-

atically, Hopper loved drill, which she compared to dancing, and she became a battalion com-

mander (Williams, Grace Murray Hopper , 22). The promotion to battalion commander also

explains why she enjoyed the Navy so much. Midshipmen ’ s school, after all, entailed both learn-

ing how to follow and how to give orders: “ Thirty days to learn how to take orders, and thirty

days to learn how to give orders, and you were a naval offi cer ” (as quoted in Williams, Grace

Murray Hopper). This learning to take and give orders made it possible for Hopper to reconcile

discipline with leadership.

 122. Relaying a visit to the Mark I, she notes, “ nobody understood about computers, and

they showed him how that they put the cards in the card reader and then they told this

poor guy that those cards traveled down in that big round thing, and went up in the

counter, and the poor guy believed it. They used to tell people the most horrible things,

and I’m afraid we were at least partially responsible for some of the mythology that grew

up around computers. ” See “ Interview, ” Computer Oral History Collection 1969 – 1973, 1977 ,

Archives Center, National Museum of American History, Smithsonian Institution, January

7, 1969, < http://invention.smithsonian.org/downloads/fa_cohc_tr_hopp690107.pdf > , accessed

9/9/2009, 12. For her “ sufferings, ” see Williams, Grace Murray Hopper , 31. For her comment

regarding experienced programmers, see G. M. Hopper and H. W. Mauchly, “ Infl uence of

Programming Techniques on the Design of Computers, ” Proceedings of the IRE 41, no. 10

(October 1953): 1250.

 123. Harry Reed, “ My Life with the ENIAC: A Worm ’ s Eye View, ” in Fifty Years of Army Computing:

From ENIAC to MSRC , ed. Thomas Bergin (U.S. Army Research Laboratory, 2000), 158; emphasis

in original; accessible online at < http://ftp.arl.mil/~mike/comphist/harry_reed.pdf > .

 124. Bartik, Holberton, and Tropp, “ Interview, ” 121.

 125. Ibid., 93.

Notes 199

 126. Jean E. Sammet, Programming Languages: History and Fundamentals (Englewood Cliffs, N.J.:

Prentice-Hall, 1969), 144.

 127. Ibid., 148.

 128. See, for instance, Theodor Nelson, Computer Lib; Dream Machines (Redmond, Wash.: Tempus

Books of Microsoft Press, 1987).

 129. David Golumbia ’ s otherwise insightful analysis of computationalism also seeks to divide

computing into two clear perspectives — the sovereign or the slave: “ From the perspective we

have been developing here, the computer encourages a Hobbesian conception of this political

relation: one is either the person who makes and gives orders (the sovereign), or one follows

orders. There is no room in this picture for exactly the kind of distributed sovereignty on which

democracy itself would seem to be predicated ” (Cultural Logic of Computation , 224).

 130. See “ Anecdotes: How Did You First Get into Computing? ” IEEE Annals of the History of

Computing 25, no. 4 (October – December 2003): 48 – 59.

 131. Although not addressed here, there has always been tension between business and academic

computing.

 132. Frederick P. Brooks, while responding to the disaster that was OS/360, also emphasizes the

magical powers of programming. Describing the joys of the craft, Brooks writes:

 Why is programming fun? What delights may its practitioner expect as his reward?

 First is the sheer joy of making things.

 Second is the pleasure of making things that are useful to other people.

 Third is the fascination of fashioning complex puzzle-like objects of interlocking moving parts and watching
them work in subtle cycles, playing out the consequences of principles built in from the beginning.

 Fourth is the joy of always learning, which springs from the nonrepeating nature of the task.

 Finally there is the delight of working in such a tractable medium. The programmer, like the poet, works only
slightly removed from thought-stuff. He builds his castles in the air, from air, creating by exertion of the
imagination. . . . Yet the program construct, unlike the poet ’ s words, is real in the sense that it moves and
works, producing visible outputs separate from the construct itself. It prints results, draws pictures, produces
sounds, moves arms. The magic of myth and legend has come true in our time. One types the correct incanta-
tion on a keyboard, and a display screen comes to life, showing things that never were nor could be. (Brooks,
 Mythical Man-Month , 7 – 8).

 133. Paul Edwards, “ The Army and the Microworld: Computers and the Politics of Gender

Identity, ” Signs 16, no. 1 (Autumn 1990): 108 – 109.

 134. Weizenbaum, Computer Power and Human Reason , 115; italics in original.

 135. Foucault, Birth of Biopolitics , 120.

 136. Indeed, he cites Horkheimer ’ s critique:

 Concepts have been reduced to summaries of the characteristics that several specimens have in common. By
denoting similarity, concepts eliminate the bother of enumerating qualities and thus serve better to organize

200 Notes

the material of knowledge. They are thought of as mere abbreviations of the items to which they refer. Any
use transcending auxiliary, technical summarization of factual data has been eliminated as a last trace
of superstition. Concepts have become “ streamlined, ” rationalized, labor-saving devices . . . thinking itself
[has] been reduced to the level of industrial processes . . . in short, made part and parcel of production. ”
(Weizenbaum, Computer Power and Human Reason , 249)

 And he argues that this critique applies directly to programming languages: “ no one who

does not know the technical basis of the systems we have been discussing can possibly appreciate

what a chillingly accurate account of them this passage is. It was written by the philosopher-

sociologist Max Horkheimer in 1947, years before the forces that were even then eclipsing reason,

to use Horkheimer ’ s own expression, came to be embodied literally in machines . . . As we see

so clearly in the various systems under scrutiny, meaning has become entirely transformed into

function ” (Weizenbaum, Computer Power and Human Reason , 250).

 137. Ibid., 255.

 138. Brooks, Mythical Man-Month , 8.

 139. Weizenbaum, Computer Power and Human Reason , 277.

 140. Ibid., 115.

 141. Ibid., 118.

 142. Ibid., 124, 122, 121.

 143. Ibid., 119.

 144. For more on the relationship between paranoia and knowledge, rather than truth,

see Wendy Hui Kyong Chun, Control and Freedom: Power and Paranoia in the Age of Fiber Optics

(Cambridge, Mass.: MIT Press, 2006).

 145. Ibid., 116.

 146. Linus Torvalds and David Diamond, Just for Fun: The Story of an Accidental Revolutionary

(New York: HarperCollins, 2001), 73.

 147. The Oxford English Online Dictionary (Oxford and New York: Oxford University Press, 1992),

 < http://dictionary.oed.com/entrance.dtl > , accessed 3/1/2007.

 148. See Friedrich Kittler, “ There is No Software, ” Ctheory (1995), < http://www.ctheory.net/

articles.aspx?id=74 > , accessed 6/1/2008.

 149. Namely, twentieth-century genetics, but this is the topic of chapter 3.

 150. (Interview with) Felix Guattari and Gilles Deleuze, “ Capitalism: A Very Special Delirium, ”

in “ Chaosophy, ” ed. Sylvere Lothringer, Autonomedia/Semiotexte (1995), < http://www

.generation-online.org/p/fpdeleuze7.htm > , accessed 8/1/2009.

 151. The Oxford English Dictionary (OED), 2nd ed., S.V. “ fetish, n . ”

 152. William Pietz, “ Fetishism and Materialism, ” in Fetishism as Cultural Discourse , ed. Apter and

Pietz, 138, 139.

Notes 201

 153. Ibid., 137.

 154. Karl Marx, Capital: A Critique of Political Economy , Volume One , trans. Ben Fowkes (New York:

Penguin Books in association with New Left Review 1990 – 1992, 1976), 165.

 155. Marx as quoted by Pietz, “ Fetishism and Materialism, ” 149.

 156. Richard Stallman, “ Copyright and Globalization in the Age of Computer Networks ” (2001),

 < http://www.gnu.org/philosophy/copyright-and-globalization.html > , accessed 6/1/2008.

 157. Ellen Ullman interviewed by Scott Rosenberg, “ 21st: Elegance and Entropy, ” Salon.com ,

 < http://dir.salon.com/story/tech/feature/1997/10/09/interview/ > , accessed 6/1/2008.

 158. See Mez ’ s site at < http://www.hotkey.net.au/~netwurker/ > , accessed 6/1/2008.

 159. See < http://www.scotoma.org/notes/index.cgi?LondonPL > , accessed 6/1/2008.

 160. Sigmund Freud, “ Fetishism, ” in Sexuality and the Psychology of Love , ed. Philip Rieff (New

York: Collier Books, 1963), 205. Freud also writes: “ It is not true that the child emerges from

his experience of seeing the female parts with an unchanged belief in the woman having a

phallus. He retains this belief but he also gives it up; during the confl ict between the deadweight

of the unwelcome perception and the force of the opposite wish, a compromise is constructed

such as is only possible in the realm of unconscious thought — by the primary processes. In the

world of psychical reality the woman still has a penis in spite of it all, but this penis is no

longer the same as it once was. Something else has taken its place, has been appointed as its

successor, so to speak, and now absorbs all the interest which formerly belonged to the penis ”

(Ibid., 206).

 161. William Pietz, “ The Problem of the Fetish, ” pt. 1, Res: Anthropology and Aesthetics 9 (Spring

1985): 12.

 162. Freud, “ Fetishism, ” 208.

 163. Slavoj Ž i ž ek, The Sublime Object of Ideology (London and New York: Verso, 1989), 31.

 164. Alan Turing, “ Computing Machinery and Intelligence, ” Mind 59 (1950), < http://www

.loebner.net/Prizef/TuringArticle.html > , accessed 3/1/2006.

 165. N. Katherine Hayles develops this theme of revealing codes in My Mother Was a Computer ,

54 – 61. Importantly, some software art projects also complicate and frustrate code as Xray vision

and connection as meaning, such as Golan Levin ’ s AxisApplet produced for the Whitney Artport

CODeDoc project.

 166. Keenan, “ The Point Is to (Ex)Change It, ” 173.

 Computers that Roar

 1. See John von Neumann, “ The First Draft Report on the EDVAC, ” Contract No. W – 670 –

 ORD – 4926 between the U.S. Ordnance (USORD) and the University of Pennsylvania, June

30, 1945, < http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf > , accessed 9/7/2009; and

202 Notes

Jon Agar, The Government Machine: A Revolutionary History of the Computer (Cambridge, Mass.: MIT

Press 2003), 391.

 2. Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America

(Cambridge, Mass.: MIT Press, 1997); David Golumbia, The Cultural Logic of Computation (Cam-

bridge, Mass.: Harvard University Press, 2009); Joseph Weizenbaum, Computer Power and Human

Reason: From Judgment to Calculation (San Francisco: W. H. Freeman, 1976), 157.

 3. Weizenbaum, Computer Power and Human Reason , 157.

 4. Aristotle as quoted and translated by Paul Ricoeur, The Rule of Metaphor (London and New

York: Routledge), 13.

 5. George Lakoff and Mark Johnson, Metaphors We Live By (Chicago: University of Chicago,

1980), 5; emphasis in original.

 6. Ibid., 115.

 7. They write, “ Our ordinary conceptual system, in terms of which we both think and act, is

fundamentally metaphorical in nature. The concepts that govern our thought are not just matters

of the intellect. They also govern our everyday functioning down to the most mundane details.

Our concepts structure what we perceive, how we get around in the world, and how we

relate to other people. Our conceptual system thus plays a central role in defi ning our everyday

realities ” (Ibid., 3).

 8. Ibid., 119.

 9. Ibid., 144.

 10. Ibid., 239.

 11. Ibid., 193.

 12. Thomas Keenan, “ The Point Is to (Ex)Change It: Reading Capital Rhetorically, ” in Fetishism

as Cultural Discourse , ed. Emily Apter and William Pietz (Ithaca, N.Y.: Cornell University Press,

1993), 157.

 13. Roman Jackobson of course defi ned metaphor in terms of selection and combination —

 the ability to think through substitutions in “ Two Aspects of Language and Two Types

of Aphasic Disturbances, ” Fundamentals of Language , 2nd rev. ed. (The Hague: Mouton,

1971).

 14. Ricoeur, Rule of Metaphor , 23.

 15. Ibid., 23 – 24.

 16. Ibid., 44. He writes, “ If metaphor belongs to an heuristic of thought, could we not imagine

that the process that disturbs and displaces a certain logical order, a certain conceptual hierarchy,

a certain classifi cation scheme, is the same as that from which all classifi cation proceeds? . . .

could we not imagine that the order itself is born in the same way that it changes? Is there not,

Notes 203

in Gadamer ’ s terms, a ‘ metaphoric ’ at work at the origin of logical thought, at the root of all

classifi cation? . . . The idea of an initial metaphorical impulse destroys the[se] oppositions

between proper and fi gurative, ordinary and strange, order and transgression. It suggests the idea

that order itself proceeds from the metaphorical constitution of semantic fi elds, which

themselves give rise to genus and species ” (Ibid., 24).

 17. Ibid., 37.

 18. Ibid., 48.

 2 Daemonic Interfaces, Empowering Obfuscation

 1. Luc Boltanski and Eve Chiapello have outlined this encyclopedically in The New Spirit of

Capitalism , trans. Gregory Elliott (London: Verso, 2005).

 2. Oxford English Dictionary Online , June 2010, Draft Entry, S.V. “ daemon, n , ” emphasis in

original.

 3. Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America

(Cambridge, Mass.: MIT Press, 1996), 111, 107.

 4. Ibid., 12.

 5. Ibid., 13.

 6. See David Mindell, Between Human and Machine: Feedback, Control, and Computing before

Cybernetics (Baltimore, Md.: Johns Hopkins University Press, 2002).

 7. See Gordon Bell, “ Toward a History of (Personal) Workstations, ” in A History of Personal Work-

stations , ed. Adele Goldberg (New York: ACM Press; Reading, Mass.: Addison-Wesley Pub. Co.,

1988), 29; Martin Campbell-Kelly and William Aspray, Computer: A History of the Information

Machine (Boulder, Colo.: Westview Press, 2004), 168.

