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 Series Foreword 

 Software studies aims to fi nd ways of expanding and intensifying refl ection on 
software and computational culture in general. The problems it works on are rather 
unavoidable since software, and the underlying ideas and techniques that it embod-
ies, is a crucial, if underacknowledged, element of everyday life. Few parts of human 
culture remain untouched by software, but there are relatively fewer means by 
which to evaluate it. The Software Studies book series aims to contribute to a certain 
balancing out of this ratio. 

 The ability to understand its preconditions and basal factors is in turn essential 
for any fi eld of endeavor to prosper and to renew itself. To ally such an understand-
ing with a synthetic approach, which brings together some of the iterations of a 
foundational set of ideas as they move through different fi elds and are changed by 
them as they in turn change those that they provide new insights to, is crucial. 
As this book shows, the ideas of code and of programmability underlie software. 
In turn, they form a set of idioms and techniques to shape and make possible other 
areas of life. 

 While  Programmed Visions  operates as a sustained introduction to the ideas of soft-
ware, code, and programmability as they work in relation to computation, the book 
is also a meditation on how this model proliferates, by various means, into systems 
such as living materials that are in turn understood to be bearers of a form of code 
that instructs their growth and that can, by further convolution, be read as a print 
out of the truth of an organism. Indeed, Chun ’ s book shows how, in nuanced and 
intriguing ways, the idea of code in biology anticipates that in computing. Thus, the 
idea of programmability proliferates into other pasts. 

 That computing is something that has a history is, three generations removed from 
the fi rst electronic computers, relatively well established. The study of that history 
itself has grown from a focus on canonical surveys and detailed and vivid oral histories 
to a very fruitful proliferation of focuses, problematics, and methodological scope. 
 Programmed Visions  places the fi eld of software studies in direct dialogue with that of 
computing history, but it also suggests that in order to work through history, we need 
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to be able to bring other scales into account, from feelings to geopolitics and the 
conceptual and ideological orderings that are operative in them. 

 One of the operations evaluated here is the idea that one thing can stand in for, 
or be seen as equivalent to, another. This is the essential idea of a code. Systems of 
equivalence and codifi cation such as capitalism, the universal Turing machine, man-
agement, structuralism, each has its own idiosyncrasies, and each, as constructive 
systems, has its own capacities for invention. Chun ’ s claim, in an interlude text in 
this book, is that the computer, and software in particular, has gone one step further, 
becoming a metaphor for metaphor, a means by which other metaphors are fi ltered 
and arranged, becoming in turn a system of universal experiential machining. This is 
one reason the computer cannot be written off, or lauded, as a simply crazily rational-
ist machine. There is a velocity, idiosyncrasy, and thickness to the changes wrought 
by software that makes it a fundamentally tricky phenomenon, potentially rich rather 
than inherently reductive, but not automatically so. 

 One other set of phenomena that these qualities couple with are the means of 
assigning value to things. The degradation experienced in the neoliberal moment is 
partly in the abstractions it operates by: that relations, singular qualities of inherence 
in the world, are exchanged for equivalences; that money becomes the secret means 
by which a table may be transmogrifi ed into a meal and a house may be turned into 
a debt. In the secret ironic engine undergirding economics, equivalences are exchanged 
for sames. These sames may be goods, the same dull coffee places in cities across the 
overdeveloped world, the same infrastructure of contracts, law, and possession, and 
the same operating systems that accompany them. 

 The ability of numbers, statements, currencies, or other signs to stand in for all 
kinds of things gives systems of abstraction and generalization immense power, espe-
cially when they can be made to line up into larger-scale structures, producing veri-
table machines.  Programmed Visions  gives us a means of understanding such processes, 
but also importantly understanding how software is the code that works to disinter-
mediate these systems. Thus, to understand the contemporary situation, it is not 
enough solely to recognize the operations of the economy, or even to be able to inter-
rogate the morphological expressivity of a genetic array, but also to understand the 
very mechanisms that conjoin them. And here, software ’ s capacity to handle relations, 
equivalences,and sames is also something that, as well as bearing the capacity for 
indefensible reductions, also makes it deeply productive. Software, in its relations with 
other things, brings a capacity of synthesis to multiple scales of reality, acting as a 
condition of thought, of imagination, investing them with multiple kinds of motility 
and conjunction. In turn, one of the imaginaries that invests this synthetic domain 
is a technocratic dreamwork of understanding, interpretability, ambivalent optimiza-
tion, but also of instrumentalisation and restructuration running in a recursive mode 
that reinforces systems of sames. 
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 This is a necessarily complicated, highly intriguing, series of transitions and the 
elegance with which Chun marks these moments of the waxing and waning of inte-
grations and encodings is testament both to the expressivity of the systems that she 
interprets and to the skill with which her analyses are assembled. The very dynamic 
range of the materials that the book discusses indeed compels what the book both 
celebrates and exemplifi es: a means of thinking  “ in the middle of things. ”  This feel 
for both immanence and abstraction drives  Programmed Visions  in its fi guring out of 
the relations between the different loci that it inhabits, and it is one that is marked 
by multiple resonances of vicissitude and pleasure. It is in these transitions too that 
the book engenders its relation to memory, the regenerative capacity that is needed 
when one does not have an absolute overview. Memory allows us to see patterns, to 
unlock codes, even in a world of ongoing change.  Programmed Visions  sets such a 
capacity in contrast to the fi gure of memory as simple storage, or  “ hardened ”  informa-
tion, and offers a new reading of the relationship between them. In broader terms, 
the book commends us to keep looking at what becomes soft, that which ossifi es or 
proliferates by staying the same, what multiplies and what grows anew. With an 
urgency that cannot be rushed, we are here presented with the materials to carry out 
such work. 
  
 Matthew Fuller 





 Preface: Programming the Bleeding Edge of Obsolescence 

 This book was inspired by the many lives of new media — by the ways that it not only 
survives, but also thrives on, cycles of obsolescence and renewal. 

 In the early 2000s, new media seemed to be dead, and the utopian and dystopian 
discourses around the World Wide Web and Y2K were exposed for what they were: 
hype. Gone were the celebrations of the  “ new economy, ”  virtual reality, and cyber-
space. The term  new media  even seemed  “ old ” : the New York New Media Association 
folded in 2003, and many New Media Groups within corporate structures (Apple, 
Gannett, etc.), and many new media companies disappeared. 1  Everyone was on the 
Internet — new media was everywhere — but new media seemed boring; the reality of 
surfi ng the net did not compare to the glitzy cyberpunk visions touted by  Mondo 2000 . 

 By 2008, however, the future was, once more, in fashion, and there was a growing 
impatience with the so-called critical hindsight that fl ourished after the dot.bombs 
and 9/11. Rather than sobering if banal reassessments of the Internet as a  “ double-
edged sword ”  that aids both terrorists and victims, the main strain of both popular 
and scholarly new media analysis stressed future possibilities and sought to outline 
the next big thing: mobile mobs, Web 3.0, cloud computing, radical topsight, and so 
on. A sense that something had really changed, as well as a desire to capitalize on this 
change, fueled this renewal: the returns of new media are linked to the promise of 
fi nancial returns. Silicon Valley, if not Alley, had recovered from the demise of the 
 “ new economy ” ; Google was everywhere in every possible form; iPhones and BlackBer-
ries had proliferated; even Granny was on Facebook.com. Every social movement, 
every social protest appeared to be wired; newspaper companies were folding and 
television stations laid off staff as content migrated online; everyone, it appeared, was 
bombarding one another with 140-character-long tweets, and no one seemed to care. 

 This future 2.0, like Web 2.0 or 3.0, was not as utopian or as bold as its mid-1990s 
predecessor,  the  future. No one was prophesying the end of all brick-and-mortar busi-
nesses; there were no upbeat yet paranoid commercials promising the end to racial 
discrimination and the beginnings of a happy global village; there were no must-read 
cyberpunk novels or fi lms outlining cyberspace ’ s gritty, all-encompassing nature, 



xii Preface

although  new media  does now encompass the bio- and nanotech. Instead, even within 
this optimism, there was a dim yet gnawing sense that this too will pass, that every 
next big thing is also the next big bubble (if it ’ s anything at all). To call something 
new, after all, is to guarantee its obsolescence, and this hopeful return to the future 
as future simple — as what will be, as what you will do, as a programmed upgrade to 
your already existing platform — constantly recedes and disappears. Although this 
cycle of the ever-returning and ever-receding new mirrors the economic cycle it 
facilitates, the undeadness of new media is not a simple consequence of economics; 
rather, this book argues, this cycle is also related to new media ’ s (undead) logic of 
programmability. New media proliferates  “ programmed visions, ”  which seek to shape 
and to predict — indeed to embody — a future based on past data. 

 This book addresses this concept of programmability through the surprising mate-
rialization of software as a  thing  in its own right. It argues that the hardening of 
programming into software and of memory into storage is key to understanding new 
media as a constantly inspiring yet disappointing medium of the future. It links this 
hardening to several factors: computing ’ s gendered and military history, foundational 
parallels between the fi elds of genetics and computing technology, long-standing 
visions of a stable archive of knowledge as driving human progress, and a general, 
neoliberal trend to personalize power (to make power touch each and all). All this has 
made the computer, understood as networked software and hardware machines, both 
an instrument and a symptom of neoliberal governmental power. It has made it an 
instrument of both causal pleasure and extreme frustration, a means of navigation 
and obfuscation. 

 This book, however, does not seek to condemn computers as simple neoliberal tools 
or to view user empowerment as a form of imprisonment. Computers are mediums 
of power in the fullest senses of both words. Through them, we can pleasurably create 
visions that go elsewhere, specters that reveal the limitations and possibilities of user 
and programmer, choices that show how we can rework neoliberal formulations of 
freedom and fl exibility. Specters haunt us through our interfaces — by working with 
them we can collectively negotiate the dangers and pleasures of the worlds they 
encapsulate and explode. 

 Acknowledgments 

 I am very grateful to all those who have read and sponsored various parts of this book. 
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ible research assistant Ioana Jucan for her impeccable work and to Robin Davis for her 
assistance with the images. To the fantastic editorial machine at MIT — Doug Sery, Katie 
Helke, and Kathleen Caruso — I owe an enormous thanks. Without the love and 
support of my sweetie Paul Moorcroft, this book would not have been possible.  

 Research for this book was supported by grants, fellowships and leave from Brown 
University (in particular, a Henry Merritt Wriston Fellowship and a Edwin and Shirley 
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 Introduction: Software, a Supersensible Sensible Thing 

 Debates over new media resonate with the parable of the six blind men and the ele-
phant. Each man seizes a portion of the animal and offers a different analogy: the 
elephant is like a wall, a spear, a snake, a tree, a palm, a rope. Refusing to back down 
from their positions since they are based on personal experience, the wise men engage 
in an unending dispute with each  “ in his own opinion / Exceeding stiff and strong / 
Though each was partly in the right, / And all were in the wrong! ”  The moral, accord-
ing to John Godfrey Saxe ’ s version of this tale, is:  “ So oft in theologic wars, / The 
disputants, I ween, / Rail on in utter ignorance / Of what each other mean, / And 
prate about an Elephant / Not one of them has seen! ”   1   It is perhaps irreverent to 
compare a poem on the incomprehensibility of the divine to arguments over new 
media, but the invisibility, ubiquity, and alleged power of new media (and technology 
more generally) lend themselves to this analogy. It seems impossible to know the 
extent, content, and effects of new media. Who can touch the entire contents of the 
World Wide Web or know the real size of the Internet or of mobile networks? Who 
can read and examine all time-based online interactions? Who can expertly move 
from analyzing social networking sites to Japanese cell phone novels to hardware 
algorithms to databases? Is a global picture of new media possible? 

 In response to these diffi culties, many within the fi eld of new media studies have 
moved away from specifi c content and technologies toward what seems to be common 
to all new media objects and moments: software. All new media objects allegedly rely 
on — or, most strongly, can be reduced to — software, a visibly invisible or invisibly 
visible essence. Software seems to allow one to grasp the entire elephant because it is 
the invisible whole that generates the sensuous parts. Based on and yet exceeding our 
sense of touch — based on our ability to manipulate virtual objects we cannot entirely 
see — it is a magical source that promises to bring together the fractured fi eld of new 
media studies and to encapsulate the difference this fi eld makes. To know software 
has become a form of enlightenment: a Kantian release from self-incurred tutelage. 

 This notion of knowing software as a form of enlightenment — as a way to com-
prehend an invisible yet powerful whole — is not limited to the fi eld of new media 
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studies. Based on metaphor, software has become a metaphor for the mind, for 
culture, for ideology, for biology, and for the economy. Cognitive science, as Paul 
Edwards has shown, initially comprehended the brain/mind in terms of hardware/
software.  2   Molecular biology conceives of DNA as a series of genetic  “ programs. ”  
More broadly, culture itself has been posited as  “ software, ”  in opposition to nature, 
which is  “ hardware. ”   3   Although technologies, such as clocks and steam engines, 
have historically been used metaphorically to conceptualize our bodies and culture, 
software is unique in its status as metaphor for metaphor itself. As a universal 
imitator/machine, it encapsulates a logic of general substitutability: a logic of order-
ing and creative, animating disordering. Joseph Weizenbaum has argued that com-
puters have become metaphors for all  “ effective procedures, ”  that is, for anything 
that can be solved in a prescribed number of steps, such as gene expression and 
clerical work.  4   

 The clarity offered by software as metaphor — and the empowerment allegedly 
offered to us who know software — however, should make us pause, because software 
also engenders a sense of profound ignorance. Software is extremely diffi cult to com-
prehend. Who really knows what lurks behind our smiling interfaces, behind the 
objects we click and manipulate? Who completely understands what one ’ s computer 
is actually doing at any given moment? Software as metaphor for metaphor troubles 
the usual functioning of metaphor, that is, the clarifi cation of an unknown concept 
through a known one. For, if software illuminates an unknown, it does so through an 
unknowable (software). This paradox — this drive to grasp what we do not know 
through what we do not entirely understand — this book argues, does not undermine, 
but rather grounds software ’ s appeal. Its combination of what can be seen and not 
seen, can be known and not known — its separation of interface from algorithm, of 
software from hardware — makes it a powerful metaphor for everything we believe is 
invisible yet generates visible effects, from genetics to the invisible hand of the 
market, from ideology to culture. 

 Every use entails an act of faith, and this book tries to understand what 
makes this trust possible not in order to condemn and move  “ beyond ”  computer 
software and interfaces, but rather to understand how this combination of visibility 
and invisibility, of past experiences with future expectation, makes new media 
such a powerful thing for each and all. It also takes seriously new media ’ s modes 
of repetition and transmission in order to understand how they open up gaps 
for a future beyond predictions based on the past. Computers — understood as 
software and hardware machines — this book argues, are mediums of power. This 
is not only because they create empowered users, but also and most importantly, 
because software ’ s vapory materialization and its ghostly interfaces embody —
 conceptually, metaphorically, virtually — a way to navigate our increasingly complex 
world. 
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 How Soft Is Software? 

 Software is, or should be, a notoriously diffi cult concept. Historically unforeseen, 
barely a thing, software ’ s ghostly presence produces and defi es apprehension, allowing 
us to grasp the world through its ungraspable mediation. 

 Computer scientist Manfred Broy describes software as  “ almost intangible, gener-
ally invisible, complex, vast and diffi cult to comprehend. ”  Because software is 
 “ complex, error-prone and diffi cult to visualize, ”  Broy argues, many of its  “ pioneers ”  
have sought to make  “ software easier to visualize and understand, and to represent 
the phenomena encountered in software development in models that make the 
often implicit and intangible software engineering tasks explicit. ”   5   Software chal-
lenges our understanding not only because it works invisibly, but also because it is 
fundamentally ephemeral — it cannot be reduced to program data stored on a hard 
disk. Historian Michael Mahoney describes software as  “ elusively intangible. In 
essence, it is the behavior of the machines when running. It is what converts their 
architecture to action, and it is constructed with action in mind; the programmer 
aims to make something happen. ”   6   Consequently, software is notoriously diffi cult 
to study historically: most  “ archived ”  software programs can no longer be executed, 
and thus experienced, since the operating systems and machines, with which they 
merge when running, have disappeared. Although these systems can be emulated, 
what is experienced is a reconstruction.  7   Hence, not only does software ’ s ephemeral-
ity make analysis diffi cult, so does the lack of clear boundaries between running 
programs and between running software and live hardware. Theorist Adrian Mac-
kenzie aptly calls software a  “ neighbourhood of relations ” ;  “ in code and coding, ”  
he argues,  “ relations are assembled, dismantled, bundled and dispersed within and 
across contexts. ”   8   Software  “ pioneers ”  Herman H. Goldstine and John von Neumann, 
in their 1940s explication of programming, similarly described it as  “ the technique 
of providing a dynamic background to control the automatic evolution of a 
meaning. ”   9   

 To be apprehended, software ’ s dynamic porousness is often conceptually trans-
formed into well-defi ned layers. Software ’ s temporality, in other words, is converted 
in part to spatiality, process in time conceived in terms of a process in space. Historian 
Paul Ceruzzi likens software to an onion,  “ with many distinct layers of software over 
a hardware core. ”   10   Application on top of operating system, on top of device drivers, 
and so on all the way down to voltage charges in transistors. What, however, is the 
difference between an onion ’ s layers and its core? Media archeologist Friedrich Kittler, 
taking this embedded and embedding logic to its limit, has infamously declared  “ there 
is no software, ”  for everything, in the end, reduces to voltage differences. More pre-
cisely, he contends,  “ there would be no software if computer systems were not 
surrounded . . . by an environment of everyday languages. This environment . . . since 
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a famous and twofold Greek invention, consists of letters and coins, of books and 
bucks. ”   11   Less controversially, Mahoney has argued that software  “ is an artifact of 
computing in the business and government sectors during the  ’ 50s ” ; software, as Paul 
Ceruzzi and Wolfgang Hagen have shown, was not foreseen: the engineers building 
high-speed calculators in the mid-1940s did not plan or see the need for software.  12   

 At fi rst, software encompassed everything that was not hardware, such as services. 
The term  soft , as this book elaborates, is gendered. Grace Murray Hopper claims that 
the term  software  was introduced to describe compilers, which she initially called 
 “ layettes ”  for computers; J. Chuan Chu, one of the hardware engineers for the ENIAC, 
the fi rst working electronic digital computer, called software the  “ daughter ”  of Fran-
kenstein (hardware being the son).  13   Software, as a service, was initially priced in terms 
of labor cost per instruction.  14   Herbert D. Benington remarks that attendees at the 
1956 symposium on advanced programming methods for digital computers were hor-
rifi ed that his Lincoln Laboratory group, working on what would become the ground-
breaking SAGE (Semi-Automatic Ground Environment) Air Defense System, could do 
no better than $50 per instruction. In that 1956 address Benington also stresses the 
growing importance of software:  “ our colleagues who build computers, ”  he notes, 
 “ have come to realize that a computer is not useful until it has been programmed. ”   15   
As this statement reveals, the word  program , at that time, was predominantly a verb, 
not a noun.  16   

 Legal battles over software copyrights and patents make clear the stakes of this 
transformation of software from a service, priced per instruction, to a thing. Not 
surprisingly, software initially was considered neither patentable nor copyrightable 
because of its functional, intangible, and  “ natural ”  status. The U.S. Supreme Court 
in 1972 fi rst rejected engineers Gary Benson and Arthur Tabbot ’ s claim to patent 
an algorithm for converting digital into binary digits. It decided, as legal scholar 
Pamela Samuelson argues, that  “ mathematical innovations should be treated like 
scientifi c truths and laws of nature, and scientifi c truths and laws of nature are 
unpatentable subject matter. ”   17   Software algorithms, in other words, were  “ natural ”  
mental processes, not artifi cial things. As Samuelson and as legal scholar Margaret 
Jane Radin both note, key to the eventual patenting of software was its transforma-
tion from a set of instructions to a machine.  18   In 1981, the Supreme Court in 
 Diamond v. Diehr, 450 U.S. 175  (1981) upheld the patenting of an algorithmic-based 
process for curing rubber because the algorithm resulted in a tangible physical 
process: it cured rubber. By 1994, the U.S. Court of Appeals Federal Circuit held in 
 In re Alappat  (1994) that all software was inherently machinic, since it changed the 
material nature of a computer:  “ a general purpose computer in effect becomes a 
special purpose computer once it is programmed to perform particular functions 
pursuant to instructions from program software. ”   19   A change in memory, it seems, 
a change in machine. 



Introduction 5

 As a physical process, however, software would seem uncopyrightable.  20   Copyright 
seeks to protect creative expression; as Radin notes, patents and copyrights were sup-
posed to be mutually exclusive:  “ Copyright is supposed to exclude works that are 
functional; patent is supposed to focus on functionality and exclude texts. ”   21   To 
address this contradiction, the U.S. Congress changed the law in 1975, so that expres-
sions, as opposed to the actual processes or methods, adopted by the programmer 
became copyrightable.  22   The difference, however, between expression and methods 
has been diffi cult to determine, especially since the expression of software has not 
been limited to source code. 

 Further, copyright law insists on the tangibility of the copy, where a copy is a  “ fi xa-
tion in a tangible medium of expression. ”  Performances thus were initially considered 
to be outside the purview of copyright.  23   Although information is often considered to 
be immaterial, the forces behind copyrighting (and taxing) software stress the fact 
that, regardless of information ’ s ephemerality, information is always embodied; it 
always, as Matthew Kirschenbaum argues, leaves a trace.  24   Indeed, digital information 
has divorced tangibility from permanence, with  “ courts and commentators in the 
United States adopt[ing] the notion that the momentary arrangement of electrons in 
a computer memory, which we might have thought of as intangible information, 
amounts to a tangible physical object, a copy. ”   25   Since, as I have argued elsewhere, 
computer reading is a writing elsewhere, viewing the momentary arrangement of 
electrons in memory as a tangible copy technically makes all computer reading a 
copyright infringement. Indeed, this redefi nition of copy as thing, as Radin notes, has 
had far-reaching consequences since  “ a great many activities that were not covered 
by copyright in the offl ine environment are being brought under copyright — that is, 
under control of an owner — in the online environment. . . . The physical analogy to 
browsing in a bookstore is obliterated by the more powerful assimilation of the activity 
involved in a physical object — the production of physical  ‘ copies ’  by a computer. ”   26   
This defi nition also muddies questions of responsibility: given that every networked 
computer regularly downloads all materials in a network and then erases those not 
directly addressed to it, should everyone whose computer has unwittingly downloaded 
child pornography or pirated media be prosecuted? 

 These changes, brought about by the  “ hardening ”  of software as textual or machinic 
thing through memory, point toward a profound change in our understanding of what 
is internal and external, subject and object. According to Radin,  “ the distinction 
between tangible objects and intangible information is a distinction upon which 
much of our modern understanding of the world was built, and hence, from which a 
great many legal categorizations derive, ”  for this traditional distinction  “ owes much 
to the  ‘ modernist ’  dichotomies of the Enlightenment — between subject and object, 
between autonomous persons and heteronomous things. ”   27   The notion of intellectual 
property, which seems to break this dichotomy, was initially a compromise, she 
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contends, between the Enlightenment notion that the intellect was internal and 
property external.  28   (It is not simply, though, that information was once inside a 
person and then externalized, but also that information was considered inseparable 
from a person. Symptomatically, the meaning of information has moved from  “ the 
action of informing . . . the formation or moulding of the mind or character, training, 
instruction, teaching ”  to  “ knowledge communicated concerning some particular fact, 
subject, or event. ”   29  ) Crucially, Radin argues that the information age has compro-
mised the compromise that intellectual property represents, since, by breaking down 
the distinction between tangibility and intangibility, it conceives of information, 
whether internal or external, as always external to the self (hence the patentability of 
genes). As I ’ ve argued elsewhere, the Internet and computers — which have offered 
enlightenment for all — have exploded enlightenment by literalizing it. 

 Software as thing has led to all  “ information ”  as thing. Software as thing recon-
ceptualizes society, bodies, and memories in ways that both compromise and extend 
the subject, the user. Importantly, software as thing cannot be reduced to software as 
a commodity: software as  “ thing ”  is a return to older defi nitions of thing as a  “ gath-
ering, ”  as pertaining to anything related to  “ man. ”   30   Treating software as a thing 
means treating it, again, as a neighborhood, as an amalgamation. It also means think-
ing through its simultaneous ambiguity and specifi city. Further, it means thinking 
beyond this legal history, this legal framework, toward the historical and theoretical 
stakes of the reemergence of things as relations. Indeed, this book argues that the 
remarkable process by which software was transformed from a service in time to a 
product, the hardening of relations into a thing, the externalization of information 
from the self, coincides with and embodies larger changes within what Michel 
Foucault has called  governmentality . Software as thing is a response to and product of 
changing relations between subjects and objects, of challenges brought about by 
computing as a neoliberal governmental technology. 

 Soft Government 

 According to Foucault, governmentality and government broadly encompass acts 
and institutions that govern, or steer, conduct and thus cannot be reduced to the 
state. (Not coincidentally, the term  cybernetics  is derived from the Greek term  “ kyber-
nete ”  for governing.) As Colin Gordon notes, government for Foucault is  “ the conduct 
of conduct, ”  that is,  “ a form of activity aiming to shape, guide or affect the conduct 
of some person or persons. ”  Governmentality could concern  “ the relation between 
self and self, private interpersonal relations involving some form of control or guid-
ance, relations within social institutions and communities and, fi nally, relations 
concerned with the exercise of political sovereignty. ”   31   The move from the Enlight-
enment, with its dichotomy of subjects and objects, to our current compromised 
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situation corresponds to a transition from liberal to neoliberal governmentality (and, 
even further, to a neoconservative one). 

 Liberal governmentality, which emerged during the eighteenth century, is an  “ eco-
nomic government ” : government that embraces both liberal political economy and 
the principle of noninterference. It is based on two principles: the principle of blind 
self-interest and the principle of freedom. According to its vision, actors, who cannot 
know the whole picture, blindly and freely follow their own self-interests so that  “ the 
invisible hand of the market ”  can magically incorporate their actions into a system 
that benefi ts all. This unknowability is fundamental, for it enables a transition from 
sovereign to liberal forms of governmentality. The liberal market undermines the 
power of the monarch by undermining his or her knowledge: no one can have a 
totalizing view. It also consumes freedom: it both produces freedom and seeks to 
control it.  32   Liberal governmentality also makes possible biopolitical power: a collec-
tion of institutions and actions focused on  “ taking care ”  of a population, rather than 
a territory, focused on masses rather than on sovereign subjects. 

 Historically, computers, human and mechanical, have been central to the manage-
ment and creation of populations, political economy, and apparatuses of security.  33   
Without them, there could be no statistical analysis of populations: from the process-
ing of censuses to bioinformatics, from surveys that drive consumer desire to social 
security databases. Without them, there would be no government, no corporations, 
no schools, no global marketplace, or, at the very least, they would be diffi cult to 
operate. Tellingly, the beginnings of IBM as a corporation — the Herman Hollerith ’ s 
 Tabulating Machine Company  — dovetails with the mechanical analysis of the U.S. 
census.  34   Before the adoption of these machines in 1890, the U.S. government had 
been struggling to analyze the data produced by the decennial census (the 1880 census 
taking seven years to process). Crucially, Hollerith ’ s punch-card-based mechanical 
analysis was inspired by the  “ punch photograph ”  used by train conductors to verify 
passengers.  35   Similarly, the Jacquard Loom, a machine central to the industrial revolu-
tion, inspired (via Charles Babbage ’ s  “ engines ” ) the cards used by the Mark 1, an early 
electromechanical computer. Scientifi c projects linked to governmentality also drove 
the development of data analysis: eugenics projects that demanded vast statistical 
analyses, nuclear weapons that depended on solving diffi cult partial differential 
equations.  36   

 Importantly, though, computers in the period this book focuses on (post – World 
War II) coincide with the emergence of neoliberalism. As well as control of  “ masses, ”  
computers have been central to processes of individualization or personalization. 
Neoliberalism, according to David Harvey is  “ a theory of political economic practices 
that proposes that human well-being can best be advanced by liberating individual 
entrepreneurial freedoms and skills within an institutional framework characterized 
by strong private property rights, free markets, free trade. ”   37   Although neoliberals, 
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such as the Chicago School economist Milton Friedman, claim merely to be resusci-
tating classical liberal economic theory, Foucault argues that neoliberalism differs from 
liberalism in its stance that the market should be  “ the principle, form, and model for 
a state. ”   38   It contends that individual economic and political freedom are tied together: 
competitive capitalism, Friedman writes,  “ is a system of economic freedom and a 
necessary condition for political freedom. ”   39   Harvey argues that neoliberalism has 
thrived by creating a general  “ culture of consent ”  — even though it has harmed most 
people economically by fostering incredible income disparities. In particular, it 
has incorporated progressive 1960s discontent with government and, remarkably, 
dissociated this discontent from its critique of capitalism and corporations. 

 In a neoliberal society, the market has become an ethics: it has spread everywhere 
so that all human interactions, from motherhood to education, are discussed as eco-
nomic  “ transactions ”  that can be assessed in individual cost – benefi t terms. The market, 
as Margaret Thatcher argued,  “ change[s] the soul ”   40   by becoming, Foucault argues, the 
 “ grid of intelligibility ”  for everything.  41   This transforms the  homo oeconomicus  — the 
individual who lies at the base of neoliberalism — from  “ the [liberal] man of exchange 
or man the consumer ”  to  “ the man of enterprise and consumption. ”   42   It rests on the 
 “ proposition that both parties to an economic transaction benefi t from it,  provided the 
transaction is bi-laterally voluntary and informed . ”   43   It focuses on discourses of empower-
ment in which the worker does not simply own his/her labor, but also possesses his/
her own body as a form of  “ human capital. ”   44   Since everyone is in control of this form 
of capital — the body — neoliberalism relies on voluntary, individual actions.  45   Thus, 
this changed man who has imbibed the market ethic is thus eminently governable, 
for  homo oeconomicus  is shaped through  “ rational ”  and empowering management 
techniques that make him  “ self-organized ”  and  “ self-controlling. ”   46   

 Relatedly,  “ user-friendly ”  computer interfaces have been key to empowering and 
creating  “ productive individuals. ”  As Ben Shneiderman, whose work has been key to 
graphical user interfaces (GUIs), has argued, these interfaces succeed when they move 
their users from grudging acceptance to feelings of mastery and eagerness.  47   Moreover, 
this book argues, interfaces — as mediators between the visible and the invisible, as 
a means of navigation — have been key to creating  “ informed ”  individuals who can 
overcome the chaos of global capitalism by mapping their relation to the totality of 
the global capitalist system. (Conversely, they enable corporations to track both 
individuals and totalities, through the data traces produced by our mappings.) The 
dream is: the resurgence of the  seemingly  sovereign individual, the subject driven to 
know, driven to map, to zoom in and out, to manipulate, and to act. The dream is: 
the more that an individual knows, the better decisions he or she can make. Goldman 
Sachs and other investment companies, for instance, invest millions of dollars on 
computer programs that can analyze data and execute trades milliseconds faster 
than their competition. This  “ informing ”  is thus intriguingly temporal. New media 
empowers individuals by informing them of the future, making new media the 
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future.  “ The future, ”  as William Gibson famously and symptomatically quipped,  “ is 
already here. It’s just not very evenly distributed. ”   48   This future — as something that 
can be bought and sold — is linked intimately to the past, to computers as capable 
of being the future because, based on past data, they shape and predict it.  49   Comput-
ers as future depend on computers as memory machines, on digital data as archives 
that are always there. This future depends on programmable visions that extrapolate 
the future — or, more precisely, a future — based on the past. As chapter 1 elaborates, 
computers, understood as software and hardware machines, have made possible a 
dream of programmability, a return to a world of Laplaceian determinism in which 
an all-knowing intelligence can comprehend the future by apprehending the past 
and present. They have done so through a confl ation of words with things that both 
externalizes knowledge and creates a position from which a subject can try to  “ hack ”  
the invisible hands and laws that drive the system. 