 8. As quoted by Edwards, Closed World , 258.

 9. John von Neumann, Papers of John von Neumann on Computing and Computer Theory, ed.

William Aspray and Arthur Burks (Cambridge, Mass.: MIT Press, 1987), 413.

 10. J. C. R. Licklider, “ Man-Computer Symbiosis, ” in NewMediaReader , ed. Noah Wardrip-Fruin

and Nick Montfort (Cambridge, Mass.: MIT Press, 2003), 75.

 11. As quoted in Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to

Calculation (San Francisco: W. H. Freeman and Company, 1976), 246.

 12. Ben Shneiderman, “ Direct Manipulation: A Step Beyond Programming Languages, ” in

 NewMediaReader, ed. Wardrip-Fruin and Montfort, 486.

 13. Michel Foucault, The Birth of Biopolitics: Lectures at the Coll è ge de France, 1978 – 1979 , trans.

Grahm Burchell (Basingstoke, England, and New York: Palgrave Macmillan, 2008), 252.

204 Notes

 14. Boltanski and Chiapello, New Spirit of Capitalism , 92.

 15. Catherine Malabou, What Should We Do with Our Brains , trans. Sebastian Rand (New York:

Fordham University Press, 2008), 44.

 16. Ibid., 51.

 17. George Lakoff and Mark Johnson, Metaphors We Live By (Chicago: Chicago University Press,

1980), 70. Ben Shneiderman also directly acknowledges Piaget among others in “ Direct Manipula-

tion, ” 492 – 493.

 18. Lakoff and Johnson, Metaphors We Live By , 123.

 19. Shneiderman, “ Direct Manipulation, ” 491.

 20. Indeed, Laurel argues in Computers as Theater (Reading, Mass.: Addison-Wesley Publishers,

1991) that interface metaphors are “ dangerous ” because they are always doomed to fail:

they are similes rather than metaphors, like reality only different (129). This difference can

become overwhelming for the user — the interface can become a visible impediment — because

the interface refers to the wrong thing: to reality rather than to compelling causality or to

action (131).

 21. Ibid., xviii.

 22. Ibid., 77.

 23. Ibid., 33.

 24. Ibid., 6; emphasis in original.

 25. Edwards draws from Sherman Hawkins ’ s use of the term “ to defi ne one of the major

dramatic spaces in Shakespearean plays. Closed-world plays are marked by a unity of place,

such as a walled city or the interior of a castle or house. Action within this space centers

[on] attempts to invade and/or escape its boundaries. Its archetype is the siege , , , the closed

world includes not just the sealed, claustrophobic spaces metaphorically marking its closure,

but the entire surrounding fi eld in which the drama takes place ” (Edwards, Closed World ,

12 – 13).

 26. She contends, “ There are ways in which art is “ lawful ” ; that is, there are formal, structured,

and causal dimensions that can be identifi ed and used both descriptively and productively ”

(Laurel, Computers as Theater , 28).

 27. Ibid., 67.

 28. Ibid., 62.

 29. Ibid., 101.

 30. Ibid., 167.

 31. See Wendy Hui Kyong Chun, Control and Freedom: Power and Paranoia in the Age of Fiber Optics

(Cambridge, Mass.: MIT Press, 2006).

Notes 205

 32. Louis Althusser, “ Ideology and Ideological State Apparatuses (Notes Towards an Investiga-

tion), ” in Lenin and Philosophy and Other Essays, trans. Ben Brewster (New York: Monthly Review

Press, 2001), 109.

 33. Ibid., 171 (emphasis in original).

 34. See Slavoj Ž i ž ek, The Sublime Object of Ideology (London and New York: Verso, 1989),

11 – 53.

 35. See Ceruzzi, A History of Modern Computing , 208 – 209; Martin Campbell-Kelly, From Airline

Reservations to Sonic the Hedgehog (Cambridge, Mass.: MIT Press) , 207 – 229.

 36. See Thomas Y. Levin, “ Rhetoric of the Temporal Index: Surveillant Narration and the Cinema

of ‘ Real Time, ’ ” in CTRL Space: Rhetorics of Surveillance from Bentham to Big Brother , ed. Thomas

Y. Levin et al. (Cambridge, Mass.: MIT Press, 2002), 578 – 593.

 37. Tara McPherson, “ Reload: Liveness, Mobility and the Web, ” in The Visual Culture Reader , 2nd

ed., ed. Nicholas Mirzoeff (London and New York: Routledge, 2002), 461 – 462.

 38. Coming from fi lm rather than from television studies and focusing more on applications

than on phenomenology, Alexander Galloway in Protocol: How Power Exists after Decentralization

(Cambridge, Mass.: MIT Press, 2004) similarly argues that continuity makes websurfi ng “ a

compelling, intuitive experience for the user ” :

 On the Web, the browser ’ s movement is experienced as the user ’ s movement. The mouse movement is substi-
tuted for the user ’ s movement. The user looks through the screen into an imaginary world, and it makes sense.
The act of “ surfi ng the web, ” which, phenomenologically, should be an unnerving experience of radical dis-
location — passing from a server in one city to a server in another city — could not be more pleasurable for the
user. Legions of computer users live and play online with no sense of radical dislocation. (64)

 39. Lev Manovich, “ Generation Flash, ” 2002, < http://www.manovich.net/DOCS/generation

_fl ash.doc > , accessed 8/8/2010.

 40. Julian Dibbell, My Tiny Life: Crime and Passion in a Virtual World (New York: Holt, 1998).

 41. Manovich, “ Generation Flash, ” 2002.

 42. Fredric Jameson, Postmodernism, or the Cultural Logic of Late Capitalism (Durham, N.C.: Duke

University Press, 1991), 51.

 43. However, these parallels arguably reveal the fact that our understandings of ideology are

lacking precisely to the extent that they, like interfaces, rely on a fundamentally theatrical model

of behavior.

 44. This argument thus seeks to complicate Matthew Kirschenbaum ’ s insightful critique in

 Mechanisms: New Media and the Forensic Imagination (Cambridge, Mass.: MIT Press, 2008) of

 “ medial ideology ” — the acceptance of the interface as the computer — rampant in new media

studies (36 – 45). This medial ideology is so attractive not simply because we are enamored by the

fl ickering signifi ers on our screens, but also because interfaces offer us a way to “ map ” our larger

relation to the world, to ideology itself.

206 Notes

 45. See Jean Fran ç ois Lyotard, The Postmodern Condition: A Report on Knowledge (Minneapolis:

University of Minnesota Press, 1984).

 46. Jameson, Postmodernism , ix.

 47. Ibid., x. Formally, Jameson argues, postmodern art — which erodes the barrier between high

and low culture — has fi ve characteristics: (1) a new depthlessness, in which inimitable styles are

turned into surface characteristics (postmodern codes, blank parodies or “ pastiche ”); (2) the

waning of affect (the waning of the subject and of the difference between inside and outside);

(3) a weakening of historicity (of the relationship between past, present, and future); (4) a change

in tone (toward the sublime); and (5) “ a constitutive relationship of all this to a whole new

technology, which is itself a refl ection, or a way to deal with a whole new economic world ”

(Postmodernism , 6).

 Following from Jameson ’ s description of postmodernism — in particular from his likening of

postmodernism to pastiche and his view of technology as refl ection — Lev Manovich, in The

Language of New Media (Cambridge, Mass.: MIT Press, 2001), has argued that GUIs are quintes-

sentially postmodern. It is no accident, he writes, that the GUI, “ which legitimized a ‘ cut and

paste ’ logic, as well as media manipulation software such as Photoshop, which popularized a

plug-in architecture, took place during the 1980s — the same decade when contemporary culture

became ‘ postmodern ’ ” (131). The GUI ’ s cut-and-paste logic, Manovich argues, is emblematic of

a culture that

 no longer tried to “ make it new. ” Rather, endless recycling and quoting of past media content, artistic styles,
and forms became the new “ international style ” and the new cultural logic of modern society. Rather than
assembling more media recordings of reality, culture is now busy reworking, recombining, and analyzing
already accumulated media material. Invoking the metaphor of Plato ’ s cave, Jameson writes that postmodern
cultural production “ can no longer look directly out of its eyes at the real world but must, as in Plato ’ s cave,
trace its mental images of the world on its confi ning walls. ” In my view, this new cultural condition found its
perfect refl ection in the emerging computer software of the 1980s that privileged selection from ready-made
elements over creating them from scratch. And to a large extent it is this software that in fact made postmod-
ernism possible. (Ibid.)

 Manovich ’ s application of Jameson ’ s diagnosis of postmodernism to computer interfaces

is intriguing, although, given Lyotard ’ s linking of postmodernism to new creative acts,

arguably one-sided and reductive. Lyotard links postmodernism to paralogy and the sublime —

a challenge to totalitarianism. More important, however, by focusing on formal likenesses,

Manovich misses the larger point: rather than a symptom or a cause, GUIs, which

emerged as a common cultural object much later than Jameson ’ s and Lyotard ’ s initial

descriptions of postmodernism in the 1970s, are a response to the challenges of postmod-

ernism, to the spatial challenges it posed. Interfaces, that is, are ways to navigate post-

modern confusion.

 48. Fredric Jameson, “ Cognitive Mapping, ” in Marxism and the Interpretation of Culture , ed. Cary

Nelson and Lawrence Grossberg (Champaign: University of Illinois Press, 1988), 351.

 49. Ibid., 351.

 50. Jameson, Postmodernism , 39.

Notes 207

 51. It stems from an earlier disorientation, brought about by global imperialism, in which the

truth of a subject ’ s experience

 no longer coincides with the place in which it takes place. The truth of that limited daily experience of London
lies, rather, in India or Jamaica or Hong Kong; it is bound up with the whole colonial system of the British
Empire. . . . Yet those structural coordinates are no longer accessible to immediate lived experience and are
often not even conceptualizable for most people.

 There comes into being, then, a situation in which we can say that if individual experience is authentic,
then it cannot be true, and that if a scientifi c or cognitive model of the same content is true, then it escapes
individual experience. (Jameson, “ Cognitive Mapping, ” 349)

 52. Ibid., 353.

 53. Jameson argues, “ the conception of capital is admittedly a totalizing or systemic concept:

no one has ever seen or met the thing itself; it is either the result of scientifi c reduction (and

it should be obvious that scientifi c thinking always reduces the multiplicity of the real to a

small-scale model) or the mark of an imaginary and ideological vision ” (“ Cognitive Mapping, ”

354).

 54. Ibid., 356.

 55. Jameson, Postmodernism , 37.

 56. Ibid., 54.

 57. For an excellent analysis of free labor, see Tiziana Terranova ’ s Network Culture: Politics for the

Information Age (London: Pluto Press, 2004).

 58. David Harvey, A Brief History of Neoliberalism (Oxford: Oxford University Press, 2005), 3.

 59. See Foucault, Birth of Biopolitics , 280.

 60. David Mindell similarly argues, “ Our computers retain traces of earlier technologies,

from telephones and mechanical analogs to directorscopes and tracking radars. . . . When

we articulate a mouse to direct a machine, do we not resemble Sperry ’ s pointer-matching

human servomechanisms? When we interpret glowing images and fi lter out signals from

noise, do we not resemble a pip-matching radar operator? ” See Mindell, Between Human and

Machine , 321.

 61. See Linda C. Smith, “ Memex as an Image of Potentiality Revisited, ” in From Memex to Hyper-

text: Vannevar Bush and the Mind ’ s Machine , ed. James M. Nyce and Paul Kahn (Boston: Academic

Press, 1991), 261 – 286.

 62. Indeed, Vannevar Bush deliberately contrasts the memex to expensive digital computers in

 “ Memex Revisited, ” in New Media, Old Media , ed. Wendy Hui Kyong Chun and Thomas Keenan

(New York: Routledge, 2006), 86 – 96.

 63. Vannevar Bush, “ As We May Think, ” The Atlantic (July 1945), < http://www.theatlantic.com/

doc/194507/bush > , accessed 9/9/2009.

 64. Vannevar Bush, “ Memorandum Regarding Memex, ” From Memex to Hypertext, 81.

208 Notes

 65. Bush, “ As We May Think, ” n.p.

 66. For Nelson and Engelbart, the “ gadgetry ” Bush envisions guarantees freedom. Nelson, in his

 “ As We Will Think ” (in From Memex to Hypertext: Vannevar Bush and the Mind ’ s Machine , ed. James

M. Nyce and Paul Kahn [Boston: Academic Press, 1991]) pinpoints Bush ’ s notion of a “ trail ” as

hypertext, where hypertext more generally means a “ text structure that cannot be conveniently

printed ” (Ibid., 253). Hypertext, Nelson stresses, was to liberate human thinking: “ Let me suggest

that such an object and system [hypertext], properly designed and administered, could have great

potential for education, increasing the student ’ s range of choices, his sense of freedom, his moti-

vation, and his intellectual grasp. ” See Theodor Nelson, “ A File Structure for the Complex, the

Changing, and the Indeterminate, ” in NewMediaReader , ed. Wardrip-Fruin and Montfort, 144).

Engelbart, focusing on the manipulation of symbols, argues, in relation to his own system, “ you

are quite elated by this freedom to juggle your thoughts, and by the way this freedom allows

you to work them into shape. ” See Douglas C. Engelbart, “ Augmenting Human Intellect: A Con-

ceptual Framework ” (October 1962), < http://www.dougengelbart.org/pubs/augment-3906.html > ,

accessed 8/8/2009; emphasis in original. Bush himself contends that the problem hindering scien-

tists and scientifi c progress is access: man must “ mechanize his records more fully if he is to push

his experiment [human civilization] to its logical conclusion and not merely become bogged

down part way there by overtaxing his limited memory ” (“ As We May Think, ” section 8, n.p.).