 This book, therefore, links computers to governmentality neither at the level of 
content nor in terms of the many governmental projects that they have enabled, but 
rather at the level of their architecture and their instrumentality.  50   Computers embody 
a certain logic of governing or steering through the increasingly complex world 
around us. By individuating us and also integrating us into a totality, their interfaces 
offer us a form of mapping, of storing fi les central to our seemingly sovereign —
 empowered — subjectivity. By interacting with these interfaces, we are also mapped: 
data-driven machine learning algorithms process our collective data traces in order 
to discover underlying patterns (this process reveals that our computers are now more 
profound programmers than their human counterparts). This logic of program-
mability, it also argues, is not limited to computer technology; it also stems from and 
bleeds elsewhere, in particular modern genetics, with its conceptualization of codes 
and of programs as central to inheritance. Crucially, though, this knowledge is also 
based on a profound ignorance or ambiguity: our computers execute in unforeseen 
ways, the future opens to the unexpected. Because of this, any programmed vision 
will always be inadequate, will always give way to another future. The rest of this 
book unpacks this temporality and the odd combination of visibility and invisibility 
these visions enable. 

 In part I, chapters 1 and 2 focus on how software is invisibly visible. Chapter 1 
argues that software emerged as a thing — as an iterable textual program — through an 
axiomatic process of commercialization and commodifi cation that has made code 
 logos : a word confl ated with and substituting for  action . This formulation of instruc-
tion as source — source code as fetish — is crucial to understanding the power and thrill 
of programming, in particular the fantasy of the all-powerful programmer, a subject 
with magical powers to transform words into things. This separation of code from 
execution, however, itself a software effect, is also constantly undone, historically 
and theoretically. Thus, it concludes by analyzing how code as fetish can open up 
surprising detours and ends. 
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 Chapter 2 analyzes how this invisibly visible (or visibly invisible) logic works at the 
level of the interface, at the level of  “ personal computing. ”  It investigates the extent to 
which this paradoxical combination of rational causality and profound ignorance 
grounds the computer as an attractive model for the  “ natural ”  world. Looking both at 
the use of metaphor within the early history of human – computer interfaces and at the 
emergence of the computer as metaphor, it contends that real-time computer inter-
faces are a powerful response to, and not simply an enabler or consequence of, post-
modernism and neoliberalism. Both conceptually and thematically, these interfaces 
offer a simpler, more reassuring analog of power, one in which the user takes the place 
of the sovereign  “ source, ”  code becomes law, and mapping produces the subject. 

 Chapters 3 and 4 of part II examine the intertwining of computer technology and 
biology, specifi cally the emergence of memory and its importance to notions of pro-
grammability. Through this focus on the relation between biology and computing 
technology, part II explores how software, as an axiomatic, came to embody the logic 
of the  “ always already there. ”  By exploring the ways in which biology and computer 
technology have become complementary strands of a double helix, chapters 3 and 4 
embed computer technology within the larger epistemological fi eld of programmabil-
ity, a larger drive for  “ permanence ”  that confl ates memory with storage and confl ates 
the ephemeral with the enduring, or rather turns the ephemeral into the enduring 
(the enduring ephemeral) through a process of constant regeneration. 

 Chapter 3 argues that software was not foreseen, because the drive for software — for 
an independent program that confl ates legislation with execution — did not arise solely 
from within the fi eld of computation, but also from early Mendelian genetic and eugen-
ics. Through a reading of Erwin Schr ö dinger ’ s  What Is Life , it contends that Mendelian 
genetics and software envision a return to a reductionist, mechanistic understanding 
of life, in which the human body becomes an archive. This chapter thus complicates 
the standard narrative within the history of science that the notion of a program was 
adapted by biologists from computer science, a narrative that rather remarkably treats 
software as though it always already existed. It also shows how computers, not just in 
terms of content but also of form, are deeply intertwined with questions of biopower. 

 The fi nal chapter takes up this intertwining of biology and computer technology, 
specifi cally in terms of memory and transmission. Revising the running hypothesis of 
the fi rst three chapters, chapter 4 shows how digital hardware, which grounds soft-
ware, is itself axiomatic. Through the reading of early work on neural nets and of John 
von Neumann ’ s work on automata, it reveals how logical hardware reduces events to 
words. Analyzing the importance of the analog to conceptualizing the digital, it argues 
that the digital emerged as a clean, precise logic through an analogy to an analogy. 
Crucially, it argues that computer memory, as a constantly regenerating and degenerat-
ing archive, does not simply erase human agency, but rather makes possible new 
dreams of human intervention and responsibility. 
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 As this synopsis hopefully makes clear, understanding software as a thing does 
not mean denigrating software or dismissing it as an ideological construction that 
covers over the  “ truth ”  of hardware. It means engaging its odd materializations and 
visualizations closely and refusing to reduce software to codes and algorithms —
 readily readable objects — by grappling with its simultaneous ambiguity and specifi city. 
As Bill Brown has infl uentially argued, things designate  “ the concrete yet ambiguous 
within the everyday, ”  that is, the thing  “ functions to overcome the loss of other 
words or as a place holder for some future specifying operation. . . . It designates 
an amorphous characteristic or a frankly irresolvable enigma. . . .  Things  is a word 
that tends, especially at its most banal, to index a certain limit or liminality, to 
hover over the threshold between the nameable and unnameable, the fi gureable 
and unfi gureable, the identifi able and unidentifi able. ”   51   Things thus  “ lie both at 
hand and somewhere outside the theoretical fi eld, beyond a certain limit, as a rec-
ognizable yet illegible remainder or as the entifi able that is unspecifi able. ”   52   Because 
things simultaneously name the object and something else, they are both reducible 
to and irreducible to objects.  53   Whereas we  “ look  through  objects (to see what they 
disclose about history, society, nature, or culture — above all, what they disclose about 
 us ), ”  we  “ only catch a glimpse of things. ”   54   We encounter, but do not entirely 
comprehend, things.  55   According to Brown: 

 A  thing  . . . can hardly function as a window. We begin to confront the thingness of objects 

when they stop working for us: when the drill breaks, when the car stalls, when the windows 

get fi lthy, when their fl ow within the circuits of production and distribution, consumption 

and exhibition, has been arrested, however momentarily. The story of objects asserting them-

selves as things, then, is the story of a changed relation to the human subject and thus the 

story of how the thing really names less an object than a particular subject-object relation.  56   

 Crucially, this effort to rethink, and indeed theorize things, is intimately intertwined 
with media: Martin Heidegger begins  “ The Thing ”  by outlining the shrinking of time 
and space due to  “ instant information ”  (television being the peak of this abolition of 
every possibility of remoteness); Brown argues,  “ if the topic of things attained a new 
urgency in the closing decades of that [twentieth] century, this may have been a 
response to the digitization of our world — just as, perhaps, the urgency in the 1920s 
was a response to fi lm. ”   57   

 This book sees this renewed interest in things, things which always seem to be 
disappearing, not simply as an effect of new media on other  “ things, ”  but rather as 
central to the temporality of new media itself.  New media, like the computer technology 
on which it relies, races simultaneously toward the future and the past, toward the bleeding 
edge of obsolescence . Software as thing is inseparable from the externalization of 
memory, from the dream and nightmare of an all-encompassing archive that con-
stantly regenerates and degenerates, that beckons us forward and disappears before 
our very eyes. 





  You  

    You. Everywhere you turn, it ’ s all about you — and the future. You, the produser. Having turned 
off the boob tube, or at least added YouTube, you collaborate, you communicate, you link in, 
you download, and you interact. Together, with known, unknown, or perhaps unknowable 
others you tweet, you tag, you review, you buy, and you click, building global networks, build-
ing community, building databases upon databases of traces. You are the engine behind new 
technologies, freely producing content, freely building the future, freely exhausting yourself 
and others. Empowered. In the cloud. Telling Facebook and all your  “ friends ”  what ’ s on your 
mind. Who needs surveillance when you constantly document your life?  

  But, who or what are you? You are you, and so is everyone else. A shifter,  you  both 
addresses you as an individual and reduces you to a you like everyone else. It is also singular 
and plural, thus able to call you and everyone else at the same time. Hey you. Read this. 
Tellingly, your home page is no longer that hokey little thing you created after your fi rst HTML 
tutorial; it ’ s a mass-produced template, or even worse, someone else ’ s home page — Google ’ s, 
Facebook ’ s, the  New York Times  ’  .  You: you and everyone; you and no one.  





 I     Invisibly Visible, Visibly Invisible 

 When enough seemingly insignifi cant data is analyzed against billions of data elements, the 

invisible becomes visible. 

  — Seisint  1   

 Computers have fostered both a decline in and frenzy of visual knowledge. Opaque 
yet transparent, incomprehensible yet logical, they reveal that the less we know the 
more we show (or are shown). Two phenomena encapsulate this nicely: the prolifera-
tion of digital images (new media as  “ visual culture ” ) and  “ total information ”  systems 
(new media as  “ transparent ” ). 

 When digital cameras were introduced to the mass market in the 1990s, many 
scholars and legal experts predicted the end of photography and fi lm.  2   The reasons 
they offered were both material and functional: the related losses of celluloid and of 
indexicality, the evidentiary link between artifact and event. If, as Roland Barthes 
argues, the photograph certifi es that something has been — it is not a  “ copy ”  of a past 
reality, but an  “ emanation of a  past reality  ”   3   — and if, as Mary Ann Doane contends, 
fi lm as a historical artifact and the fi lmic moment as historical event are inextricably 
intertwined,  4   digital images by contrast break the temporal link between record and 
event. Because a memory card can be constantly rewritten, there is, theoretically, no 
fi xed relationship between captured event and image. Thus, it is not just that digital 
images are easily manipulated, but also that the moments they refer to cannot be 
chemically verifi ed. Digital images, in other words, challenge photorealism ’ s confl a-
tion of truth and reality: the notion that what is true is what is real and what is real 
is what is true. 

 Digital photographs, however, are hardly divorced from either the true or the real, 
although they relate to them differently than did their celluloid predecessors. Truth 
is not necessarily coupled to images captured with minimal machinic intervention, 
but rather to images subject to high-tech manipulation. The so-called  CSI  effect exem-
plifi es this: because of the popular valorization of  “ forensic ”  identifi catory techniques 
over deduction, juries are increasingly unwilling to convict based on circumstantial 
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evidence.  5   In addition, although digital photographs were initially treated with suspi-
cion because they were diffi cult to authenticate, they are now routinely used as evi-
dence both legally and colloquially in part due to their ubiquity: digital images and 
devices have proliferated wildly. A critical literacy or smartness, verging on paranoia, 
has also accompanied their use as evidenced by user-driven investigations revealing 
the darkening of O. J. Simpson ’ s mug shot by  Time Magazine , the darkening of skies 
over war-torn Lebanon during the 2006 Isreal-Lebanon confl ict by Adnan Hajj, and 
Dan Rather ’ s unintentional use of forged documents in his investigation of President 
George W. Bush ’ s war record. 

 This proliferation, paradoxically, has also fostered a growing belief that computers 
enable total transparency. Jean Baudrillard in  The Ecstasy of Communication  has argued 
 “  we no longer partake of the drama of alienation, but are in the ecstasy of communication . 
And this ecstasy is obscene, ”  because  “ in the raw and inexorable light of information, ”  
everything is  “ immediately transparent, visible, exposed. ”   6   Although extreme, Baudril-
lard ’ s assessment resonates with public outrage over projects such as the George W. 
Bush administration ’ s Total Information Awareness Program (TIA), a  “ systems-level ”  
program developed by the Defense Advanced Research Projects Agency ’ s (DARPA ’ s) 
Information Awareness Offi ce (IAO) to create a virtual, centralized database, drawing 
from multiple sources, that would enable the government to capture a person ’ s  “ infor-
mation signature. ”  The IAO ’ s motto —  scientia est potentia  (knowledge is power) — and 
its logo resonated strongly with dystopian science fi ction: an eye affi xed to the apex 
of a pyramid, shining a ray of light onto the globe (  fi gure I.1 ). At all levels, TIA was 
to enable  “ topsight ” :  “ the ability to  ‘ see the whole thing ’  — and to plunge in and 
explore the details. ”   7   Renamed the Terrorism Information Awareness Program, the 
funding for this agency was partly revoked by Congress in 2003 in response to citizen 
complaints, although many of the TIA initiatives, as of 2009, were still funded. 

 Figure I.1 
 Information Awareness Offi ce logo 



Invisibly Visible, Visibly Invisible 17

    Crucially, this desire to bring together billions of data items was and is not limited 
to governmental organizations. Google allegedly stores the search terms, linked to IP 
addresses, of every search on its site; its cameras, designed to produce images for its 
street view, cruise streets around the world; its  “ interest-based advertising ”  monitors 
user activity in order to refi ne ads (a technique described by Tim Berners-Lee as similar 
to allowing someone  “ to put a television camera in your room, except it will tell them 
a whole lot more about you than the television camera. ” )  8   Also, according to the 2009 
 “ KnowPrivacy ”  report by Joshua Gomez, Travis Pinnick, and Ashkan Soltani of UC 
Berkeley ’ s iSchool, Google has  “ a web bug on 92 of the top 100 sites, and on 88% of 
the total domains reported in the data set of almost 400,000 unique domains. ”   9   
Although Google claims that it does not aggregate these data into one large database, 
its tracking of consumers through Doubleclick and Google Analytics means that even 
people who avoid google.com are still tracked by Google. Google — and the Internet —
 are not the only sites of commercial surveillance. Cable companies use programs like 
 “ The Visible World ”  to target television advertisements to households based on 
consumption pattern information gathered by fi rms such as Experian. 

 This notion of the computer as rendering everything transparent, however, is 
remarkably at odds with the actual operations of computation, for computers — their 
hardware, software, and the voltage differences on which they rely — are anything but 
transparent. When the computer does let us  “ see ”  what we cannot normally see, or 
even when it acts like a transparent medium through video chat, it does not simply 
relay what is on the other side: it computes. In order to become transparent, the fact 
that computers always  generate  text and images rather than merely represent or repro-
duce what exists elsewhere must be forgotten. The current prominence of transparency 
in product design and in political and scholarly discourse is a compensatory gesture. 
As our machines increasingly read and write without us, as our machines become more 
and more unreadable so that seeing no longer guarantees knowing (if it ever did), we 
the so-called users are offered more to see, more to read. As our machines disappear, 
getting fl atter and fl atter, the density and opacity of their computation increases. Every 
use is also an act of faith: we believe these images and systems render us transparent 
not for technological, but rather for metaphorical, or more strongly ideological, 
reasons. 

 As stated earlier, this paradox is not accidental to computing ’ s appeal, but rather 
grounds the computer as a useful and provocative, indeed magical, model. Its combi-
nation of what can be seen and not seen, can be known and not known — its separation 
of interface from algorithm; software from hardware — makes it a powerful metaphor 
for everything we believe is invisible yet generates visible effects, from genetics to the 
invisible hand of the market; from ideology to culture. Joseph Weizenbaum has argued 
that computers have become metaphors for all  “ effective procedures, ”  that is, for 
anything that can be solved in a prescribed number of steps, such as gene expression 
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and clerical work.  10   Weizenbaum also notes that the computer as metaphor is itself 
based on  “ only the vaguest understanding of a diffi cult and complex scientifi c concept. 
. . . The public vaguely understands — but is nonetheless fi rmly convinced — that any 
effective procedure can, in principle, be carried out by a computer. ”   11   Even a computer 
programmer, Weizenbaum notes, cannot  “ know the path of decision making within 
his own program, let alone what intermediate or fi nal results it will produce.  ”    12   But 
critiques — even those as insightful as Joseph Weizenbaum ’ s — that condemn the com-
puter as a poor model because of its contradictory reductionism and incomprehensi-
bility miss the point. Revealing the illogical intertwining of computers we cannot 
understand with understanding will not dispel the power of the computer as metaphor 
because this intertwining grounds its appeal. The linking of rationality with mysticism, 
knowability with what is unknown, makes it a powerful fetish that offers its program-
mers and users alike a sense of empowerment, of sovereign subjectivity, that covers 
over — barely — a sense of profound ignorance. 

 The following two chapters address this causal pleasure through software, or, to be 
more precise, the curious separation of software from hardware. Software perpetuates 
certain notions of seeing as knowing, of reading and readability, which were supposed 
to have faded with the waning of indexicality, by producing WYSIWG (What You See 
Is What You Get) interfaces that mimic both ideology  and  ideology critique, the 
process of covering and uncovering.  13   As I explain in more detail in chapter 2, it offers 
us a way to cognitively map our increasingly complex world, or at least to understand, 
often pleasurably, our relation to its complexity. Software, through programming 
languages that stem from a gendered system of command and control, creates an 
invisible system of visibility, a system of causal pleasure. This system renders our 
machine ’ s normal processes demonic and makes our computer truly a medium: some-
thing in between, mystical, channeling, and not entirely trustworthy. It becomes a 
conduit that also amplifi es and selects what is at once real and unreal, true and untrue, 
visible and invisible. 
 



 1     On Sourcery and Source Codes 

 The spirit speaks! I see how it must read, 

 And boldly write:  “ In the beginning was the Deed! ”  

  — Johann Wolfgang Goethe  1   

 Software emerged as a thing — as an iterable textual program — through a process 
of commercialization and commodifi cation that has made code  logos : code as 
source, code as true representation of action, indeed, code as confl ated with, and 
substituting for, action.  2   Now, in the beginning, is the word, the instruction. 
Software as logos turns  program  into a noun — it turns process in time into process 
in (text) space. In other words, Manfred Broy ’ s software  “ pioneers, ”  by making 
software easier to visualize, not only sought to make the implicit explicit, they 
also created a system in which the intangible and implicit drives the explicit. 
They thus obfuscated the machine and the process of execution, making software 
the end all and be all of computation and putting in place a powerful logic of 
sourcery that makes source code — which tellingly was fi rst called pseudocode — 
a fetish.  3   

 This chapter investigates the implications of code as logos and the ways in which 
this simultaneous confl ation and separation of instruction from execution, itself a 
software effect, is constantly constructed and undone, historically and theoretically. 
This separation is crucial to understanding the power and thrill of programming, in 
particular the nostalgic fantasy of an all-powerful programmer, a sovereign neoliberal 
subject who magically transforms words into things. It is also key to addressing the 
nagging doubts and frustrations experienced by programmers: the sense that we are 
slaves, rather than masters, clerks rather than managers — that, because  “ code is law, ”  
the code, rather than the programmer, rules. These anxieties have paradoxically led to 
the romanticization and recuperation of early female operators of the 1946 Electronic 
Numerical Integrator and Computer (ENIAC) as the fi rst programmers, for they, unlike 
us, had intimate contact with and knowledge of the machine. They did not even need 
code: they engaged in what is now called  “ direct programming, ”  wiring connections 
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and setting values. Back then, however, the  “ master programmer ”  was part of the 
machine (it controlled the sequence of calculation); computers, in contrast, were 
human. Rather than making programmers and users either masters or slaves, code as 
logos establishes a perpetual oscillation between the two positions: every move to 
empower also estranges. 

 This chapter, however, does not call for a return to direct programming or hardware 
algorithms, which, as I argue in chapter 4, also embody logos. It also does not endorse 
such a call because the desire for a  “ return ”  to a simpler map of power drives source 
code as logos. The point is not to break free from this sourcery, but rather to play with 
the ways in which logos also invokes  “ spellbinding powers of enchantment, mesmer-
izing fascination, and alchemical transformation. ”   4   The point is to make our comput-
ers more productively spectral by exploiting the unexpected possibilities of source code 
as fetish. As a fetish, source code produces surprisingly  “ deviant ”  pleasures that do 
not end where they should. Framed as a re-source, it can help us think through the 
machinic and human rituals that help us imagine our technologies and their execu-
tions. The point is also to understand how the surprising emergence of code as logos 
shifts early and still-lingering debates in new media studies over electronic writing ’ s 
relation to poststructuralism, debates that the move to software studies has to some 
extent sought to foreclose.  5   Rather than seeing technology as simply fulfi lling or 
killing theory, this chapter outlines how the alleged  “ convergence ”  between theory 
and technology challenges what we thought we knew about logos. Relatedly, engaging 
source code as fetish does not mean condemning software as immaterial; rather, it 
means realizing the extent to which software, as an  “ immaterial ”  relation become 
thing, is linked to changes in the nature of subject-object relations more generally. 
Software as thing can help us link together minute machinations and larger fl ows of 
power, but only if we respect its ability to surprise and to move. 

 Source Code as Logos 

 To exaggerate slightly, software has recently been posited as the essence of new media 
and knowing software a form of enlightenment. Lev Manovich, in his groundbreaking 
 The Language of New Media , for instance, asserts:  “ New media may look like media, 
but this is only the surface. . . . To understand the logic of new media, we need to 
turn to computer science. It is there that we may expect to fi nd the new terms, catego-
ries, and operations that characterize media that become programmable.  From media 
studies, we move to something that can be called  ‘ software studies ’  — from media theory to 
software theory . ”   6   This turn to software — to the logic of what lies beneath — has offered 
a solid ground to new media studies, allowing it, as Manovich argues, to engage pres-
ently existing technologies and to banish so-called  “ vapor theory ”  — theory that fails 
to distinguish between demo and product, fi ction and reality — to the margins.  7   
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 This call to banish vapor theory, made by Geert Lovink and Alexander Galloway 
among others, has been crucial to the rigorous study of new media, but this rush 
away from what is vapory — undefi ned, set in motion — is also troubling because vapo-
riness is not accidental but rather essential to new media and, more broadly, to 
software. Indeed, one of this book ’ s central arguments is that a rigorous engagement 
with software makes new media studies more, rather than less, vapory. Software, after 
all, is ephemeral, information ghostly, and new media projects that have never, or 
barely, materialized are among the most valorized and cited.  8   (Also, if you take the 
technical defi nition of information seriously, information increases with vapor, with 
entropy). This turn to computer science also threatens to reify knowing software as 
truth, an experience that is arguably impossible: we all know some software, some 
programming languages, but does anyone really  “ know ”  software? What could this 
knowing even mean? Regardless, from myths of all-powerful hackers who  “ speak the 
language of computers as one does a mother tongue ”   9   or who produce abstractions 
that release the virtual  10   to perhaps more mundane claims made about the radicality 
of open source, knowing (or using the right) software has been made analogous to 
man ’ s release from his self-incurred tutelage.  11   As advocates of free and open source 
software make clear, this critique aims at political, as well as epistemological, eman-
cipation. As a form of enlightenment, it is a stance of how not to be governed like 
that, an assertion of an essential freedom that can only be curtailed at great cost.  12   

 Knowing software, however, does not simply enable us to fi ght domination or 
rescue software from  “ evil-doers ”  such as Microsoft. Software, free or not, is embedded 
and participates in structures of knowledge-power. For instance, using free software 
does not mean escaping from power, but rather engaging it differently, for free and 
open source software profoundly privatizes the public domain: GNU copyleft — which 
allows one to use, modify, and redistribute source code and derived programs, but 
only if the original distribution terms are maintained — seeks to fi ght copyright by 
spreading licences everywhere.  13   More subtly, the free software movement, by linking 
freedom and freely accessible source code, amplifi es the power of source code both 
politically and technically. It erases the vicissitudes of execution and the institutional 
and technical structures needed to ensure the coincidence of source code and its execu-
tion. This amplifi cation of the power of source code also dominates critical analyses 
of code, and the valorization of software as a  “ driving layer ”  conceptually constructs 
software as neatly layered. 

 Programmers, computer scientists, and critical theorists have reduced software to 
a recipe, a set of instructions, substituting space/text for time/process. The current 
common-sense defi nition of  software  as a  “ set of instructions that direct a computer 
to do a specifi c task ”  and the OED defi nition of software as  “ the programs and pro-
cedures required to enable a computer to perform a specifi c task, as opposed to the 
physical components of the system ”  both posit software as cause, as what drives 
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computation. Similarly, Alexander Galloway argues,  “ code draws a line between what 
is material and what is active, in essence saying that writing (hardware) cannot  do  
anything, but must be transformed into code (software) to be effective. . . . Code is 
a language, but a very special kind of language.  Code is the only language that is execut-
able  . . . code is the fi rst language that actually does what it says. ”   14   This view of 
software as  “ actually doing what it  says  ”  (emphasis added) both separates instruction 
from, and makes software substitute for, execution. It assumes no difference between 
source code and execution, between instruction and result. That is, Galloway takes 
the principles of executable layers (application on top of operating system, etc.) and 
grafts it onto the system of compilation or translation, in which higher-level languages 
are transformed into executable codes that are then executed line by line. By doing 
what it  “ says, ”  code is surprisingly logos. Like the King ’ s speech in Plato ’ s  Phaedrus , 
it does not pronounce knowledge or demonstrate it — it transparently pronounces 
itself.  15   The hidden signifi ed — meaning — shines through and transforms itself into 
action. Like Faust ’ s translation of logos as  “ deed, ”  code is action, so that  “ in the 
beginning was the Word, and the Word was with God, and the Word was God. ”   16   

 Not surprisingly, many scholars critically studying code have theorized code as 
performative. Drawing in part from Galloway, N. Katherine Hayles in  My Mother Was 
a Computer: Digital Subjects and Literary Texts  distinguishes between the linguistic 
performative and the machinic performative, arguing: 

 Code that runs on a machine is performative in a much stronger sense than that attributed to 

language. When language is said to be performative, the kinds of actions it  “ performs ”  happen 

in the minds of humans, as when someone says  “ I declare this legislative session open ”  or  “ I 

pronounce you husband and wife. ”  Granted, these changes in minds can and do reach in 

behavioral effects, but the performative force of language is nonetheless tied to the external 

changes through complex chains of mediation. By contrast, code running in a digital computer 

causes changes in machine behavior and, through networked ports and other interfaces, may 

initiate other changes, all implemented through transmission and execution of code.  17   

 The independence of machine action — this autonomy, or automatic executability of 
code — is, according to Galloway, its material essence:  “ The material substrate of code, 
which must always exist as an amalgam of electrical signals and logical operations 
in silicon, however large or small, demonstrates that code exists fi rst and foremost 
as commands issued to a machine. Code essentially has no other reason for being 
than instructing some machine in how to act. One cannot say the same for the 
natural languages. ”   18   Galloway thus concludes in  “ Language Wants to Be Overlooked: 
On Software and Ideology, ”   “ to see code as subjectively performative or enunciative 
is to anthropomorphize it, to project it onto the rubric of psychology, rather than 
to understand it through its own logic of  ‘ calculation ’  or  ‘ command. ’  ”   19   

 To what extent, however, can source code be understood outside of anthropomor-
phization? Does understanding voltages stored in memory as commands/code not 
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already anthropomorphize the machine? The title of Galloway ’ s article,  “ Language 
 Wants  to Be Overlooked ”  (emphasis mine), inadvertently reveals the inevitability of 
this anthropomorphization. How can code/language want — or most revealingly  say  —
 anything? How exactly does code  “ cause ”  changes in machine behavior? What media-
tions are necessary for this insightful yet limiting notion of code as inherently 
executable, as confl ating meaning and action? 

 Crafty Sources 

 To make the argument that code is automatically executable, the process of execution 
itself not only must be erased, but source code must also be confl ated with its execut-
able version. This is possible, Galloway argues, because the two  “ layers ”  of code can 
be reduced to each other:  “ uncompiled source code is  logically  equivalent to that 
same code compiled into assembly language and/or linked into machine code. For 
example, it is absurd to claim that a certain value expressed as a hexadecimal (base 
16) number is more or less fundamental than that same value expressed as binary 
(base 2) number. They are simply two expressions of the same value. ”   20   He later 
elaborates on this point by drawing an analogy between quadratic equations and 
software layers: 

 One should never understand this  “ higher ”  symbolic machine as anything empirically differ-

ent from the  “ lower ”  symbolic interactions of voltages through logic gates. They are complex 

aggregates yes, but it is foolish to think that writing an  “ if/then ”  control structure in eight 

lines of assembly code is any more or less machinic than doing it in one line of C, just as the 

same quadratic equation may swell with any number of multipliers and still remain balanced. 

The relationship between the two is  technical .  21   

 According to Galloway ’ s quadratic equation analogy, the difference between a compact 
line of higher-level programming code and eight lines written in assembler equals the 
difference between two equations, in which one contains coeffi cients that are multi-
ples of the other. The solution to both equations is the same: one equation is the same 
as the other. 

 This reduction, however, does not capture the difference between the various 
instantiations of code, let alone the empirical difference between the higher symbolic 
machine and the lower interactions of voltages (the question here is: where does one 
make the empirical observation?). To state the obvious, one cannot run source code: 
it must be compiled or interpreted. This compilation or interpretation — this making 
executable of code — is not a trivial action; the compilation of code is not the same as 
translating a decimal number into a binary one. Rather, it involves instruction explo-
sion and the translation of symbolic into real addresses. Consider, for example, the 
instructions needed for adding two numbers in PowerPC assembly language, which is 
one level higher than machine language: 
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 li            r3,1   *load the number 1 into register 3 

 li            r4,2   *load the number 2 into register 4 

 add      r5,r4,r3   *add r3 to r4 and store the result in r5 

 stw      r5,sum(rtoc)   *store the contents of r5 (i.e., 3) into the memory location 

    *called  “ sum ”  (where sum is defi ned elsewhere) 

 blr   *end of this snippet of code  22   

 This explosion is not equivalent to multiplying both sides of a quadratic equation by 
the same coeffi cient or to the difference between E and 15. It is, instead, a breakdown 
of the steps needed to perform a simple arithmetic calculation; it focuses on the move-
ment of data within the machine. The relationship between executable and higher-
level code is not that of mathematical identity but rather logical equivalence, which 
can involve a leap of faith. This is clearest in the use of numerical methods to turn 
integration — a function performed fl uidly in analog computers — into a series of 
simpler, repetitive arithmetical steps. 

 This translation from source code to executable is arguably as involved as the execu-
tion of any command, and it depends on the action (human or otherwise) of compil-
ing/interpreting and executing. Also, some programs may be executable, but not all 
compiled code within that program is executed; rather, lines are read in as necessary. 
Software is  “ layered ”  in other words, not only because source is different from object, 
but also because object code is embedded within an operating system. 

 So, to spin Galloway ’ s argument differently, a technical relation is far more complex 
than a numerical one. Rhetoric was considered a  techn ê   in antiquity. Drawing on this 
Paul Ricoeur explains,  “  techn ê   is something more refi ned than a routine or an empiri-
cal practice and in spite of its focus on production, it contains a speculative element. ”   23   
A technical relation engages art or craft. A technical person is one  “ skilled in or practi-
cally conversant with some particular art or subject. ”   24   Code does not always or auto-
matically do what it says, but it does so in a crafty, speculative manner in which 
meaning and action are both created. It carries with it the possibility of deviousness: 
our belief that compilers simply expand higher-level commands — rather than alter or 
insert other behaviors — is simply that, a belief, one of the many that sustain comput-
ing as such. This belief glosses over the fact that  source code only becomes a source after 
the fact . Execution, and a whole series of executions, belatedly makes some piece of 
code a source, which is again why source code, among other things, was initially called 
pseudocode. 

 Source code is more accurately a  re-source , rather than a source. Source code becomes 
the source of an action only after it — or more precisely its executable substitute —
 expands to include software libraries, after its executable version merges with code 
burned into silicon chips; and after all these signals are carefully monitored, timed, 
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and rectifi ed. Source code becomes a source only through its destruction, through its 
simultaneous nonpresence and presence.  25   (Thus, to return to the historical diffi culties 
of analyzing software outlined by Mahoney, every software run is to some extent a 
reconstruction.) Source code as  techn ê  , as a generalized writing, is spectral. It is neither 
dead repetition nor living speech; nor is it a machine that erases the difference 
between the two. It, rather, puts in place a  “ relation between life and death, between 
present and representation, between two apparatuses. ”   26   As I elaborate throughout this 
book, information — through its capture in memory — is undead. 