 67. Bush, “ As We May Think, ” section 1, n.p.

 68. Ibid.

 69. Bush, “ Memex Revisited, ” 85.

 70. Ibid., 91, 93, 94.

 71. Bush, “ As We May Think, ” section 6, n.p.

 72. Ibid., sections 6, 8, n.p.

 73. Ibid., section 4, n.p.; Bush, “ Memex Revisited, ” 85.

 74. This is Foucault ’ s diagnosis of traditional history in The Archaeology of Knowledge & The

Discourse on Language , trans. A. M. Sheridan Smith (New York: Pantheon Books, 1982).

 75. Noah Wardrip-Fruin, “ Introduction to ‘ As We May Think, ’ ” in NewMediaReader , ed. Wardrip-

Fruin and Montfort, 35; emphasis in original.

 76. Jann Sapp, “ The Nine Lives of Gregor Mendel, ” Experimental Inquiries: Historical, Philosophical,

and Social Studies of Experimentation in Science , ed. H. E. Le Grand (Dordrecht, The Netherlands:

Kluwer Academic Publishers, 1990), 137 – 166.

 77. See Jacques Derrida, Archive Fever: A Freudian Impression , trans. Eric Prenowitz (Chicago:

University of Chicago Press, 1996). The pleasure of forgetfulness is to some extent the pleasure

of death and destruction. It is thus no accident that this “ supplementing ” of human memory

has also been imagined as the death of the human species in so many fi ctions and fi lms, and

that d é j à vu is the mark of the artifi cial in the Wachowski brothers ’ fi lm The Matrix.

Notes 209

 78. Douglas C. Engelbart, “ Letter to Vannevar Bush and Program On Human Effectiveness, ” From

Memex to Hypertext , 236.

 79. Douglas C. Engelbart, “ The Augmented Knowledge Workshop, ” in Proceedings of the ACM

Conference on the History of Personal Workstations (New York: ACM Press, 1986), 74.

 80. Engelbart, “ II: Conceptual Framework, ” in “ Augmenting Human Intellect, ” n. p.

 81. Engelbart, “ 1.A, General Introduction, ” in “ Augmenting Human Intellect, ” n. p.

 82. Engelbart, “ II: Conceptual Framework, ” n. p.

 83. As quoted by Thierry Bardini, in Bootstrapping: Douglas Engelbart, Coevolution, and the Origins

of Personal Computing (Stanford, Calif.: Stanford University Press, 2000), 18.

 84. Ibid., 19.

 85. Engelbart, “ Hypothetical Description of Computer-Based Augmentation System, ” in “ Aug-

menting Human Intellect, ” n. p.

 86. For more on this see Foucault, Birth of Biopolitics , 243 – 246. See also Philip Agre ’ s discussion

of capture as making more tasks intelligible as market transactions in “ Surveillance and Capture:

Two Models of Privacy, ” The Information Society 10, no. 2 (1994): 101 – 127.

 87. For more on this, see Jane Feuer, “ The Concept of Live Television: Ontology as Ideology, ” in

 Regarding Television: Critical Approaches , ed. E. Ann Kaplan (Washington, D.C.: University Press of

America, 1983), 12 – 22.

 88. Cornelia Vismann, Files: Law and Media Technology , trans. Geoffrey Winthrop-Young

(Stanford, Calif.: Stanford University Press, 2008), 6.

 89. Ibid., 7.

 90. Ibid.,10.

 91. Ibid., 163.

 92. The following PERL program, for instance, says hello every 5 minutes:

 use POSIX qw(setsid);

 #turns the process into a session leader, group leader, and ensures that it doesn ’ t #have a

controlling terminal

 chdir ‘ / ’ or die “ Can ’ t chdir to /: $! ” ;

 umask 0;

 open STDIN, ‘ /dev/null ’ or die “ Can ’ t read /dev/null: $! ” ;

 #open STDOUT, ‘ > /dev/null ’ or die “ Can ’ t write to /dev/null: $! ” ;

 open STDERR, ‘ > /dev/null ’ or die “ Can ’ t write to /dev/null: $! ” ;

 defi ned(my $pid = fork) or die “ Can ’ t fork: $! ” ;

210 Notes

 exit if $pid;

 setsid or die “ Can ’ t start a new session: $! ” ;

 while(1) {

 sleep(5);

 print “ Hello...\n ” ;

 }

 From < http://www.webreference.com/perl/tutorial/9/3.html > , accessed 9/1/2008.

 93. Fernando J. Corbato, as quoted in “ The Origin of the Word Daemon, ” from Richard Stein-

berg/Mr. Smarty Pants, The Austin Chronicle , < http://ei.cs.vt.edu/~history/Daemon.html > , accessed

3/1/2007. This is why Neal Stephenson in Snow Crash (New York: Bantam Books, 1993) describes

robots or servants in the Metaverse as daemons.

 94. This resonates with Derrida ’ s analysis of writing, in contrast to “ living logos, ” as “ orphaned ”

in “ Plato ’ s Pharmacy, ” Dissemination , trans. Barbara Johnson (Chicago: University of Chicago,

1981), 76.

 95. John Schwartz, “ Privacy Fears Erode Support for a Network to Fight Crime, ” New York Times ,

March 15, 2004, < http://www.nytimes.com/2004/03/15/technology/15matrix.html?pagewanted

=1 > , accessed 4/15/2004.

 96. Ibid.

 97. Stephanie Clifford, “ Cable Companies Target Commercials to Audience, ” New York Times ,

March 3, 2009, < http://www.nytimes.com/2009/03/04/business/04cable.html > , accessed 9/9/

2009.

 98. “ ‘ Personal data ’ in iTunes tracks, ” BBC News Online , June 1, 2007, < http://news.bbc.co.uk/2/

hi/technology/6711215.stm > , accessed 8/1/2008.

 99. Manovich, Language of New Media , 48.

 100. Microsoft is considering such actions in its Palladium initiative.

 101. See Friedrich Kittler, “ There Is No Software, ” Ctheory.net , October 18, 1995, < http://www

.ctheory.net/articles.aspx?id=74 > , accessed 8/8/2010.

 102. See Francois Jacob, The Logic of Life: A History of Heredity, trans. Betty E. Spillman (New York:

Pantheon Books, 1973), 247 – 298.

 103. Richard Doyle ’ s concept of “ rhetorical software, ” developed in his On Beyond Living: Rhetori-

cal Transformations of the Life Sciences (Stanford, Calif.: Stanford University Press, 1997), is

emblematic of the use of software as a critical term in nonscientifi c scholarly discourse.

 104. Bruce Schneier, “ U.S. Enables Chinese Hacking of Google, ” CNN Opinion Online , < http://

www.cnn.com/2010/OPINION/01/23/schneier.google.hacking/index.htm > , accessed 3/28/2010.

Notes 211

 105. Ibid.

 106. “ Government Information Awareness, ” SourceWatch.org , < http://www.sourcewatch.org/

index.php?title=Government_Information_Awareness > , accessed 3/28/2010.

 107. Google, “ Explore Flu Trends Around the World, ” < http://www.google.org/fl utrends/ > ,

accessed June 24, 2009.

 108. Adrian Mackenzie, Cutting Code: Software and Sociality (New York: Peter Lang Pub. Inc.,

2006), 169.

 109. Milton Friedman, Capitalism and Freedom , Fortieth Anniversary Edition (Chicago: Chicago

University Press, 2002), 30.

 110. Friedrich Nietzsche, “ On Truth and Lie in an Extra-Moral Sense ” (1873), from the Nachlass ,

trans. Walter Kaufmann and Daniel Breazeale < www.geocities.com/thenietzschechannel/tls

.htm > , accessed 9/3/2009.

 II Regenerating Archives

 1. Wolfgang Ernst, “ Art of the Archive, ” K ü nstler.Archiv — Neue Werke zu historischen Best ä nden , ed.

Helen Adkins (K ö ln: Walter K ö nig, 2005), 99.

 2. Jacques Derrida, “ Freud and the Scene of Writing, ” Writing and Difference , trans. Alan Bass

(Chicago: University of Chicago, 1978), 226.

 3. Execution, as this book has been arguing, is arguably a more critical category, but it is

constantly overlooked in favor of memory.

 4. The move from calculator to computer is also the move from mere machine to human-

emulator: IBM initially resisted the term computer because computers initially were human. To

call a machine a computer implied job redundancy (Martin Campbell-Kelly and William Aspray,

 Computer: A History of the Information Machine (New York: Basic Books, 1996), 115). John von

Neumann, in his mythic and controversial The First Draft Report of the EDVAC (1945) deliberately

used the term memory organ rather than store , also in use at the time, in order to parallel biologi-

cal and computing components and to emphasize the ephemeral nature of vacuum tubes. (See

von Neumann, “ First Draft of a Report on the EDVAC, ” < www.cs.colorado.edu/~zathras/csci3155/

EDVAC_vonNeumann.pdf > , accessed 9/12/2003). Vacuum tubes, unlike mechanical switches, can

hold values precisely because their signals can degenerate — and thus regenerate.

 5. For more on this compression see David Harvey, A Short History of Neoliberalism (Oxford:

Oxford University Press, 2005, 7).

 6. See Ryan Lizza, “ The YouTube Election, ” New York Times , August 20, 2006, < http://www

.nytimes.com/2006/08/20/weekinreview/20lizza.html?ex=1313726400 & en=a605fabfcb81eebf & e

i=5088 & partner=rssnyt & emc=rss > , accessed 9/1/2009. In this video clip Senator George Allen

referred to an Indian American man as a “ macacca ” while campaigning in Virginia.

212 Notes

 7. For more on this ideal and its incapacity to explain public behavior, see Thomas Keenan ’ s

 “ Publicity and Indifference (Sarajevo on Television), ” PLMA 111, no. 1 (January 2002):

104 – 116.

 8. Jacques Derrida, Archive Fever: A Freudian Impression , trans. Eric Prenowitz (Chicago: Chicago

University Press, 1998), 11 – 12.

 9. Derrida, Archive Fever , 84.

 10. Derrida, “ Freud and the Scene of Writing, ” 228.

 11. Howard Caygill, “ Meno and the Internet: Between Memory and the Archive, ” History of the

Human Sciences 12 (1999): 2.

 12. Derrida, Archive Fever , 36.

 13. Ibid.

 14. Ibid., 4n1.

 15. For the relationship between threat and promise see Jacques Derrida, “ Typewriter Ribbon, ”

 Without Alibi (Palo Alto, Calif.: Stanford University Press, 2002), 155.

 16. Ibid., 7.

 17. Ibid., 1; emphasis in original.

 18. According to Ernst, archives are comprised of fundamentally discontinuous units or frag-

ments — they are not histories (stories), but rather “ discrete, isolated units and islands of dis-

course ” that are “ generally smoothed over in narrative representations based on archive research ”

(Ernst, “ Art of the Archive, ” 94). These discrete units do not simply lie about, but rather are

ordered — the archive “ is a metonymic device that ‘ formalizes ’ experience ” ; “ the art of the archive

entails assigning names to documents — to which stories immediately adhere ” (Ibid., 94, 96). In

contrast to this metonymic linguistic ordering based on names and categories, digital media offers

the possibility of searching based on textual and pattern-based similarities, disrupting archival

ordering. This disruption undermines a fundamental function of the archive: the separation of

documents into discrete units; see Wolfgang Ernst, “ Dis/continuities: Does the Archive Become

Metaphorical in Multi-Media Space?, ” in New Media, Old Media: A History and Theory Reader , ed.

Wendy Hui Kyong Chun and Thomas Keenan (New York: Routledge, 2006), 119. Rather than an

archive, one has something like a “ life stream ” — a time based medium that is only superfi cially

comprised of documents. In addition, cyberspace has no memory: “ the archival phantasms in

cyberspace are an ideological defl ection of the sudden erasure of archives (both hard- and soft-

ware) in the digital world. . . . The Internet has no organized memory and no central agency,

being defi ned rather by the circulation of discrete states. If there is memory, it operates as a radical

constructivism: always just situationally built, with no enduring storage ” (Ibid., 119). This con-

stant fl ow and information in general, whose value is linked to entropy rather than order techni-

cally redeems (wipes out) the archive (Ibid., 97). “ The archive is a given, well-defi ned-lot; the

Internet, on the contrary, is not just a collection of unforeseen texts, but of sound and images as

well, an archive of sensory data for which no genuine archival culture has been developed so far

Notes 213

in the occident. . . . What separates the Internet from the classical archive is that its mnemonic

logic is more dynamic than cultural memory in the printed archive ” (Ibid., 119 – 120).

 3 Order from Order, or Life According to Software

 1. Pierre-Simon Laplace, A Philosophical Essay on Probabilities (1820; reprinted, New York: Dover,

1951), preface.

 2. Gilles Deleuze and F é lix Guattari, A Thousand Plateaus: Capitalism and Schizophrenia , trans.

Brian Massumi (Minneapolis: University of Minnesota Press, 1987), 143.

 3. See Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America

(Cambridge, Mass.: MIT Press, 1996); and Richard Boyd, “ Metaphor and Theory Change: What

Is a ‘ Metaphor ’ a Metaphor For?, ” in Metaphor and Thought , ed. Andrew Ortony (Cambridge:

Cambridge University Press, 1993), chap. 21.

 4. Richard Dawkins, The Selfi sh Gene , 2nd ed. (Oxford: Oxford University Press, 1989), v.

 5. Ibid., 49.

 6. Fran ç ois Jacob, The Logic of Life (New York: Pantheon, 1982), 2.

 7. John von Neumann, “ First Draft of a Report on the EDVAC, ” Contract No. W-670-

ORD-4926 between the United States Army Ordnance Department and the University of

Pennsylvania, June 30, 1945, < http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf > , 3,

accessed 8/8/2010.

 8. Herman Goldstine and John von Neumann, “ Planning and Coding of Problems for an Elec-

tronic Computer Instrument, ” “ Report on the Mathematical and Logical Aspects of an Electronic

Computing Instrument, ” Part II, Volume I (Princeton, N.J.: Institute for Advanced Study, 1947).

 9. The other factors, such as clerical and gendered bureaucratic relations, and Fordist industrial

techniques, are the subjects of the other chapters.

 10. Jacob, Logic of Life , 264 – 265.

 11. Ibid., 1.

 12. Lily Kay, Who Wrote the Book of Life? A History of the Genetic Code (Stanford, Calif.: Stanford

University Press, 2000), xv.

 13. Ibid., 85.

 14. Richard Doyle, On Beyond Living: Rhetorical Transformations of the Life Sciences (Stanford, Calif.:

Stanford University Press, 1997), 1.

 15. Ibid., 13.

 16. Ibid., 3.

 17. Ibid., 2.

214 Notes

 18. Ibid., 6 – 7.

 19. David Mindell in Between Human and Machine: Feedback, Control, and Computing Before Cyber-

netics (Baltimore: Johns Hopkins University Press, 2002) argues convincingly against this claim,

emphasizing the importance of electrical engineering to the development of cybernetics.

 20. Norbert Wiener, The Human Use of Human Beings: Cybernetics and Society (Garden City, N.Y.:

Doubleday, 1954), 27; emphasis in original.

 21. Wiener explains, “ Information is a name for the content of what is exchanged with the outer

world as we adjust to it, and make our adjustment felt upon it. The process of receiving and of

using information is the process of our adjusting to the contingencies of the outer environment,

and of our living effectively within that environment ” (Human Use of Human Beings , 17 – 18).

 22. On the importance of the military, see Heinz von Foerster, “ Epistemology of Communica-

tion, ” in The Myths of Information: Technology and Postindustrial Culture , ed. Kathleen Woodward

(Madison, Wisc.: Coda Press, 1980), 18 – 27.

 23. Norbert Wiener, Cybernetics, or, Control and Communication in the Animal and the Machine

(Cambridge, Mass.: Technology Press, 1948), 118. Paul Edwards in The Closed World similarly

distinguishes between cybernetic and artifi cial intelligence in terms of hardware versus software

as the means for modeling brains (239).

 24. Warren Weaver, “ Some Recent Contributions, ” in Claude E. Shannon and Warren Weaver,

 The Mathematical Theory of Communication (Urbana: University of Illinois Press, 1963), 18.

 25. Claude Shannon, “ The Mathematical Theory of Communication, ” in Shannon and Weaver,

Mathematical Theory of Communication , 31; emphasis in original.

 26. Jacob, Logic of Life , 79, 207.

 27. Ibid., 298.

 28. Richard Panek, The Invisible Century: Einstein, Freud, and the Search for Hidden Universes (New

York: Penguin, 2004); emphasis in original. Panek theorizes the invisible century in terms of the

Freudian unconscious and Einsteinian relativity. In contrast, genetics and computer memory do

not simply speculate about the invisible, they posit an invisible program that drives the visible

world.

 29. Erwin Schr ö dinger, What Is Life? with Mind and Matter and Autobiographical Sketches

(Cambridge, UK: Cambridge University Press, 1992), 23; and Jacob, Logic of Life , 285.

 30. Schr ö dinger, What Is Life? , 68 – 69.

 31. Ibid., 4.

 32. Ibid., 31.

 33. Ibid., 69.

 34. Ibid., 73 – 74.

Notes 215

 35. Schr ö dinger himself rejected such a connection. See Kay, Who Wrote the Book of Life? , 64 – 65.

 36. Kay, Who Wrote the Book of Life? , 21.

 37. Schr ö dinger, What Is Life? , 23.

 38. Schr ö dinger to E. I. Conway, October 25, 1942, quoted in E. J. Yoxen, “ The Social Impact of

Molecular Biology ” (unpublished PhD thesis, Cambridge University, 1978), 152.

 39. Schr ö dinger, What Is Life? , 23.

 40. Ibid., 21 – 22. By making the code-script both pattern and development, Schr ö dinger possibly

was rejecting the classical genetic separation of transmission from development, but since his

code-script confl ates development with the means of transmission, it hardly offers a serious

biological consideration of development.

 41. Kay, Who Wrote the Book of Life? , xvii.

 42. Kay similarly argues that a poststructuralist view of writing sees writing as writing itself. My

argument is slightly different: it ’ s not the poststructuralist view but rather the view that writing

and execution are confl ated, although importantly, this formulation also gives great powers to

anyone who controls the source.

 43. Jacob, Logic of Life , 298.

 44. Fran ç ois Jacob, The Statue Within: An Autobiography (New York: HarperCollins, 1988), 58.

 45. Linus Pauling, “ Schr ö dinger ’ s Contributions to Chemistry and Biology, ” in Schr ö dinger: Cen-

tenary Celebrations of a Polymath , ed. C. W. Kilmister (Cambridge: Cambridge University Press,

1987), 225 – 233.

 46. Kay argues, “ Schr ö dinger ’ s code-script was based on permutations in proteins, it neither

related one system of symbols . . . to another . . . as did genetic codes after 1953, nor, most

importantly did it claim to transfer information ” (Who Wrote the Book of Life? , 61.)

 47. Ibid., 161.

 48. Gunther S. Stent, “ Introduction: Waiting for the Paradox, ” in Phage and the Origins of

Molecular Biology , ed. John Cairns et al. (Long Island, N.Y.: Cold Spring Harbor Laboratory of

Quantitative Biology, 1966), 3.

 49. Donald Fleming, “ É migr é Physicists and the Biological Revolution, ” in The Intellectual

Migration , ed. Donald Fleming and Bernard Bailyn (Cambridge, Mass.: Harvard University Press,

1969), 172.

 50. Evelyn Fox Keller, “ Physics and the Emergence of Molecular Biology: A History of Cognitive

and Political Synergy, ” Journal of the History of Biology 23, no. 3 (Fall 1990): 390.

 51. Leah Ceccarelli, Shaping Science with Rhetoric: The Cases of Dobzhansky, Schr ö dinger, and Wilson

(Chicago: University of Chicago, 2001), 82 – 112.

 52. Ibid., 67.

216 Notes

 53. Doyle, On Beyond Living , 13.

 54. Ibid., 28 – 29.

 55. Ibid., 13; emphasis in original.

 56. Ibid., 35. Not surprisingly, this part of Schr ö dinger ’ s text has been mainly forgotten, since

his hypothesis has proven so incorrect. What Schr ö dinger could not foresee is not only the

importance of hydrogen bonds, but also the complete confl ation of message with action, neces-

sary for code-script as life.

 57. Michel Foucault, The Archaeology of Knowledge & The Discourse on Language , trans. A. M.

Sheridan Smith (New York: Pantheon Books, 1972), 129.

 58. Ibid.; emphasis in original.

 59. Michel Foucault, The Order of Things: An Archaeology of the Human Sciences , trans. A. M.

Sheridan (New York: Vintage Books, 1994), ix.

 60. Ibid., 131.

 61. Ibid., 15.

 62. Deleuze argues in Foucault , trans. Sean Hand (Minneapolis: University of Minnesota, 1988),

 “ each age has its own particular way of putting language together, because of its different group-

ings ” (56) and “ each historical formation sees and reveals all it can within the conditions laid

down for visibility, just as it says all it can within the conditions relating to statements ” (59).

 63. Foucault, Archaeology of Knowledge , 128, and Order of Things , xx.

 64. Foucault, Order of Things , ix.

 65. See Michel Foucault, “ Two Lectures, ” in Power/Knowledge: Selected Interviews and Other Writ-

ings, 1972 – 1977 , ed. Colin Gordon (New York: Pantheon, 1980), 78 – 108, and “ What Is Critique, ”

in What Is Enlightenment? Eighteenth-Century Answers and Twentieth-Century Questions , ed. James

Schmidt (Berkeley, Calif.: University of California Press, 1996), 394 – 395.

 66. Foucault, Archaeology of Knowledge , 106.

 67. Ibid., 130.

 68. See Walter Gilbert, “ The RNA World, ” Nature 319 (February 1986): 618.

 69. A. M. Turing, “ Computing Machinery and Intelligence, ” Mind 59 (1950): 433 – 460.

 70. Ibid., 440.

 71. Kay, Who Wrote the Book of Life? , 106.

 72. John von Neumann, “ General and Logical Theory of Automata, ” in Papers of John von

Neumann on Computing and Computing Theory , ed. William Aspray and Arthur Burks (Cambridge,

Mass.: MIT Press, 1986), 42.

Notes 217

 73. H. J. Muller, “ Mutation, ” in Eugenics, Genetics and the Family, Volume 1. Scientifi c Papers of the

Second International Congress of Eugenics (Baltimore, Md.: Williams & Wilkins Co., 1923), 106.

 74. R. C. Punnett, Mendelism (London: Macmillan & Co., 1919).

 75. Jan Sapp, “ The Nine Lives of Gregor Mendel, ” in Experimental Inquiries: Historical, Philosophical

and Social Studies of Experimentation in Science , ed. H. E. Le Grand (Dordrecht/Boston/London:

Kluwer Academic Publishers, 1990), 138. The author/date citations included are as they appear

in the chapter by Sapp.

 76. Ibid., 141.

 77. Ibid., 149.

 78. Daniel J. Kevles, In the Name of Eugenics: Genetics and the Uses of Human Heredity (Cambridge,

Mass.: Harvard University Press, 1998), 42.

 79. Raphael Falk, “ The Real Objective of Mendel ’ s Paper: A Response to Monaghan and Corcos, ”

 Biology and Philosophy 6, no. 4 (1991): 448.

 80. Punnett, Mendelism, 32.

 81. Francis Galton, “ Eugenics: Its Defi nition, Scope, and Aims, ” The American Journal of Sociology

10, no. 1 (July 1904): 1 – 6.

 82. The British biometricians were more focused on the degeneration of the British race. It is

telling that when Fisher changed the subtitle of the journal from “ devoted to the genetic study

of racial problems ” to “ devoted to the study of human populations, ” racial problems referred to

problems in one ’ s own race.

 83. Kevles, In the Name of Eugenics , 9.

 84. As quoted in Kevles, In the Name of Eugenics , 17.

 85. Ronald Fischer, a population geneticist and eugenics advocate, is mainly heralded as breach-

ing the differences between the biometricians and Mendelians. His “ evolutionary synthesis ”

entailed proving that discontinuous changes were not as large as the early Mendelians believed

(they were not “ sports, ” which led to new species) and by showing that the continuous traits

the biometricians tracked were actually comprised of multiple discrete ones.

 86. See Raphael Falk, “ What Is a Gene? ” Studies in the History and Philosophy of Science 17, no. 2

(1986): 138.

 87. The drive toward establishing genes as actual physical entities is attributed to Thomas

Morgan ’ s lab, in particular to the work of Hermann J. Muller. Morgan ’ s lab, working with dro-

sophila, showed that certain traits were sex-linked, that is, lay on the X or Y chromosome. For

Muller — Falk argues in “ What Is a Gene? ” — genes were units in their own right with inherent

characteristics, even if they could only be recognized by their effects. They were a “ substance

causing reproduction of its own specifi c composition, but can nevertheless mutate, and retain

the property of reproducing itself in various new forms ” (Falk, “ What Is a Gene, ” 150). This

218 Notes

material view of the gene loosened the one-to-one correspondence between character and genetic

factor, enabling a more modern and logical relationship between the gene and the trait to emerge.

It was not until 1944, however, that nucleic acids rather than proteins were revealed as the mate-

rial core of heredity, and not until the 1950s that there was a consensus on that subject.

 88. See Raphael Falk, “ The Struggle of Genetics for Independence, ” Journal of the History of Biology

28, no. 2 (1995): 239.

 89. See Jan Sapp, “ The Struggle for Authority in the Field of Heredity, 1900 – 1932: New Perspec-

tives on the Rise of Genetics, ” Journal of the History of Biology 16, no. 3 (1983): 322.

 90. George Stocking Jr., “ The Turn-of-the-Century Concept of Race, ” Modernism/Modernity 1, no.

1 (January 1994): 6.

 91. Ibid., 10. Intriguingly, though, this confusion of race and nation had its limitations. Nicholas

Hudson argues in “ From ‘ Nation ’ to ‘ Race ’ : The Origin of Racial Classifi cation in Eighteenth

Century Thought, ” Eighteenth-Century Studies 29, no. 3 (1996) that although race and nation both

stem from the same concept of lineage or stock (249), the Africans represented a special case,

since they “ roughly constituted a single ‘ race ’ even in the traditional sense of lineage ” (249). As

well, in the eighteenth century, the detail devoted to the Native Americans was disparaged as

writers emphasized the similarities of the American race, and denied “ savages ” the complexity

of nationality (256). Race as a scientifi c category more familiar to those in the twentieth century —

 like disciplinary techniques such as fi ngerprinting — was fi rst used to describe others, and then

applied to “ civilized ” folk.

 92. William Provine, “ Geneticists and Race, ” American Zoologist 26 (1986): 859 – 860.

 93. Stocking, “ Turn-of-the-Century Concept, ” 16.

 94. Ernst Mayr, The Growth of Biological Thought: Diversity, Evolution, and Inheritance (Cambridge,

Mass.: Belknap Press, 1982), 695 – 698.

 95. Ibid., 700.

 96. Diane Paul, “ ‘ In the Interests of Civilization ’ : Marxist Views of Race and Culture in the

Nineteenth Century, ” Journal of the History of Ideas 42, no. 1 (January – March 1981): 116 – 117.

 97. See Evelyn Fox Keller, “ Nature, Nurture, and the Human Genome Project, ” in Code of Codes ,

ed. D. J. Kevles and L. Hood (Cambridge, Mass.: Harvard University Press, 1991), 281 – 357; and

Eve Kosofsky Sedgwick, Tendencies (New York: Routledge, 1994), 160.

 98. Punnett, Mendelism, 167 – 168.

 99. Ibid., 169.

 100. Ibid.

 101. Nils Roll-Hansen, “ The Progress of Eugenics: Growth of Knowledge and Change in Ideol-

ogy, ” History of Science 26 (1988): 293 – 331.