 Source Code, after the Fact 

 Early on, the diffi culties of code as source were obvious. Herman H. Goldstine and 
John von Neumann emphasized the dynamic nature of code in their  “ Planning and 
Coding of Problems for an Electronic Computing Instrument. ”  In it, they argued that 
coding, despite the name, is not simply the static translation of  “ a meaningful text 
(the instructions that govern solving the problem under consideration) from one 
language (the language of mathematics, in which the planner will have conceived the 
problem, or rather the numerical procedure by which he has decided to solve the 
problem) into another language (that of our code). ”   27   Because code does not unfold 
linearly, because its value depends on intermediate results, and because code can be 
modifi ed as it is run (self-modifying code),  “ it will not be possible in general to foresee 
in advance and completely the actual course of C [the sequence of codes]. ”  Therefore, 
 “ coding is . . . the technique of providing a dynamic background to control the auto-
matic evolution of a meaning. ”   28   Code as  “ dead repetition, ”  in other words, has always 
been regenerative and interactive; every iteration alters its meaning. Even given the 
limits to iterability that Hayles has presciently outlined in  My Mother Was a Computer  —
 limits due to software as axiomatic — coding still means producing a mark, a writing, 
open to alteration/iteration rather than an airtight anchor.  29   

 Much disciplinary effort has been required to make source code readable as the 
source. Structured programming, which I examine in more detail later, sought to rein 
in  “ goto crazy ”  programmers and self-modifying code. A response to the much-
discussed  “ software crisis ”  of the late 1960s, its goal was to move programming from 
a craft to a standardized industrial practice by creating disciplined programmers who 
dealt with abstractions rather than numerical processes.  30   

 Making code the source also entails reducing hardware to memory and thus erasing 
the existence and possibility of hardware algorithms. Code is also not always the 
source because hardware does not need software to  “ do something. ”  One can build 
algorithms using hardware.   Figure 1.1 , for instance, is the logical statement: if notB 
and notA, do CMD1 (state P); if notB and notA and notZ OR B and A (state Q) then 
command 2. 
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 Figure 1.1 
 Logic diagram for a hardware algorithm 

    To be clear, I am not valorizing hardware over software, as though hardware natu-
rally escapes this drive to make space signify time. Crucially, this schematic is itself 
an abstraction. Logic gates can only operate  “ logically ”  — as logos — if they are carefully 
timed. As Philip Agre has emphasized, the digital abstraction erases the fact that gates 
have  “ directionality in both space (listening to its inputs, driving its outputs) and in 
time (always moving toward a logically consistent relation between these inputs and 
outputs). ”   31   When a value suddenly changes, there is a brief period in which a gate 
will give a false value. In addition, because signals propagate in time over space, they 
produce a magnetic fi eld that can corrupt other nearby signals (known as  crosstalk ). 
This schematic erases all these various time- and distance-based effects by rendering 
space blank, empty, and banal. Thus hardware schematics, rather than escaping from 
the logic of sourcery, are also embedded within this structure. Indeed, as chapter 4 
elaborates, John von Neumann, the generally acknowledged architect of the stored-
memory digital computer, drew from Warren McCulloch and Walter Pitts ’ s confl ation 
of neuronal activity with its inscription in order to conceptualize modern computers. 
It is perhaps appropriate then that von Neumann, who died from a cancer stemming 
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from his work at Los Alamos, spent the last days of his life reciting from memory  Faust 
Part 1 .  32   At the  source  of stored program computing lies the Faustian erasure of word 
for action. 

 The notion of source code as source coincides with the introduction of alphanu-
meric languages. With them, human-written, nonexecutable code becomes source 
code and the compiled code, the object code. Source code thus is arguably symptom-
atic of human language’s tendency to attribute a sovereign source to an action, a 
subject to a verb.  33   By converting action into language, source code emerges. Thus, 
Galloway ’ s statement,  “ To see code as subjectively performative or enunciative is to 
anthropomorphize it, to project it onto the rubric of psychology, rather than to under-
stand it through its own logic of  ‘ calculation ’  or  ‘ command, ’  ”  overlooks the fact that 
to use higher-level alphanumeric languages is already to anthropomorphize the 
machine. It is to embed computers in  “ logic ”  and to reduce all machinic actions to 
the commands that supposedly drive them. In other words, the fact that  “ code is 
law ”  — something legal scholar Lawrence Lessig emphasizes — is hardly profound.  34   
After all, code is, according to the OED,  “ a systematic collection or digest of the laws 
of a country, or of those relating to a particular subject. ”  What is surprising is the fact 
that software is code; that code is — has been made to be — executable, and this execut-
ability makes code not law, but rather every lawyer ’ s dream of what law should be: 
automatically enabling and disabling certain actions, functioning at the level of 
everyday practice.  35   

 Code is executable because it embodies the power of the executive, the power 
of enforcement that has traditionally — even within classic neoliberal logic — been 
the provenance of government.  36   Whereas neoliberal economist and theorist Milton 
Friedman must concede the necessity of government because of the difference 
between  “ the day-to-day activities of people [and] the general customary and legal 
framework within which these take place, ”  code as self-enforcing law  “ privatizes ”  
this function, further reducing the need for government to enforce the rules by 
which we play.  37   In other words, if as Foucault argues neoliberalism expands judicial 
interventions by reducing laws to  “ the rules for a game in which each remains 
master regarding himself and his part, ”  then  “ code is law ”  reins in this expansion 
by moving enforcement from police and judicial functions to software functions.  38   
 “ Code is law, ”  in other words, automatically brings together disciplinary and sov-
ereign power through the production of self-enforcing rules that, as von Neumann 
argues,  “ govern ”  a situation. 

  “ Code is law ”  makes clear the desire for sovereign power driving both source 
code and performative utterances more generally. David Golumbia — looking more 
generally at widespread beliefs about computers — has insightfully claimed:  “ The 
computer encourages a Hobbesian conception of this political relation: one is either 
the person who makes and gives orders (the sovereign), or one follows orders. ”   39   
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This conception, which crucially is also constantly undone by modern computa-
tion ’ s twinning of empowerment with ignorance, depends, I argue, on this confl a-
tion of code with the performative. As Judith Butler has argued in  Excitable Speech , 
Austinian understandings of performative utterances as simply doing what they say 
posit the speaker as  “ the judge or some other representative of the law. ”   40   It resus-
citates fantasies of sovereign — that is  executive  (hence executable) — structures of power: 
it is  “ a wish to return to a simpler and more reassuring map of power, one in 
which the assumption of sovereignty remains secure. ”   41   This wish for a simpler map 
of power — indeed power as mappable — drives not only code as automatically execut-
able, but also, as the next chapter contends, interfaces more generally. This wish 
is central to computers as machines that enable users/programmers to navigate 
neoliberal complexity. 

 Against this nostalgia, Butler, following Jacques Derrida, argues that iterability lies 
behind the effectiveness of performative utterances. For Butler, iterability is the process 
by which  “  the subject who  ‘ cites ’  the performative is temporarily produced as the belated 
and fi ctive origin of the performative itself . ”   42   The programmer/user, in other words, is 
produced through the act of programming. Moreover, the effectiveness of performa-
tive utterances, Butler also emphasizes, is intimately tied to the community one joins 
and to the rituals involved — to the history of that utterance. Code as law — as a judicial 
process — is, in other words, far more complex than code as logos. Similarly, as 
Weizenbaum has argued, code understood as a judicial process undermines the 
control of the programmer: 

 A large program is, to use an analogy of which Minsky is also fond, an intricately connected 

network of courts of law, that is, of subroutines, to which evidence is transmitted by other 

subroutines. These courts weigh (evaluate) the data given to them and then transmit their 

judgments to still other courts. The verdicts rendered by these courts may, indeed, often do, 

involve decisions about what court has  “ jurisdiction ”  over the intermediate results then being 

manipulated. The programmer thus cannot even know the path of decision-making within his 

own program, let alone what intermediate or fi nal results it will produce. Program formulation 

is thus rather more like the creation of a bureaucracy than like the construction of a machine 

of the kind Lord Kelvin may have understood.  43   

 Code as a judicial process is code as  thing : the Latin term for thing,  res , survives in 
legal discourse (and, as I explain later, literary theory). The term  res , as Heidegger 
notes, designates a  “ gathering, ”  any thing or relation that concerns man.  44   The rela-
tions that Weizenbaum discusses, these bureaucracies within the machine, as the rest 
of this chapter argues, mirror the bureaucracies and hierarchies that historically made 
computing possible. Importantly, this description of computers as following a set of 
rules that programmers must follow — Weizenbaum ’ s insistence on the programmer ’ s 
ignorance — does not undermine the resonances between neoliberalism and computa-
tion; if anything, it makes these resonances more clear. It also clarifi es the desire 
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driving code as logos as a solution to neoliberal chaos. Foucault, emphasizing the 
rhetoric of the economy as a  “ game ”  in neoliberal writings, has argued,  “ both for 
the state and for individuals, the economy must be a game: a set of regulated activi-
ties . . . in which the rules are not decisions which someone takes for others. It is a 
set of rules which determine the way in which each must play a game whose outcome 
is not known by anyone. ”   45   Although small-s sovereigns proliferate through neolib-
eralism ’ s empowered yet endangered subjects, it still fundamentally denies the posi-
tion of the Sovereign who knows — a position that we nonetheless nostalgically desire 
. . . for ourselves. 

 Yes, Sir! 

 This confl ation of instruction with result stems in part from software ’ s and comput-
ing ’ s gendered, military history: in the military there is supposed to be no difference 
between a command given and a command completed — especially to a computer that 
is a  “ girl. ”  For computers, during World War II, were in fact young women with some 
background in mathematics. Not only were women available for work during that era, 
they also were considered to be better, more conscientious computers, presumably 
because they were better at repetitious, clerical tasks. They were also undifferentiated: 
they were all unnamed  “ computers, ”  regardless of their mathematical training.  46   These 
computers produced ballistics tables for new weapons, tables designed to control ser-
vicemen ’ s battlefi eld actions. Rather than aiming and shooting, servicemen were to 
set their guns to the proper values (not surprisingly, these tables and gun governors 
were often ignored or ditched by servicemen).  47   

 The women who became the  “ ENIAC girls ”  (later the more politically correct 
 “ women of the ENIAC ” ) — Kathleen/Kay McNulty (Mauchly Antonelli), Jean Jennings 
(Bartik), Frances Snyder (Holberton), Marlyn Wescoff (Meltzer), Frances Bilas (Spence), 
and Ruth Lichterman (Teitelbaum) (married names in parentheses) — were computers 
who volunteered to work on a secret project (when they learned they would be operat-
ing a machine, they had to be reassured that they had not been demoted). Program-
mers were former computers because they were best suited to prepare their successors: 
they thought and acted like computers. One could say that programming became 
programming and software became software when the command structure shifted 
from commanding a  “ girl ”  to commanding a machine. Kay Mauchly Antonelli 
described the  “ evolution ”  of computing as moving from female computers using 
Marchant machines to fi ll in fourteen-column sheets (which took forty hours to com-
plete the job), to using differential analyzers (fi fteen minutes to do the job), to using 
the ENIAC (seconds).  48   

 Software languages draw from a series of imperatives that stem from World War 
II command and control structures. The automation of command and control, which 
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Paul Edwards has identifi ed as a perversion of military traditions of  “ personal leader-
ship, decentralized battlefi eld command, and experience-based authority, ”   49   arguably 
started with World War II mechanical computation. Consider, for instance, the rela-
tionship between the volunteer members of the Women’s Royal Naval Service (called 
Wrens), and their commanding offi cers at Bletchley Park. The Wrens also (perhaps 
ironically) called  slaves  by the mathematician and  “ founding ”  computer scientist 
Alan Turing (a term now embedded within computer systems), were clerks responsible 
for the mechanical operation of the cryptanalysis machines (the Bombe and then 
the Colossus), although at least one of the clerks, Joan Clarke (Turing ’ s former fi anc é ), 
became an analyst. Revealingly, I. J. Good, a male analyst, describes the Colossus as 
enabling a man – machine synergy duplicated by modern machines only in the late 
1970s:  “ the analyst would sit at the typewriter output and call out instructions to a 
Wren to make changes in the programs. Some of the other uses were eventually 
reduced to decision trees and were handed over to the machine operators (Wrens). ”   50   
This man – machine synergy, or interactive real-time (rather than batch) processing, 
treated Wrens and machines indistinguishably, while simultaneously relying on the 
Wrens ’  ability to respond to the mathematician ’ s orders. This  “ interactive ”  system 
also seems evident in the ENIAC ’ s operation: in   fi gure 1.2 , a male analyst issues 
commands to a female operator. 

    The story of the initial meeting between Grace Murray Hopper (one of the fi rst and 
most important programmer-mathematicians) and Howard Aiken would also seem to 
buttress this narrative. Hopper, with a PhD in mathematics from Yale, and a former 
mathematics professor at Vassar, was assigned by the U.S. Navy to program the Mark 
1, an electromechanical digital computer that made a sound like a roomful of knitting 
needles. According to Hopper, Aiken showed her  “ a large object with three stripes . . . 
waved his hand and said:  ‘ That ’ s a computing machine. ’  I said,  ‘ Yes, Sir. ’  What else 
could I say? He said he would like to have me compute the coeffi cients of the arc 
tangent series, for Thursday. Again, what could I say?  ‘ Yes, Sir. ’  I didn ’ t know what on 
earth was happening, but that was my meeting with Howard Hathaway Aiken. ”   51   
Computation depends on  “ Yes, Sir ”  in response to short declarative sentences and 
imperatives that are in essence commands. Contrary to Neal Stephenson, in the 
beginning — marking the possibility of a beginning — was the command rather than the 
command line.  52   The command line is a mere operating system (OS) simulation. Com-
mands have enabled the slippage between programming and action that makes soft-
ware such a compelling yet logically  “ trivial ”  communications system.  53   Commands 
lie at the core of the cybernetic confl ation of human with machine.  54   I. J. Good ’ s and 
Hopper ’ s recollections also reveal the routinization at the core of programming: the 
analyst ’ s position at Bletchley Park was soon replaced by decision trees acted on by the 
Wrens. Hopper, self-identifi ed as a mathematician (not programmer), became an 
advocate of automatic programming. Thus routinization or automation lies at the 
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 Figure 1.2  
 ENIAC programmers, late 1940s. U.S. military photo, Redstone Arsenal Archives, Huntsville, 

Alabama. 

core of a profession that likes to believe it has successfully automated every profession 
but its own.  55   

 This narrative of the interchangeability of women and software, however, is not 
entirely true: the perspective of the master, as Hegel famously noted, is skewed. 
(Tellingly, Mephistopheles offers to be Faust ’ s servant.)  56   The master depends on the 
slave entirely, and it is the slave ’ s actions that make possible another existence. Execu-
tion is never simple. Hopper ’ s  “ Yes, Sir ”  actually did follow in the military command 
tradition. It was an acceptance of responsibility; she was not told how to calculate the 
trajectory. Also, the  “ women of the ENIAC, ”  although an afterthought, played an 
important role in converting the ENIAC into a stored-program computer and in deter-
mining the trade-off between storing values and instructions: they did not simply 
operate the machine, they helped shape it and make it functional.  57   Users of the ENIAC 
usually were divided into pairs: one who knew the problem and one who knew the 
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machine  “ so the limitations of the machine could be fi tted to the problem and the 
problem could be changed to fi t the limitations. ”   58   Programming the ENIAC — that is, 
wiring the components together in order to solve a problem — was diffi cult, especially 
since there were no manuals or exact precedents.  59   To solve a problem, such as how 
to determine ballistics trajectories for new weapons, ENIAC  “ programmers ”  had fi rst 
to break down the problem logically into a series of small yes/no decisions;  “ the 
amount of work that had to be done before you could ever get to a machine that was 
really doing any thinking, ”  Bartik relates, was staggering and annoying.  60   The unreli-
ability of the hardware and the fact that engineers and custodians would unexpectedly 
change the switches and program cables compounded the diffi culty.  61   

 These women, Holberton in particular, developed an intimate relation with the 
 “ master programmer, ”  the ENIAC ’ s control device. Although Antonelli fi rst fi gured out 
how to repeat sections of the program, using the master programmer, Holberton, who 
described herself as a logician, specialized in controlling its operation.  62   As Bartik 
explains: 

 We found it very easy to learn that you do this step, step one, then you do step two, step three, 

but I think the thing that was the hardest for us to learn was transfer of control which the 

ENIAC did have through the master programmer, so that you would be able to repeat pieces of 

program. So, the techniques for dividing your program into subroutines that could be repeated 

and things of this kind was the hardest for us to understand. I certainly know it was for me.  63   

 Because logic diagrams did not then exist, Holberton developed a four-color pencil 
system to visualize the workings of the master programmer.  64   This drive to visualize 
also extended to the machine as a whole. To track the calculation, holes were drilled 
in the panels over the accumulators so that  “ when you were doing calculations these 
lights were fl ashing as the numbers built up and as you transferred numbers and things 
of this kind. So you had the feeling of excitement. ”   65   These lights not only were useful 
in tracking the machine, they also were invaluable for the demonstration. Even 
though the calculation for the demonstration was itself buggy, the fl ashing lights, the 
cards being read and written, gave the press a (to them) incomprehensible visual 
display of the enormity and speed of the calculation being done. In what would 
become a classic programming scenario, the problem was  “ debugged ”  the day after 
the demonstration. According to Holberton: 

 I think the next morning, I woke up and in the middle of the night thinking what that 

error was. I came in, made a special trip on the early train that morning to look at a certain 

wire, and you know, it ’ s the same kind of programming error that people make today. It ’ s 

the, the decision on the terminal end of a do loop, speaking Fortran language, had the wrong 

value. Forgetting that zero was also one setting and the setting of the switch was one off. 

And I ’ ll never forget that because there it was my fi rst do loop error. But it went on that 

way and I remember telling Marlyn, I said,  “ If anybody asks why it ’ s printing out that way, 

say it ’ s supposed to be that way. ”  [Laughter]  66   
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 Programming enables a certain duplicity, as well as the possibility of endless actions 
that animate the machine. Holberton, described by Hopper as the best programmer 
she had known, would also go on to develop an infl uential SORT algorithm for the 
UNIVAC 1 (the Universal Automatic Computer 1, a commercial offshoot of the 
ENIAC).  67   Indeed, many of these women were hired by the Eckert – Mauchly company 
to become the fi rst programmers of the UNIVAC, and were transferred to Aberdeen to 
train more ENIAC programmers. 

 Drawing from the historical importance of women and the theoretical resonances 
between the feminine and computing (parallels between programming and what 
Freud called the quintessentially feminine invention of weaving, between female sexu-
ality as mimicry and Turing ’ s vision of computers as universal machines/mimics) Sadie 
Plant has argued that computing is essentially feminine. Both software and feminine 
sexuality reveal the power that something that cannot be seen can have.  68   Women, 
Plant argues,  “ have not merely had a minor part to play in the emergence of digital 
machines. . . . Theirs is not a subsidiary role which needs to be rescued for posterity, 
a small supplement whose inclusion would set the existing records straight. . . . Hard-
ware, software, wetware — before their beginnings and beyond their ends, women have 
been the simulators, assemblers, and programmers of the digital machines. ”   69   Because 
of this and women ’ s early (forced) adaptation to  “ fl exible ”  work conditions, Plant 
argues, women are best prepared to face our digital, networked future:  “ sperm count, ”  
she writes,  “ falls as the replicants stir and the meat learns how to learn for itself. 
Cybernetics is feminisation. ”   70   Responding to Plant ’ s statement, Alexander Galloway 
has argued,  “ the universality of [computer] protocol can give feminism something 
that it never had at its disposal, the obliteration of the masculine from beginning to 
end. ”   71   Protocol, Galloway asserts, is inherently antipatriarchy. What, however, is the 
relationship between feminization and feminism, between so-called feminine modes 
of control and feminism? What happens if you take seriously Grace Murray Hopper ’ s 
claims that the term  software  stemmed from her description of compilers as  “ layettes ”  
for computers and the claim of J. Chuan Chu, one of the hardware engineers for the 
ENIAC, that software is the  “ daughter ”  of Frankenstein (hardware being the son)?  72   

 To address these questions, we need to move beyond recognizing these women as 
programmers and the resonances between computers and the feminine. Such recogni-
tion alone establishes a powerful sourcery, in which programming is celebrated at the 
exact moment that programmers become incapable of  “ understanding ”  — of seeing 
through — the machine. The move to reclaim the ENIAC women as the fi rst program-
mers in the mid- to late-1990s occurred when their work as operators — and the visual, 
intimate knowledge of machine operations this entailed — had become entirely incor-
porated into the machine and when women  “ coders ”  were almost defi nitively pushed 
out of the workplace. It is love at last (and fi rst) sight, not just for these women but 
also for these interfaces, which really were transparent holes, in which inside and 
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outside coincided. Also, reclaiming these women as the fi rst programmers and as 
feminist fi gures glosses over the hierarchies within programming — among operators, 
coders, and analysts — that defi ned the emergence of programming as a profession and 
as an academic discipline.  73   To put Hopper and the  “ ENIAC girls ”  together is to erase 
the difference between Hopper, a singular hero who always defi ned herself as a math-
ematician, and nameless disappearing computer operators. It is also to deny personal 
history: Hopper, a social conservative from a privileged background, stated many times 
that she was not a feminist, and Hopper ’ s stances could be perceived as antifeminist 
(while the highest-ranking female offi cer in the Navy, she argued that women were 
incapable of serving in combat duty).  74   Not accidentally, Hopper ’ s dream, her drive 
for automatic computing, was to put the programmer inside the computer and thus 
to rehumanize the mathematician: pseudocode was to free the mathematician and 
her brain from the shackles of programming.  75   

 Bureaucracies within the Machine 

 TROPP:   We talked about Von Neumann and I would like to talk about how you saw people like 

John Mauchly and the role that they played, and Goldstine and Burks and others that you came 

in contact with [including] Clippinger, and Frankel, and how, how they looked from your vantage 

point? 

 HOLBERTON:   Well, we were lowly programmers, so I looked up to all these gentlemen. 

 TROPP:   [Laughter]  76   

 The confl ation of instruction with action, which makes computers understood as 
software and hardware machines such a compelling model of neoliberal governmen-
tality and which resuscitates dreams of sovereign power, depends on incorporating 
historical programming hierarchies within the machine. 

 Programming, even at what has belatedly been recognized as its origin, was a hier-
archical affair. Herman H. Goldstine and John von Neumann, in  “ Planning and 
Coding of Problems for an Electronic Computing Instrument, ”  separated the task of 
planning (dealing with the dynamic nature of code through extensive fl ow charting) 
from that of coding (the microproduction of the actual instructions). Regarding 
dynamic or macroscopic aspects, they argued,  “ every mathematician, or every mod-
erately mathematically trained person should be able to do this in a routine manner, 
if he has familiarized himself with the main examples that follow in this report, or if 
he has had some equivalent training in this method. ”  Regarding the static or micro-
scopic work, they asserted,  “ we feel certain that a moderate amount of experience with 
this stage of coding suffi ces to remove from it all diffi culties, and to make it a perfectly 
routine operation. ”   77   The dropping of the pronoun  he  was not accidental: as Nathan 
Ensmenger and William Aspray note, the dynamic analysis was to be performed by 
 “ the  ‘ planner, ’  who was typically the scientifi c user and overwhelmingly often was 



On Sourcery and Source Codes 35

male; the sixth task was to be carried out by  ‘ coders ’  — almost always female. ”   78   
Although this separation between operators, coders, and planners was not immedi-
ately accepted everywhere — the small Whirlwind group viewed itself more as a  “ model 
shop ”  in which coding, programming, and operations were mixed together — this 
hierarchical separation between what Philip Kraft calls the  “ head and the hand ”  
became dominant as programming became a mass, commercial enterprise.  79   

 SAGE (the Semi-Automatic Ground Environment) air defense system, widely con-
sidered the fi rst large software project, was programmed by the Systems Development 
Corporation (SDC), an offshoot of the RAND Corporation. SDC had expanded from 
a few programmers to more than eight hundred by the late 1950s, making it by 
far the largest employer of programmers. Because its programmers went on to form 
the industry (it was dubbed the  “ university of programmers ” ), SAGE had a wide 
impact on the fi eld ’ s development. SAGE, however, not only taught people how to 
code but also inculcated a strict division of programming in which senior program-
mers (later systems analysts), who developed program specifi cations, were separated 
from programmers, who worked on coding specifi cations; they in turn were separated 
from the coders who turned coding specifi cations into documented machine code.  80   
This separation, as Kraft has recorded, was still thriving in the 1970s.  81   This separa-
tion was also gendered. As Herbert D. Benington, one of the managers of SAGE, 
later narrated,  “ women turned out to be very good for the administrative programs. 
One reason is that these people tend to be fastidious — they worry how all the details 
fi t together while still keeping the big picture in mind. I don ’ t want to sound sexist, 
but one of our strongest groups had 80 percent women in it; they were doing the 
right kind of thing. The mathematicians were needed for some of the more complex 
applications. ”   82   Not accidentally, the SDC was spun off from the System Training 
Program, a group comprised of RAND psychologists focused on producing more 
effective groups.  83   

 Buttressing this hierarchy was a strict system of control,  “ tools of a very complex 
nature ”  that did not survive SAGE. As Benington explains, these tools enabled man-
agers to track and punish coders:  “ You could assign an individual a job, you could 
control the data that that individual had access to, you could control when that 
individual ’ s program operated, and you could fi nd out if that individual was playing 
the game wrong and punish that person. So we had a whole set of tools for design, 
for controlling of the team, for controlling of the data, and for testing the programs 
that were really quite advanced. ”   84   Because of this system of control, Benington 
viewed symbolic addressing and other moves to automate programming as  “ danger-
ous because they couldn ’ t be well-disciplined. ”  However, although automatic pro-
gramming has been linked to empowerment, it has also led to the more thorough 
(because subtle and internalized) disciplining of programmers, which simultaneously 
empowers and disempowers programmers. 
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 Indeed, this overt system of control and punishment was replaced by a  “ softer ”  
system of structured programming that makes source code source. As Mahoney has 
argued, structured programming emerged as a  “ means both of quality control and of 
disciplining programmers, methods of cost accounting and estimation, methods of 
verifi cation and validation, techniques of quality assurance. ”   85   Kraft targets structured 
programming as de-skilling: through it, programming was turned from a craft to an 
industrialized practice in which workers were reduced to interchangeable detail 
workers.  86   Structured programming limits the logical procedures coders can use and 
insists that the program consist of small modular units, which can be called from the 
main program. Structured programming (also generally known as  “ good program-
ming ”  when I was growing up) hides, and thus secures, the machine. It focuses on 
and enables abstraction — and abstraction from the specifi c uses of and for the 
machine — thereby turning programming from a numerical- to a problem-based task. 

 Not surprisingly, having little to no contact with the actual machine enhances one ’ s 
ability to think abstractly rather than numerically. Edsger Dijkstra, whose famous 
condemnation of  “ goto ”  statements has encapsulated to many the fundamental 
tenets of structured programming, believes that he was able to  “ pioneer ”  structured 
programming precisely because he began his programming career by coding for ghosts: 
for machines that did not yet exist.  87   In  “ Go To Statement Considered Harmful, ”  
Dijkstra argues,  “ the quality of programmers is a decreasing function of the density 
of go to statements in the programs they produce ”  because goto statements work 
against the fundamental tenet of what Dijkstra considered to be good programming, 
namely, the necessity to  “ shorten the conceptual gap between the static program and 
the dynamic process, to make the correspondence between the program (spread out 
in text space) and the process (spread out in time) as trivial as possible. ”   88   This is 
important because, if a program suddenly halts because of a bug, gotos (statements 
that tell a program to go to a specifi c line if a condition is met) make it diffi cult to 
fi nd the place in the program that corresponds to the buggy code. Gotos make diffi cult 
the confl ation of instruction with its product — the reduction of process to command —
 that grounds the emergence of software as a concrete entity and commodity. That is, 
gotos make it diffi cult for the source program to act as a legible source.  89   As this 
example makes clear, structured programming moves away from issues of program 
effi ciency — the time it takes to run a program — and more toward the problem of 
minimizing all the costs involved in producing and maintaining large programs. This 
move also makes programming an  “ art. ”  As Dijkstra argues in his letter justifying 
structured programming,  “ it is becoming most urgent to stop to consider program-
ming primarily as the minimization of cost/performance ratio. We should recognize 
that already now programming is much more an intellectual challenge: the art of 
programming is the art of organizing complexity, of mastering multitude and avoiding 
its bastard chaos as effectively as possible. ”   90   Again, this depends on making  “ the 
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structure of the program text [refl ect] the structure of the computation. ”   91   It means 
moving away from assembly and other languages that routinely offer bizarre exits and 
self-modifying code to languages that feature clear and well-documented repetitions 
(while . . . do . . .) that end in one clear place, that return control to the main program. 

 Structured programming languages  “ save ”  programmers from themselves by pro-
viding good security, where security means secure from the programmer (increasingly, 
 “ securing ”  the machine means making sure programmers cannot access or write over 
key systems).  92   Indeed, structured programming, which emphasizes programming as 
a problem of fl ow, is giving way to data abstraction, which views programming as a 
problem of interrelated objects, and hides far more than the machine. Data abstraction 
depends on information hiding, on the nonrefl ection of changeable facts in software. 
As John V. Guttag, a  “ pioneer ”  in data abstraction explains, data abstraction is all 
about forgetting, about hiding information about how a type is implemented behind 
an interface.  93   Rather than  “ polluting ”  a program by enabling invisible lines of contact 
between supposedly independent modules, data abstraction presents a clean or  “ beau-
tiful ”  interface by confi ning specifi cities, and by reducing the knowledge and power 
of the programmer. Knowledge, Guttag insists, is dangerous:  “  ‘ Drink deep, or taste not 
the Pierian Spring, ’  is not necessarily good advice. Knowing too much is no better, 
and often worse, than knowing too little. People cannot assimilate very much infor-
mation. Any programming method or approach that assumes that people will under-
stand a lot is highly risky. ”   94   Abstraction — the  “ erasure of difference in the service of 
likeness or equality ”  — also erases, or  “ forgets, ”  knowledge, rendering it, like the 
machine, ghostly.  95   

 Thus abstraction both empowers the programmer and insists on his/her igno-
rance — the dream of a sovereign subject who knows and commands is constantly 
undone. Because abstraction exists  “ in the mind of the programmer, ”  abstraction gives 
programmers new creative abilities. Computer scientist David Eck argues,  “ every pro-
gramming language defi nes a virtual machine, for which it is the machine language. 
Designers of programming languages are creating computing machines as surely as 
the engineer who works in silicon and copper, but without the limitations imposed 
by materials and manufacturing technology. ”   96   However, this abstraction — this move 
away from the machine specifi cities — hands over, in its virtual separation of machine 
into software and hardware, the act of programming to the machine itself. Mildred 
Koss scoffed at the early notion of computers as brains because  “ they couldn ’ t think 
in the way a human thinks, but had to be given a set of step-by-step machine instruc-
tions to be executed before they could provide answers to a specifi c problem ”  — at that 
time software was not considered to be an independent object.  97   The current status 
of software as a commodity, despite the nonrivalrous nature of  “ instructions, ”  indi-
cates the triumph of the software industry, an industry that fi rst struggled not 
only fi nancially but also conceptually to defi ne its product. The rise of software 
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depends both on historical events, such as IBM ’ s unbundling of its services from its 
products, and on abstractions enabled by higher-level languages. Guttag ’ s insistence 
on the unreliability and incapability of human beings to understand underscores the 
cost of such an abstraction. Abstraction is the computer ’ s game, as is programming 
in the strictest and newest sense of the word: with  “ data-driven ”  programming, for 
instance, machine learning/artifi cial intelligence (computers as source of source code) 
has become mainstream.  

 Importantly, this stratifi cation and disciplining of labor has a much longer history: 
human computing itself, as David Grier has documented, moved from an art to a 
routinized procedure through a separation of planners from calculators.  98   Whereas 
the mathematician Alexis-Claude Clairaut called on two of his colleagues/friends, 
Joseph Lalande, Nicole-Reine Lapaute, in 1757 to calculate the date of Halley ’ s comet ’ s 
1758 return, Gaspard Clair Fran ç ois Marie Riche de Prony, director of the Bureau du 
Cadastre, devised a system of intellectual labor to calculate metric tables in 1791. 
Not accidentally, the tables were part of a revolutionary governmental project: the 
move to the metric system by the National Assembly in order to gain control of the 
French economy.  99   De Prony, inspired by Adam Smith, divided the group into manual 
workers (unemployed pre-Revolutionary wig makers or servants who had basic arith-
metic skills) and planners (experienced computers who planned the calculation). This 
system in turn inspired Charles Babbage ’ s difference and analytic engines, in which 
the engines would replace the manual workers: according to Grier, de Prony ’ s system 
showed Babbage that  “ the division of labor was not restricted to physical work but 
could be applied to  ‘ some of the sublimest investigations of the human mind, ’  
including the work of calculation. ”   100   This routinized calculation was not smoothly 
adopted; for a long time within the United States, such a model was resisted and, 
even during World War I, computers were graduate students and young assistant 
professors. In order to produce calculations necessary for governmental projects (such 
as eugenics, census, navigation, weapons, etc.) in the twentieth century, however, 
mass computation became the norm. 

 The U.S. wholesale embrace of mass calculation also coincides with a governmental 
project. Begun during the Great Depression as a way to put unemployed high school 
graduates to work, the Work Progress Administration ’ s (WPA) Math Tables Project 
(MTP) produced some of the fi nest error-free tables in the world.  101   Indeed, it was not 
until the Roosevelt administration and the New Deal that the United States became 
seriously involved in producing mathematical tables. Since it was a WPA project, many 
established academics refused to be involved with it. To gain credibility, those in 
charge (themselves  “ less desirable ”  or unconventional PhDs) were determined to 
produce the most accurate tables possible. Gertrude Blanch, who ran the program with 
Milton Abramowitz, insists that most of the people they hired were qualifi ed.  102   In 
contrast, Ida Rhodes, another PhD hired by the MTP, claims:  “ [Most] of the people 
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[who] came to us really knew nothing at all about mathematics or [even] arithmetic. 
Gertrude Blanch says that they were all High School graduates, and they may have 
been. I never checked on that. But if they were, very few of them had remembered 
anything about the arithmetic or the algebra or whatever mathematics they had 
[studied]. ”   103   By the end, however, they were transformed. According to Rhodes, 
Blanch performed miracles,  “ welding a malnourished, dispirited crew of people, 
coming from [the] Welfare Rolls, [into] a group that Leslie J. Comrie said was the 
 ‘ mightiest computing team the world had ever seen. ’  ”   104   To Rhodes, the social work 
involved in this project —  “ [salutary benefi t conferred on] the spirit of those people 
[by] raising them from abject and self-despising people into a team that [acquired] a 
magnifi cent esprit de corps ”  — has been overlooked.  105   As Rhodes ’ s rhetoric indicates, 
this was a patronizing if admirable project, run by  “ saints. ”  Rhodes, herself partially 
deaf, would become an advocate for including physically challenged people in pro-
gramming work. (Blanch interestingly had a more edgy view of sainthood. Describing 
Rhodes, she remarked,  “ if there are saints on earth, she ’ s one of them. Saints may be 
diffi cult to live with but . . . it ’ s nice to have a few around ” ).  106   

 This saintly salutary work comprised dividing the group into four categories, 
listed in ascending ability — the adders, the multipliers, the dividers, and the check-
ers — and creating worksheets so that  “ people who knew nothing about mathematics 
could [do advanced functions] by just following one step at a time. ”   107   The fl awless-
ness of these tables stemmed both from these worksheets, created by Blanch, and 
from the degree to which these tables were checked (the Bessel function, for instance, 
was checked more than twenty-two times). Since the goal of the project was to 
keep these people busy, as well as to produce tables, accuracy was stressed over 
expediency and over sophistication of numerical techniques. Accuracy, according 
to Rhodes, became an obsession. ”   108   

 Not surprisingly, though, the MTP computers were sometimes suspicious of their 
oversight. Rhodes relates,  “ we had impressed upon our workers over and over and 
over again that we were not watching them. We were not counting their output. ”  
Rather,  “ the only thing we asked of them is complete accuracy. ”  This accuracy was 
also inscribed in the worksheets themselves in a nontransparent, repetitive manner. 
Rhodes and Blanch created worksheets,  “ in which every operation had to be done 
at least twice ”  and in which this duplicity was hidden. Rhodes explains,  “ for example, 
if we added a and b we wouldn’t immediately say: add b and a. But some time 
later we saw to it that b got added to a, and we had arrows connecting the answers 
saying that these two answers should agree to, say one or two [units in] the last 
place. If they did not get such an agreement, then they were to [erase the pertinent 
portion] and [re-compute it]. ”   109   Again, the fact that these tables were largely 
unnecessary — and hence not time-sensitive — made this emphasis on accuracy over 
timeliness possible. 
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 According to Rhodes, only two girls did not internalize the accuracy-ethic and 
cheated.  110   Rhodes revealingly narrates the dishonesty of the  “ colored ”  girl who joined 
the group after claiming that she was being discriminated against in another project: 

 [Being] a softy, [I swallowed her story.] I should have checked with [her] boss and found out 

why she was not liked. But I didn’t. And so I asked Gertrude’s permission and she said,  “ All 

right, let’s give her a chance. ”  [And] she started working for us. 

 Well, she hadn’t been with us long enough apparently to absorb that feeling of accuracy, 

although, of course, we also gave her the [same] lecture that we gave everybody else. She must 

have thought that the more she produces, the more we will think of her and the more anxious 

we will be to keep her. [Her checker] reported to us that the girl was a whiz, she handed in 

many more sheets than anyone else; and I began to feel very proud of myself, thinking, oh, I 

got [me a] good girl, working so hard. 

 You see, all that the [checker did was to examine the values, connected by the] arrows and 

if they agreed within one or two [units,] he was satisfi ed. In her case he once mentioned,  “ It’s 

remarkable, they agree to the very last place. ”  That should have given me an idea, but I was 

too busy with other things. Well, one evening Gertrude and I sat down to do our regular job 

of checking the sheets, and [when] we got [to] hers, [no values] differenced, absolutely nothing 

differenced. That was something we couldn’t believe. How could [they] not difference? The 

arrows showed perfect agreement — too perfect, as a matter of fact. 

 Well, lots of things can happen. First of all, the formula can be wrong. [Or we] could have 

made a mistake [in breaking down] the formula [while preparing] the worksheet. [Or] we could 

have made a mistake in [a sign.] We could have made a mistake in a constant. It happened to 

be my worksheet, so I checked [it] over: no mistake there. [She had to] copy certain informa-

tion from other Tables. Maybe [I] gave her the wrong tables. [An examination showed] that 

she copied the correct Tables. What else could have happened? The point [is] that we were so 

innocent and so trusting, it never occurred to us that what really happened [could have 

occurred.] What had happened was that she would get the fi rst answer, and then when she 

got to [it] the second time  —  where the arrows showed that they had to agree  —  and [they] 

didn’t agree, she merely erased the [second] answer and copied down the fi rst [one.] We found 

that out [when] Gertrude and I recomputed all her sheets.  111   

 This remarkable story reveals the contradictions in this disciplinary system: although 
Rhodes denies that they judged performance by speed, she thinks she got herself a  “ good 
girl ”  when the  “ colored girl ”  performs quickly. Also, although math presumably requires 
some intellectual labor, intelligence is condemned. The  “ colored girl ”  ’ s ability to fi gure 
out the system, the algorithm, is denounced as cheating, and the managers ’  faith in 
their own nontransparent plans described as  “ trusting. ”  These worksheets were an early 
form of programming: a breakdown of a complex operation into sequence of simple 
operations that depends on accurate and single-minded calculation. As this example 
makes clear, such programming depended on mind-numbingly repetitive operations 
by the  “ dumb ”  and the downtrodden, whose inept or deceitful actions could disrupt 
the task at hand. Modern computing replaces these with vacuum tubes and transistors. 



On Sourcery and Source Codes 41

As Alan Turing contended,  “ the class of problems capable of solution by the machine 
can be defi ned fairly specifi cally . . . [namely] those problems which can be solved by 
human clerical labour, working to fi xed rules, and without understanding. ”   112    

 Source code become  “ thing ”  — the erasure of execution — follows from the mecha-
nization of these power relations, the reworking of subject-object relations through 
automation as both empowerment and enslavement and through repetition as both 
mastery and hell. Embedded within the notion of instruction as source and the 
drive to automate computing — relentlessly haunting them — is a constantly repeated 
narrative of liberation and empowerment, wizards and (ex-)slaves. 

 Automation as Sourcery 

 Automatic programming, what we could call programming today, reveals the extent 
to which automation and the history of programming cannot be considered a simple 
deskilling (Kraft ’ s argument) or a march toward greater human power. Rather, through 
automation, expertise is both created and called into question: it is something that 
coders did not simply fear, but also appreciated and drove. 

 Automatic programming arose from a desire to reuse code and to recruit the com-
puter into its own operation — essentially, to transform singular instructions into a 
language a computer could write. As Koss, an early UNIVAC programmer, explains: 

 Writing machine code involved several tedious steps — breaking down a process into discrete 

instructions, assigning specifi c memory locations to all the commands, and managing the I/O 

buffers. After following these steps to implement mathematical routines, a sub-routine library, 

and sorting programs, our task was to look at the larger programming process. We needed to 

understand how we might reuse tested code and have the machine help in programming. As 

we programmed, we examined the process and tried to think of ways to abstract these steps 

to incorporate them into higher-level language. This led to the development of interpreters, 

assemblers, compilers, and generators — programs designed to operate on or produce other 

programs, that is, automatic programming.  113   

 Automatic programming is an abstraction that allows the production of computer-
enabled human-readable code — key to the commodifi cation and materialization of 
software and to the emergence of higher-level programming languages. 

 Higher-level programming languages, unlike assembly language, explode one ’ s 
instructions and enable one to forget the machine. In them, simple operations often 
call a function, making it a metonymic language par excellence. These languages also 
place everyone in the position of the planner, without the knowledge of the coder. 
They enable one to run a program on more than one machine — a property now 
assumed to be a  “ natural ”  property of software ( “ direct programming ”  led to a unique 
confi guration of cables; early machine language could be iterable but only on the same 
machine — assuming, of course, no engineering faults or failures). In order to emerge 



42 Chapter 1

as a language or a source, software and the  “ languages ”  on which it relies had to 
become iterable. With programming languages, the product of programming would 
no longer be a running machine but rather this thing called software — something 
theoretically (if not practically) iterable, repeatable, reusable, no matter who wrote it 
or what machine it was destined for; something that inscribes the absence of both the 
programmer and the machine in its so-called writing.  114   Programming languages 
enabled the separation of instruction from machine, of imperative from action, a move 
that fostered the change in the name of source code itself, from  “ pseudo ”  to  “ source. ”  
Pseudocode intriguingly stood both for the code as language and for the code as 
program (i.e., source code). The manual for UNIVAC ’ s A-2 compiler, for instance, 
defi nes pseudocode as  “ computer words other than the machine (C-10) code, design 
[sic] with regard to facilitating communications between programmer and computer. 
Since a pseudo-code cannot be directly executed by the computer, there must be pro-
grammed a modifi cation, interpretation or translation routine which converts the 
pseudo-codes to machine instruction and routines. ”   115   Pseudocode, which enables one 
to move away from machine specifi city, is called  “ information ”  — what later would 
become a ghostly immaterial substance — rather than code. 

 According to received wisdom, these fi rst attempts to automate programming — the 
 “ pseudo ”  — were resisted by  “ real ”  programmers.  116   John Backus, developer of FORTRAN, 
claims that early machine language programmers were engaged in a  “ black art ” ; they 
had a  “ chauvinistic pride in their frontiersmanship and a corresponding conservatism, 
so many programmers of the freewheeling 1950s began to regard themselves as 
members of a priesthood guarding skills and mysteries far too complex for ordinary 
mortals. ”   117   Koss similarly argues,  “ without these higher-level languages and processes 
. . . , which democratized problem solving with the computer, I believe programming 
would have remained in the hands of a relatively small number of technically oriented 
software writers using machine code, who would have been essentially the high priests 
of computing. ”   118   

 This story of a  “ manly ”  struggle against automatic programming resonates with 
narratives of mechanical computing itself as  “ feminizing ”  numerical analysis. Whirl-
wind team member Bob Everett offers the following summary of a tale describing two 
different ways of approaching automatic computing, which was told at Aiken ’ s mid-
1940s meeting:  “ One was the woman who gets married, and that ’ s fi ne, and she looks 
ahead to a life-time of three meals a day, 365 days a year, and dishes to wash after 
each one of them. Her husband brings her home from the honeymoon, and she dis-
covers he ’ s bought her an automatic dishwasher. That ’ s one way. The other way is the 
guy who decides to climb a mountain, and he buys all the rope, pitons, and one thing 
and another, and he goes to the mountain and fi nds that somebody has built a funicu-
lar railway. ”   119   According to this description, automatic computing is feminine or 
emasculating: an escape from domestic drudgery or the automation of a properly 
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masculine enterprise. Thus, it is not just the introduction of automatic programming 
that inspired narratives of masculine expertise under siege, but also the introduction 
of — or, more properly, the appreciation of — the (automatic) computer. 

 In a related manner, Hopper (and perhaps only Hopper) experienced the U.S. Navy, 
in particular her initial training as a thirty-seven-year-old woman, as  “ the most com-
plete freedom I ’ d ever had. ”  Whereas her younger counterparts rebelled  “ against the 
uniforms and the regulations, ”  she embraced the Navy ’ s strict structure as a release 
from domestic duties. As she relates,  “ All of a sudden I didn’t have to decide anything, 
it was all settled. I didn ’ t even have to bother to decide what I was going to wear in the 
morning, it was there. I just picked it up and put it on. So for me all of a sudden I was 
relieved of all minor decisions. . . . I didn ’ t even have to fi gure out what I was going to 
cook for dinner. ”  The diffi culties of domestic life and sacrifi ce during World War II 
colored Hopper ’ s enthusiasm, since  “ housekeeping had gotten to be quite a chore by 
then to fi gure out how much meat you could have and could you give dad some sugar 
 ’ cause he loved it and you might have some extra points. That ’ s when I learned to 
drink most of my drinks without any sugar in them so that dad could have it. And we 
had very little gasoline and we had to have a car and you had to plan every trip very 
carefully. Well, all of a sudden I ’ m in midshipmen ’ s school and all of a sudden you 
don ’ t have to do any of it.  120   Importantly, though, this release was also an insertion 
into a well-defi ned system, in which one both gave and received commands. When a 
 Voice of America  interviewer asked,  “ You are supposed to command, but also to conform 
and obey. How do you come to terms with those two extremes? ”  Hopper replied,  “ The 
essential basic principle of the Navy is leadership. And leadership is a two-way street. 
It is loyalty up and loyalty down. Respect your superior, keep him informed of what 
you are doing, and take care of your crew. That is everyone ’ s responsibility. ”   121   

 Automatic programming, seen as freeing oneself from both drudgery and knowl-
edge, thus calls into question the simple narrative of it as dispersing a reluctant 
 “ priesthood ”  of machine programmers. This narrative of resistance assumes that pro-
grammers naturally enjoyed tedious and repetitive numerical tasks and as well as 
developing singular solutions for their clients. The  “ mastery ”  of computing can easily 
be understood as  “ suffering. ”  Indeed, Hopper called her early days with the Harvard 
Mark 1 her  “ sufferings ”  and argued,  “ experienced programmers are always anxious 
to make the computer carry out as much routine work as they can. ”   122   Harry Reed, 
an early ENIAC programmer, relays,  “ the whole idea of computing with the ENIAC 
was a sort of  hair-shirt  kind of thing. Programming for the computer, whatever it 
was supposed to be, was a redemptive experience — one was supposed to  suffer  to do 
it. ”  According to Reed, programmers were actively trying to convince people to write 
small programs for themselves. In the 1970s, he  “ actually had to take my Division 
and sit everybody down who hadn ’ t taken a course in FORTRAN, because, by God, 
they were going to write their own programs now. We weren ’ t going to get computer 
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specialists to write simple little programs that they should have been writing.  123   Also, 
the fi rst programmers were the fi rst writers of reusable subroutines. Holberton, for 
instance, developed the fi rst SORT generator to save her colleagues ’  time,  “ I felt 
for all the work that Betty Jean and I had done on sorting methods, it was a shame 
for people to have to sit down and re-do and re-code that same thing even though 
they could use the books to do it, if it could be done by a machine. And that ’ s the 
reason, and it only took six months to program the thing. That ’ s six more months. ”   124   
Thus, rather than programmers circling the wagons to protect their positions, it 
would seem that many programmers themselves welcomed and contributed to the 
success of automatic programming. 

 As well, since programmers were in incredible demand in the 1950s through the 
1960s, the need to create boundaries to protect jobs seems odd. Although compilers 
and interpreters may not have been accepted immediately, especially by those already 
trained in machine programming, the resistance may have stemmed more from the 
work environment than from personal arrogance. Coders were under great pressure 
to be as effi cient as possible. As Holberton and Bartik relay in a 1973 interview, early 
coders often developed a persecution complex, because machine time was the most 
important and expensive thing: 

 BARTIK:   The worst sin that you could commit was to waste that machine time. So that we really 

became paranoid. 

 HOLBERTON:   Mhm. Effi ciency. 

 BARTIK:   We thought everybody was after us. 

 TROPP:   [Laughter] 

 BARTIK:   For our ineffi ciency. 

 HOLBERTON:   You wasted one add time, you were being ineffi cient. 

 BARTIK:   So it was fi ne for us to struggle for two days to cut off the slightest amount on that 

machine.  125   

 Compilers were arguably accepted because the demand for programmers meant a loss 
in quality (an ever widening recruitment) — programming effi ciently in machine 
language therefore became a mark of expertise. In this sense, the introduction of 
automatic programming, which set a certain standard of machine effi ciency, helped 
to produce the priesthood it was supposedly displacing. 

 Corporate and academic customers, for whom programmers were orders of magni-
tude cheaper per hour than computers, do seem to have resisted automatic program-
ming. Jean Sammet, an early female programmer, relates, in her infl uential  Programming 
Languages: History and Fundamentals , that customers objected to compilers on the 
ground that they  “ could not turn out object code as good as their best programmers. 
A signifi cant selling campaign to push the advantages of such systems was underway 
at that time, with the spearhead being carried for the numerical scientifi c languages 
(i.e., FORTRAN) and for  ‘ English-language-like ’  business data-processing languages by 
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Remington Rand (and Dr. Grace Hopper in particular). ”   126   This selling campaign not 
only pushed higher-level languages (by devaluing humanly produced programs), it 
also pushed new hardware: to run these programs, one needed more powerful 
machines. The government ’ s insistence on standardization, most evident in the devel-
opment and widespread use of COBOL, itself a language designed to open up program-
ming to a wider range of people, fostered the general acceptance of higher-level 
languages, which again were theoretically, if not always practically, machine indepen-
dent or iterable. The hardware-upgrade cycle was normalized in the name of saving 
programming time. 

 This  “ selling campaign ”  led to what many have heralded as the democratization 
of programming, the opening of the so-called priesthood of programmers. In Sammet ’ s 
view, this was a partial revolution 

 in the way in which computer installations were run because it became not only possible, but 

quite practical to have engineers, scientists, and other people actually programming their own 

problems without the intermediary of a professional programmer. Thus the confl ict of the open 

versus closed shop became a very heated one, often centering [on] the use of FORTRAN as the 

key illustration for both sides. This should not be interpreted as saying that all people with 

scientifi c numerical problems to solve immediately sat down to learn FORTRAN; this is clearly 

not true but such a signifi cant number of them did that it has had a major impact on the 

entire computer industry. One of the subsidiary side effects of FORTRAN was the introduction 

of FORTRAN Monitor System [IB60]. This made the computer installation much more effi cient 

by requiring less operator intervention for the running of the vast number of FORTRAN 

(as well as machine language) programs.  127   

 The democratization or  “ opening ”  of computing, which gives the term  open  in  open 
source  a different resonance, would mean the potential spread of computing to those 
with scientifi c numerical problems to solve and the displacement of human operators 
by operating systems. But the language of priests and wizards has hardly faded and 
scientists have always been involved with computing, even though computing has 
not always been considered to be a worthy scientifi c pursuit. The history of computing 
is littered with moments of  “ computer liberation ”  that are also moments of greater 
obfuscation.  128   

 Higher level programming languages — automatic programming — may have been 
sold as offering the programmer more and easier control, but they also necessitated 
blackboxing even more the operations of the machine they supposedly instructed. 
Democratization did not displace professional programmers but rather buttressed their 
position as professionals by paradoxically decreasing their real power over their 
machines, by generalizing the engineering concept of information. 

 So what are we to do with these contradictions and ambiguities? As should be clear 
by now, these many contradictions riddling the development of automatic program-
ming were key to its development, for the automation of computing is both an 
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acquisition of greater control and freedom, and a fundamental loss of them. The 
narrative of the  “ opening ”  of programming reveals the tension at the heart of pro-
gramming and control systems: are they control systems or servomechanisms (Norbert 
Wiener ’ s initial name for them)? Is programming a clerical activity or an act of 
Hobbesian mastery? Given that the machine takes care of  “ programming proper ”  — the 
sequence of events during execution — is programming programming at all? What is 
after all compacted in the coinciding changes in the titles of  “ operators ”  to  “ program-
mers ”  and of  “ mathematicians ”  to  “ programmers ” ? The notion of the priesthood of 
programming erases this tension, making programming always already the object of 
jealous guardianship, and erasing programming ’ s clerical underpinnings.  129   

 Programming in the 1950s does seem to have been fun and fairly gender balanced, 
in part because it was so new and in part because it was not as lucrative as hardware 
design or even sales: the profession was gender neutral in hiring if not pay because it 
was not yet a profession.  130   The  “ ENIAC girls ”  were fi rst hired as subprofessionals, and 
some had to acquire more qualifi cations in order to retain their positions. As many 
female programmers quit to have children or get married, men (and compilers) took 
their increasingly lucrative positions. Programming ’ s clerical and arguably feminine 
underpinnings — both in terms of personnel and of command structure — became 
buried as programming sought to become an engineering and academic fi eld in its 
own right.  131   Democratization did not displace professional programmers but rather 
buttressed their position as professionals by paradoxically decreasing their real power 
over their machines. It also, however, made programming more pleasurable. 

 Causal Pleasure 

 The distinction between programmers and users is gradually eroding. With higher-
level languages, programmers are becoming more like simple users. Crucially, though, 
the gradual demotion of programmers has been offset by the power and pleasure of 
programming. To program in a higher-level language is to enter a magical world — it 
is to enter a world of logos, in which one ’ s code faithfully represents one ’ s intentions, 
albeit through its blind repetition rather than its  “ living ”  status.  132   Edwards argues, 
 “ programming can produce strong sensations of power and control ”  because the 
computer produces an internally consistent if externally incomplete microworld, a 
 “ simulated world, entirely within the machine itself, that does not depend on instru-
mental effectiveness. That is, where most tools produce effects on a wider world of 
which they are only a part, the computer contains its own worlds in miniature. . . . 
In the microworld, as in children ’ s make-believe, the power of the programmer is 
absolute. ”   133   Joseph Weizenbaum, MIT professor, creator of ELIZA (an early program 
that imitated a Rogerian therapist) and member of the famed MIT AI (Artifi cal Intel-
ligence) lab, similarly contends: 
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 The computer programmer . . . is a creator of universes for which he alone is the lawgiver. So, 

of course, is the designer of any game. But universes of virtually unlimited complexity can be 

created in the form of computer programs. Moreover, and this is a crucial point, systems so 

formulated and elaborated  act out  their programmed scripts. They compliantly obey their laws 

and vividly exhibit their obedient behavior. No playwright, no stage director, no emperor, 

however powerful, has ever exercised such absolute authority to arrange a stage or a fi eld of 

battle and to command such unswervingly dutiful actors or troops.  134   

 The progression from playwright to stage director to emperor is telling: programming 
languages, like neoliberal economics, model the world as a  “ game. ”   135   To return to the 
notion of  “ code is law, ”  programming languages establish the programmer as a sov-
ereign subject, for whom there is no difference between command given and command 
completed. As a lawgiver more powerful than a playwright or emperor, the program-
mer can  “ say ”   “ let there be light ”  and there is light. Iterability produces both language 
and subject. Importantly, Weizenbaum views the making performative or automati-
cally executable of words as the imposition of instrumental reason, inseparable from 
the process of  “ enlightenment ”  critiqued by the Frankfurt school.  136   Instrumental 
reason, he argues,  “ has made out of words a fetish surrounded by black magic. And 
only the magicians have the rights of the initiated. Only they can say what words 
mean. And they play with words and they deceive us. ”   137   

 Programming languages offer the lure of visibility, readability, logical if magical 
cause and effect. As Brooks argues,  “ one types the correct incantation on the keyboard, 
and a display screen comes to life, showing things that never were nor could be. ”   138   
One ’ s word creates something living. Consider this ubiquitous  “ hello world ”  program 
written in C++ ( “ hello world ”  is usually the fi rst program a person will write): 

 // this program spits out  “ hello world ”  

 #include  < iostream.h >  

 int main () 

 { 

    cout  <  <   “ Hello World! ” ; 

    return 0; 

 } 

 The fi rst line is a comment line, explaining to the human reader that this program 
spits out  “ Hello World!. ”  The next line directs the compiler ’ s preprocessor to include 
iostream.h, a standard fi le to deal with input and output to be used later. The third 
line,  “ int main (), ”  begins the main function of the program;  “ cout  <  <   ‘ Hello World! ’ ; ”  
prints  “ Hello World! ”  to the screen ( “ cout ”  is defi ned in iostream.h);  “ return 0 ”  ter-
minates the main function and causes the program to return a 0 if it has run correctly. 
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Although not immediately comprehensible to someone not versed in C++, this 
program nonetheless seems to make some sense, and seems to be readable. It comprises 
a series of imperatives and declaratives that the computer presumably understands 
and obeys. When it runs, it follows one ’ s commands and displays  “ Hello World!. ”  

 It is no accident that  “ hello world ”  is the fi rst program one learns because it is 
easy, demonstrating that we can produce results immediately. This ease, according to 
Weizenbaum, is what makes programming so seductive and dangerous: 

 It happens that programming is a relatively easy craft to learn. . . . And because programming 

is almost immediately rewarding, that is, because a computer very quickly begins to behave 

somewhat in the way the programmer intends it to, programming is very seductive, especially 

for beginners. Moreover, it appeals most to precisely those who do not yet have suffi cient 

maturity to tolerate long delays between an effort to achieve something and the appearance 

of concrete evidence of success. Immature students are therefore easily misled into believing 

that they have truly mastered a craft of immense power and of great importance when, in fact, 

they have learned only its rudiments and nothing substantive at all.  139   

 The seeming ease of programming hides a greater diffi culty — executability leads to 
unforeseen circumstances, unforeseen or buggy repetitions. Programming offers a 
power that, Weizenbaum argues, corrupts as any power does.  140    What corrupts, Weizen-
baum goes on to explain, however, is not simply ease, but also this combination of ease and 
diffi culty . Weizenbaum argues that programming creates a new mental disorder: the 
compulsion to program, which he argues hackers, who  “ hack code ”  rather than 
 “ work, ”  suffer from (although he does note that not all hackers are compulsive 
programmers).  141   

 To explain this addiction, Weizenbaum explains the parallels between  “ the magical 
world of the gambler ”  and the magical world of the hacker — both entail megalomania 
and fantasies of omnipotence, as well as a  “ pleasureless drive for reassurance. ”  142  Like 
gambling, programming can be compulsive because it both rewards and challenges 
the programmer. It is driven by  “ two apparently opposing facts: fi rst, he knows that 
he can make the computer do anything he wants it to do; and second, the computer 
constantly displays undeniable evidence of his failures to him. It reproaches him. 
There is no escaping this bind. The engineer can resign himself to the truth that there 
are some things he doesn ’ t know. But the programmer moves in a world entirely of 
his own making. The computer challenges his power, not his knowledge. ”   143   According 
to Weizenbaum, because programming engages power rather than truth, it can induce 
a paranoid megalomania in the programmer.  144   Because this knowledge is never 
enough, because a new bug always emerges, because an unforeseen wrinkle causes 
divergent unexpected behavior, the hacker can never stop. Every error seems correct-
able; every error points to the hacker ’ s lack of foresight; every error leads to another. 
Thus, unlike the  “ useful programmer, ”  who  “ works ”  by solving the problem at hand 
and carefully documents his code, the hacker aimlessly hacks code: programming 
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becomes a technique, a game without a goal and thus without an end. Hackers ’  skills 
are thus  “ disembodied ”  and this disembodiment transforms their physical appearance: 
Weizenbaum describes them as  “ bright young men of disheveled appearance, often 
with sunken glowing eyes . . . sitting at computer consoles, their arms tensed and 
waiting to fi re their fi ngers, already poised to strike, at the buttons and keys on which 
their attention seems to be as riveted as a gamer ’ s on the rolling dice.  145   

 Although Weizenbaum is quick to pathologize hackers as pleasureless pitiful crea-
tures, hackers themselves emphasize programming as pleasurable — and their lack of 
 “ usefulness ”  can actually be what is most productive and promising about program-
ming. Linus Torvalds, for instance, argues that he, as an eternal grad student, decided 
to build the Linux operating system core just  “ for fun. ”  Torvalds further views the 
decisions programming demands as rescuing programming from becoming tedious. 
 “ Blind obedience on its own, while initially fascinating, ”  he writes,  “ obviously does 
not make for a very likable companion. In fact, that part gets boring fairly quickly. 
What makes programming so engaging is that, while you can make the computer 
do what you want, you have to fi gure out  how . ”   146   Richard Stallman, who fi ts 
Weizenbaum ’ s description of a hacker (and who was in the AI lab, probably building 
those indispensable functions) likewise emphasizes the pleasure, but more important 
the  “ freedom ”  and  “ freeness ”  associated with programming — something that stems 
from programming as not simply the production of a commercial (or contained) 
product. Hacking reveals the extent to which source code can become a fetish: 
something endless that always leads us pleasurably, as well as anxiously, astray. 

 Source Code as Fetish 

 Source code as source means that software functions as an axiom, as  “ a self-evident 
proposition requiring no formal demonstration to prove its truth, but received and 
assented to as soon as it is mentioned. ”   147   In other words, whether or not source code 
is only a source after the fact or whether or not software can be physically separated 
from hardware,  148   software is always posited as already existing, as the self-evident 
ground or source of our interfaces. Software is axiomatic. As a fi rst principle, it fastens 
in place a certain neoliberal logic of cause and effect, based on the erasure of execution 
and the privileging of programming that bleeds elsewhere and stems from elsewhere as 
well.  149   As an axiomatic, it, as Gilles Deleuze and F é lix Guattari argue, artifi cially limits 
decodings.  150   It temporarily limits what can be decoded, put into motion, by setting up 
an artifi cial limit — the artifi cial limit of programmability — that seeks to separate infor-
mation from entropy, by designating some entropy information and other  “ non-
intentional ”  entropy noise. Programmability, discrete computation, depends on 
the disciplining of hardware and programmers, and the desire for a programmable 
axiomatic code. Code, however, is a medium in the full sense of the word. As a 
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medium, it channels the ghost that we imagine runs the machine — that we see as we 
don ’ t see — when we gaze at our screen ’ s ghostly images. 

 Understood this way, source code is a fetish. According to the OED, a fetish was 
originally an ornament or charm worshipped by  “ primitive peoples . . . on account 
of its supposed inherent magical powers. ”   151   The term  fetisso  stemmed from the trade 
of small wares and magic charms between the Portuguese merchants and West 
Africans; Charles de Brosses coined the term  fetishism  to describe  “ primitive religions ”  
in 1757. According to William Pietz, Enlightenment thinkers viewed fetishism as a 
 “ false causal reasoning about physical nature ”  that became  “ the defi nitive mistake of 
the pre-enlightened mind: it superstitiously attributed intentional purpose and desire 
to material entities of the natural world, while allowing social action to be determined 
by the . . . wills of contingently personifi ed things, which were, in truth, merely the 
externalized material sites fi xing people ’ s own capricious libidinal imaginings. ”   152   That 
is, fetishism, as  “ primitive causal thinking, ”  derived causality from  “ things ”  — in all 
the richness of this concept — rather than from reason: 

 Failing to distinguish the intentionless natural world known to scientifi c reason and motivated 

by practical material concerns, the savage (so it was argued) superstitiously assumed the exis-

tence of a unifi ed causal fi eld for personal actions and physical events, thereby positing reality 

as subject to animate powers whose purposes could be divined and infl uenced. Specifi cally, 

humanity ’ s belief in gods and supernatural powers (that is, humanity ’ s unenlightenment) was 

theorized in terms of prescientifi c peoples ’  substitution of imaginary personifi cations for the 

unknown physical causes of future events over which people had no control and which they 

regarded with fear and anxiety.  153   

 A fetish allows one to visualize what is unknown — to substitute images for causes. 
Fetishes allow the human mind both too much and not enough control by establish-
ing a  “ unifi ed causal fi eld ”  that encompasses both personal actions and physical 
events. Fetishes enable a semblance of control over future events — a possibility of 
infl uence, if not an airtight programmability — that itself relies on distorting real social 
relations into material givens. 