 102. Curt Stern as quoted by Diane Paul, “ From Eugenics to Medical Genetics, ” Journal of Policy

History 9, no. 1 (1997): 101.

Notes 219

 103. Garland Allen, “ The Social and Economic Origins of Genetic Determinism: A Case Study

of the American Eugenics Movement 1900 – 1940 and Its Lessons for Today, ” Genetica 99, no. 2 – 3

(March 1997): 77 – 88.

 104. Michel Foucault, History of Sexuality , volume 1, trans. Robert Hurley (New York: Vintage,

1978), 136.

 105. Ibid., 137.

 106. Michel Foucault, Security, Territory, Population: Lectures at the College de France 1977 – 1978 ,

trans. Graham Burchell (New York: Picador, 2007), 2.

 107. Ibid., 79.

 108. Charles B. Davenport, Heredity in Relation to Eugenics (New York: Arno Press & New York

Times, 1972), 265 – 266.

 109. Ibid., 266.

 110. For more on genetics as human capital see Michel Foucault, The Birth of Biopolitics: Lectures

at the Coll è ge de France, 1978 – 1979 , trans. Graham Burchell (Basingstoke, England, and New York:

Palgrave Macmillan, 2008), 227.

 111. Margaret Sanger, “ Chapter XVIII: The Goal, ” in Woman and the New Race (New York: Truth

Pub. Co., 1920), 229.

 112. Foucault, History of Sexuality , 147.

 113. Foucault, Security, Territory, Population , 100.

 114. Michel Foucault, Society Must Be Defended: Lectures at the College de France 1975 – 1976 , trans.

David Macey (New York: Picador, 2003), 255.

 115. Sapp, “ Struggle for Authority, ” 337, 318.

 116. Jacob, Logic of Life , 1.

 117. Ibid., 338.

 118. Davenport, Heredity in Relation to Eugenics , 1, 2, 4.

 119. Ibid., 7; emphasis in original.

 120. Ibid., 234; emphasis in original.

 121. Ibid., 255.

 122. Ibid., 260.

 123. See Diane B. Paul and Hamish G. Spencer, “ Did Eugenics Rest on an Elementary Mistake?, ”

in Thinking about Evolution: Historical, Philosophical, and Political Perspectives , ed. Rama S. Singh

et al. (Cambridge: Cambridge University Press, 2000), 103 – 118.

 124. Provine, “ Geneticists and Race, ” 857. Nils Roll-Hansen, responding to Provine ’ s and Paul ’ s

arguments, takes a far more positivist position, arguing that the trend, from the new genetics of

220 Notes

1915 on, has been, and continues to be that the more that is known of human heredity, the

more ideas of human programming are abandoned. For him, politics did have some role to play

in this trajectory, but eugenics, he insists, was abandoned for scientifi c reasons. Roll-Hansen ’ s

argument, however, relies on a rather specious distinction between science and “ mere politics ”

(as if politics too did not try to grapple with “ facts ”) and relies on an odd defi nition of eugenics.

For instance, he argues that one could support a Norwegian sterilization law that caused “ legally

incompetent persons to be sterilized with consent of guardian if serious mental illness, or high

degree retarded or enfeebled, and reason to believe they could not support themselves or their

offspring, or condition transferred to offspring ” and not support eugenics (“ Progress of Eugenics, ”

317). But what was eugenics if not the sterilization of those that could not support one ’ s offspring,

or of those with a condition that would detrimentally affect society as a whole? It was after all,

the means by which the “ fi t ” were to reproduce more than the “ unfi t. ”

 125. Lily Kay, The Molecular Vision of Life: Caltech, the Rockefeller Foundation, and the Rise of the

New Biology (Oxford: Oxford University Press, 1993), 8.

 126. Ibid., 9.

 127. Ibid., 17.

 128. Ibid., 49.

 129. Ibid., 92.

 130. Ibid., 282.

 131. Kay, Who Wrote the Book of Life? , xvi.

 132. Ibid., 3.

 133. Jacob, Logic of Life , 251.

 134. Foucault, Birth of Biopolitics , 63 – 64.

 135. Claire J. Tomlin and Jeffrey D. Alexrod, Nature Reviews Genetics 8 (May 2007): 331.

 136. I. C. Weaver, N. Cervoni, F. A. Champagne, A. C. D ’ Alessio, S. Sharma, J. R. Seckl, S. Dymov,

M. Szyf, and M. J. Meaney, “ Epigenetic Programming by Maternal Behavior, ” Nature Neuroscience

7 (2004): 847 – 854.

 137. Personal correspondence, September 18, 2009.

 138. Catherine Malabou, What Should We Do with Our Brain? , trans. Sebastian Rand (New York:

Fordham University Press, 2008), 41, 50; emphasis in original.

 139. Ibid., 72.

 The Undead of Information

 1. See Matthew Kirschenbaum, Mechanisms: New Media and the Forensic Imagination (Cambridge,

Mass.: MIT Press, 2008).

Notes 221

 2. Sigmund Freud, “ A Note Upon the ‘ Mystic Writing-Pad, ’ ” in The Standard Edition of the Com-

plete Psychological Works of Sigmund Freud , volume XIX (1923 – 1925): The Ego and the Id and Other

Works (New York: W. W. Norton & Company, 1990), 230.

 3. Jacques Derrida, Archive Fever: A Freudian Impression , trans. Eric Prenowitz (Chicago: University

of Chicago Press, 1996), 19, 91 – 92.

 4. Ibid., 15.

 5. Warren J. Kurse II and Jay G. Heiser, Computer Forensics: Incident Response Essentials (Boston:

Addison-Wesley, 2002), 77.

 6. Fran ç ois Jacob, Of Flies, Mice, and Men , trans. Giselle Weiss (Cambridge, Mass.: Harvard Uni-

versity Press, 1998), 20 – 21. See Walter Gilbert, “ The RNA World, ” Nature 319 (February 1986):

618.

 7. Jacques Derrida, Of Grammatology , corrected ed., trans. Gayatri Chakravorty Spivak

(Baltimore, Md.: Johns Hopkins University Press, 1997), 9.

 8. Karl Marx, Capital Volume One , trans. Ben Fowkes (New York: Vintage, 1977), 163.

 9. Thomas Keenan, “ The Point Is to (Ex)Change It: Reading Capital Rhetorically, ” in Fetishism as

Cultural Discourse , ed. Emily Apter and William Pietz (Ithaca, N.Y.: Cornell University Press, 1993),

165, 168.

 4 Always Already There, or Software as Memory

 1. Jutta Read-Scott, “ Preserving Research Collections: A Collaboration between Librarians and

Scholars, ” published by the Association of Research Libraries and the Modern Language Associa-

tion, and the American Historical Association on behalf of the Task Force on the Preservation of

the Artifact at the Annual Meeting of the Modern Languages Association, Chicago, December

27 – 30, 1999, < http://www.mla.org/rep_preserving_collections > , accessed 8/8/2010.

 2. Ibid., “ Introduction. ”

 3. Abby Smith, Why Digitize (Washington, D.C.: Council on Library Resources, 1999): 3, 5,

 < http://www.eric.ed.gov:80/ERICDocs/data/ericdocs2sql/content_storage_01/0000019b/80/

17/5d/23.pdf > , accessed 9/1/2009.

 4. Archive as “ always already there ” is evident in Reginald Punnett ’ s and Charles Davenport ’ s

texts discussed in chapter 3, in which the accumulation of human knowledge drives scientifi c

and “ civilized ” progress. In its more dynamic form, software has also come to ground the “ solu-

tion ” to the traditional archive, the diffi culties of access and selection outlined by Vannevar Bush

in “ As We May Think ” : hypertext as memex erases questions of reading as it focuses our atten-

tion on mapping connections. Even in its most critical form, Michel Foucault ’ s formulation of

the archive — not as something accumulated, but rather as fi rst the law of what can be said —

 resonates with the logic of software. Discourse follows certain rules, its “ networks ” making

possible certain positions of enunciation (“ users ”).

222 Notes

 5. See Geoffrey C. Bowker, Memory Practices in the Sciences (Cambridge, Mass.: MIT Press, 2005),

100.

 6. John von Neumann, “ First Draft of a Report on the EDVAC, ” Contract No. W-670-ORD-4926

between the United States Army Ordnance Department and the University of Pennsylvania, June

30, 1945, < http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf > , 9, accessed 9/7/2009.

 7. Von Neumann states, it is “ only a transient standpoint, to make the present preliminary

discussion possible. After the conclusions of the preliminary discussion, the elements will

have to be reconsidered in their true electromagnetic nature. But at that time the decisions

of the preliminary discussion will be available, and the corresponding alternatives accordingly

eliminated ” (Ibid.).

 8. See William Aspray, John von Neumann and the Origins of Modern Computing (Cambridge, Mass.:

MIT Press, 1990): 42.

 9. Von Neumann, “ First Draft, ” 3.

 10. Warren S. McCulloch, “ What Is a Number, that a Man May Know It, and a Man, that He

May Know a Number?, ” in Embodiments of Mind (Cambridge, Mass.: MIT Press, 1965), 9.

 11. Von Neumann, “ Theory of Self-Reproducing Automata, ” Papers of John von Neumann on

Computers and Computer Theory , Charles Babbage Institute Reprint Series for the History of Com-

puting, vol. 12 (Cambridge, Mass.: MIT Press, 1986), 447.

 12. Von Neumann, “ First Draft, ” section 4.2.

 13. Claude Shannon, “ A Symbolic Analysis of Relay and Switching Circuits ” (1936), in Claude

Elwood Shannon, Collected Papers , ed. N. J. A. Sloane and Aaron D. Wyner (New York: IEEE Press,

1993).

 14. Ibid., 2.

 15. Von Neumann, “ General and Logical Theory of Automata, ” Papers of John von Neumann , 396.

Jay Forrester allegedly abandoned his initial plan to create an analog universal fl ight simulator

precisely because the complex nature of the machine made distinguishing between noise and

signal diffi cult.

 16. Ibid., 398.

 17. Ibid., 400 – 401.

 18. Thomas D. Truitt and A. E. Rogers, Basics of Analog Computers (New York: Rider, 1960), 1 – 3;

emphasis in original.

 19. In the 1960s, analog computers were used in reactor engineering to solve problems related

to “ (1) automatic control rod drives; (2) stability of reactor power plants with internal feedbacks;

(3) studies of reactivity lifetime reactor fuels; (4) dynamics of heat transfer and coolant fl ow ”

(Lawrence T. Bryant et al., Introduction to Electronic Analogue Computing [Chicago: Argonne

National Labs, 1960], 9).

Notes 223

 20. Lawrence T. Bryant and colleagues separate analyzers from analog computers based on

the use of electronics (Introduction to Electronic Analogue Computing , 9). By 1948, the REAC

(Reeves Analog Computer) had arrived. By 1949, Hartree noted the growing (wrongheaded)

consensus in the United States to refer to (what would become) computers as analog machines

and digital machines; Edmund C. Berkeley in his 1949 Giant Brains, or Machines that Think

explained: “ Machines that handle information as measurements of physical quantities are

called analogue machines, because the measurement is analogous to, or like, the information ”

(New York: Wiley, 65). The fact that differential analyzers, along with early digital machines,

were similarly dubbed “ robot brains ” or calculators and then became (retroactively) “ comput-

ers ” in the 1950s onward (the term computer makes far more sense in terms of numerical

machines rather than differential analyzers, since both human and digital computers use

numerical methods) reveals the extent to which analog and digital machines were considered

to be analogous. The fact that differential analyzers would become “ analogy ” machines, and

analog would constantly be confused with continuous, reveals the details of their coemergence

and codependence.

 21. U.S. War Department, “ F U T U R E ” press release, Bureau of Public Relations, Saturday, Feb-

ruary 16, 1946, < http://americanhistory.si.edu/collections/comphist/pr2.pdf > , accessed 9/7/2009.

The press release does go on to explain the difference between “ digital ” (general purpose) and

 “ continuous signal ” (specialized).

 22. Vannevar Bush and Samuel H. Caldwell, “ A New Type of Differential Analyzer, ” Journal of

the Franklin Institute, 240 (1945): 255.

 23. Ibid., 262.

 24. John J. Rowlands, Director of News Service, MIT, press release, Tuesday, October 30, 1945.

 25. Ibid.

 26. Ibid.

 27. Martha G. Morrow, “ Magic Brains Spur Science and Technology: Fabulous Electronic Com-

puters Herald Faster Planes and More Accurate Guns, ” in New York World-Telegram , March 10,

1946.

 28. Herbert B. Nichols, “ New Mathematical Robots Unscramble Digits to Multiply Inventions:

Research Labs Calculate Devices to Bridge Years of Two Plus Two, ” in Christian Science Monitor ,

March 20 1946, 11.

 29. Larry Owens, “ Vannevar Bush and the Differential Analyzer, ” in From Memex to Hypertext:

Vannevar Bush and the Mind ’ s Machine , ed. James M. Nyce and Paul Kahn (Boston: Academic Press,

1991), 23.

 30. These resemblances are not merely accidental or natural, since charge was conceived in terms

of force and fl ow, and each concept is used to elucidate the others.

 31. As quoted by Larry Owens, “ Vannevar Bush and the Differential Analyzer: The Text and

Context of an Early Computer, ” Technology and Culture 27, no. 1 (January 1986): 66.

224 Notes

 32. James M. Nyce, “ Nature ’ s Machine: Mimesis, the Analog Computer, and the Rhetoric of

Technology, ” in Computing with Biological Metaphors , ed. Ray Paton (London: Chapman & Hall,

1994), 417. Differential analyzers “ did not reduce phenomena to any set of general principles

and then treat those principles as the thing itself. In effect then, they both follow and obey the

same laws . . . these machines represent a triumph over a tendency in science to formalize and

typify phenomena ” (418).

 33. Hartree, Calculating Instruments and Machines , 1.

 34. Nyce, “ Nature ’ s Machine, ” 420. Furthermore, although analog machines (as Nyce later

argues) held out “ a possibility that for the brain or the machine to be understood, neither has

to be reduced to any one set of laws or logical principles ” (422), differential analyzers and other

computing machines were called a “ roomful of brains ” in the popular press and in MIT ’ s own

press releases. The word brain, rather than mind, highlights physical particularity, and the

description of these machines as brains draws on similarities between mechanisms/inputs: elec-

tricity is like blood or food, which gives the machine energy; the gears are like cells; and the

differential analyzer has only one mechanical thought: differential equations. The robot brain

thus operated by imitation, rather than duplication.

 35. Indeed, it is strange and revealing that many scholars who argue that analog and digital

computers thrived together during the 1940s to 1960s nonetheless base their analyses solely on

the differential analyzer.

 36. Bush and Caldwell, “ New Type of Differential Analyzer, ” 277.

 37. Operational amplifi ers, as their name implies, amplify voltage differences. The simplest

op-amp, a triode amplifi er, comprises an electron tube with three electrodes, a cathode, a plate,

and a control grid. As Truitt and Rogers explain, the cathode is heated to a high temperature by

an electrical hot-wire fi lament, a positive voltage is applied between the plate and the cathode,

and electrons are ejected and directed to the plate. The number of electrons per second traveling

to the plate, namely, the plate current, depends on the temperature of the cathode and the

applied voltage. If a negative voltage is applied between the control grid (located between the

cathode and the plate) and the cathode, then the value of this grid voltage exercises far greater

control over the plate current than does the value of the plate voltage. A small change in grid

voltage can thus cause a relatively large change in plate current (Truitt and Rogers, Basics of

Analog Computers, 59).

 Because they enable relatively low-cost signal amplifi cation, op-amps were key to long-

distance telephone communications. Their amplifi cation, however, is noisy and nonuniform:

they usually amplify a rapidly changing voltage less than a steady voltage, and the amplifi ca-

tion is time delayed (instead of giving an immediate amplifi cation, in other words, there is

more of a curve). Negative feedback, which Harold Black “ discovered ” in 1927, makes op-amps

less noisy and more like an on-off switch. As David Mindell argues, what was key to “ discover-

ing ” negative feedback was conceptualizing the “ output . . . as containing a pure, desirable

component — the signal — and an impure, unwanted component — the distortion ” (Between

Human and Machine , 118).

Notes 225

 Figure 4.12
 Basic triode

 38. B. Holbrook and Uta C. Merzbach, “ Interview, ” May 10, 1969, Computer Oral History Collec-

tion, 1969 – 1973, 1977 , Archives Center, National Museum of American History, Smithsonian , < http://

invention.smithsonian.org/downloads/fa_cohc_tr_holb_690510.pdf > ,10, accessed 8/8/2010.

 39. War Department, “ F U T U R E, ” 3.

 40. Hartree, Calculating Instruments and Machines , 15.

 41. Ibid., 111. In a historical irony, Hartree ’ s division between programming and coding, designed

in part to separate mere coders from mathematician programmers, has disappeared, as has,

arguably, the act of programming itself.

 42. McCulloch, “ What Is a Number, ” 1.

 43. “ Because of the ‘ all-or-none ’ character of nervous activity, ” they write, “ neural events and

the relations among them can be treated by means of propositional logic ” (Walter McCulloch

and Walter Pitts, “ A Logical Calculus of the Ideas Immanent in Nervous Activity, ” in Embodiments

of Mind , 19). They also state, “ Many years ago one of us, by considerations impertinent to this

argument, was led to conceive of the response of any neuron as factually equivalent to a proposi-

tion which proposed its adequate stimulus. He therefore attempted to record the behavior of

complicated nets in the notation of the symbolic logic of proposition. The ‘ all-or-none ’ law of

nervous activity is suffi cient to ensure that the activity of any neuron may be represented as a

proposition. Physiological relations existing among nervous activities correspond, of course, to

226 Notes

relations existing among the propositions; and the utility of the representation depends upon

the identity of these relations with those of the logic of propositions ” (21).

 44. Ibid., 3.

 45. McCulloch and Pitts, “ A Logical Calculus, ” 38.

 46. Ibid., 22.

 47. McCulloch, “ What Is a Number, ” 8. In “ A Logical Calculus, ” McCulloch and Pitts write: “ To

psychology, however, defi ned, specifi cation of the net would contribute all that could be achieved

in that fi eld — even if the analysis were pushed to ultimate psychic units or ‘ psychons, ’ for a

psychon can be no less than the activity of a single neuron. Since that activity is inherently

propositional, all psychic events have an intentional, or ‘ semiotic, ’ character ” (38).

 48. Ibid., 24.

 49. Ibid., 22.

 50. Russell as quoted by McCulloch, “ What Is a Number, ” 6 – 7.

 51. Warren McCulloch, “ Why the Mind Is in the Head, ” in Embodiments of Mind , 73.

 52. Ibid.

 53. Seymour Papert, “ Introduction, ” in Embodiments of Mind , xvi.

 54. J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts, “ What the Frog ’ s Eye Tells

the Frog ’ s Brain, ” in Embodiments of Mind , 251.

 55. McCulloch and Pitts, “ A Logical Calculus, ” 35. More strongly, McCulloch would state in 1951

that the “ cortex computes ” (“ Why the Mind Is in the Head, ” 85).

 56. Turing ’ s logic itself remarkably depends on analogies, which become equivalences.

 57. McCulloch, “ Why the Mind Is in the Head, ” 72.

 58. Ibid., 91.

 59. McCulloch and Pitts, “ A Logical Calculus, ” 35.

 60. Ibid., 35.

 61. Bowker, Memory Practices in the Sciences , 100.

 62. Warren S. McCulloch, “ Finality and Form, ” in Embodiments of Mind , 275.

 63. McCulloch, “ Why the Mind Is in the Head, ” 84.

 64. Ibid.

 65. Ibid.

 66. For more on this see Paul Edwards, The Closed World: Computers and the Politics of Discourse

in Cold War America (Cambridge, Mass.: MIT Press, 1996).

Notes 227

 67. McCulloch and Pitts, “ A Logical Calculus, ” 38.

 68. Warren S. McCulloch, “ Physiological Processes Underlying Psychoneuroses, ” in Embodiments

of Mind , 373.

 69. Warren S. McCulloch, “ Toward Some Circuitry of Ethical Robots or an Observational Science

of the Genesis of Social Evaluation in the Mind-Like Behavior of Artifacts, ” in Embodiments of

Mind , 197.

 70. John von Neumann, Theory of Self-Reproducing Automata (Urbana: University of Illinois,

1966), 39.

 71. Ibid., 40.

 72. John von Neumann, The Computer and the Brain , 2nd ed. (New Haven, Conn.: Yale University

Press, 2000), 61.

 73. McCulloch, “ Why the Mind Is in the Head, ” in Embodiments of Mind , 102. Current studies

of memory have moved away from this stark distinction between order and data back toward

an analogy-based system of memory that insists that the brain preserves traces of events through

the combination of neurons.

 74. Von Neumann, Theory of Self-Reproducing Automata , 39.

 75. Jacques Derrida, Archive Fever: A Freudian Impression (Chicago: University of Chicago Press,

1998), 19; emphasis in original.

 76. Arthur W. Burks, Herman H. Goldstine, and John von Neumann, “ Preliminary Discussion of

the Logical Design of an Electronic Computing Instrument, ” Part I, Volume 1 (Princeton, N.J.:

Institute for Advanced Study, 1946).

 77. Von Neumann, An Electronic Computing Instrument , section 4.4 (6).

 78. Marshall McLuhan, Understanding Media: The Extensions of Man (Cambridge, Mass.: MIT Press,

1964).

 79. Von Neumann, The Computer and the Brain , 36.

 80. McCulloch, “ Why the Mind Is in the Head, ” 133.

 81. As quoted in McCulloch, “ Why the Mind Is in the Head, ” 92 – 93. Von Neumann ’ s

move to fi les is intriguing, especially if one considers the importance of fi les — and of

disposing fi les — to modern bureaucracy and state power (see Cornelia Vismann ’ s Files: Law

and Media Technology , trans. Geoffrey Winthrop-Young [Stanford, Calif.: Stanford University

Press, 2008]).

 82. As Derrida notes, a trace that cannot fade is not a trace but a full presence, the son of God

(Jacques Derrida, “ Freud and the Scene of Writing, ” Writing and Difference , trans. Alan Bass

[Chicago: University of Chicago Press, 1978], 230).

 83. Von Neumann, The Computer and the Brain , 65.

228 Notes

 84. For more on the relationship between neoliberalism and Nazism, see Michel Foucault,

 The Birth of Biopolitics: Lectures at the Coll è ge de France, 1978 – 1979 , trans. Graham Burchell

(Basingstoke, England, and New York: Palgrave Macmillan, 2008), 106 – 116.

 85. William Poundstone, Prisoner ’ s Dilemma (New York: Doubleday, 1992), 194.

 86. Nicholas Vonneuman, “ The Philosophical Legacy of John von Neumann, in the Light of

Its Inception and Evolution in His Formative Years, ” paper presented at The Legacy of John

von Neumann Symposium at Hoftstra University, May 30, 1988 (Meadowbrook, Pa.: N. A.

Vonneuman, 1987 – 1988), 1.

 87. Ibid., 2.

 88. Ibid.

 89. Johannes Wolfgang Goethe, “ Faust ’ s Study (i), ” Faust Part One, trans. David Luke (Oxford:

Oxford University Press, 1987), lines 1225 – 1237.

 90. Von Neumann, “ General and Logical Theory, ” 392.

 91. Von Neumann writes, “ I will introduce as elementary units neurons, a ‘ muscle, ’ entities

which make and cut fi xed contacts, and entities which supply energy, all defi ned with about that

degree of superfi ciality with which the formal theory of McCulloch and Pitts describes an actual

neuron by axiomatizing automata in this manner, one has thrown half of the problem out the

window, and it may be the more important half. One has resigned oneself not to explain how

these parts are made up of real things, specifi cally, how these parts are made up of actual elemen-

tary particles, or even of higher chemical molecules ” (“ Theory of Self-Reproducing Automata, ”

480).

 92. Von Neumann, “ General and Logical Theory, ” 412 – 413.

 93. Ibid., 413. Von Neumann also offers an interpretation of Turing ’ s “ On Computable Numbers,

with an Application to the Entscheidungsproblem ” (see note 117) in order to justify this

statement. Von Neumann writes:

 Turing observed that a completely general description of any conceivable automaton can be (in the sense of
the foregoing defi nition) given in a fi nite number of words. The description will contain certain empty pas-
sages — those referring to the functions mentioned earlier . . . which specify the actual functioning of the
automaton. When these empty passages are fi lled in, we deal with a specifi c automaton. As long as they are
left empty, this schema represents the general defi nition of the general automaton. Now it becomes possible
to describe an automaton, which has the ability to interpret such a defi nition. In other words, which, when
fed the functions that in the sense described above defi ne specifi c automaton, will thereupon function like
the object described. The ability to do this is no more mysterious than the ability to read a dictionary and a
grammar and to follow their instructions about the uses and principles of combinations of words. This automa-
ton, which is constructed to read a description and to imitate the object described is then the universal
automaton in the sense of Turing. (Von Neumann, “ General and Logical Theory, ” 416)

 94. Von Neumann, “ Theory and Organization of Complicated Automata, ” Papers of John von

Neumann , 450.

 95. Von Neumann, “ General and Logical Theory, ” 414.

Notes 229

 96. Arthur Burks, “ Introduction: Theory of Natural and Artifi cial Automata, ” Papers of John von

Neumann , 374.

 97. Von Neumann, “ General and Logical Theory, ” 419.

 98. Ibid.

 99. Ibid., 420.

 100. Ibid.

 101. Ibid., 421.

 102. Von Neumann, Theory of Self-Reproducing Automata , 101 and 113. In other models of self-

reproduction, such as the cellular model, von Neumann still privileged the role of memory. It is

only with a large external yet accessible memory that his cellular units can be logically univer-

sal — capable of inductive processes — and thus function as fundamental cells. In describing the

function of the construction of a “ tape and its control ” for the cellular automata, von Neumann

treats the memory as containing instructions for the creation of a secondary automata (Ibid.,

202).

 103. Von Neumann, Papers of John von Neumann , 368. This comparison, however, occurs not

only on the level of mathematics or mathematization, but also on the level of heuristics, descrip-

tions, and strategies.

 104. John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior

(Princeton, N.J.: Princeton University Press, 1947), 9.

 105. Ibid., 7.

 106. Ibid., 48.

 107. Ibid., 79.

 108. Ibid., 49.

 109. As quoted in Poundstone ’ s Prisoner ’ s Dilemma , 168.

 110. Von Neumann and Morgenstern, Theory of Games , 31.

 111. Milton Friedman, Capitalism and Freedom , Fortieth Anniversary Edition (Chicago: Chicago

University Press, 2002), 25.

 112. A. M. Turing, “ On Computable Numbers, with an Application to the Entscheidungsprob-

lem, ” Proceedings of the London Mathematical Society 2, no. 42 (1937): 230 – 265.

 113. Ibid., section 6.

 114. Von Neumann, The Computer and the Brain , 70 – 71.

 115. Ibid., 71.

 116. Ibid., 72 – 73; emphasis in original.

230 Notes

 117. Frances A. Yates, The Art of Memory (Chicago: University of Chicago Press, 2001), 6 – 7.

 118. See Michael R. Williams, A History of Computing Technology (Los Alamitos, Calif.: IEEE

Computer Society Press, 1977), 306 – 316.

 119. Derrida, “ Freud and the Scene of Writing, ” 226.

 120. Wolfgang Ernst, “ Dis/continuities: Does the Archive Become Metaphorical in Multi-Media

Space, ” in New Media Old Media , ed. Wendy Hui Kyong Chun and Thomas Keenan (New York:

Routledge, 2006), 118. Although this is certainly true for CRT screens, it is not necessarily true

for LCD screens, which operate more like blinds that allow certain sections of light through.