 This notion of fetish as false causality has been most important to Karl Marx ’ s 
diagnosis of capital as fetish. Marx famously argued: 

 the commodity-form . . . is nothing but the determined social relation between men themselves 

which assumes here, for them, the phantasmagoric form of a relation between things. In order, 

therefore, to fi nd an analogy we must take a fl ight into the misty realm of religion. There the 

products of the human head appear as autonomous fi gures endowed with a life of their own, 

which enter into relations both with each other and with the human race. So it is in the world 

of commodities with the products of men ’ s hands. I call this the . . . fetishism.  154   

 The capitalist thus confuses social relations and the labor activities of real individuals 
with capital and its seemingly magical ability to reproduce. For,  “ it is in interest-
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bearing capital . . . that capital fi nds its most objectifi ed form, its pure fetish form. 
. . . Capital — as an entity — appears here as an independent source of value; a some-
thing that creates value in the same way as land [produces] rent, and labor wages. ”   155   
Both these defi nitions of fetish also highlight the relation between things and men: 
men and things are not separate, but rather speak with and to one another. That is, 
things are not simply objects that exist outside the human mind, but are rather tied 
to events, to the timing of events. 

 The parallel to source code seems obvious: we  “ primitive folk ”  worship source 
code as a magical entity — as a source of causality — when in truth the power lies 
elsewhere, most importantly, in social and machinic relations. If code is performa-
tive, its effectiveness relies on human and machinic rituals. Intriguingly though, in 
this parallel, Enlightenment thinking — a belief that knowing leads to control, to a 
release from tutelage — is not the  “ solution ”  to the fetish, but, rather, what grounds 
it, for source code historically has been portrayed as the solution to wizards and 
other myths of programming: machine code provokes mystery and submission; source 
code enables understanding and thus institutes rational thought and freedom. Knowl-
edge, according to Weizenbaum, sustains the hacker ’ s aimless actions. To offer a 
more current example of this logic than the FORTRAN one cited earlier, Richard 
Stallman, in his critique of nonfree software, has argued that an executable program 
 “ is a mysterious bunch of numbers. What it does is secret. ”   156   Against this magical 
execution, source code supposedly enables an understanding and a freedom — the 
ability to map and know the workings of the machine, but, again, only through a 
magical erasure of the gap between source and execution, an erasure of execution 
itself. If we consider source code as fetish, the fact that source code has hardly 
deprived programmers of their priestlike/wizard status makes complete sense. If any-
thing, such a notion of programmers as superhuman has been disseminated ever 
more and the history of computing — from direct manipulation to hypertext — has 
been littered by various  “ liberations. ”  

 But clearly, source code can do and be things: it can be interpreted or compiled; it 
can be rendered into machine-readable commands that are then executed. Source code 
is also read by humans and is written by humans for humans and is thus the source 
of some understanding. Although Ellen Ullman and many others have argued,  “ a 
computer program has only one meaning: what it does. It isn ’ t a text for an academic 
to read. Its entire meaning is its function, ”  source code must be able to function, even 
if it does not function — that is, even if it is never executed.  157   Source code ’ s readability 
is not simply due to comments that are embedded in the source code, but also due to 
English-based commands and programming styles designed for comprehensibility. 
This readability is not just for  “ other programmers. ”  When programming, one must 
be able to read one ’ s own program — to follow its logic and to predict its outcome, 
whether or not this outcome coincides with one ’ s prediction. 
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 This notion of source code as readable — as creating some outcome regardless of its 
machinic execution — underlies  “ codework ”  and other creative projects. The Internet 
artist Mez, for instance, has created a language called mezangelle that incorporates 
formal code and informal speech. Mez ’ s poetry deliberately plays with programming 
syntax, producing language that cannot be executed, but nonetheless draws on the 
conventions of programming language to signify.  158   Codework, however, can also work 
entirely within an existing programming language. Graham Harwood ’ s perl poem, for 
example, translates William Blake ’ s nineteenth-century poem  “ London ”  into London.
pl, a script that contains within it an algorithm to  “ fi nd and calculate the gross lung-
capacity of the children screaming from 1792 to the present. ”   159   Regardless of whether 
or not it can execute, code can be — must be — worked into something meaningful. 
Source code, in other words, may be the source of things other than the machine 
execution it is  “ supposed ”  to engender. 

 Source code as fetish, understood psychoanalytically, embraces this nonteleologi-
cal potential of source code, for the fetish is a deviation that does not  “ end ”  where 
it should. It is a genital substitute that gives the fetishist nonreproductive pleasure. 
It allows the child to combat castration — his inscription within the world of paternal 
law and order — for both himself and his mother, while at the same time accom-
modating to his world ’ s larger oedipal structure. It both represses and acknowledges 
paternal symbolic authority. According to Freud, the fetish, formed the moment 
the little boy discovers his mother ’ s  “ lack, ”  is  “ a substitute for the woman ’ s (moth-
er ’ s) phallus which the little boy once believed in and does not wish to forego. ”   160   
As such, it both fi xes a singular event — turning time into space — and enables a 
logic of repetition that constantly enables this safeguarding. As Pietz argues,  “ the 
fetish is always a meaningful fi xation of a singular event; it is above all a  ‘ histori-
cal ’  object, the enduring material form and force of an unrepeatable event. This 
object is  ‘ territorialized ’  in material space (an earthly matrix), whether in the form 
of a geographical locality, a marked site on the surface of the human body, or a 
medium of inscription or confi guration defi ned by some portable or wearable 
thing. ”   161   Even though it fi xes a singular event, the fetish works only because it 
can be repeated, but again, what is repeated is both denial and acknowledgment, 
since the fetish can be  “ the vehicle both of denying and asseverating the fact of 
castration. ”   162   Slavoj  Ž i ž ek draws on this insight to explain the persistence of the 
Marxist fetish: 

 When individuals use money, they know very well that there is nothing magical about 

it — that money, in its materiality, is simply an expression of social relations . . . on an 

everyday level, the individuals know very well that there are relations between people behind 

the relations between things. The problem is that in their social activity itself, in what they 

are  doing , they are  acting  as if money, in its material reality is the immediate embodiment 

of wealth as such. They are fetishists in practice, not in theory. What they  “ do not know, ”  
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what they misrecognize, is the fact that in their social reality itself — in the act of commodity 

exchange — they are guided by the fetishistic illusion.  163   

 Fetishists, importantly, know what they are doing — knowledge, again, is not an answer 
to fetishism, but rather what sustains it. The knowledge that source code offers is no 
cure for source code fetishism: if anything, this knowledge sustains it. As the next 
chapter elaborates, the key question thus is not  “ what do we know? ”  but rather  “ what 
do we do? ”  

 To make explicit the parallels, source code, like the fetish, is a conversion of event 
into location — time into space — that does affect things, although not necessarily in 
the manner prescribed. Its effects can be both productive and nonexecutable. Also, in 
terms of denial and acknowledgment, we know very well that source code in that state 
and without the intercession of other  “ layers ”  is not executable, yet we persist in 
treating it as so. And it is this glossing over that makes possible the ideological belief 
in programmability. 

 Code as fetish means that computer execution deviates from the so-called source, 
as source program does from programmer. Turing, in response to the objection that 
computers cannot think because they merely follow human instructions, contends: 

 Machines take me by surprise with great frequency. . . . The view that machines cannot give 

rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are 

particularly subject. This is the assumption that as soon as a fact is presented to a mind all 

consequences of that fact spring into the mind simultaneously with it. It is a very useful 

assumption under many circumstances, but one too easily forgets that it is false. A natural 

consequence of doing so is that one then assumes that there is no virtue in the mere working 

out of consequences from data and general principles.  164   

 This erasure of the vicissitudes of execution coincides with the confl ation of data 
with information, of information with knowledge — the assumption that what is most 
diffi cult is the capture, rather than the analysis, of data. This erasure of execution 
through source code as source creates an intentional authorial subject: the computer, 
the program, or the user, and this source is treated as the source of meaning. The 
fact that there is an algorithm, a meaning intended by code (and thus in some way 
knowable), sometimes structures our experience with programs. When we play a 
game, we arguably try to reverse engineer its algorithm or at the very least link its 
actions to its programming, which is why all design books warn against coincidence 
or random mapping, since it can induce paranoia in its users. That is, because an 
interface is programmed, most users treat coincidence as meaningful. To the user, as 
with the paranoid schizophrenic, there is always meaning: whether or not the user 
knows the meaning, s/he knows that it regards him or her. To know the code is to 
have a form of  “ X-ray vision ”  that makes the inside and outside coincide, and the 
act of revealing sources or connections becomes a critical act in and of itself.  165   Code 
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as source leads to that bizarre linking of computers to visual culture, to transparency, 
which constitutes the subject of chapter 2. 

 Code as fetish thus underscores code as thing: code as a  “ dirty window pane, ”  
rather than as a window that leads us to the  “ source. ”  Code as fetish emphasizes 
code as a set of relations, rather than as an enclosed object, and it highlights both 
the ambiguity and the specifi city of code. Code points to, it indicates, something 
both specifi c and nebulous, both defi ned and undefi nable. Code, again, is an abstrac-
tion that is haunted, a source that is a re-source, a source that renders the machinic —
 with its annoying specifi cities or  “ bugs ”  — ghostly. As Thomas Keenan argues, 
 “ haunting can only be thought as the diffi cult (simultaneous and impossible) move-
ment of remembering and forgetting, inscribing and erasing, the singular and the 
different. ”   166   Embracing software as thing, in theory and in practice, opens us to the 
ways in which the fact that we cannot know software can be an enabling condition: 
a way for us to engage the surprises generated by a programmability that, try as it 
might, cannot entirely prepare us for the future. 
  



  Computers that Roar  

 Computers, like other media, are metaphor machines: they both depend on and per-
petuate metaphors. More remarkably, though, they — through their status as  “ universal 
machines ”  — have become metaphors for metaphor itself. 

 From fi les to desktops, windows to spreadsheets, metaphors dominate user inter-
faces. In the 1990s (and even today), textbooks of human – computer interface (HCI) 
design described metaphors as central to  “ user-friendly ”  interfaces. Metaphors make 
abstract computer tasks familiar, concrete, and easy to grasp, since through them we 
allegedly port already existing knowledge to new tasks (for instance, experience with 
documents to electronic word processing). Metaphors proliferate not only in inter-
faces, but also in computer architecture: from memory to buses, from gates to the 
concept of architecture itself. Metaphors similarly structure software: viruses, UNIX 
daemons, monitors, back orifi ce attacks (in which a remote computer controls the 
actions of one ’ s computer), and so on. At the contested  “ origin ”  of modern computing 
lies an analogy turned metaphor: John von Neumann deliberately called the major 
components of modern (inhuman) computers  “ organs, ”  after cybernetic understand-
ings of the human nervous system. Drawing from the work of Alan Turing and Charles 
Babbage, Jon Agar has argued that the computer, understood as consisting of software 
and hardware, is a  “ government machine. ”  Like the British Civil Service, it is a 
 “ general-purpose  ‘ machine ’  governed by a code. ”   1   

 The role of metaphor, however, is not simply one way. Like metaphor itself, it 
moves back and forth. Computers have become metaphors for the mind, for culture, 
for society, for the body, affecting the ways in which we experience and conceive of 
 “ real ”  space: from the programmed mind running on the hard-wired brain to repro-
grammable culture versus hard-wired nature, from neuronal networks to genetic pro-
grams. Paul Edwards has shown how computers as metaphors and machines were 
crucial to the Cold War and to the rise of cognitive psychology, an insight developed 
further by David Golumbia in his analysis of computationalism. As cited earlier, Joseph 
Weizenbaum has argued that computers have become metaphors for all  “ effective 
procedures, ”  that is, for anything that can be solved in a prescribed number of steps, 
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such as gene expression and clerical work.  2   Weizenbaum also notes that the power of 
computer as metaphor is itself based on  “ only the vaguest understanding of a diffi cult 
and complex scientifi c concept. . . . The public vaguely understands — but is nonethe-
less fi rmly convinced — that any effective procedure can, in principle, be carried out 
by a computer . . . it follows that a computer can at least imitate man, nature, and 
society in all their procedural aspects. ”   3   Crucially, this means that, at least in popular 
opinion, the computer is a machine that can imitate, and thus substitute for, all others 
based on its programming. This vaguest understanding — software as thing — is neither 
accidental to nor a contradiction of the computer as metaphor, but rather grounds 
its appeal. 

 Because computers are viewed as universal machines, they have become meta-
phors for metaphor itself: they embody a logic of substitution, a barely visible con-
ceptual system that orders and disorders. Metaphor is drawn from the Greek terms 
 meta  (change) and  phor  (carrying): it is a transfer that transforms. Aristotle defi nes 
metaphor as consisting  “ in giving the thing a name that belongs to something else; 
the transference being either from genus to species, or from species to genus, or 
from species to species, or on grounds of analogy. ”   4   George Lakoff and Mark Johnson 
argue,  “  The essence of metaphor is understanding and experiencing one kind of thing in 
terms of another . ”   5   Metaphor is necessary  “ because so many of the concepts that are 
important to us are either abstract or not clearly delineated in our experience (the 
emotions, ideas, time, etc.), we need to get a grasp on them by means of other 
concepts that we understand in clearer terms (spatial orientations, objects, etc.). ”   6   
Lakoff and Johnson argue that we live by metaphors (such as  “ argument is war, ”  
 “ events are objects, ”  and  “ happy is up ” ), that they serve as the basis for our thoughts 
and our actions.  7   Metaphors govern our actions because they are also  “ grounded in 
our constant interaction with our physical and cultural environments. ”   8   That is, the 
similarities that determine a metaphor are based on our interactions with various 
objects — it is therefore no accident that metaphors are thus prominent in  “ interac-
tive ”  design. Crucially, metaphors do not simply conceptualize a preexisting reality; 
they also create reality.  9   Thus, they are not something we can  “ see beyond, ”  but 
rather things necessary to seeing. Even to see beyond certain metaphors, they argue, 
we need others.  10   Metaphor is an  “ imaginative rationality ” :  “ Metaphor . . . unites 
reason and imagination. Reason, at the very least, involves categorization, entail-
ment, and inference. Imagination, in one of its many aspects, involves seeing one 
kind of thing in terms of another kind of thing — what we have called metaphorical 
thought. ”   11   This imaginative seeing one kind of thing in terms of another thing also 
involves hiding: a metaphor, Thomas Keenan argues, means that  “ something . . . 
shows itself by hiding itself, by announcing itself as something else or in another 
form. ”   12   
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 Paul Ricoeur, focusing more on metaphor as a linguistic entity, similarly stresses 
the centrality and creative power of metaphor. To Ricoeur, metaphor grounds the pos-
sibility of logical thought. Ricoeur, drawing from Aristotle ’ s defi nition, argues that 
change, movement, and transposition (and thus deviation, borrowing, and substitu-
tion) characterize metaphor.  13   By transposing an  “ alien ”  name, metaphor is a  “ cate-
gorical transgression . . . a kind of deviance that threatens classifi cation itself. ”   14   Since 
metaphor, however, also  “  ‘ conveys learning and knowledge through the medium of 
the genus, ’  ”  Ricoeur contends,  “ metaphor destroys an order only to invent a new one; 
and that the category-mistake is nothing but the complement of a logic of discovery. ”   15   
It is a form of making, of poesis, that grounds all forms of classifi cation.  16   This disor-
dering that is also an ordering, a dismantling that is also a redescription, is also 
instructive and pleasurable — it offers us  “ the pleasure of understanding that follows 
surprise. ”   17   This movement from surprise to understanding is mirrored in metaphor 
itself, which is a mode of animation, of change — it makes things visible, alive, and 
actual by representing things in a state of activity.  18   

 Computers, understood as universal machines, stand in for substitution itself. 
Allegedly making possible the transformation of anything into anything else via 
the medium of information, they are transference machines. They do not simply 
change X into Y, they also animate both terms. They create a new dynamic reality: 
the fi les they offer us are more alive; the text that appears on their screens invites 
manipulation, addition, animation. Rather than stable text on paper, computers 
offer information that is fl exible, programmable, transmissible, and ever-changing. 
Even an image that appears stably on our screen is constantly refreshed and regen-
erated. Less obviously, computers — software in particular — also concretize Lakoff 
and Johnson ’ s notion of metaphors as concepts that govern, that form consistent 
conceptual systems: software is an invisible program that governs, that makes pos-
sible certain actions. But if computers are metaphors for metaphors, they also 
(pleasurably) disorder, they animate the categorical archival system that grounds 
knowledge. 

 If theories of metaphor regularly assume that the vehicle (the image expressly 
used) makes the abstract tenor (the idea represented) concrete — that one makes 
something unfamiliar familiar through a known concrete vehicle — software as meta-
phor combines what we only vaguely understand with something equally vague. 
It is not simply, then, that one part of the metaphor is  “ hidden, ”  but rather that 
both parts — tenor and vehicle — are invisibly visible. This does not mean, however, 
that software as metaphor fails. It is used regularly all the time because it succeeds 
as a way to describe an ambiguous relation between what is visible and invisible, 
for invisible laws as driving visible manifestations. Key to understanding the power 
of software — software as power — is its very ambiguous thingliness, for it grounds 
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software ’ s attractiveness as a way to map — to understand and conceptualize — how 
power operates in a world marked by complexity and ambiguity, in a world fi lled 
with things we cannot fully understand, even though these things are marked by, 
and driven by, rules that should be understandable, that are based on understand-
ability. Software is not only necessary for representation; it is also endemic of 
transformations in modes of  “ governing ”  that make governing both more personal 
and impersonal, that enable both empowerment and surveillance, and indeed make 
it diffi cult to distinguish between the two. 



 2     Daemonic Interfaces, Empowering Obfuscations 

 Interfaces, in particular interactive GUIs (graphical user interfaces), are widely assumed 
to have transformed the computer from a command-based instrument of torture to a 
user-friendly medium of empowerment. From Douglas Engelbart ’ s vision of a system 
to  “ augment human intellect ”  to Ben Shneiderman ’ s endorsement of  “ direct manipu-
lation ”  as a way to produce  “ truly pleased users, ”  GUIs have been celebrated as 
enabling user freedom through (perceived) visible and personal control of the screen. 
This freedom, however, depends on a profound screening: an erasure of the computer ’ s 
machinations and of the history of interactive operating systems as supplementing —
 that is, supplanting — human intelligence. It also coincides with neoliberal manage-
ment techniques that have made workers both fl exible and insecure, both empowered 
and wanting (e.g., always in need of training).  1   

 Rather than condemning interfaces as a form of deception, designed to induce false 
consciousness, this chapter investigates the extent to which this paradoxical combina-
tion of visibility and invisibility, of rational causality and profound ignorance, grounds 
the computer as an attractive model for the  “ real ”  world. Interfaces have become 
functional analogs to ideology  and  its critique — from ideology as false consciousness 
to ideology as fetishistic logic, interfaces seem to concretize our relation to invisible 
(or barely visible)  “ sources ”  and substructures. This does not mean, however, that 
interfaces are simply ideological. Looking both at the use of metaphor within the early 
history of human – computer-interfaces and at the emergence of the computer as meta-
phor, it contends that real-time computer interfaces are a powerful response to, and 
not simply an enabler or consequence of, postmodern/neoliberal confusion. Both 
conceptually and thematically, these interfaces offer their users a way to map and 
engage an increasingly complex world allegedly driven by invisible laws of late capital-
ism. Most strongly, they induce the user to map constantly so that the user in turn 
can be mapped. They offer a simpler, more reassuring analog of power, one in which 
the user takes the place of the sovereign executive  “ source, ”  code becomes law, and 
mapping produces the subject. These seemingly real-time interfaces emphasize the 
power of user action and promise topsight for all: they allow one to move from the 
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local detail to the global picture — through an allegedly traceable and concrete path —
 by simply clicking a mouse. Conceptually drawn from auto navigation systems, these 
interfaces follow in the tradition of cybernetics (named after the Greek term  kybernete  
for steersmen or governor) as a way to navigate or control, through a process of 
blackboxing. 

 Because of this, they render central processes for computation — processes not under 
the direct control of the user — daemonic: orphaned yet  “ supernatural ”  beings  “ between 
gods and men . . . ghosts of deceased persons,  esp . deifi ed heroes. ”   2   Indeed, the inter-
face is  “ haunted ”  by processes hidden by our seemingly transparent GUIs that make 
us even more vulnerable online, from malicious  “ back doors ”  to mundane data gather-
ing systems. Similar to chapter 1, this chapter thus does not argue we need to move 
beyond specters and the undead, but rather contends that we should make our inter-
faces more productively spectral — by reworking rather than simply shunning the usual 
modes of  “ user empowerment. ”  

 Interface, Intrafaith 

 Interactive interfaces — live screens between man and machine — stem from military 
projects, such as SAGE discussed in chapter 1. SAGE, according to Paul Edwards, 
was  “ a metaphor for total defense, ”  a Cold War project that enclosed  “ the United 
States inside a radar  ‘ fence ’  and an air-defense bubble. ”   3   Edwards describes SAGE 
as both based on and the basis for the world as a closed world,  “ an inescapably 
self-referential space where every thought, word, and action is ultimately directed 
back toward a central struggle. ”   4   (The opposite of a closed world is a green world, 
in which  “ the limits of law and rationality are surpassed. ” )  5   SAGE began as a uni-
versal cockpit simulator, but quickly evolved into a real-time network of digital 
computers, designed to detect incoming Soviet missiles. Unfortunately, yet not atypi-
cally, it was obsolete by the time it was completed in 1963 due to the introduction 
of intercontinental ballistic missiles. Despite this, SAGE is considered central to the 
development of computing because it fostered many new technologies, including 
digital real-time control systems, core-memory devices, and most importantly for 
this chapter, graphical user displays. 

 These graphical CRT interfaces were simulations of an analog technology: radar 
(see   fi gure 2.1 ).  6   Divided into X-Y coordinates, these displays allowed the users —
 military personnel tracking air space — to deploy a light pen to select potential hostile 
aircraft tracks. This user ’ s control of the interface and the system depended on a 
selective mapping that fi ltered as much as it represented, reducing all air traffi c to 
blinking lines. Because of this direct real-time contact between user and computer, 
SAGE and the test machines associated with it are widely considered to be predeces-
sors to personal interactive computing, albeit discontinuously (they were initially 
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 Figure 2.1 
 SAGE operator at console, 1958, National Archives photo no. 342-B-003-14-K-43548 

displaced by mainframes).  7   This screen, however, was an input device for the user, 
not for the programmers/coders, who produced taped programs that operators would 
load and run. 

    Interactive operating systems, key to making screens serve as part of an input 
system for all users (thus chipping away at the boundary between user and program-
mer), also stemmed from military funding, in particular projects related to artifi cial 
intelligence (AI). Interactivity entailed giving over to the machine tasks that humans 
could not accomplish. As John McCarthy, key to both AI and time-sharing operating 
systems (OS), explains, the LISP programming language, used in early AI projects, 
was designed  “ in such a way that working with it interactively — giving it a command, 
then seeing what happened, then giving it another command — was the best way to 
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work with it. ”   8   Interactivity was necessary because of the limitations of procedural 
programming and of early neural networks. That is, by the 1960s, the naivet é  behind 
John von Neumann ’ s declaration that  “ anything that can be exhaustively and unam-
biguously described, anything that can be completely and unambiguously put into 
words, is ipso facto realizable by a suitable fi nite neural network ”  was becoming 
increasingly apparent.  9   Since exhaustive and unambiguous description was diffi cult, 
if not impossible, one needed to work  “ interactively ”  — not just automatically — with 
a computer. The alleged father of the Internet J. C. R. Licklider ’ s vision of  “ Man-
Computer Symbiosis ”  encapsulates this intertwining of interactivity and human fal-
libility nicely. Describing the partnership between men and computers, Licklider 
predicts,  “ man-computer symbiosis is probably not the ultimate paradigm for complex 
technological systems. It seems entirely possible that, in due course, electronic or 
chemical  ‘ machines ’  will outdo the human brain in most functions we now consider 
exclusively within its province. ”   10   Similarly Jay Forrester, the force behind SAGE ’ s 
development, contended,  “ the human mind is not adapted to interpret[   ] how 
social systems behave . . . the mental model is fuzzy . . . incomplete . . . imprecisely 
stated. ”   11   The goal, then, was to develop artifi cial systems to combat human frailty 
by usurping the human. 

 Given this background and the ways in which the screen screens, the emergence 
of user-friendly interfaces as a form of  “ computer liberation ”  seems dubious at best 
and obfuscatory at worst. So, why and how is it that interactive systems have become 
synonymous with user and machine freedom? What do we mean by freedom here? 
What do these systems offer and what happens when we use them? 

 Direct Manipulation 

 The notion of interfaces as empowering is driven by a dream of individual control: of 
direct personal manipulation of the screen, and thus, by extension, of the system it 
indexes or represents. Consider, for instance, the interface to Google Earth. Offering 
us a god ’ s eye view, it allows us to zoom in on any location, to fl y from place to place, 
and to even control the amount of sunshine in any satellite photo. Google Earth, 
however, hardly represents the world as it is, but rather a more perfectly spherical one 
in which it hardly ever rains (even when the Google Earth weather layer shows rain), 
and in which nothing ever moves, even as time goes by. Viewing these divergences 
from reality as failures, however, misses what makes this program so compelling: the 
actions it enables, the kind of dynamic mapping actions, the  “ top sight ”  — overview 
and zooming — it facilitates. 

 Google Earth, and interactive interfaces in general, follow in the tradition of  “ direct 
manipulation. ”  According to Ben Shneiderman, who coined the term in the 1980s, 
 “ certain interactive systems generate glowing enthusiasm among users — in marked 
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contrast with the more common reaction of grudging acceptance or outright hostil-
ity. ”  In these systems, the users reported positive feelings, such as  “ mastery ”  over the 
system and  “ confi dence ”  in their continuing mastery,  “ competence ”  in performing 
their tasks,  “ ease ”  in learning the system,  “ enjoyment ”  in using it,  “ eagerness ”  to help 
new users, ”  and the  “ desire ”  to engage the more complex parts of the system. Changes 
in visibility and causality seem central to the creation of a truly pleased user, in par-
ticular,  “ visibility of the object of interest; rapid, reversible, incremental actions; and 
replacement of complex command language syntax by direct manipulation of the 
object of interest — hence the term  ‘ direct manipulation. ’  ”   12   

 Crucially, Shneiderman posits direct manipulation as a means to overcome users ’  
resistance: as a way to dissipate hostility and grudging acceptance and instead to foster 
enthusiasm by developing feelings of mastery. Direct manipulation does this by 
framing the problem of work from the perspective of the worker — more precisely of 
the neoliberal worker who decides to work — and by replacing commands with more 
participatory structures.  13   Direct manipulation is thus part of the  “ new spirit of capital-
ism ”  that the French sociologists Luc Boltanski and Eve Chiapello outline in their 
book of the same title. This new spirit of capitalism fosters commitment and enthu-
siasm — emotions not guaranteed by pay or working under duress — through manage-
ment techniques that stress  “ versatility, job fl exibility, and the ability to learn and 
adapt to new duties. ”   14   As Catherine Malabou notes, in such a system  “  ‘ the leader 
has no need to command, ’  because the personnel are  ‘ self-organized ’  and  ‘ self-
controlling. ’  ”   15   In such a system, Malabou underscores, drawing from Boltanski and 
Chiapello, fl exibility is capitulation and normative, and  “ everyone lives in a state 
of permanent anxiety about being disconnected, rejected, abandoned. ”   16   

 Not surprisingly, the term  direct manipulation  also draws from cognitive psychology: 
George Lakoff and Ben Johnson use the term in relation to Jean Piaget ’ s argument 
that infants  “ fi rst learn about causation by realizing that they can directly manipulate 
objects around them. ”   17   That is, infants ’  repeated manipulations of certain objects are 
key to their eventual grasping of causality: that doing X will always (or usually) cause 
Y to happen. Relatedly, Lakoff and Johnson argue that interactions with objects also 
ground metaphor, since  “ interactional properties are prominent among the kinds of 
properties that count in determining suffi cient family resemblance. ”   18   Shneiderman 
also offers examples of direct manipulation outside (or at least at that point outside) 
of computer interfaces, most importantly the steering wheel of a car: 

 Driving an automobile is my favorite example of direct manipulation. The scene is directly 

visible through the windshield, and actions such as braking or steering have become common 

skills in our culture. To turn to the left, simply rotate the steering wheel to the left. The response 

is immediate, and the changing scene provides feedback to refi ne the turn. Imagine trying to 

turn by issuing a LEFT 30 DEGREES command and then issuing another command to check 

your position, but this is the operational level of many offi ce automation tools today.  19   
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 Direct manipulation is thus a metaphor based on real-time analog technologies, such 
as a drive shaft, and their integration into a visual system. (These analog technologies, 
which linked steering wheel to car wheel in a mechanical cause-and-effect relation, 
of course are themselves being replaced by computerized drive shafts.) HCI ’ s version 
of direct manipulation is never  “ direct, ”  only simulated, and the mastery, as Shneider-
man notes, is  “ felt ”  not possessed. This emphasis on feelings, however, reveals that 
the visibility of the object of interest matters less than the affective relationship 
established though rapid, reversible, incremental actions. 

 Brenda Laurel has argued this point most infl uentially in her classic  Computer as 
Theater . According to Laurel, direct manipulation is not and has never been enough, 
and the strand of HCI focused on producing more and more realistic interface meta-
phors is wrongheaded.  20   People realize when they double-click on a folder that it is 
not really a folder; making a folder more  “ life-like ”  (following the laws of gravity, 
having it open by the user fl ipping over the front fl ap, etc.) would be more annoying 
than helpful. What does help, though, is direct engagement: an interface designed 
around plausible and clear actions. Direct engagement, Laurel contends,  “ shifts the 
focus from the representation of manipulable objects to the ideal of enabling people 
to engage directly in the activity of choice, whether it be manipulating symbolic tools 
in the performance of some instrumental tasks or wandering around the imaginary 
world of a computer game. ”  This ideal engagement  “ emphasizes emotional as well as 
cognitive values. It conceives of human-computer activity as a  designed experience  ”   21   —
 an experience designed around  “ activities of choice ”  or, more properly, making these 
activities feel like activities of choice. 

 As a designed experience, Laurel astutely insists, computer activity is artifi cial and 
should remain so.  22   That is, fabricating computer interfaces entails  “ creating imaginary 
worlds that have a special relationship to reality — worlds in which we can extend, 
amplify, and enrich our own capacities to think, feel, and act. ”   23   The computer inter-
face thus should be based on theater rather than psychology because  “ psychology 
attempts to  describe what goes on in the real world  with all its fuzziness and loose ends, 
while theatre attempts to  represent something that might go on , simplifi ed for the pur-
poses of logical and affective clarity. Psychology is devoted to the end of explaining 
human behavior, while drama attempts to represent it in a form that provides intel-
lectual and emotional closure. ”   24   Importantly, Laurel ’ s argument, even as it condemns 
metaphor, is itself based on metaphor, or more precisely simile: computers as theater. 
It displaces rhetorical substitution from the level of the interface (objects to be manip-
ulated) to the interface as a whole; it also makes the substitution more explicit (simile, 
not metaphor). 

 Laurel ’ s move to theater is both interesting and interested, and it resonates strongly 
both with Weizenbaum ’ s parallel between programmer as lawgiver/playwright dis-
cussed previously and with Edwards ’ s diagnosis of the computer as a metaphor of the 
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 Causal relations among elements of quantitative structure. A reproduction of Brenda Laurel ’ s 

illustration in  Computers as Theater , 51. 

 closed world , a term also drawn from literary criticism.  25   The Aristotelian model Laurel 
uses provides her structuralist theory with the kind of emotional and intellectual 
closure she contends interfaces should create: clear defi nitions of causality, of 
the means to produce catharsis and, most important, of theater — like interfaces and 
computers — as following laws. ”   26   Clear, law-abiding causality drives every level of 
Laurel ’ s system (see   fi gure 2.2 ): action is the formal cause of character and so on down 
to enactment; enactment is the material cause of pattern and so on up to action. 