 121. Matthew Kirschenbaum, Mechanisms: New Media and the Forensic Imagination (Cambridge,

Mass.: MIT Press, 2008).

 122. Repetition not only grounds the archive, it also threatens it. Drawing from Freud ’ s work on

the death drive, Derrida argues, “ Repetition itself, the logic of repetition, indeed the repetition

compulsion, remains . . . indissociable from . . . destruction ” (Archive Fever , 11 – 12).

 123. Jeffrey Toobin, “ Scotus Watch, ” The Talk of the Town, in The New Yorker , November 11, 2006,

 < http://www.newyorker.com/talk/content/articles/051121ta_talk_toobin > , accessed 01/27/2006.

 124. This is because there are no shelves, no fi xed relation between what is storeable and the

place they are stored. As Harriet Bradley has argued, the Internet breaks the bond between loca-

tion and storage: if before “ only what has been stored can be located, ” now “ memory is no longer

located in specifi c sites ” (“ The Seductions of the Archive: Voices Lost and Found, ” History of the

Human Sciences 12, no. 2 [1999]: 113).

 125. < http://www.archive.org/about/about.php > , accessed 2/1/2007.

 126. < http://www.archive.org/about/about.php > , accessed 2/1/2007.

 127. Ernst, “ Dis/continuities, ” 119.

 128. See Paul Virilio, “ The Visual Crash, ” in CTRL [SPACE]: Rhetorics of Surveillance from Bentham

to Big Brother , ed. Thomas Y. Levin et al. (Cambridge, Mass.: MIT Press, 2002), 108 – 113; Open Sky ,

trans. Julie Rose (London: Verso, 1997); and “ Speed and Information: Cyberspace Alarm!, ”

 < http://www.ctheory.net/text_fi le.asp?pick=72 > , accessed 2/1/2007.

 Conclusion

 1. Thomas Keenan, “ The Point Is to (Ex)Change It: Reading Capital Rhetorically, ” in Fetishism as

Cultural Discourse, ed. Emily Apter and William Pietz (Ithaca, N.Y.: Cornell University Press, 1993),

184 – 185.

 2. Erwin Schr ö dinger, What Is Life? with Mind and Matter and Autobiographical Sketches

(Cambridge, Mass.: Cambridge University Press, 1992), 21 – 22.

 3. Ibid., 440.

Notes 231

 4. Fredric Jameson, Postmodernism, or The Cultural Logic of Late Capitalism (Durham, N.C.: Duke

University Press, 1991), 51.

 5. For more on this see Michel de Certeau ’ s The Practice of Everyday Life, trans. Steven Rendall

(Berkeley: University of California Press, 1984).

 6. This is the topic of my next book, “ Imagined Networks. ”

 7. Jacques Derrida stresses that writing represents the disappearance of the origin: “ To repeat:

the disappearance of the good-father-capital-sun is thus the precondition of discourse, taken this

time as a moment and not as a principle of generalized writing. . . . The disappearance of truth

as presence, the withdrawal of the present origin of presence, is the condition of all (manifesta-

tion of) truth. Nontruth is the truth. Nonpresence is presence. Differance, the disappearance of

any originary presence, is at once the condition of possibility and the condition of impossibility

of truth. At once ” (“ Plato ’ s Pharmacy, ” Dissemination, trans. Barbara Johnson [Chicago: University

of Chicago, 1981], 168).

 8. Intriguingly, Slavoj Ž i ž ek links specters to a fear of freedom in his introduction to Mapping

Ideology (London: Verso, 1994), 27.

 9. Milton Friedman, Capitalism and Freedom , Fortieth Anniversary Edition (Chicago: Chicago

University Press, 2002), lx. Michel Foucault discusses civil society as an umbrella term to bring

together the subject of rights and the homo oeconomicus in The Birth of Biopolitics: Lectures at the

College de France, 1978 – 1979 , trans. Graham Burchell (Basingstoke, England, and New York:

Palgrave Macmillan, 2008), 291 – 316.

 10. See David Harvey, A Brief History of Neoliberalism (Oxford: Oxford University Press, 2005).

 11. Vicente Rafael, “ The Cell Phone and the Crowd: Messianic Politics in the Contemporary

Philippines, ” Public Culture 15, no. 3 (2003): 419.

 Epilogue

 1. See Toni Morrison, Playing in the Dark: Whiteness and the Literary Imagination (New York:

Vintage, 1993), 63.

 2. For more on this, see Wendy Hui Kyong Chun and Lynne Joyrich, eds., Race and/as Technology ,

special issue of Camera Obscura 24 (2009), and Wendy Hui Kyong Chun, “ Race as Archive, ”

 Vectors: Journal of Culture and Technology in a Dynamic Vernacular 3, no. 1 (2007).

 Index

 Abstraction, viii, 176

 biological, 140 – 157

 data abstraction, 37 – 39

 in Marx, 135

 Aiken, Howard, 30

 Allen, Garland, 122

 Allen, George (senator), 98

 Althusser, Louis, 66, 73

 Antonelli, Mauchly Kathleen (McNulty), 29, 32

 Archaeology, 112 – 114. See also Archive;

Foucault, Michel

 Archive, 97 – 100, 112 – 114

 and the digital, 3, 137 – 140, 170 – 172, 176,

177 (see also Internet)

 erasure of, 212n18

 and genetics, 76 – 79, 104, 120 – 124

 Aristotle, 99

 on metaphor, 56

 Aspray, William, 34

 Austin, J.L., 28

 Automata, 10, 115 – 116, 140, 157 – 158,

163 – 164, 228n91, 228n93, 229n102

 Babbage, Charles, 7, 38, 55, 158

 Backus, John, 42

 Barthes, Roland, 15

 Bartik, Jean Jennings, 29, 31, 44, 159

 Bateson, Gregory, 165 – 166

 Bateson, William, 117 – 118

 Baudrillard, Jean, 90

 The Ecstasy of Communication , 16

 Benington, Herbert D., 4, 35

 Berners, Tim, 17

 Bilas, Frances (Spence), 29

 Biology. See Cybernetics; Eugenics;

Genetics

 and computer technology, vii, 98,

101 – 104, 112 – 116, 141

 and physics, 110 – 112 (see also

Schr ö dinger, Erwin)

 Blackboxing, 45, 60, 140, 141

 Blanch, Gertrude, 38 – 40

 Boas, Franz, 120

 Broy, Manfred, 3, 19

 Brown, Bill, 11

 Brucker-Cohen, Jonah, 94

 Burks, Arthur, 34, 163, 164

 Bush, George W., 16

 Bush, Vannevar, 98 – 99, 106, 110,

144, 147, 151, 161, 170

 “ As We May Think, ” 75 – 81, 116,

208n66, 221n4

 memex, the, 75 – 80

 Butler, Judith, 28

 Caldwell, Samuel, 148, 151

 Causality, 10, 63, 65, 67, 69, 103, 112,

155 – 156, 179. See also Indexicality

 Caygill, Howard, 99

 Ceccarelli, Leah, 111

 Ceruzzi, Paul, 3 – 4

 Chu, Chuan. J., 4, 33

234 Index

 Code, 113, 114, 165 – 166, 199n29

 as fetish, 28, 49 – 54

 genetic, 103 – 105, 107, 111, 112, 125,

128 – 129, 176, 179, 215n40

 as logos , 19 – 55, 59 – 60, 89, 99, 103, 110, 112,

116, 125, 135, 152 – 153, 166 – 167, 175 – 177

 pseudocode, 19, 41 – 42, 188n3, 197n115

 source code (see Sourcery)

 the Morse, 109, 111

 Colin, Gordon, 7

 Commodifi cation, 9, 19, 41, 72. See also

Code

 Computation, 17, 19, 22, 37 – 38, 60, 67, 91,

103, 129, 148, 157 – 159, 167, 177. See also

Computer, the

 and commands, 30

 Computer, the, 2, 7, 11, 31, 46, 49, 62, 68,

80, 85 – 86, 90 – 92, 97, 102, 108, 112,

133 – 134, 177, 199n129, 207n60, 211n4. See

also Archive; Computation; ENIAC, the;

Eugenics; Memory

 and agency, 5, 90

 analog, 24, 75, 81, 222n19, 223n20

 and biology, 104 – 105, 107, 114, 116, 120,

129, 176 – 177

 and biopower, 9 – 10, 27 – 28, 128

 and cognitive psychology, 101 – 102

 computer games, 70

 computer networks, 90 (see also Maps,

mapping)

 computer program, 47, 51, 67, 70, 107, 128

 digital, 22, 26, 30, 60, 75, 77, 81, 103, 104,

142 – 144, 148, 152, 154, 161, 170, 223n20

 and ideology, 66

 and knowledge, 6

 and/as metaphor, 18, 55 – 59, 64, 82, 98, 102,

157, 175

 women as, 4, 29, 33, 38, 39, 44, 192n46

 Comrie, Leslie J., 39

 Control, 6 – 8, 18, 28, 29, 32 – 33, 35 – 38,

50 – 51, 60, 62, 66 – 67, 73, 83 – 91, 99,

103 – 108, 115, 121, 130 – 138, 177. See also

Cybernetics; Freedom; Power

 grid, 224n37

 Corbato, Fernando, 88

 Correns, Carl, 117

 Crick, Francis, 107, 110, 111

 Cybernetics, 6, 33, 60, 104 – 107, 122, 128,

129, 152. See also Eugenics

 as memory, 135

 Daemon, 55, 88 – 89, 210n93. See also UNIX,

UNIX daemon

 daemonic interfaces, 59 – 97

 Maxwell ’ s daemon, 88

 Darwin, Charles, 117, 120

 Davenport, Charles, 119, 126

 Heredity in Relation to Eugenics , 122 – 125

 Dawkins, Richard, 102, 103

 de Brosses, Charles, 50

 Deleuze, Gilles, and F é lix Guattari, 49,

101

 de Prony, Gaspard Clair Fran ç ois

Marie Riche, 38

 Derrida, Jacques, 28, 80, 97 – 99, 134, 135,

169, 170, 190n25, 191n29, 208n77

 and Felix Guattari, 49, 101

 Dibbell, Julian, 69

 Differential analyzer, the, 144 – 152. See also

Bush, Vannevar

 Digital, the, 5, 9, 10, 26, 33, 95, 97 – 98, 115,

133, 137 – 141, 154, 158 – 159, 169, 171 – 173.

 See also Computer, the

 digitization, 11, 137

 images, 15 – 16

 Dijkstra, Edsger, 36

 Direct manipulation, 59, 62 – 66, 69, 176

 DNA, 2, 6, 92, 103, 105, 107, 111 – 112, 114,

128, 134 – 135, 179

 Doane, Mary Ann, 15, 187n4

 Doyle, Richard, 105 – 106, 111

 Eck, David, 37

 Eckert, J. Presper, 33, 140, 157

 Edwards, Paul N., 2, 30, 46, 55, 60, 64, 101,

204n25

 Enduring ephemeral, the, 10, 95, 128, 133,

137 – 138, 167 – 173

Index 235

 Engelbart, Douglas, 59, 76, 80, 110, 176,

208n66

 demo, 83 – 85

 ENIAC, the, 4, 19, 29 – 34, 43, 46, 144, 152

 girls, 29, 31, 33 – 34, 46, 192n46

 “ women of ” (see ENIAC, the, girls)

 Ernst, Wolfgang, 97, 100, 169, 171

 Eugenics, 7, 38, 104, 116 – 129, 220n124.

 See also Biology

 as nurture, 120 – 124

 Everett, Bob, 42

 Experian, 17

 Facebook, xi, 13, 69 – 70, 98

 Falk, Raphael, 118, 217 – 218n87

 Fleming, Donald, 62, 222n15

 Forrester, Jay, 62, 222n15

 Foucault, Michel, 6, 8, 27, 29, 80, 112 – 114,

122 – 124, 129, 185n31, 185n32, 186n33,

208n74, 221n4. See also Archaeology;

Governmentality

 Freedom, xii, 7 – 8, 21, 43, 49, 51, 59, 62,

65 – 66, 74 – 75, 84, 94, 106, 129, 176 – 178,

185n32, 198n120, 208n66, 231n8

 and control, 46, 185n32

 Fuller, Matthew, vii – ix, 94

 Future, the, xi – xii, 2, 8 – 9, 11, 13, 33, 50,

78 – 92, 97 – 99, 101, 110 – 111, 115, 117, 125,

127, 133, 138, 156, 167, 176, 186. See also

Enduring ephemeral, the

 and past, 54, 76, 171 – 172, 206n47

 Galloway, Alexander, 21, 27, 33, 112

 “ Language Wants to Be Overlooked: On

Software and Ideology, ” 22 – 24

 Galton, Francis, 118 – 123

 Gender, 90, 128

 and programming, 4, 18, 29, 35, 46, 103,

176

 Genetics, 2, 10, 80, 90, 103 – 107, 116 – 123,

126 – 127, 179, 214n28, 219n110. See also

Biology; Code

 breeding, 117 – 126, 179

 and computing, xii, 9, 17

 heredity, 79, 103 – 104, 107 – 108, 111 – 112,

115 – 128, 139, 157, 218n87, 219n124

 Human Genome Project, 130

 and software, 108 – 116

 Gibson, William, 9, 75, 187n48

 Goethe, Johann Wolfgang, 19, 161

 Faust , 22, 27, 31, 161 – 164

 Goldstine, Adele, 192

 Goldstine, Herman, 3, 25, 34, 103, 191n27,

192n46

 Good, I. J., 30

 Google, xi, 13, 17, 92 – 93, 97, 137

 Earth, 62 (see also Interface)

 Governmentality, 6 – 9, 34, 109, 124, 127 – 129,

176, 185n31, 186n33

 Grier, David, 38

 Guttag, John V., 38

 Guattari, F é lix. See Deleuze, Gilles, and F é lix

Guattari

 Haberman, Seth, 90

 Hagen, Wolfgang, 4

 Hardware, xii, 1 – 4, 9 – 11, 17, 20 – 26, 32 – 34,

37, 45 – 46, 49, 55, 66 – 68, 77 – 78, 92, 97,

101 – 107, 112, 115, 139, 152, 156, 164, 175,

179, 183n3, 197n116, 214n23. See also

Computer, the; Software

 Hartree, Douglass, 223n20, 225n41

 Calculating Instruments and Machines , 152

 Harwood, Graham, 52

 Holberton, Frances Snyder, 29, 32 – 34, 44, 159

 Hopper, Grace Murray, 4, 30 – 31, 33 – 34, 43,

45, 110, 112, 197n115, 198n120, 198n121

 Hume, David, 154, 156

 Huxley, Julian, 122

 Ideology, 2, 17 – 18, 59, 66, 205n44. See also

Interface

 Indexicality, 15, 18, 68, 92, 179

 Information, ix, 5 – 6, 11, 15 – 17, 21, 25, 37, 42,

45, 49, 53, 57, 71, 74, 77 – 80, 87, 90 – 94,

97 – 98, 101, 104 – 111, 116, 127 – 128, 137 – 142,

151 – 173, 185n28, 197n115, 198n75,

212n18, 214n21, 223n20. See also Maps

236 Index

 Government Information Awareness (GIA),

93

 Information Awareness Offi ce (IAO),

16

 the undead of, 133 – 135

 Total Information Agency (ITA), 90

 “ total information ” systems, 15

 networks, 74

 Interactivity, 61 – 62, 71, 89, 93

 Interface, xii, 2, 8 – 10, 17 – 18, 22, 28, 33, 37,

49, 53, 55, 114, 175 – 177, 204n20, 205n44,

206n47. See also Maps; Metaphor

 as ideology, 66 – 68

 daemonic, 59 – 97

 GUI (Graphical User Interface), 8, 59 – 60, 66,

176, 206n47

 WYSIWG (What You See Is What You Get),

18

 Internet, xi, 6, 17, 52, 62 – 80, 91, 97, 138,

170 – 171, 212n18, 230n124

 Internet Wayback Machine (IWM), 138,

170 – 171

 Iterability, 25, 28, 47, 191n29

 Jacob, Fran ç ois, 103 – 115, 125 – 128

 The Logic of Life , 125

 Jameson, Fredric, 71 – 76, 206n47, 207n53

 Johannsen, Wilhelm, 119 – 120

 Johnson, Mark. See Lakoff, George, and Mark

Johnson

 Kay, Lily, 104 – 105, 110, 115 – 117, 127 – 128,

215n42

 Who Wrote The Book of Life? A History of the

Genetic Code , 105, 127 – 128

 Keller, Evelyn Fox, 111, 121

 Kevles, Daniel J., 118 – 119

 Kirschenbaum, Matthew, 5, 133, 170,

205n44

 Mechanisms: New Media and the Forensic

Imagination , 170, 205n44

 Kittler, Friedrich, 3, 92

 Knowledge, xiii, 6 – 9, 15 – 22, 37, 43, 48 – 53,

55, 57, 72 – 75, 79 – 80, 89, 98, 108,110 – 115,

121 – 122, 137, 154 – 156, 175 – 180, 186n33,

195n75, 200n136, 221n4. See also Archive

 knowledge-power, 21

 visual, 33, 92, 180

 Koss, Adele Mildred, 37, 41 – 42

 Kraft, Philip, 35 – 36, 42

 Lakoff, George, and Mark Johnson, 56 – 57, 63

 Lalande, Joseph, 38

 Landecker, Hannah, 130

 Lapaute, Nicole-Reine, 38

 Lat, David, 170

 Laurel, Brenda

 Computer as Theatre , 64 – 66, 204n20

 Laplace, Pierre-Simon, 9, 101 – 109, 114 – 116,

176

 Licklider, J. C. R., 62, 82

 Lovink, Geert. See Theory, vapor

 Lyotard, Jean-Fran ç ois, 72, 206n47

 Machine, 17, 19 – 20, 55, 60, 97, 135, 195n80,

207n60, 223n20, 224n34, 211n4. See also

Computer, the; Turing, Alan

 Mackenzie, Adrian, xii, 3

 Mahoney, Michael, 3 – 4, 25, 36

 Manovich, Lev, 69, 71, 206n47

 The Language of New Media , 20, 91

 Maps, 8, 20, 28, 59, 85, 175 – 177. See also

Archaeology; Ideology; Interface

 cognitive, 18, 71 – 79, 207n51

 mapping, 8 – 10, 51, 53, 58, 59 – 62, 69 – 70,

89 – 95, 113, 123, 129 – 130, 205n44,

221n4

 of power, 28

 Marx, Karl, 50, 52, 71, 116, 135, 175

 Matrix, The (fi lm), 66

 Matrix, the (Multistate Anti-TerRorism

Information eXchange), 90

 Mauchly, John, 34, 140

 Mauchly, Mary, 192n46

 McCarthy, John, 61

Information (cont.)

Index 237

 McCulloch, Warren, 26, 103, 141, 153 – 166,

225n43, 226n47, 227n73, 227n81,

228n91

 McLuhan, Marshall, 159

 McNulty, Kathleen. See Antonelli, Mauchly

Kathleen (McNulty)

 McPherson, Tara, 68 – 69

 Memex, the. See Bush, Vannevar

 Memory, ix, 4 – 11, 25, 55, 95 – 99, 175 – 177. See

also Archive; Computer, the; Software

 computer and/as, xii, 22 – 27, 41, 78, 80,

89, 95, 101 – 107, 115 – 116, 120, 133 – 135,

137 – 175, 194n75, 208n66, 208n77,

211n4, 212n18, 214n28, 229n102,

230n124

 memory card, 15

 Mendel, Gregor, 10, 79 – 80, 103 – 125, 179

 Metaphor, viii, 2, 10, 17 – 18, 55 – 57, 59, 60,

63 – 64, 72, 89 – 90, 94, 97, 100, 156, 162,

202n13, 202n16, 204n20, 206n47. See also

 Computer, the; Software

 Mez, 52

 Microsoft, 21, 91, 94, 188n13

 Mind, the, 2, 6, 22, 35 – 38, 50 – 53, 55, 62, 73,

78, 83, 101, 154 – 168

 Mindell, David, 75, 207n60, 225n37

 MIT AI lab 46, 49

 Moglen, Eben, 67

 Morgan, T. H., 126

 Morgenstern, Oskar, 165

 Morrison, Toni, 179

 Muller, Hermann J., 116 – 119, 217n87

 Nelson, Ted, 76, 208n66

 Neoliberalism, 7 – 10, 27, 29, 74, 129, 131,

139, 161, 166, 178. See also Postmodernism

 Neumann, John von, 3, 10, 25 – 27, 34, 55, 62,

102 – 107, 112 – 116, 139 – 167, 190n17,

211n4, 222n7, 222n15, 227n76, 228n86,

228n93, 229n102

 Neuromancer . See Gibson, William

 Neuron, 102 – 103, 130, 139 – 162, 225n43,

226n47, 228n91

 New media, xi – xii, 1 – 2, 8, 11, 15, 20, 21, 75,

91, 97, 100, 105, 159, 170, 172

 new media studies, fi eld of, 1, 20 – 21, 75, 91,

205n44

 Nietzsche, Friedrich, 89, 94

 Nostalgia, 28, 75

 Nyce, Paul, 148, 224n34

 Owens, Larry, 145

 Papert, Seymour, 155

 Paranoia, 16, 53, 66, 200n144

 Paul, Diane, 121, 126

 Pauling, Linus, 110

 Pearson, Karl, 118 – 119

 Performative, the, 22, 27 – 28, 51, 175

 Photography, 15

 photograph, 7, 15, 16, 62, 69

 Piaget, Jean, 63

 Pietz, William, 50, 52

 Pitts, Walter, 26, 103, 141, 153 – 158, 162 – 166

 Plant, Sadie, 33

 Postmodernism, 10, 72 – 74, 206n47

 Poundstone, William, 161

 Power, xii, 1 – 10, 16 – 18, 19 – 21, 27 – 97, 100,

106, 110 – 114, 170, 175 – 178, 186n33,

196n89, 199n32, 227n81. See also Control;

Maps

 biopower, 103, 122 – 124, 128 – 129 (see also

Cybernetics; Eugenics; Genetics)

 Programming, xi – xii, 1 – 18, 25 – 62, 101, 130,

152, 165, 175 – 177, 184n16, 191n29,

195n80, 197n115, 199n132, 200n136,

220n124, 225n41. See also Genetics

 and pleasure, 110

 direct programming, 19 – 20, 41

 executability, 22, 27, 48, 190n14 (see also

Code)

 FORTRAN, 32, 42 – 45, 51, 104

 programmability, 9 – 10, 49 – 54, 91, 98,

101 – 104, 112 – 113, 116 – 117, 124 – 130, 156,

173, 175

 structured, 25, 36 – 37, 188n13, 196n89

238 Index

 Provine, William, 120, 127, 219n124

 Punnett, Reginald, 118, 121 – 122, 221n4

 Race, 50, 99, 119, 120, 123, 124, 126 – 127,

179 – 180, 217n82, 218n91

 Radin, Mary Jane, 4 – 6

 RAND Corporation, the, 35

 Rand, Remington, 45

 Real, the, 15, 72, 199n132, 206

 real-time, 59, 60, 68, 81, 89, 172

 Repetition, 25, 46, 52, 78 – 80, 98 – 99, 103,

126, 133, 157, 170 – 173, 176, 230n122

 Rhodes, Ida, 38 – 40

 Rolls-Hansen, Nils, 119

 Russell, Bertrand, 154

 SAGE (Semi-Automatic Ground

Environment), 4, 35, 60 – 62, 68

 Sammet, Jean E., 44 – 45

 Sanger, Margaret, 123

 Sapp, Jan, 80, 117, 118, 124

 Sarkar, Sahotra, 118

 Saxe, John Godfrey, 1

 Schr ö dinger, Erwin, 10, 125, 176, 215n40

 What Is Life? , 10, 103 – 112, 115 – 116

 Sedgwick, Eve Kosofsky, 121

 Seisint, 15

 Sexuality, 33, 122 – 123, 185n31, 194n68

 Seysenegg, Erich Tschermak von, 117

 Shannon, Claude, 106 – 107, 109, 141 – 142,

157

 Shneiderman, Ben, 8, 59, 62, 83

 Simpson, O. J., 16

 Smith, Abby, 138

 Smith, Adam, 38

 Smith, Linda C., 75

 Software, 1 – 13, 18, 175 – 180. See also

Freedom; Ideology; Memory; Metaphor

 and ideology, 71 – 72

 and/as metaphor, 90 – 175

 as thing, xii, 6 – 11, 20 – 58

 Source, 80, 89 – 99, 105 – 114, 118, 125, 128,

137, 148, 177

 Sourcery

 real-time, 68 – 72, 175

 source code, 5, 9 – 10, 19 – 55, 59, 135, 167,

177, 188n13

 Stallman, Richard, 49, 51

 Stent, Gunther, 111

 Stephenson, Neal, 30

 Stern, Curt, 122

 Stocking, George, Jr., 121

 Subjectivity, 9, 18, 113

 Surveillance, 13, 17, 58, 90, 92 – 93, 100

 Systems Development Corporation (SDC), 35

 Teitelbaum, Ruth Lichterman, 29

 Theory, 20, 28, 54, 65, 71, 79, 82, 104,

115 – 120, 130, 134, 140, 155. See also

Neoliberalism

 game, 164 – 166

 vapor, 20 – 21, 189n7

 Thing(s), xii, 1 – 13, 18, 28, 32, 41, 50 – 58, 74,

97 – 99, 133, 135, 143 – 177, 228n91. See also

 Code; Software

 Torvalds, Linus, 49

 Transparency, 16 – 17, 54, 89, 92 – 95

 Tscherma, Erich, 117

 Turing, Alan, 30, 33, 41, 53 – 55, 112, 114 – 115,

166 – 167, 176, 228n93

 Turing machine, viii, 103, 151, 155, 166

 Ullman, Ellen, 52

 UNIVAC (the Universal Automatic

Computer 1), 33, 41, 42, 188n3,

195n75, 197n115, 197n116

 UNIX, 67, 87 – 89

 UNIX daemon, 55

 Virilio, Paul, 172

 Vismann, Cornelia, 85 – 86, 160

 Vries, Hugo de, 117

 Watson, James, 107, 110 – 111

 Weaver, Warren, 106, 130

 Weblog, 172

Index 239

 Weismann, August, 121

 Weizenbaum, Joseph, 2, 17 – 18, 28, 46 – 51,

55 – 56, 65, 165, 176, 187n50, 199n136

 Weldon, Walter Raphael, 118

 Wescoff, Marlyn (Meltzer), 29

 Whirlwind group, the, 35, 42

 Wiener, Norbert, 46, 106, 109, 155, 214n21,

214n23

 Cybernetics, or, Control and Communication in

the Animal and the Machine , 108

 Work Progress Administration ’ s (WPA) Math

Tables Project (MTP), the, 38

 Wrens, the, 30

 Yates, Frances A., 168

 Ž i ž ek, Slavoj, 52, 67

 Zuse, Konrad, 104

	Cover

	Contents
	Series Foreword
	Preface
	Introduction
	You
	I Invisibly Visible, Visibly Invisible
	1 On Sourcery and Source Codes
	Computers that Roar
	2 Daemonic Interfaces, Empowering Obfuscations

	II Regenerating Archives
	3 Order from Order, or Life According to Software
	The Undead of Information
	4 Always Already There, or Software as Memory

	Conclusion
	Epilogue
	You, Again
	Notes
	Index