    Because events happen so logically, users accept them as probable and then as 
certain. Consequently, this system ensures that users universally suspend their dis-
belief. This narrowing also creates pleasure: the creation and elimination of uncer-
tainty — the  “ stimulation to imagination and emotion created by carefully crafted 
uncertainty ”  and the  “ satisfaction provided by closure when action is complete ”  —
 Laurel contends, drives audience pleasure.  27   

 The fact that users are not simply the audience, but also the actors, makes causality 
in computer interfaces more complicated. Thus, the designer must not simply create 
 “ good ”  characters that do what they intend (character, she argues, is solely defi ned 
by action), but also create intrinsic constraints so that users can become good char-
acters too and follow the  “ laws ”  of the designer.  28   The designer is both scriptwriter 
and set designer: Laurel ’ s description of the designer ’ s power seems less extreme than 
Weizenbaum ’ s; however, Laurel ’ s vision — focused on the relationship between designer 
and user, rather than programmer and program — is not less but rather differently 
coercive. In Laurel ’ s view, the constraints the designer produces do not restrict freedom; 
they ensure it. Complete freedom does not enhance creativity; it stymies it. Addressing 
fantasies by gamers and science fi ction writers of  “ magical spaces where they can 
invent their own worlds and do whatever they wish — like gods, ”  she argues that the 
experience of these spaces  “ might be more like an existential nightmare than a dream 
of freedom ” : 
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 A system in which people are encouraged to do whatever they want will probably not produce 

pleasant experiences. When a person is asked to  “ be creative ”  with no direction or constraints 

whatever, the result is, according to May, often a sense of powerlessness — or even complete 

paralysis of the imagination. Limitations — constraints that focus creative efforts — paradoxically 

increase our imaginative power by reducing the number of possibilities open to us.  29   

 A green world, in other words, in which action fl ows  “ between natural, urban, and 
other locations and centers [on] magical, natural forces ”  produces paralysis and night-
mares. Yet constraints — the acceptance of certain interface conventions as self-enforced 
rules — enable agency and an arguably no less magical feeling of power: a sense that 
users control the action and make free and independent choices within a set of rules, 
again the classic neoliberal scenario. (The goal of interface design, Laurel tellingly 
states, is to  “ build a better mousetrap. ” )  30   To buttress this feeling of mastery, discon-
certing coincidences and irrelevant actions that can expose the inner workings of 
programs must be eliminated. For users as for paranoid schizophrenics (my observa-
tion, not Laurel ’ s), everything has meaning: there can be no coincidences but only 
causal pleasure in this closed world. 

 Laurel ’ s conception of freedom, however, is disturbingly banal: the true experi-
ence of freedom may indeed be closer to an existential nightmare than to a pleasant 
paranoid dream. Indeed, the challenge, as I argue in  Control and Freedom: Power and 
Paranoia in the Age of Fiber Optics  (2006), is to take freedom seriously, rather than 
to reduce it to control (and thus reduce the Internet to a gated community). Freedom 
grounds control, not vice versa. Freedom makes control possible, necessary, and 
never enough. Not surprisingly, the system Laurel describes — focused on getting 
users to suspend disbelief and to act in certain prescribed ways — resonates widely 
with defi nitions of ideology. 

 Interfaces as Ideology 

 To elaborate on an argument I have made before, GUIs are a functional analog to 
ideology.  31   In a  formal  sense computers understood as comprising software and hard-
ware are ideology machines. They fulfi ll almost every formal defi nition of ideology 
we have, from ideology as false consciousness (as portrayed in the 1999 Wachowski 
Brothers ’  fi lm  The Matrix ) to Louis Althusser ’ s defi nition of ideology as  “ a  ‘ representa-
tion ’  of the imaginary relation of individuals to their real conditions of existence. ”   32   
According to Althusser, ideology reproduces the relations of production by  “   ‘ constitut-
ing ’  concrete individuals as subjects . ”   33   Ideology, he stresses, has a material existence: it 
shapes the practices and consciousness of individual subjects. It interpellates subjects: 
it yells  “ hey you, ”  and subjects turn around and recognize themselves in that call. 

 Interfaces offer us an imaginary relationship to our hardware: they do not represent 
transistors but rather desktops and recycling bins. Interfaces and operating systems 
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produce  “ users ”  — one and all. Without OS there would be no access to hardware; 
without OS there would be no actions, no practices, and thus no user. Each OS, in its 
extramedial advertisements, interpellates a  “ user ” : it calls it a name, offering it a name 
or image with which to identify. So Mac users  “ think different ”  and identify with 
Martin Luther King and Albert Einstein; Linux users are open-source power geeks, 
drawn to the image of a fat, sated penguin (the Linux mascot); and Windows users 
are mainstream, functionalist types perhaps comforted, as Eben Moglen argues, by 
their regularly crashing computers. Importantly, the  “ choices ”  operating systems offer 
limit the visible and the invisible, the imaginable and the unimaginable. You are not, 
however, aware of software ’ s constant constriction and interpellation (also known as 
its  “ user-friendliness ” ), unless you fi nd yourself frustrated with its defaults (which 
are remarkably referred to as  your  preferences) or unless you use multiple operating 
systems or competing software packages. 

 Interfaces also produce users through benign interactions, from reassuring sounds 
that signify that a fi le has been saved to folder names such as  “ my documents, ”  which 
stress personal computer ownership. Computer programs shamelessly use shifters —
 pronouns like  “ my ”  and  “ you ”  — that address you, and everyone else, as a subject. 
Interfaces make you read, offer you more relationships and ever more visuals. They 
provoke readings that go beyond reading letters toward the nonliterary and archaic 
practices of guessing, interpreting, counting, and repeating. Interfaces are based on a 
fetishistic logic. Users know very well that their folders and desktops are not really 
folders and desktops, but they treat them as if they were — by referring to them as 
folders and as desktops. This logic is, according to Slavoj  Ž i ž ek, crucial to ideology.  34   
As mentioned previously,  Ž i ž ek (through Peter Sloterdjik) argues that ideology persists 
in one ’ s actions rather than in one ’ s beliefs: people know very well what they are 
doing, but they still do it. The illusion of ideology exists not at the level of knowledge 
but rather at the level of action: this illusion, maintained through the imaginary 
 “ meaning of the law ”  (causality), screens the fact that authority is without truth — that 
one obeys the law to the extent that it is incomprehensible. Is this not computation? 
Through the illusion of meaning and causality — the idea of a law-driven system — do 
we not cover over the fact that we do not and cannot fully understand or control 
computation? That computers increasingly design each other and that our use is — to 
an extent — a supplication, a blind faith? 

 Operating systems also create users more literally, for users are an OS construction. 
User logins emerged with time-sharing operating systems, such as UNIX, which 
encourage users to believe that the machines they are working on are their own 
machines (before this, computers mainly used batch processing; before that, a person 
really did run the computer, so there was no need for operating systems — one had 
human operators). As many historians have argued, the time-sharing operating systems 
developed in the 1970s spawned the  “ personal computer. ”   35   That is, as ideology creates 
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subjects, interactive and seemingly real-time interfaces create users who believe they 
are the  “ source ”  of the computer ’ s action. 

 Real-time Sourcery 

 According to the OED, real time is  “ the actual time during which a process or event 
occurs, especially one analyzed by a computer, in contrast to time subsequent to it 
when computer processing may be done, a recording replayed, or the like. ”  Crucially, 
hard and soft real-time systems are subject to a  “ real-time constraint. ”  That is, they 
need to respond, in a forced duration, to actions predefi ned as events. The measure 
of real time, in computer systems, is their reaction to the live; it is their liveness — their 
quick acknowledgment of and response to our actions. 

 The notion of real time always points elsewhere — to  “ real-world ”  events, to user ’ s 
actions — thereby introducing indexicality to this supposedly nonindexical medium. 
That is, whether or not digital images are supposed to be  “ real, ”  real time posits the 
existence of a source — coded or not — that renders our computers transparent. Real-
time operating systems create an  “ abstraction layer ”  that hides the hardware details of 
the processor from application software; real-time images portray computers as unme-
diated connectivity. SAGE, for instance, linked computer-generated images to lines on 
a screen; unlike in the case of radar images, there was no  “ footprint ”  relation between 
screen and incoming signal. As RealPlayer reveals, the notion of real time is bleeding 
into all electronic moving images, not because all recordings are live, but because 
grainy moving images have become a marker of the real.  36   What is authentic or real is 
what transpires in real time, but real time is real not only because of this indexicality —
 this pointing to elsewhere — but also because of its quick reactions to users ’  inputs. 

 Dynamic changes to web pages in real time, seemingly at the bequest of users ’  
desires or inputs, create what Tara McPherson has called  “ volitional mobility. ”  
Creating  “ Tara ’ s phenomenology of websurfi ng, ”  McPherson argues: 

 When I explore the web, I follow the cursor, a tangible sign of presence implying movement. 

This motion structures a sense of liveness, immediacy, of the now . . . yet this is not just the 

same old liveness of television: this is liveness with a difference. This liveness foregrounds 

volition and mobility, creating a liveness on demand. Thus, unlike television which parades 

its presence before us, the web structures  a sense of causality  in relation to liveness, a liveness 

which we navigate and move through, often structuring a feeling that our own desire drives 

the movement. The web is about presence but an unstable presence: it ’ s in process, in motion. ”   37   

 This liveness, McPherson carefully notes, is more the illusion — the feel or sensation —
 of liveness, rather than the fact of liveness; the choice yoked to this liveness is similarly 
a sensation rather than the real thing (although one might ask: What is the difference 
between the feel of choice and choice itself? Is choice alone not a limited agency?). 
The real-time moving cursor and the unfolding of an unstable present through our 
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digital (fi nger) manipulations make us crane our necks forward, rather than sit back 
on our couches, causing back and neck pain. The extent to which computers turn the 
most boring activities into incredibly time-consuming and even enjoyable ones is 
remarkable: one of the most popular computer games to date,  The Sims , focuses on 
the mundane; action and adventure games reduce adventure to formulaic motion-
restricted activities, yet the delights of interpreting these interfaces by interacting 
with them makes them pleasurable and never-ending. This volitional mobility, 
McPherson argues, reveals that the  “ hype ”  surrounding the Internet does have some 
phenomenological backing. This does not necessarily make the Internet an empower-
ing medium, but at the very least means that it can provoke a desire for something 
better: true volitional mobility, true change.  38   Crucially, this fostering of a belief in 
true change — in the ability to change, in the direct causality between one ’ s actions 
and a result — is programmed into the interface. That is, change, rather than being a 
radical act, is now the norm; we click, we change. 

 Interactive pleasure does not simply derive from a representation of user actions in 
a causally plausible manner; it also comes from  “ user amplifi cation. ”  Lev Manovich 
explains  “ user amplifi cation ”  in terms of the Super Mario computer game:  “ When you 
tell Mario to step to the left by moving a joystick, this initiates a small delightful nar-
rative: Mario comes across a hill; he starts climbing the hill; the hill turns to be too 
steep; Mario slides back onto the ground; Mario gets up, all shaking. None of these 
actions required anything from us; all we had to do is just to move the joystick once. 
The computer program amplifi es our single action, expanding it into a narrative 
sequence. ”   39   This user amplifi cation mimics the  “ instruction explosion, ”  described in 
the previous chapter, central to higher-level programming languages (one line of high-
level code corresponds to more than one line of machine code). User amplifi cation 
also maps our actions to movements on the screen. 

 In essence, real-time interfaces map user actions to screened changes, making our 
machines seem transparent and rendering our screen into a map. Maps dominate 
interfaces, from our  “ desktop ”  to the clickable image maps on web pages, and map-
ping — the act of making and outlining connections — drives our actions online, from 
creating social maps based on Facebook friends to following links within web pages. 
Julian Dibbell has argued eloquently that online spaces are themselves essentially 
maps, that is, diagrams that we seek to inhabit.  40   Maps and mapping are also the 
means by which we  “ fi gure out ”  power and our relation to a larger social entity. 
Touchgraph ’ s mapping of relationships between Facebook photos, Amazon books, 
and web pages, for instance, allegedly reveals the hidden interconnections driving 
consumption and social bonding (see   fi gure 2.3 ). 

    The much celebrated theyrule.net, which allows users to map connections between 
people on company boards, exemplifi es this notion of mapping as a form of 
ideology critique (see   fi gure 2.4 ). 
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 Figure 2.3 
 TouchGraph photos Facebook and Interactive Friends Graph,  < http://blog.mememapper

.com/?p=56 > , accessed 8/8/2010 

 Figure 2.4 
 A screenshot from Theyrule.net 
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    Indeed, Manovich argues that theyrule.net exemplifi es a new rhetoric of inter-
activity that  “ instead of presenting a packaged political message . . . gives us data 
and the tools to analyze it. It knows that we are intelligent enough to draw the 
right conclusion . . . we get convinced not by listening/watching a prepared message 
but by actively working with the data: reorganizing it, uncovering the connections, 
becoming aware of correlations. ”  This passage intriguingly posits the program as 
 “ knowing ”  and the user as learning through acting. According to Manovich, this 
new rhetoric of interactivity is further explored in UTOPIA: 

 The cosmogony of this world refl ects our new understanding of our own planet — post Cold 

War, Internet, ecology, Gaia, and globalization. Notice the thin barely visible lines that connect 

the actors and the blocks. (This is the same device used in theyrule.net.) In the universe of 

UTOPIA, everything is interconnected, and each action of an individual actor affects the system 

as a whole. Intellectually, we know that this is how our Earth functions ecologically and 

economically — but UTOPIA represents this on a scale we can grasp perceptually.  41   

 UTOPIA seemingly enables what Fredric Jameson has called a  “ cognitive map, ”  a 
concept that I will address in more detail shortly. Briefl y, it is  “ a situational repre-
sentation on the part of the individual subject to that vaster and properly unrepre-
sentable totality which is the ensemble of society ’ s structures as a whole. ”   42   If cognitive 
mapping is both diffi cult and necessary now because of invisible networks of capital, 
these artists produce a cognitive map by exploiting the invisibility of information. 
The functioning of these smart interfaces parallels Marxist ideology critique. The veil 
of ideology is torn asunder by grasping the relations between the action of individual 
actors and the system as a whole. Software enables this critique by representing it 
at a scale — in a microworld — that we can make sense of and in which our actions 
and connections are amplifi ed. This unveiling depends on our own actions, on us 
manipulating in order to see, on us thinking like object-oriented programmers. 

  It would seem thus that instead of a situation in which the production of cognitive maps 
is impossible, we are locked in a situation in which we produce them — or at the very least 
approximations of them — all the time, in which the founding gesture of ideology critique is 
simulated by something that also pleasurably mimics ideology . Software and ideology fi t 
each other perfectly because both try to map the tangible effects of the intangible and 
to posit the intangible cause through visible cues. Both, in other words, promise 
a vision of the whole elephant. Through this process the invisible whole emerges as 
a thing, as something in its own right, and users emerge as mapping subjects. 

 Although the parallel between software and ideology is compelling, it is important 
that we not rest here, for reducing ideology to software ignores how theories of ideo-
logy critique power — something essential to any theory of ideology (these resonances, 
however, arguably reveal the paucity of our theories of power).  43   The fact that software, 
with its onion-like structure (a product of programming languages), acts both as ideo-
logy  and  as ideology critique — as a concealing and as a means of revealing — also breaks 
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the analogy between software and ideology, or perhaps reveals the fact that ideology 
always also contains within itself ideology critique. Indeed, to take this argument 
further, we need to move beyond the remarkable likeness — and condemnation of 
screens as ideological — and to ask:  44   Under what conditions have these likenesses 
emerged? What, in other words, has made these likenesses and interfaces possible? 
What makes interfaces such a compelling imaginary map of the real? And what makes 
us believe that ideology is a map driven by invisible forces? Why interfaces now? And, 
most probingly, to what extent do interfaces stand in for likeness, for metaphor itself, 
and to what extent is this substitutability its most ideological aspect? 

 Postmodern Confusion, Interface Clarity 

 This drive to constantly map — and to understand through mapping — responds to 
postmodernist disorientation. Postmodernism, according to Fredric Jameson and Jean-
Fran ç ois Lyotard, is/was driven by a loss of modernist certainty.  45   Lyotard defi nes 
postmodernism as an incredulity toward metanarratives (grand stories that formerly 
legitimated society and knowledge production). For Lyotard, this is positive because 
it fundamentally undermines totalitarianism and fosters creative engagement, for all 
actors know that legitimation — truth and justice — springs from their own creative 
linguistic acts. Rather than signaling the demise of existing social bonds, postmodern-
ism promotes new social bonds since everyone (as active  “ nodes ”  in communications 
networks) is now involved in multiple language games. Jameson ’ s view, however, is 
less optimistic. To Jameson, postmodernism or the logic of late capitalism,  “ is what 
you get when the modernization process is complete and nature is gone for good. It 
is a more fully human world than the older one, but one in which  ‘ culture ’  has 
become a veritable  ‘ second nature. ’  ”   46   Postmodernism, Jameson contends, correlates 
formal changes in cultural products to a new type of social life and to a new economic 
order: it is  “ the consumption of sheer commodifi cation as process, ”  a transnational 
world in which capitalism has been completely naturalized and traditional labor 
placed in crisis.  47   

 Postmodernism, Jameson argues, is experienced as a spatial dysfunction, as a new 
space that  “ involves the suppression of distance (in the sense of Benjamin ’ s aura) and 
the relentless saturation of any remaining voids and empty places, to the point where 
the postmodern body . . . is now exposed to a perceptual barrage of immediacy from 
which all sheltering layers and intervening mediations have been removed. ”   48   This 
spatial disorientation, Jameson argues, consists of  “ symptoms and expressions of a 
new and historically original dilemma, one that involves our insertion as individual 
subjects into a multidimensional set of radically discontinuous realities, whose frames 
range from the still surviving spaces of bourgeois private life all the way to the 
unimaginable decentering of global capital itself. ”  It is a new dilemma that confounds 
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all our normal means of modeling/comprehension, making it even more diffi cult to 
understand the relation between our authentic experiences and their truth. Jameson 
contends,  “ not even Einsteinian relativity, or the multiple subjective worlds of the 
older modernists, is capable of giving any kind of adequate fi guration to this process, 
which in lived experience makes itself felt by the so-called death of the subject, or, 
more exactly, the fragmented and schizophrenic decentering and dispersion of this 
last. ”   49   The new spaces that surround us demand that we  “ grow new organs . . . expand 
our sensorium and our body to some new, yet unimaginable, perhaps ultimately 
impossible, dimensions ”  in order to grasp our relation to totality — to make sense of 
the disconnect between, and possibly to reconnect, the real and the true.  50   

 This decentering, this historically new dilemma, makes it impossible for us to cog-
nitively map our relations, to realize our place in the late capitalist system.  51   Cognitive 
mapping combines the geographer Kevin Lynch ’ s discussion of the ability of citizens 
to map the city around them with Althusser ’ s defi nition of ideology. More precisely, 
 “ the conception of cognitive mapping proposed . . . involves an extrapolation of 
Lynch ’ s spatial analysis to the real of social structure, that is to say, in our historical 
moment, to the totality of class relations on a global (or should I say multinational) 
scale. ”   52   Such a map, which Jameson in 1983 argues we did not yet have, is necessary 
in order to understand the totality that is capitalism; because the profi t motive and 
the logic of capitalism set absolute barriers and limits to social changes and transfor-
mations, we need a way to comprehend its totality and our relation to it. Of anyone 
who does not believe that  “ the profi t motive and the logic of capital accumulation 
are not the fundamental laws of this world, ”  Jameson asserts,  “ such a person is living 
in an alternative universe. ”   53   

 Importantly, Jameson does argue that cyberpunk and other literature/art that deals 
with the thematics of mechanical reproduction, as well as paranoid conspiracy theo-
ries, offer  “ a degraded fi gure of the great multinational space that remains to be 
cognitively mapped. ”   54   This is because they are fi gurations  “ of something even deeper, 
namely the whole world system of a present-day multinational capitalism. The tech-
nology of contemporary society is therefore mesmerizing and fascinating not so much 
in its own right but because it seems to offer some privileged representational short-
hand for grasping a network of power and control even more diffi cult for our minds 
and imaginations to grasp: the whole new decentered global network of the third 
stage of capital itself. ”   55   A nondegraded fi gure, however, would be able to deal with 
mapping at the level of form, rather than simply content. He stresses that the call 
for an aesthetics of cognitive mapping 

 is not . . . a call for a return to some older kind of machinery, some older and more transparent 

national space, or some more traditional and reassuring perspectival or mimetic enclave: the 

new political art (if it is possible at all) will have to hold to the truth of postmodernism, that 

is to say, to its fundamental object — the world space of multinational capital — at the same time 
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at which it achieves a breakthrough to some as yet unimaginable new mode of representing 

this last, in which we may again begin to grasp our positioning as individual and collective 

subjects and regain a capacity to act and struggle which is at present neutralized by our spatial 

as well as our social confusion.  56   

 This chapter has been arguing that interfaces — with their constant emphasis on the 
act of making connections —  would seem  to instantiate an aesthetics of cognitive 
mapping. They provide a mapping — a  “ cognitive connectionism ”  — that respects the 
space of multinational capital and the ways in which that totality is not immediately 
experienceable or knowable, and yet also enables agents to act as sources. Indeed, 
many activists have argued that the Internet and text messaging offer effective ways 
of intervening on global capitalism. Rather than immobilized subjects, we have a 
surfeit of  “ produsers, ”  who diligently produce, post, and click, providing content 
for  “ free. ”   57   

 Interfaces in general, however, are hardly radical and the demand that we map —
 and thus understand — often seems like the simple following of the network and its 
paranoid logic rather than an insightful, clarifying act. Mapping often seduces us into 
exposing what is  “ secret ”  or opaque, into drawing connections between visible effects 
and invisible causes, rather than actually reading what one sees. It can become an 
endless pursuit of things, aimed at robbing them of their thingliness, in order to create 
a closed world in which every connection is exposed, every object reduced to a code. 
Interfaces are not the cognitive maps called for by Jameson because they do not engage 
the totality of class relations, but rather focus on totality differently fi gured (informa-
tion networks, etc.). Whether or not interfaces are really the cognitive maps Jameson 
envisioned, however, is not the point here, for I do not simply want to condemn 
interfaces as false consciousness/false maps, but rather to understand how the once 
radical demand for cognitive mapping has become incorporated into the system of 
global capitalism/neoliberalism. As David Harvey notes, neoliberalism  “ requires tech-
nologies of information creation and capacities to accumulate, store, transfer, analyse, 
and use massive databases to guide decisions in the global marketplace. ”   58   The incred-
ible proliferation of personal mapping interfaces coincides with neoliberalism ’ s spread: 
these interfaces buttress notions of personal action, freedom, and responsibility. 

 We are now constantly called on to map and to value mapping in order to 
experience power/agency. This constant mapping signifi es a new/neo condition, one 
that both recalls the power of the subject, supposedly dispersed by postmodernism, 
and places the subject/user in a different position than the liberal subject with 
respect to the  “ invisible ”  hands of the market. Liberalism traditionally challenged 
sovereign power, because, in the liberal market,  “ it is impossible for the sovereign 
to have a point of view on the economic mechanism which totalizes every element 
and enables them to be combined artifi cially or voluntarily. ”   59   Because knowledge 
was impossible, each subject in a market economy was supposed to act blindly, and 
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through his or her selfi shness benefi t society. In a current neoliberal state (which 
itself is a reaction to late capitalist chaos), however, each individual must  “ know 
thyself ”  and others: he or she is constantly driven to make connections and to 
relate his or her actions to the totality. 

 The question then is: how can we have a form of cognitive mapping that does not 
engage in nostalgia for sovereign power, for the subject (now multiplied everywhere) 
who knows? Also: how necessary is cognitive mapping? And to what extent is the 
desire to map not contrary to capitalism but rather integral to its current form, espe-
cially since it is through our mappings that we ourselves are mapped? That is, to what 
extent  is our historically novel position not our ignorance and powerlessness, but rather our 
determination and our drive to know?  Could it be that rather than resort to maps, we 
need to immerse ourselves in networked fl ows — time-based movements that both 
underlie and frustrate maps? To respond to these large questions, let us again return 
to interfaces and to the dreams of progress and freedom and the minute actions that 
buttress them. 

 As We  May  Think 

 Interfaces respond to a crisis of knowledge that calls into question scientifi c and 
human progress. Designed to  “ augment human intelligence, ”  they are steeped in a 
nostalgic view of machines as transparent. Interfaces recall analog machines that 
worked by mapping: that is, by associating one element of a set to one or more 
elements of another. Analog computers, which I discuss in more detail in chapter 
4, were essentially models that, unlike digital computers, did not require the trans-
forming problems into small steps answerable by a yes or a no (analog integrators 
actually integrated). Our digital interfaces are an analogy to an analogy. As David 
Mindell argues, whenever we use a mouse or look at our screens, we are engaging 
in activities that precede our digital computers.  60   The canonization of Vannevar 
Bush ’ s article  “ As We May Think ”  within new media studies makes clear the nostalgia 
for an analog future. 

  “ As We May Think, ”  published at the end of World War II when Bush was head 
of the Offi ce of Scientifi c Research and Development (the U.S. government agency 
tasked with coordinating wartime science projects, such as the Manhattan Project), 
is often considered the ur-text of the Internet and dynamic personal media. As Linda 
C. Smith among others has demonstrated, the memex, a machine for selecting and 
preserving data described in  “ As We May Think ”  and discussed in more detail below, 
is consistently and persistently cited as the inspiration for hypertext systems.  61   If 
William Gibson ’ s 1984 novel  Neuromancer , another commonly cited  “ precursor ”  to 
the Internet, has disappeared from new media course syllabi as new media criticism 
has moved away from the embarrassingly fi ctional and utopian, the equally fi ctional 
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and utopian — the vapory —  “ As We May Think ”  has remained, because  “ pioneers ”  such 
as Douglas Engelbart and Ted Nelson have consistently listed it as a direct inspiration. 
The fact that the memex — the machine prophesized by Bush but never built — is 
considered a precursor, however, should make us pause, because the memex is linked 
to a mechanical, analog past/future that has not and arguably  may not  come to pass.  62   

  “ As We May Think ”  argues for the relevance of science to human progress. Its thesis, 
according to Bush ’ s comments on an earlier draft, is that  “ science and its applications 
are not, on the whole, evil. ”  Indeed, he ends his article by stating: 

 The applications of science have built man a well-supplied house, and are teaching him to live 

healthily therein. They have enabled him to throw masses of people against one another with 

cruel weapons. They may yet allow him truly to encompass the great record and to grow in 

the wisdom of race experience. He may perish in confl ict before he learns to wield that record 

for his true good. Yet, in the application of science to the needs and desires of man, it would 

seem to be a singularly unfortunate stage at which to terminate the process, or to lose hope 

as to the outcome.  63   

 The threat of termination and the loss of hope Bush discusses here do not stem from 
politics (curiously, Bush does not mention the mounting political pressures to dis-
mantle the  “ big science ”  machinery he established during the war), but rather from 
technological defi ciencies. Indeed, his secondary thesis is that gadgetry is not neces-
sarily trivial, since it  “ may contribute substantially to man ’ s mental development in 
the future as it has in the past. ”   64   

 Along these lines, Bush imagines the diffi culties and opportunities that will face 
scientists during the upcoming peace in terms of  “ gadgetry ”  designed to help the 
scientist access the increasingly complex scientifi c record. A companion to Jameson ’ s 
postmodern individual is the bewildered scientist, who is incapable of making sense 
of — of mapping — the scientifi c archive: 

 There is a growing mountain of research. But there is increased evidence that we are being 

bogged down today as specialization extends. The investigator is staggered by the fi ndings and 

conclusions of thousands of other workers — conclusions which he cannot fi nd time to grasp, 

much less to remember, as they appear. Yet specialization becomes increasingly necessary for 

progress, and the effort to bridge between disciplines is correspondingly superfi cial. 

 Professionally our methods of transmitting and reviewing the results of research are genera-

tions old and by now are totally inadequate for their purpose. If the aggregate time spent in 

writing scholarly works and in reading them could be evaluated, the ratio between these 

amounts of time might well be startling.  65   

 Unlike Jameson, Bush ’ s solution is mechanical rather than political, for in this article 
and in subsequent commentaries upon it, this second thesis supplants the fi rst in 
importance, or, rather, the second becomes necessary to proving the fi rst.  66   Without 
this mechanization, the scientifi c archive may grow, but its value will be negated, for 
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 “ a record if it is to be useful to science, must be continuously extended, it must be 
stored, and above all it must be consulted. ”  However,  “ publication has been extended 
far beyond our present ability to make real use of the record. The summation of human 
experience is being expanded at a prodigious rate, and the means we use for threading 
through the consequent maze to the momentarily important item is the same as was 
used in the days of square-rigged ships. ”   67   The solution Bush envisions is mechanized 
access: the memex. 

 The memex is a desk-like  “ gadget ”  with two projectors intended to enable users to 
make permanent associative links between documents and to retrieve them at will. The 
documents were to be stored as microfi lm and dropped into the machine as necessary. 
Documents could also be added: depressing a lever would cause contents placed at the 
top of the memex to be photographed into the next blank space in memex fi lm. 
Although the compression offered by microfi lm was important, associative indexing 
distinguished the memex. For Bush the prime issue was selection: the human record was 
not being consulted because of cumbersome indexing systems. Unlike the normal 
alphabetical indexing systems, the memex was to create more intuitive associative trails: 

 When the user is building a trail, he names it, inserts the name in his code book, and taps it 

out on his keyboard. Before him are the two items to be joined, projected onto adjacent 

viewing positions. At the bottom of each there are a number of blank code spaces, and a 

pointer is set to indicate one of these on each item. The user taps a single key, and the items 

are permanently joined. In each code space appears the code word. Out of view, but also in 

the code space, is inserted a set of dots for photocell viewing; and on each item these dots 

by their positions designate the index number of the other item. 

 Thereafter, at any time, when one of these items is in view, the other can be instantly recalled 

merely by tapping a button below the corresponding code space. Moreover, when numerous 

items have been thus joined together to form a trail, they can be reviewed in turn, rapidly or 

slowly, by defl ecting a lever like that used for turning the pages of a book. It is exactly as 

though the physical items had been gathered together from widely separated sources and 

bound together to form a new book. It is more than this, for any item can be joined into 

numerous trails.  68   

 Importantly, the code space of the memex did not render these items into abstracted, 
disembodied information, but rather linked them together within an invisible space 
of place markers. The memex, in other words, was not a fi le system — it was not hyper-
text: it was a machine that did not acknowledge or create a difference between software 
and hardware (i.e., software, as a set of instructions that runs the machine). 

 The memex was an analog, mechanical — not digital — machine. Although one could 
argue that this was an accident of history, since Bush mainly worked with analog 
machines, this objection simply begs the question by assuming no substantial differ-
ence between analog and digital machines. It also ignores Bush ’ s continued insistence 
that the memex was not a digital computer. Many years after the plans for the memex 
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were fi rst published, Bush in his  “ Memex Revisited, ”  writes,  “ in that essay [ “ As We 
May Think ” ] I proposed a machine for personal use rather than the enormous com-
puters which serve whole companies. I suggested that it serve a man ’ s daily thoughts 
directly, fi tting in with his normal thought processes, rather than just do chores for 
him. ”   69   Further, in discussing the question of access, Bush insisted,  “ for memex we 
need only relatively slow access, as compared to that which the digital machines 
demand: a tenth of a second to bring forward any item from a vast storage will do 
nicely. For memex, the problem is not swift access, but selective access. ”  Moreover, 
he contended  “ we will not expect our personal machine of the future, our memex, to 
do the job of the great computers ”  and, describing the future memex ’ s ability to 
 “ learn ”  and build its own trails for its master, he argued  “ there are already powerful 
mechanical [not electronic] aids. ”   70   This insistence on the memex as mechanical was 
not simply a concession to cost, but also stemmed from an understanding of the 
mechanical as more intuitive, more personal, as more analog and more lasting. 

 The memex was analogous to then current (and now resurging) models of the 
human mind, which, unlike models dominant during the 1960s and 1970s, did not 
separate the mind (software) from the brain (hardware), or assume that memories were 
bits of data to be manipulated algorithmically. The memex was not to model fl awlessly 
the human mind — nor was it to be based on the fundamental  “ algorithm ”  that drove 
the mind — but was instead to learn from and thus act like the mind. Describing the 
human mind, Bush wrote,  “ with one item in its grasp, it [the human mind] snaps 
instantly to the next that is suggested by the association of thoughts, in accordance 
with some intricate web of trails carried by the cells of the brain. It has other charac-
teristics, of course; trails that are not frequently followed are prone to fade, items are 
not fully permanent, memory is transitory. ”   71   The trails carried by the cells of the 
brain were not information — the web of trails was the mind. Further, the memex was 
not only to learn from but also to improve the mind:  “ it should be possible to beat 
the mind decisively in regard to the permanence and clarity of the items resurrected 
from storage ”  — the memex ’ s traces were not to fade, making it even better than the 
mind. Through its permanence, it was to make an individual ’ s  “ excursions ”  more 
pleasurable, since it would enable him to  “ reacquire the privilege of forgetting the 
manifold things he does not need to have immediately at hand, with some assurance 
that he can fi nd them again if they prove important. ”   72   This permanence of the 
record — of microfi lm — would not only grant once more the privilege of forgetting (as 
though any of us could ever be exempt from such a deprivation), it also would do so 
while saving us from repetition: repetitive thought and repetitions in thought. 

 According to Bush,  “ man ”  should not be burdened with repetitive thought pro-
cesses like arithmetic, for which there are powerful mechanical aids. The creative 
aspect of thought, Bush writes,  “ is concerned only with the selection of the data and 
the process to be employed and the manipulation thereafter is repetitive in nature 
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and hence a fi t matter to be relegated to the machine. ”  The memex could also prevent 
repetitive discoveries, for the danger of nonmechanically induced forgetting is repeti-
tion. In  “ Memex Revisited, ”  which is itself an interesting repetition of  “ As We May 
Think, ”  Bush contends,  “ an Austrian monk, Gregor Mendel, published a paper in 1865 
which stated the essential bases of the modern theory of heredity. Thirty years later 
the paper was read by men who could understand and extend it. But for thirty years 
Mendel ’ s work was lost because of the crudity with which information is transmitted 
between men. ”  What is crucial — he repeats almost verbatim from  “ As We May Think ”  —
 is that  “ his [man ’ s] situation is not improving. The summation of human experience 
is being expanded at a prodigious rate, and the means we use for threading through 
the consequent maze to the momentarily important items are almost the same as in 
the days of square-rigged ships. ”  This lack of technological improvement means that 
 “ we are being buried in our own product. Tons of printed material are dumped out 
every week. In this are thoughts, certainly not often as great as Mendel ’ s, but impor-
tant to our progress. Many of them become lost; many others are repeated over and 
over and over. ”   73   Thus, the scientifi c archive rather than leading us to the future is 
trapping us in the past, making us repeat the present — and Bush repeat this argu-
ment — over and over again. Our product is burying us, and the dream of linear addi-
tive progress is limiting what we  may  think; but the phrase  as we may think  is richly 
ambiguous. At one level, it refers to a technologically enhanced future: what we  may  
think if we develop prosthetic machines to supplement and access the human record, 
or what we may think without these devices. The word  may , however, also refers to 
an authoritarian sanction — one is given the right to think X, one may think X, in 
which case the authority would be the machines themselves, our supposedly loyal 
servants. Most importantly for this argument,  may  is an uncertain link to the future: 
one may think this, but one is not sure. Reading against the grain of Bush ’ s argument, 
I contend that this uncertainty stems not from the lack of devices such as the memex, 
but from the act of reading itself. 

 In Bush ’ s writing, and in prognoses of the information revolution more generally, 
there is no difference between access to and understanding of the record, between 
what would be called, perhaps symptomatically,  “ machine reading ”  and human 
reading and comprehension, between information and argument, between mapping 
and understanding. The diffi culty supposedly lies in selecting the data, not in reading 
it, for it is assumed that reading is a trivial act, a simple comprehension of the record ’ s 
content. Once the proper record is selected and the proper map produced, there is no 
misreading, no misunderstanding, only transparent information. If the scientifi c 
record has not been advanced, if thought is repeated, it is because something has not 
been adequately disseminated. Bush ’ s argument assumes that human records make 
possible the construction of an over-arching archive of human knowledge in which 
there is no gap, no absence: a summation of human knowledge. The scientifi c archive 
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thus restores, or should restore, to  “ mankind ”  everything that has eluded it.  74   So, if 
there is discontinuity in history, it is due to a historical accident, to our inability to 
adequately consult the human record, to human fallibility. This accident, however, 
can be solved by machines, which are viewed here as surprisingly accident-free and 
permanent. 

 A machine alone, however, cannot turn  “ an  information explosion  into a  knowledge 
explosion  ” ;  75   it cannot fulfi ll the promise of what Michel Foucault has called  “ tradi-
tional history. ”  Even media as stable as microfi lm fade and break, and this  “ forgetting ”  
of the physics of the storage medium — this conversion of medium into storage —
 grounds Bush ’ s progressivist and idealist ideology. Also, as the case of Mendel reveals, 
the problem is not access, but rather larger epistemological frameworks. All three 
researchers who performed similar experiments to Mendel ’ s thirty-fi ve years after him 
consulted the scientifi c record and  “ found ”  Mendel, which means that Mendel ’ s paper 
was not lost. The question is not why was Mendel forgotten, but rather, why, in 1900, 
was he remembered (and exactly what was remembered) three times independently? 
And why, in the history of science, is Mendel constantly being rediscovered? As Jann 
Sapp argues in  “ The Nine Lives of Gregor Mendel, ”  this constant reinvocation is linked 
to the desire, on the part of reformers, to pin Mendel down as the source of  their  
genetics.  76   

 The example of Mendel as source is also revealing because this belief in sources —
 Mendel as the source of genetics, memex as the source of the Internet, code as the 
source of our computers — ultimately is based on a confl ation of storage with access, 
of memory with storage, of word with action. It reduces future progress to the search 
for past origins. This belief also depends on our machines as being more stable and 
permanent, and thus better record holders, than human memory; it depends on an 
analogy between digital and analog media. This belief is remarkably at odds with the 
material transience of discrete information and the Internet. 

 Repetition, however, is not simply a sign of thought wasted, but also of thought 
disseminated. Repetition, as Derrida has argued, both makes possible and impossible 
the archival process: it both makes archives possible (what is contained is always an 
iterable representation) and, as a marker of forgetfulness, it threatens to destroy 
them.  77   The repetitions of Bush ’ s goals — their adoption as forerunners of what they 
did not conceive — are important to understanding the emergence of interfaces as 
devices that empower us by reducing the world ’ s complexity and by allowing us to 
forget profoundly. Computers  “ liberate ”  us from memory through their undead mem-
ories, and their interfaces mimic the workings of simple analog systems in which there 
is some actual connection between what we see and do, between different systems 
being modeled. (The analog, in this sense, mimics the repeated  “ citations ”  in Bush ’ s 
texts — it links two situations.) It is not an accident that Douglas Engelbart, inventor 
of the mouse and widely considered to be a visionary in the development of the 
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computer as a media machine, was not only heavily inspired by Bush ’ s article, whose 
argument he arguably repeats, but also by his experiences with radar technology 
during World War II. In this sense, we are right to call the  “ real world ”  that our com-
puters approximate analog, for our digital computers approximate analog computers, 
not only in terms of storage, but also in terms of a direct link between one ’ s actions 
and the machine ’ s, between the machine ’ s visuals and its function. Through our 
originally analog mice, which translate our movements to the screen, we navigate in 
what seems to be  “ real time. ”  

 Repeating Bush 

 Douglas Engelbart, one of the pioneers of dynamic interactive user interfaces, known 
particularly for holding the patent on the mouse and for a 1968 demo now referenced 
as simply  “ the demo ”  or  “ the mother of all demos ”  (since it allegedly changed the 
lives of many who saw or even just heard of it), draws heavily from Bush for inspira-
tion and legitimation. Indeed, Engelbart, in a letter to Bush (seeking permission to 
cite long sections of  “ As We May Think ” ), confessed,  “ I re-discovered your article about 
three years ago, and was rather startled to realize how much I had aligned my sights 
along the vector you had described. I wouldn ’ t be surprised at all if the reading of this 
article sixteen and a half years ago hadn ’ t had a real infl uence upon the course of my 
thoughts and actions. ”   78   Engelbart ’ s confession reveals the extent to which technologi-
cal infl uences are rhetorical or  “ vapory. ”  In fact, although most historians and theo-
rists focus on the content of Engelbart ’ s work (comparing his early work to later 
developments), the rhetorical devices used in his texts and the semiotics of his demo 
are crucial to understanding the seductiveness of his vision of interactive interfaces, 
a vision that many derided as insane and that took many years to come into 
fruition. 

 Drawing from Bush, Engelbart developed a conceptual framework to  “ augment 
human intellect ”  in 1962. He fi rst desired to create such a framework, Engelbart 
later explains, when he was doing odd-job electrical engineering work at Ames 
Research Laboratory in Mountain View, California. He was at that point several years 
out of school (where he studied electrical engineering) and had also had two years ’  
experience as an electronics technician during World War II (he read Bush ’ s  “ As We 
May Think ”  while stationed as a Navy boy working with radar in the Philippines). 
Trying to fi gure out what to do with his life, Engelbart recalls he had three  “ fl ashes ”  
of insight: fl ash 1 was that  “ the diffi culty of mankind ’ s problems was increasing at 
a greater rate than our ability to cope. (We are in trouble.) ”  Flash 2 regarded his 
possible role in alleviating the complexity identifi ed in fl ash 1:  “ boosting mankind ’ s 
ability to deal with complex, urgent problems would be an attractive candidate as 
an arena in which a young person might try to  ‘ make the most difference. ’  (Yes, 
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but there ’ s that question: of what does the young electrical engineer do about it? 
Retread for role as educator, research psychologist, legislator, . . . ? Is there any 
handle there that an electrical engineer could . . . ?). ”  Flash 2, therefore, focused 
on the question of  “ human capital. ”  Engelbart ’ s fl ash 3 answered the question of 
what a young electrical engineer could do: 

 FLASH-3: Ahah — graphic vision surges forth of me sitting at a large CRT console, working 

in ways that are rapidly evolving in front of my eyes (beginning from memories of the 

radar-screen consoles I used to service). 

 Well, the imagery of FLASH-3 evolved within a few days to include mixed text and 

graphic portrayals on the CRT, and on to extensions of the symbology and methodology 

that we humans could employ to do our heavy thinking; and also, images of other people 

at consoles attached to the same computer complex, simultaneously working in a collabora-

tion mode that would be much closer and more effective than we had ever been able to 

accomplish.  79   

 These fl ashes, overwhelming pulses of light that can cause blindness, are appropriately 
about technological vision and images and their centrality to  “ governing ”  and improv-
ing human society. According to Engelbart, his plans to use computers as symbolic 
machines fi rst met with little enthusiasm, even after he left academia to join the 
Stanford Research Institute (SRI). Engelbart ’ s vision started becoming reality in 1962 
when he formalized it in the SRI report  “ Augmenting Human Intellect: A Conceptual 
Framework, ”  and in 1963 when Licklider, who had just published his article on man-
machine symbiosis, provided support for Engelbart ’ s project (while also insisting that 
Engelbart ’ s system connect remotely to other computers). 

 At the heart of this system of augmentation is a theory of practice, of training. 
According to Engelbart, we are already augmented through our use of language, 
customs, and tools (symbols and processes). The system, he states,  “ we want to 
improve can thus be visualized as a trained human being together with his artifacts, 
language, and methodology. ”   80   Separating technological systems from human systems, 
Engelbart ’ s system seeks to produce tools to increase  “ the capability of a man to 
approach a complex problem situation, to gain comprehension to suit his particular 
needs, and to derive solutions to problems. ”  This augmented system, importantly, was 
not simply a set of isolated tools, but  “ a way of life in an integrated domain where 
hunches, cut-and-try, intangibles, and the human  ‘ feel for the situation ’  usefully co-
exist with powerful concepts, streamlined terminology and notation, sophisticated 
methods, and high-powered electronic aids. ”   81   This system was thus to augment the 
human by producing  more  human cut-and-try technologies. Training, Engelbart 
stresses, superfi cially divides human cultures. He states:  “ while an untrained aborigine 
cannot drive a car through traffi c, because he cannot leap the gap between his cultural 
background and the kind of world that contains cars and traffi c, it is possible to 
move step by step through an organized training program that will enable him to 
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drive effectively and safely. In other words, the human mind neither learns nor acts 
by large leaps, but by steps organized or structured so that each one depends upon 
previous steps. ”   82   At the base of Engelbart ’ s system is a trainable exemplary  “ primitive ”  
who can, through step-by-step (digital?) training, improve his or her skills. 

 This example of navigating a car — this comparison between digital and analog 
navigational systems — that was repeated by Shneiderman later is not accidental, 
but rather central to the conceptualization of individual interfaces. Analog technol-
ogy is also embedded in what is considered to be Engelbart ’ s most important 
contribution: the mouse. The mouse is based on the integraph (further discussed 
in chapter 4), an  “ analog ”  device designed to integrate distance based on speed. 
Engelbart tied his system conceptually to automobiles and to their transformation 
of mass-transportation systems into mass-individual systems: 

 I suggest that the parallel of the individually manned auto-motive vehicles will develop in the 

computer fi eld, contributing to changes to our social structure that we can ’ t comprehend easily. 

The man-machine interface that most people talk about is the equivalent of the locomotive-cab 

controls (giving a man better means to contribute to the big system ’ s mission), but I want to 

see more thought on the equivalent of the bulldozer ’ s cab (giving the man maximum facility 

for directing all that power to his individual task).  83   

 Rather than a system designed to move masses en masse, these interfaces personal-
ize mass movement and destruction. It is everyone and all in a bulldozer; everyone 
and all ’ s actions amplifi ed. Engelbart ’ s system underscores the key neoliberal quality 
of personal empowerment — the individual ’ s ability to see, steer, and creatively 
destroy — as vital to societal development. Not surprisingly, he views his augmented 
lifestyle as replacing our  “ clerks ”  or personal  “ slaves ”  with computers.  84   

 The stress on the individual and individual understanding is underscored in an 
intriguing  “ hypothetical description ”  section included in his report. Written  “ to give 
you (the reader) a specifi c sort of feel for our thesis, ”  it describes  “ what might happen 
if you were being given a personal discussion-demonstration by a friendly fellow 
(named Joe) who is a trained and experienced user of such an augmentation system. ”  
This section, in other words, constantly interpellates  “ you ”  as a potential user of the 
system. Starting with a description of Joe at his workstation, it narrates not just your 
actions, but also your emotions. It scripts your involvement and pleasure in the 
learning process. For instance, Joe says,  “ Let ’ s actually work some examples. You help 
me ”  after which  “ you become involved in a truly fascinating game. ”  This fascinating 
game, in which you  “ help ”  your teacher, asks  “ you ”  to summarize what you ’ ve learned 
thus far about augmentation using augmentation (with a little coaching from Joe). 
As  ” you begin self-consciously to mumble some inane statements about what you 
have seen, what they imply, what your doubts and reservations are, etc. ”  Joe  “ merci-
lessly ignores your obvious discomfort and gives you no cue to stop, until he drops 
his hands to his lap after he has fi lled fi ve frames with these statements (the surplus 
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fi lled frames disappeared to somewhere — you assume Joe knows where they went and 
how to get them back). ”  Through this procedure, Joe reveals  “ how you wandered 
down different short paths, and crisscrossed yourself a few times ”  because  “ you 
haven ’ t been making use of the simple symbol-manipulation means that I showed 
you — other than the shorthand for getting the stuff on the screens. ”  Joe then goes 
on to show you effective tricks that are deliberately not  “ impressive, ”  for Joe ’ s point 
is to make you realize that new tricks are all based on lots of changes to the little 
things you do. He gets you to edit, reword, compile, and delete, at which point: 

 You are quite elated by this freedom to juggle the record of your thoughts, and by the way 

this freedom allows you to work them into shape. You refl ected that this fl exible cut-and-try 

process really did appear to match the way you seemed to develop your thoughts. Golly, you 

could be writing math expressions, ad copy, or a poem, with the same type of benefi t. You 

were ready to tell Joe that now you saw what he had been trying to tell you about matching 

symbol structuring to concept structuring — when he moved on to show you a succession of 

other techniques that made you realize you hadn ’ t yet gotten the full signifi cance of his pitch.  85   

 This feeling of freedom  “ you ”  experience stems from an increase in productivity 
made possible by the match, or analog, between the machine ’ s processes and your 
own; this match is a  “ benefi t ”  that could improve all your activities, from work to 
play. In typical neoliberal fashion, this report evaluates all activities in terms of a 
cost – benefi t analysis.  86   Also, the system user is convinced not simply through doing 
(even hypothetical doing), but rather through interpersonal interactions, in which 
 “ you ”  are relentlessly coached and cajoled. Key to  “ human augmentation ”  is the 
establishment of users who act and through their actions believe — all via a linear 
narrative that praises nonlinear processes as empowering. 

 Figure 2.5 
 A screenshot from Douglas Engelbart,  “ The Demo, ”   < http://video.google.com/videoplay?do

cid=-8734787622017763097 > , accessed 8/8/2010  
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 Engelbart ’ s demo, the famous  “ mother of all demos, ”  similarly interpellates the 
viewer, using the linear conventions of live TV and cinema. Engelbart and his crew, 
some of whom spoke live from their Silicon Valley location, appeared on a massive 
twenty-two-by-eighteen-foot screen (see   fi gure 2.5 ). Indeed, Engelbart begins by apolo-
gizing to his audience for addressing them mainly through the screen, and throughout 
the demo his face and hands and those of his colleagues fade in and out with the 
contents of their screen (see   fi gures 2.6 and 2.7 ). 

        The directness of Engelbart ’ s address, however, compensates for the screen. He 
describes his research project with the question:  “ If, in your offi ce, you, as an 
intellectual worker, were supplied with a computer display backed up by a computer 
that was alive for you all day and was instantly [sic] responsible . . . responsive 
to every action that you had, how much value could you derive from that? ”  To 
answer this question, he shows you how he begins his workday, with a blank screen 
(which becomes your monitor/interface). He then starts to input words into a fi le 
to show you the various  “ view control ”  features of the NLS (online system); in this 
scenario, Engelbart becomes both Joe and you the viewer. Using the mouse (its 
fi rst public display), he copies and moves texts, gradually ordering a grocery list 
allegedly created in response to a call from his wife; he also offers a map of his 
journey home. He shows how the system logs ownership and changes to the fi les 
(importantly, the NLS system also permanently saved all fi les). Switching to his 
colleagues in Silicon Valley, he has them explain more features of the system and, 
in one comic moment, loses the ability to speak to them, but they nonetheless 
continue their explanations. 

 Engelbart serves as our protagonist, with whom we as  “ intellectual workers ”  are 
supposed to identify. The view of his hands, for instance, makes our and his gaze 
coincide. Supplementing this cinematic call to identify with Engelbart, however, is a 
televisual structure of technologically mediated liveness and interpersonal discourse.  87   
Engelbart looks at us directly and, like a news anchor, controls the screen, determin-
ing which of his colleagues appear next. Intriguingly, the interface itself did not have 
windows — everything is shown on one screen — but the notion of windowing exists 
in the split screens and transfers. Our screen, in other words, becomes a window in 
which Engelbart ’ s face appears and disappears: a medium in the medium. He addresses 
us directly, making us part of his world, through his interface and through the NLS 
system, which magically bring us all together. The demo, in other words, has been 
so  “ life changing ”  not simply because of the technology it featured, but also because 
of the images and visions of interconnectivity it established through its visual 
presentation. 

 Through our identifi cation with Engelbart via his demo we emerge as sovereign 
subjects — subjects of fi les. Not accidentally, Engelbart ’ s tasks are administrative: 
compiling lists, assigning ownership to fi les. Lists, according to Cornelia Vismann, 
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 Figures 2.6 
 A screenshot from Douglas Engelbart,  “ The Demo ”  

 Figure 2.7 
 A screenshot from Douglas Engelbart,  “ The Demo ”  

are fundamentally administrative. They are about power through writing: they  “ do 
not communicate, they control transfer operations. ”   88   Similarly, fi les, which, Vismann 
argues,  “ at their core . . . are governed by lists, ”  are central to legal institutions 
and power.  89   Files  “ are comprehensive recording devices that register everything 
in the medium of writing, even that which is not writing. ”   90   The modern inter-
face, by putting everyone in control of their fi les, makes every system user a 
 “ chancellor ”  — again,  an executive  — and is part of an ongoing personalization of 
bureaucracy:  “ by condensing an entire administrative offi ce, the computer imple-
ments the basic law of bureaucracy according to which administrative techniques 
are transferred from the state to the individual. ”   91   The personalizing of fi les — both 
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virtually and legally through various  “ access to information ”  laws — individualizes 
and totalizes. 

 This notion of individual yet total is also underscored in the Engelbart demo 
format, in the ways it differs from live television and cinema. The  “ view control ”  
offered by the NLS system was mirrored intriguingly in the demo itself, with 
the camera offering us views that were not under Engelbart ’ s control and featur-
ing moments of confusion and disconnection. Engelbart falters repeatedly in the 
demo: in the rather telling slip of the tongue listed earlier he contends that the 
machine is  “ responsible for ”  rather than  “ responsive to ”  our every action. He 
also makes mistakes and claims that he (not the machine) has not yet  “ warmed 
up. ”  All these errors combined with the various visual views of the team place 
us, the viewers, in the position of control. Like the mouse that responds to 
Engelbart ’ s movements, the viewer seemingly toggles, cuts, and pastes through 
the various views. Engelbart is not only the subject, but also an object to be 
manipulated. 

 At the alleged origins of interactive real-time interfaces, then, is a desire to control, 
to  “ govern, ”  based on a promise of transparent technologically mediated contact. It 
is a vision of permanence and fl exibility: the fi les are permanently stored and the 
user ’ s information tracked. Through this, this spectral interface has come to stand in 
for the machine itself, erasing the medium as it proliferates its specters, making our 
machines transparent producers of unreal visions — sometimes terrifying but usually 
banal imitations or hallucinations of elsewhere, in which the uneasy relationship 
between human agency and dependency is negotiated. 

 Daemonic Media 

 This spectrality makes our media daemonic: inhabited by invisible, orphaned processes 
that, perhaps like Socrates ’ s  daimonion , help us in our times of need. They make 
executables magic. UNIX — that operating system seemingly behind our happy spectral 
Mac desktops — runs daemons; daemons run our email, our web servers. Macs thus 
not only proudly display that symbol of the Judeo-Christian seduction and fall from 
grace — that sanitized but nonetheless tellingly bitten apple — it also inhabits its operat-
ing systems with daemons that make it a veritable  “ Paradise Lost. ”  The mascot for 
FreeBSD, the robust operating system distributed via Berkeley Software Distribution 
and descended from AT & T ’ s UNIX (also used by Apple OSX), nicely features the 
daemon as its logo (see   fi gure 2.8 ). 

    These daemons called sendmail if not Satan are processes that run in the back-
ground without intervention by the user (usually initiated at boot time). They can 
run continuously, or in response to a particular event or condition (for instance, 
network traffi c), or at a scheduled time (every fi ve minutes or at 05:00 every day). 
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 Figures 2.8 
 The FreeBSD mascot,  < http://www.zer0.org/daemons/wc/standing_daemon.jpg > , accessed 8/8/

2010. Copyright 1988 by Marshall Kirk McKusick, used with permission. Reprinted with 

permission. 

More technically, UNIX daemons are parentless — that is, orphaned — processes that 
run in the root directory. You can create a UNIX daemon by forking a child process 
and then having the parent process exit, so that INIT (the program that spawns 
all other programs and thus the daemons of daemons) takes over as the parent 
process.  92   

 UNIX daemons supposedly stem from the Greek word  daemon  meaning, according 
to the OED,  “ a supernatural being of a nature intermediate between that of gods and 
men; an inferior divinity, spirit, genius (including the souls or ghosts of deceased 
persons, esp. deifi ed heroes). ”  A daemon thus is already a medium, an intermediate 
value albeit one that is not often seen. The most famous daemon is perhaps Socrates ’ s 
 daimonion  — a mystical inner voice that assisted the philosopher in times of crisis by 
forbidding him to do anything rash. The other famous daemon, more directly related 
to those spawning UNIX processes, is known as  Maxwell ’ s daemon . According to Fer-
nando Corbato, one of the original members of the Project MAC group in 1963:  “ Our 
use of the word daemon was inspired by Maxwell ’ s daemon of physics and thermo-
dynamics. (My background is Physics.) Maxwell ’ s daemon was an imaginary agent 
which helped sort molecules of different speeds and worked tirelessly in the back-
ground. We fancifully began to use the word daemon to describe background processes 
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which worked tirelessly to perform system chores. ”   93   Daemonic processes, therefore, 
are slaves that work tirelessly and, like all slaves, defi ne and challenge the position of 
the master. 

 The introduction of multiuser command line processing — seeming if not actual 
real-time operating systems — necessitates the mystifi cation of processes that appear 
to operate automatically without user input, breaking the interfaces ’   “ diegesis. ”  What 
is not seen becomes daemonic, rather than what is normal, because the user is 
supposed to be the cause and end of any process. Interactive operating systems, 
such as UNIX, transform the computer from a machine run by human operators 
in batch mode to  “ alive ”  personal machines, which respond to the user ’ s commands. 
Real-time content, stock quotes, breaking news, and streaming video similarly trans-
form personal computers into personal media machines. These moments of  “ inter-
activity ”  buttress the notion of our computers as transparent. Real-time processes, 
in other words, make the user the  “ source ”  of the action, but only by orphaning 
those writing processes without which there could be no user.  94   By making the 
interface  “ transparent ”  or  “ rational, ”  one creates daemons, which as autonomous 
operations call into question the subject they allegedly support. It is not surprising 
then that Friedrich Nietzsche condemned Socrates so roundly for his daemon (and, 
similarly, language for its attribution of subject to verb), even though daemons are 
symptoms rather than causes. According to Nietzsche, Socrates was himself a daemon 
because he insisted on the transparency of knowledge, because he insisted that what 
is most beautiful is also most sensible. Crucially, Socrates ’ s divine inner voice only 
spoke to dissuade. Socrates introduced order and reifi ed conscious perception, making 
instinct the critic, and consciousness the creator. As a symptom of this desire for 
the transparency of knowledge, for the reigning of rationality, daemon is also a 
backronym. Since the fi rst daemon automatically made tape backups for the fi le 
system, it has been widely and erroneously assumed that daemon initially stood for 
 “ Disk And Executive MONitor ”  (this alleged  “ source ”  phrase was later adopted). The 
fi rst daemon appropriately is about memory: an automated process that transfers 
data between secondary and tertiary memory. Memory is what makes daemons 
possible and what makes our media daemonic. Memory, as I elaborate later, grounds 
code as logos. 

 Ghostly Interfaces, Confused Mappings 

 The drive to map seeks to clear up confusion and establish the user as the sovereign 
subject, in control of what she sees: she controls technology that transparently reveals 
her relationship to the invisible laws of computation. This compelling relationship 
bleeds elsewhere, making the interface not simply based on metaphor, but also a 
compelling metaphor for understanding all invisible laws. This mapping makes us 
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believe that the world, like the computer, really comprises invisible hands and rules 
that we can track via their visual manifestations. Hence the popularity of software as 
a metaphor for almost everything — culture, genetics, life — and the reduction of every-
thing to transparent (and in Baudrillard ’ s term  “ obscene ” ) communication. Although 
digital imaging certainly plays a role in the notion of computer networks as transpar-
ent, it is neither the only nor the key thing. Consider, for instance,  “ The Matrix ”  
(Multistate Anti-TerRrorism Information eXchange) data mining program that sifts 
through databases of public and private information ostensibly to fi nd criminals or 
terrorists. The Matrix works by integrating  “ information from disparate sources, like 
vehicle registrations, driver ’ s license data, criminal history and real estate records and 
analyzing it for patterns of activity that could help law enforcement investigations. 
Promotional materials for the company that developed The Matrix put it this way: 
 ‘ When enough seemingly insignifi cant data is analyzed against billions of data ele-
ments, the invisible becomes visible. ’  ”   95   Although supporters claim that The Matrix 
simply brings together information already available to law enforcement,  “ opponents 
of the program say the ability of computer networks to combine and sift mountains 
of data greatly amplifi es police surveillance power, putting innocent people at greater 
risk of being entangled in data dragnets. The problem is compounded, they say, in a 
world where many aspects of daily life leave online traces. ”   96   By March 15, 2004, over 
two-thirds of the states withdrew their support for The Matrix, citing budgetary and 
privacy concerns. The Matrix was considered to be a violation of privacy or a making 
of the invisible visible (again, the act of software itself) not because the computer 
reproduced indexical images but rather because it enabled the police to make easy 
connections and thus amplifi ed their power. As mentioned previously, the Total Infor-
mation Agency (TIA), formed to bring together the U.S. government ’ s various elec-
tronic databases, was similarly decried, although not terminated (many of its programs 
were implemented by the NSA and continue in the Obama administration). 

 This desire to see and to map, however, is not limited to governmental organiza-
tions; it is also key to the increasing personalization of commercial media. In spring 
2009, Cablevision announced plans to use a targeting technology,  “ Visible World, ”  
to  “ route ads to specifi c households based on data about income, ethnicity, gender 
or whether the homeowner has children or pets ”  to 500,000 homes in the Tri-State 
region surrounding greater New York and encompassing the populated areas of New 
York, New Jersey, and Connecticut (Cablevision has already been testing this new 
technology within a sample urban population over the past year and a half). Visible 
World ”  aims to make television — not the user — smarter:  “ Television was always big 
and dumb, ”  said Seth Haberman, the chief executive of Visible World.  “ Now, hope-
fully, we can be big and slightly smarter. ”   97   In this defi nition,  smart  means tracking 
users ’  actions: like the iTunes and Amazon.com user-driven product recommendation 
systems, smart technologies automatically capture information about users ’  personal 
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preferences and usage and send it to a central database to be processed and 
analyzed.  98   

 To continue on a more personal level, computing as enabling connections and 
making the invisible visible drives personal computing interfaces. By typing in 
Microsoft Word, letters appear on my screen, representing what is stored invisibly 
on my computer. My typing and clicking seem to have corresponding actions on 
the screen. By opening a fi le, I make it visible. On all levels, then, software seems 
to be about making the invisible visible — about  translating  between computer-readable 
code and human-readable language. Manovich seizes on this translation and makes 
 “ transcoding ”  — the translation of fi les from one format to another, which he extrapo-
lates to the relationship between cultural and computer layers — his fi fth and last 
principle of new media in  The Language of New Media . Manovich argues that in 
order to understand new media we need to engage both layers, for although the 
surface layer may seem like every other media, the hidden layer, computation, is 
where the true difference between new and old media — programmability — lies. He 
thus argues that we must move from media studies to software studies, and the 
principle of transcoding is one way to start to think about software studies.  99   

 The problem with Manovich ’ s notion of transcoding is that it focuses on static 
data and treats computation as a mere translation. Not only does programmability 
mean that images are manipulable in new ways; it also means that one ’ s computer 
constantly acts in ways beyond one ’ s control. To see software as merely transcoding 
erases the computation necessary for computers to run. The computer ’ s duplicitous 
reading does not simply translate or transcode code into text/image/sound, or vice 
versa; its reading — which confl ates reading and writing (for a computer, to read is to 
write elsewhere) — also partakes in other invisible readings. For example, when Micro-
soft ’ s Media Player plays a CD, it sends the Microsoft Corporation information about 
that CD. When it plays a Real Media fi le, such as a CNN video clip, it sends CNN 
its  “ unique identifi er. ”  You can choose to work offl ine when playing a CD and request 
that your media player not transmit its  “ unique identifi er ”  when online, but these 
choices require two changes to the default settings. By installing the Media Player, 
you also agreed to allow Microsoft to  “ provide security related updates to the OS 
Components that will be automatically downloaded onto your computer. These secu-
rity related updates may disable your ability to copy and/or play Secure Content and 
use other software on your computer. ”  Basically, Microsoft can change components 
of your operating system (OS) without notice or your explicit consent. Thus to create 
a more  “ secure ”  computer, where secure means secure  from  the user, Microsoft can 
disable pirated fi les and applications and/or report their presence to its main data-
base.  100   Of course, Microsoft ’ s advertisements do not emphasize the Media Player ’ s 
tracking mechanisms but rather sell it as empowering and user friendly. So now you 
can listen to both your CD and Internet-based radio stations with one click of a 
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mouse: it is just like your boom box, but better. And now you can automatically 
receive software updates and optimize your connection to remote sites. As mentioned 
previously, this logic also drives Apple ’ s iTunes recommendation system; more trou-
blingly, it also appears in Apple ’ s DRM-free music tracks, which embeds personal 
account information into these freely accessible tracks. 

 To be clear: this chapter is not a call to a return to an age when one could see 
and comprehend the actions of our computers. Those days are long gone. As Friedrich 
Kittler argues, at a fundamental level we no longer write; through our use of word 
processors we have given computers that task.  101   Neither is this chapter an indictment 
of software or programming (I too am swayed by and enamored of the causal pleasure 
of software). It is, however, an argument against common-sense notions of software 
precisely because of their status as common sense (and in this sense they fulfi ll 
Antonio Gramsci ’ s notion of ideology as hegemonic common sense); because of the 
histories and gazes such notions erase; and because of the future they point toward. 
Software has become a common-sense shorthand for culture, and hardware shorthand 
for nature. (In the current debate over stem cell research, stem cells have been called 
 “ hardware. ”  Historically software also facilitated the separation of pattern from matter, 
necessary for the separation of genes from DNA.)  102   In our so-called post-ideological 
society, software sustains and depoliticizes notions of ideology and ideology critique. 
People may deny ideology, but they don ’ t deny software — and they attribute to soft-
ware, metaphorically, greater powers than have been attributed to ideology. Our 
interactions with software have disciplined us, created certain expectations about 
cause and effect, offered us pleasure and power — a way to navigate our neoliberal 
world — that we believe should be transferable elsewhere. It has also fostered our belief 
in the world as neoliberal: as an economic game that follows certain rules. The notion 
of software has crept into our critical vocabulary in mostly uninterrogated ways.  103   
By interrogating software and the visual knowledge it perpetuates, we can move 
beyond the so-called crisis in indexicality toward understanding the new ways in 
which visual knowledge — seeing/visible reading as knowing — is being transformed 
and perpetuated, not simply rendered obsolete or displaced. 

 To do this, we need, again, to understand the ways in which the drive to map and 
to promote transparency enables nontransparent data tracking that cuts across the 
governmental, the political, the commercial, and the personal. For instance, Google ’ s 
2009 decision to refuse to self-censor its search results in China seems a simple rejec-
tion of governmental transcoding and a laudable endorsement of transparency: by 
refusing to censor results, Google makes visible what is usually invisible to or screened 
from its Chinese users. Google made its decision, however, in response to the fact that 
 “ Chinese hackers had penetrated some of its services, such as Gmail, in a politically 
motivated attempt at intelligence gathering. ”   104   Importantly, Google ’ s complicity with 
the U.S. government ’ s email surveillance program made possible this spying foray: the 
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hackers took advantage of the fact that,  “ in order to comply with government search 
warrants on user data, Google created a backdoor access system into Gmail accounts. ”   105   
Similarly, the U.S. government ’ s celebration and endorsement of social networking 
tools such as Twitter makes Twitter users open to governmental surveillance: by using 
Twitter and other U.S. software, one makes it much easier for the U.S. government to 
track one ’ s actions through  “ back doors ”  (back doors created in part through our belief 
in our interfaces as simple windows). 

 This does not mean, however, that one must simply condemn all attempts at politi-
cal transparency and mapping and all user actions as self-delusional capitulation. In 
response to TIA, Chris Csikszentmihalyi ’ s group at the MIT Media Lab produced a 
remarkable site, Government Information Awareness (GIA), which mobilized resis-
tance against TIA by reversing the gaze. Rather than facilitating information gathering 
about citizens, GIA sought to create a sort of  “ citizen ’ s intelligence agency ”  that gath-
ered data on elected offi cials, empowering  “ citizens by providing a single, comprehen-
sive, easy-to-use repository of information on individuals, organizations, and 
corporations related to the government of the United States of America. ”   106   Although 
the GIA is no longer functional, its drive to make information public regarding 
governmental actions has been embraced by the Obama administration itself. This 
administration — even as it supported  “ back doors ”  in email and social networking 
software — created the Open Government Initiative, which is committed to making 
government transparent, participatory, and collaborative. Csikszentmihalyi ’ s group 
has further pursued these issues of participation and transparency through numerous 
projects, such as Xtract, which give citizens access to data that is usually limited to 
commercial and governmental organizations and, most important, gives them the 
ability to manipulate and update these data. These projects are critical not simply for 
the  “ transparency ”  or information they seem to offer, but also because they give users 
the collective power to transform these databases and these debates over what counts 
as evidence. 

 This interrogation of interfaces also entails addressing how their mapping never 
works as simply as projected: there is a reason why demos — with their directed narra-
tive and limited interactivity — are so compelling and so central to the computer 
industry. Indeed, the action of clicking, and that of  “ driving, ”  from one site to another, 
as I have argued elsewhere, is more like an itinerary — a journey without a global 
view — than a map. That is, if our interfaces are maps, we don ’ t necessarily treat them 
as such: we try to inhabit them, and, by inhabiting them, we turn them into some-
thing other than a map. Signifi cantly, though, these journeys, or tracings, can always 
be reincorporated into a map, and every journey we take, through the storage and 
sites we use, can be recompiled in a map that allegedly contains the truth of our 
journey — hence Google ’ s ability to track fl u outbreaks based on search terms entered 
into its database, although again, databases are not as infallible as they seem.  107   These 
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databases, which drive computer  “ mapping ”  / machine intelligence, become  “ dirty, ”  
unreliable, when they do not actively erase information: they become fl ooded with 
old and erroneous information that dilutes the maps they produce. Deliberately 
making databases dirty — by providing too much or erroneous information — may be 
the most effective way of preserving something like privacy.  

 Furthermore, the more an interface is programmed — the more it tries to meet and 
anticipate users ’  needs and to direct their actions — the more confused and confusing 
it becomes. As Matthew Fuller has argued in relation to Microsoft Word ’ s massive 
feature mountain (opening all the possible menus and tools, for instance, completely 
blocks the screen so we cannot see what we are writing), the more features that are 
offered, the more the user can go astray. This going astray is not necessarily a bad 
thing — it does not necessarily lead to an existential nightmare — or, if it does, perhaps 
that is a good thing. What certain types of mapping and actions eradicate is the ways 
in which we are not the only agents: as Adrian Mackenzie argues, software is a neigh-
borhood, an amalgam that brings together many different modes of action.  108   As a 
neighborhood, software entails all those  “ neighborhood effects ”  — effects by individu-
als on others for which  “ it is not feasible to charge or recompensate them ”  — that even 
neoliberals acknowledge belie freedom as a strictly voluntary exchange.  109   

 In addition — as Csikszentmihalyi ’ s projects make clear — metaphor and mapping are 
creative acts. That is, rather than simply condemning maps that seek to reduce the 
earth to a spinning globe, we need to embrace the ways in which mapping and 
metaphor — as artifi cial acts — create the world they represent. Friedrich Nietzsche, for 
instance, has argued that all language — and truth — is basically metaphorical. What is 
truth, he asks, if not 

 a mobile army of metaphors, metonyms, and anthropomorphisms — in short, a sum of human 

relations which have been enhanced, transposed, and embellished poetically and rhetorically, 

and which after long use seem fi rm, canonical, and obligatory to a people: truths are illusions 

about which one has forgotten that this is what they are; metaphors which are worn out and 

without sensuous power; coins which have lost their pictures and now matter only as metal, 

no longer as coins.  110   

 Rather than forgetting this  “ primitive world of metaphor ”  and thus live securely and 
consistently, Nietzsche calls for an embrace of the fundamental drive to form meta-
phors and thus to refashion the world. Understanding computers as metaphors for 
metaphor also means engaging the artifi ciality of metaphor — producing new meta-
phors — that make strange and estranging the world around us. This aesthetic creation 
would not seek to make a totality visible, so we can then navigate it, but rather, 
through deliberately odd and artifi cial means, to create what we consider totality to 
be. This, arguably, is the value of the many aesthetic  “ detournements ”  of mapping 
produced by artists, from i/o/d ’ s  WebStalker  (which offers its  “ surfers ”  HTML code and 
a map of a web pages rather than its  “ content ” ) to Jonah Brucker-Cohen ’ s  Wireless 
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Hog  (which offers users a way to interfere with private wireless networks). Liz Canner 
and John Ewing ’ s 2001  Symphony of a City  nicely demonstrates the possibilities of this 
mapping. Canner and Ewing ’ s project addressed the housing crisis in Boston by attach-
ing portable cameras to the heads of eight nominated  “ representatives ”  of differently 
affected communities (including a housing court lawyer, slum lord, homeless person, 
and an artist). Canner and Ewing then streamed the camera views live on the Web 
and projected them (as four quadrants) simultaneously on the side of Boston City 
Hall. This move to reclaim a  “ monument ”  within Boston — a city crucial to Lynch ’ s 
analysis — offers a provocative remapping of city space that links individual experience 
to the larger issues of gentrifi cation and capital. It also allows one to  “ follow ”  this 
issue by literally following the fl ow of the participants: there is no god ’ s eye view, 
but rather a splitting of perspectives that demands both local attention and global 
distraction. 

 Last, this interrogation of transparency, mapping, and interfaces needs to address 
the ways in which the digital rather than simply offering a stable material for memory 
is also fundamentally ephemeral. The digital, if it is anything, is the enduring ephem-
eral. Digital media is not always there (accessible), even when it is (somewhere). We 
suffer daily frustrations with digital  “ sources ”  that just disappear. Digital media is 
degenerative, forgetful, erasable. This degeneration makes it both possible and impos-
sible for it to imitate analog media, making it perhaps a device for history, but only 
through its ahistorical (or memoryless) functioning, through the ways in which it 
constantly transmits and regenerates text and images. The question becomes: how did 
constant regeneration become stable transmission? 
        





 II     Regenerating Archives 

 The transience of new archives, their ever shorter half-life, is their fate, their curse, and their 

opportunity. 

  — Wolfgang Ernst  1   

 Traces . . . produce the space of their inscription only by acceding to the period of their erasure. 

  — Jacques Derrida  2   

 A major — if not the major — category of new media is memory.  3   Memory, a metaphor 
become essence, is assumed to be its ontology at all levels, from hardware to software, 
from content to purpose. From CD ROMs (compact disc read-only memory) to memory 
sticks, from RAM (random-access memory) to ROM (read-only memory), computer 
hardware is riven by memory, which, as I elaborate later, makes porous the boundaries 
of the machine. Memory underlies the emergence of the computer as we now know 
it: the move from calculator to computer depended on  “ regenerative memory. ”   4   The 
Internet ’ s content, memorable or not, is similarly shot through with memory. Many 
web sites and digital media projects focus on preservation: from online museums to 
YouTube phenomenon Geriatic1927, from Bill Gates ’ s Corbis Image Database to the 
Google databanks that store every search ever entered (and link them to an IP address, 
allegedly making Google the  “ stasi resource ”  of the twenty-fi rst century). Memory 
hardens information — turning it from a measure of possibility into a  “ thing, ”  while 
also erasing the difference between instruction and data (computer memory treats 
them indistinguishably). It seems to make digital media an ever-increasing archive in 
which no piece of data is lost and thus central to progress. 

 This always thereness of new media links it to the future as future simple. By saving 
the past, it is supposed to make knowing the future easier. The future is technology 
because technology enables us to see trends and hence to make projections — it allows 
us to intervene on the future based on stored programs and data that compress time 
and space.  5   Again, investment banks, such as Goldman Sachs, pay millions just to be 
one millisecond closer to the future than their competitors. More damningly, new 
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media allegedly puts the future simple into place through the threat of constant expo-
sure. As a  New York Times  article questioned in response to the seminal posting of the 
Senator George Allen  macaca  clip to YouTube in 2006:  “ If . . . any moment of a can-
didate ’ s life can be captured on fi lm and posted on the Web, will the last shreds of 
authenticity be stripped from our public offi cials? ”   6   Intriguingly, this formulation 
assumes that racist slurs are the authentic and the true, and that public exposure 
always makes behavior more banal. However, given the legion of students with com-
promising Facebook entries who seem oblivious to the fact that potential employers 
can check these entries, and given that people increasingly record their own  “ trans-
gressions ”  (such as the English happy slappers who taped themselves accosting unsus-
pecting people in buses etc. and posted them to YouTube), it is not clear that this 
assumption will hold, even for politicians. Allen, after all, directed his comment at a 
public rally to an Indian-American man holding a video recorder. Regardless, digital 
media was supposed — in its very functioning — to encapsulate the enlightenment ideal 
that better information leads to better knowledge, which in turn guarantees better 
decisions.  7   As a product of programming, digital media was to program the future. 

 The next two chapters fl esh out the emergence of computer memory and its impor-
tance to notions of programmability. Focusing on the relation between biology and 
computing technology, chapters 3 and 4 explore how something so initially  “ vapory ”  
as software came to embody the logic of the  “ always already there. ”  By exploring the 
ways in which biology and computer technology have been reduced to complemen-
tary strands of a double helix, they embed computer technology within the larger 
epistemic fi eld of programmability. Both are a return to a reductionist, mechanistic 
understanding of life, in which the human body becomes an archive. Both are the 
basis of a biopolitics that seeks to rationalize and optimize human populations and 
capital. 

 Chapters 3 and 4 also explore how permanence has become intertwined with 
undead repetition and transmission, and how this repetition both grounds and threat-
ens computers as archive. Repetition, as Vannevar Bush and Jacques Derrida have 
argued, is also a marker of forgetfulness. Drawing from Freud ’ s work on the death 
drive, Derrida contends  “ repetition itself, the logic of repetition, indeed the repetition 
compulsion, remains . . . indissociable from . . . destruction. ”   8   This repetition also 
relies on degeneration: as the epigraph states, a trace to be a trace must be erasable. 
Because of this, it is also undead or spectral, neither human nor machine,  “ neither 
present nor absent  ‘ in the fl esh, ’  neither visible nor invisible, a trace always referring 
to another whose eyes can never be met. ”   9   It is, to tie it to the fi rst section, invisibly 
visible, visibly invisible, a  “ technical ”  repetition that relates life and death, presence 
and representation.  10   

 By focusing on archives — on the relation between memory and repetition, repeti-
tion and forgetting, repetition and transmission — this section also addresses questions 
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of power. Vannevar Bush ’ s insistence that accessing and wielding the archive is key to 
the survival of the human race may seem hyperbolic, but archives have historically 
been linked to questions of authority. As Howard Caygill, paraphrasing Aristotle, 
explains: 

 The institution of the  archon  originated in the ancient Greek transition from monarchic to 

aristocratic rule, with the  archons , unlike the kings, being constitutionally required to respect 

precedent. On assuming offi ce an  archon  had to make a proclamation  ‘ that whatever each man 

possessed before his entry into offi ce he shall possess and control until the end of it. . . . ’  In 

order to honour such a commitment it was necessary to preserve authoritative records of  ‘ what 

each possessed ’  at the beginning of each archonate, and these records, or rather the building 

in which they were stored, became known as the archive. It is important to recall the origins 

of the archive in oligarchic rule, because it is characteristic of such regimes that the laws be 

public, but not available to all.  11   

 The archive thus buttresses a certain defi nition of public as state authority through 
the transformation, as Derrida notes, of a private domicile into a public one. It is also 
based on a promise that links the past to the future: whatever is possessed at the 
beginning of an  archon  ’ s term shall remain at the end; an archive conserves. This 
conservative promise is tied to another: the promise to respect precedent, that is, to 
follow past rules in order to guarantee a just future. Derrida thus argues,  “ the archive 
is a pledge to the future, it is not an issue of the past: it is a question of the future, 
the question of the future itself, the question of a response, of a promise, and of a 
responsibility for tomorrow. The archive: if we want to know what that will have 
meant, we will only know it in times to come. ”   12   The meaning of an archive, like 
source code, can only be determined after the fact. It is a promise to the future.  13   
Derrida also argues,  “ there is no political power without control of the archive, if not 
of memory. Effective democratization can always be measured by this essential crite-
rion: the participation in and the access to the archive, its constitution, and its 
interpretation. ”   14   

 Linked to authority and the establishment of power, archives also carry with them 
the threat of violence: a promise is also a threat.  15   Derrida, drawing from the etymol-
ogy of the term  archive , underscores that the archive is always both institutive and 
conservative:  “ It keeps, it puts in reserve, it saves, but in an unnatural fashion, that 
is to say in making the law ( nomos ) or in making people respect the law . . . it has the 
force of law. ”   16   The archive is, he argues,  toponomological : it  “ coordinates two principles 
in one: the principle according to nature or history,  there , where things  commence  —
 physical, historical, or ontological principle — but also the principle according to the 
law,  there  where men and gods  command ,  there  where authority, social order are 
exercised. ”   17   

 These questions of violence and authority, of the transformation of a private to a 
public space, are key to understanding and assessing changes brought about by new 
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media. New media have made certain archives more accessible by increasing the 
 “ domiciles ”  in which they — or copies of them — can be kept, spreading democracy by 
compromising privacy. At the same time, they have also made these fi les more volatile 
in both content and form, complicating the task of both preserving and reserving 
them. The fl ame wars and confl ict online combined with increasing corporate and 
state surveillance — that is, our constant state of crisis — are not accidental to, or an 
unfortunate and temporary side effect of, new media; rather, they are symptomatic of 
changes in archival power, changes that underscore how new media can be the  “ end ”  
of the archive, in both senses of that word. To return to new media as metaphor, the 
new media makes the archive metaphorical not only because, as Wolfgang Ernst has 
shown, it is not an archive, but also because it brings archives alive, shot through with 
change. Traces do not simply degenerate at a faster pace, they also transform them-
selves. This transformation challenges the process of consignation — of indexing and 
organizing — that grounds the archive; it also fundamentally changes how archived 
materials are retrieved, or  “ reanimated ”  and thus experienced. Perhaps, as Ernst has 
so eloquently argued, it is time to archive the word  archive , assuming, that is, that we 
could separate its verb and noun forms.  18   Perhaps our very sense of the end of 
archives — their promise and their threat — is embedded in their structure as undead, 
as traces of the past we simultaneously integrate and forget as they endure and 
disappear. 



 3     Order from Order, or Life According to Software 

 We ought to regard the present state of the universe as the effect of its antecedent state and as 

the cause of the state that is to follow. An intelligence knowing all the forces acting in nature at 

a given instant, as well as the momentary positions of all things in the universe, would be able 

to comprehend in one single formula the motions of the largest bodies as well as the lightest 

atoms in the world, provided that its intellect were suffi ciently powerful to subject all data to 

analysis; to it nothing would be uncertain, the future as well as the past would be present to its 

eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble 

outline of such an intelligence. 

  — Pierre-Simon Laplace  1   

 To repeat, software is axiomatic. As a fi rst principle, it fastens in place a certain logic 
of cause and effect, a causal pleasure that erases execution and reduces programming 
to an act of writing. An axiomatic, as Gilles Deleuze and F é lix Guattari contend, 
artifi cially limits decodings, it  “ blocks all lines [of fl ight], subordinates them to a 
punctual systems, and halts the geometric and algebraic writing systems that had 
begun to run off in all directions. ”   2   Software seeks to limit what can be decoded 
through an artifi cial boundary of programmability that renders hardware logical and 
orderly. This causal pleasure both stems from and bleeds elsewhere, making software —
 itself based on metaphor — a metaphor for the mind, for genes, for culture, for the 
economy, indeed for metaphor itself. Paul Edwards among others has outlined the 
ways in which the computer as a software/hardware machine conceptually grounded 
cognitive psychology, and it seems impossible to discuss biology without recourse to 
computer technology (to circuits, information exchange, and programs).  3   

 This intertwining of computer technology and biology is hardly new, although it 
is constantly discovered as though it is. The history of computing and the history of 
biology are littered with moments of deliberate connection and astonished revelation, 
from computer storage as  “ memory ”  to regulatory genes as  “ switches, ”  from genetic 
to evolutionary  “ programs. ”  Through generative misreadings, biology and computer 
technology are constructed as complementary strands of a constantly unraveling and 
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 Figure 3.1 
 Stylized double helix 

raveling stylized double helix (see   fi gure 3.1 ). That is, they are reduced to shiny cor-
responding balls or strips through the sleek simplicity of programmability, a force of 
attraction that binds the two together and enables them to reduplicate — to write each 
other — even as they work in opposite directions. 

    Richard Dawkins ’ s  “ transformation ”  of evolutionary biology through the rubric of 
selfi sh genes exemplifi es this logic:  “ we are, ”  he writes,  “ survival machines — robot 
vehicles blindly programmed to preserve the selfi sh molecules known as genes. ”   4   
Comparing neurons to transistors, he asserts,  “ brains may be regarded as analogous 
in function to computers. ”   5   This analogy makes clear the parallels not only between 
computers and humans, but also between them and a capitalist economy in which 
agents operate selfi shly; it further naturalizes this comparison by making  “ nature ”  
responsible for these actions. This analogy, which Dawkins claims still  “ fi lls [him] with 
astonishment, ”  is also astonishing for its historical blindness, for Dawkins ’ s revelation 
repeats John von Neumann ’ s foundational analogy between neurons and computer 
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components, as well as Nobel Prize winning geneticist Fran ç ois Jacob ’ s 1970 claim 
that the involuntary aim of organisms is the reproduction of  “ an identical programme 
for the following generation. The aim is to reproduce. ”   6   In the fi rst published account 
of modern stored program computing, the notorious 1945  “ First Draft of a Report on 
the EDVAC, ”  von Neumann asserts:  “ the three specifi c parts CA [central arithmetic], 
CC [central control] (together C) and M [memory] correspond to the associative 
neurons in the human nervous system. . . . The equivalents of the  sensory  or  afferent  
and the  motor  or  efferent  neurons . . . are the  input  and  output  organs of the device. ”   7   
Importantly, von Neumann ’ s neurons are already cyberneticized: they are, as chapter 
4 elaborates, the idealized neurons of Warren McCulloch and Walter Pitts, who used 
 “ neurons ”  to instantiate Turing ’ s universal machine. 

 Each instance of connection, though, is repetition with a difference — one that 
creates a new linkage down the chain, but also poses the possibility of breakage or 
mutation. Dawkins ’ s formulation, though, does not simply repeat Jacob ’ s because it 
emphasizes the acts of individual  “ selfi sh ”  genes rather than the genetic program as 
a whole. It also does not simply repeat von Neumann ’ s because it privileges a concept 
foreign to von Neumann in 1945: software. Although von Neumann details the  “ code ”  
to be included in the memory in  “ First Draft, ”  most of the report is devoted to outlin-
ing the function of logical hardware devices. Software had not emerged by then as a 
separate quantity; as outlined in chapter 1, the terms  program  and  code  in 1940s com-
puting were mainly verbs. Again, writing in 1947 with Herman Goldstine, von 
Neumann insisted that coding was  “ not a static process of translation, but rather the 
technique of providing a dynamic background to control the automatic evolution of 
a meaning. ”   8   In von Neumann ’ s analogy, code or program was not the pivot between 
the machinic and the biological. 

 As many have pointed out, the engineers who built the fi rst digital computers did 
not foresee software; it was not foreseen, I wager in this chapter, because the drive 
for software — for an independent program that confl ates legislation with execution —
 did not arise solely from within the fi eld of computation. Rather, code as logos existed 
elsewhere and emanated from elsewhere — it was part of a larger epistemic fi eld of 
biopolitical programmability. Part I of this book focuses on gendered and military 
relations; this chapter examines the intertwined and intertwining importance of 
Mendelian genetics and biopower more generally.  9   

 To make this point, this chapter perhaps perversely reads Erwin Schr ö dinger ’ s 
 What Is Life?  — widely though controversially considered to be the ur-text of modern 
genetics — as  What Is Software?  That is,  What Is Life?  epitomizes the drive for a code-
based causality detailed in the fi rst two chapters, a drive that software and not DNA 
would ( and only could ) instantiate. It also resuscitates the possibility of an all-knowing 
sovereign: a Laplaceian subject who could, by reading our genetic code-script, know 
the results of all causal connections. Untangling the ways that software and heredity 
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intersect to create what Fran ç ois Jacob would call the  “ logic of life ”  — a logic that 
reduces action to word, life to a programmable code — this chapter argues that early 
to mid-twentieth-century genetics and eugenics prefi gured the emergence of software. 
Both Mendelian genetics and software are based on the return to a Laplaceian uni-
verse in which order stems from order. Both are a return to a reductionist, mecha-
nistic understanding of life, in which the human body becomes an archive. Part of 
the goal of this chapter then is to complicate the standard narrative within the 
history of science that biologists adapted the notion of a program from computer 
science — a narrative that rather remarkably treats software as though it has always 
existed. This chapter supplements the accounts of cybernetics ’  intrusion into the 
biological sciences by underscoring the difference between fi rst-order cybernetic 
control and programmability while still acknowledging their commonality. 

 Software: Not Always Already There 

 Software has become such a powerful conceptual tool that it is hard to remember that 
it did not always exist. The privilege accorded to software as always already there is 
remarkable, especially in terms of theorizing biological phenomena. For instance, to 
explain the importance of experiments on bacterial cultures, Jacob has argued: 

 Everything . . . leads one to regard the sequence contained in genetic material as a series of 

instructions specifying molecular structures, and hence the properties of the cell; to consider 

the plan of an organism as a message transmitted from generation to generation; to see the 

combinative system of the four chemical radicals as a system of numeration to the base four. 

In short, everything urges one to compare the logic of heredity to that of a computer. Rarely 

has a model suggested by a particular epoch proved to be more faithful.  10   

 Explaining Schr ö dinger ’ s 1943 formulation of a genetic code-script, Jacob similarly 
states,  “ heredity [in Schr ö dinger ’ s text] functions like the memory of a computer. ”   11   
The ahistoricity of this analysis is remarkable, for Schr ö dinger could not have had this 
comparison in mind. The fi rst stored program computer, outlined in von Neumann ’ s 
draft (itself drawing from the human nervous system), was published years after 
Schr ö dinger ’ s address. In 1943, with the exception of Konrad Zuse ’ s little-known 
digital computer in Germany, all functional nonhuman computers were analog; 
FORTRAN, the fi rst widely used higher-level programming language, was completed 
in 1957. 

 This emphasis on software and computers is also evident in the critical and histori-
cal literature. Historian Lily Kay, for instance, has insightfully argued that molecular 
biology underwent a  “ gestalt switch to information thinking ”  in the 1950s.  12   This 
informational discourse, fueled by the metaphorical adoption of concepts from the 
communication technosciences (cybernetics, information theory, and computers), 
displaced the rhetoric of  “ biological specifi city, ”  which was dominated by mechanical 
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lock-and-key analogies. After the 1950s, genes transferred  “ information ”  and the cor-
relation between nucleic acids and proteins catachrestically became a  “ code. ”  Kay ’ s 
 Who Wrote the Book of Life? A History of the Genetic Code  details this rhetorical trans-
formation and its fruitful misreadings of terms such as  information  and  code  in order 
to explain how bodies became reduced to messages. In making this argument, she also 
uses software as a theoretical tool. When describing  “ the conceptual and semiotic 
impact of cybernetics, ”  she argues,  “ such [closed feedback] mechanisms were not 
confi ned to hardware; they also served as software for social technologies. Philoso-
phers and social theorists since the eighteenth century have visualized political, eco-
nomic, and physiological stabilizations and correctives through models of closed 
cycles (reminding us of the diachronic and synchronic nature of metaphors). ”   13   In 
this passage, Kay uses software as a theoretical construct to describe a historical reality. 
Software becomes analogous to rhetoric itself. 

 This notion of software as rhetoric is further developed by theorist Richard Doyle 
in his important analysis of the postvital body in  On Beyond Living: Rhetorical Trans-
formations of the Life Sciences . In it, he states,  “ the object of biology has somehow been 
displaced, with the molecule overtaking or territorializing the organism and getting 
plugged into the computer. ”   14   That is, DNA has become the sovereign source of life, 
and the surface and depth of the organism imploded into a new density of coding.  15   
To make this argument, Doyle emphasizes the importance of language:  “ rather than 
a mere description or heuristic for the life sciences, the rhetorics of code, instruction, 
and program materialized beliefs into sciences and technologies. ”   16   Language, he 
stresses,  “ serves as the repository of the unthought of science, its  ‘ software. ’  ”   17   He 
coins the term  rhetorical software  to  “ foreground the relational and material interac-
tions that make possible the emergence of scientifi c statements. ”  Rhetorical software, 
he explains,  “ while highlighting the textuality of scientifi c practices . . . avoids a 
textual determinism: as any user of software knows, software is usable only within a 
network of hardware and — this is frequently overlooked —  ‘ wetware. ’  ”   18   Like many 
metaphorical uses of software, Doyle ’ s draws on software ’ s ability to turn words into 
actions; it does, however, also insist on a richer understanding of software, like rhetoric 
itself, as dependent on context, on the audience and institutions. That Kay ’ s and 
Doyle ’ s texts are two of the most brilliant and insightful on the intersections between 
cybernetics and genetics is not irrelevant: in order to think genetics theoretically, it 
seems necessary to assume software, and to assume a line of infl uence moving from 
computers to biology. 

 This assumption that software is always already there is embedded in the very logic 
of software itself, which grounds, as chapter 4 contends, the current confl ation of 
memory with storage. Software, in other words, is a device that makes possible the 
 “ always already there ” : new media as somehow more lasting and more ubiquitous 
than other media. What, however, happens when we treat software as a historical as 
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well as a theoretical device and  “ code ”  within the fi eld of computing too as catachre-
sis? What if we apply Doyle ’ s insightful analysis back to itself and treat  “ software ”  (as 
Doyle treats language) as the  “ unthought ”  of his argument? 

 Importantly, cybernetics itself is based on a comparison between animals and 
machines: it is the study of control and communication in both. Norbert Wiener 
coined the term  cybernetics  in the 1940s, basing it, as mentioned previously, on the 
Greek term  kybernete  ( “ steersman ”  or  “ governor ” ). Wiener, assumed by many (includ-
ing himself) to have founded the fi eld, brought together work on electronic control 
systems — in particular negative feedback control — with studies of animal behavior.  19   
Treating an animal ’ s nervous system as analogous to electrical circuits, cybernetics 
modeled both as relaying messages (signals) that controlled action. Elaborating this 
analogy further in  The Human Use of Human Beings , his popular follow-up to his 1948 
work  Cybernetics, or, Control and Communication in the Animal and the Machine , Wiener 
states: 

 The physical functioning of the living individual and the operation of some of the newer 

communication machines are precisely parallel in their analogous attempts to control entropy 

through feedback. Both of them have sensory receptors as one stage in their cycle of operation; 

that is, in both of them there exists a special apparatus for collecting information from the 

outer world at low energy levels, and for making it available in the operation of the individual 

or of the machine. In both cases these external messages are not taken  neat , but through the 

internal transforming powers of the apparatus, whether it be alive or dead. The information 

is then turned into a new form available for the further stages of performance. In both the 

animal and the machine this performance is made to be effective on the outer world. In both 

of them, their performed action on the outer world, and not merely their  intended  action, is 

reported back to the central regulatory apparatus.  20   

 As this passage makes clear, cybernetics — although it insists that messages are  “ coded ”  
(i.e., signals) — does not necessitate software: Wiener could easily be discussing analog 
computers, such as Bush ’ s differential analyzer. The source of the animal or machine ’ s 
actions is not some  “ programme, ”  and messages are signals to be sampled and trans-
formed, not things that drive the machine.  21   Although the military communications 
milieu was important to cybernetics ’  confl ation of control with communication, this 
confl ation occurs not necessarily or initially because a command given is a command 
executed, but rather because communications systems are control systems: control 
operates by comparing output with input.  22   In cybernetics as fi rst conceived, there is 
no separation between software and hardware, an impossible distinction during the 
1940s; Wiener ’ s algorithms and instructions consist of relays.  23   What links the dead 
and the alive — perhaps making them both undead — is feedback. 

 Claude Shannon ’ s (and Warren Weaver ’ s) infl uential 1949 defi nition of  information  
also emphasizes communication. Information gauges what can be communicated; it 
is  “ a measure of one ’ s freedom of choice in selecting a message, ”  not something that 
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drives action.  24   As Shannon states,  “ the fundamental problem of communication is 
that of reproducing at one point either exactly or approximately a message selected 
at another point . . . the signifi cant aspect is that the actual message is one  selected 
from a set  of possible messages. The system must be designed to operate for each pos-
sible selection, not just the one which will actually be chosen since this is unknown 
at the time of design. ”   25   Communications engineers use information to determine the 
necessary capacity of a channel, bus, or decoder. Thus the question unanswered by 
cybernetics ’  infl uence on the life sciences is: how did DNA (and indeed software) arise 
as the source? How was information transformed not only within the biological, but 
also within the computational, sciences? Taking into consideration the fact that 
initial computer punch cards, based on the Jacquard Loom, also worked via a physical 
lock-and-key mechanism, how did computer codes become language? 

 To unpack these questions, I begin with another: what happens if we take seriously 
Jacob ’ s claim that Schr ö dinger ’ s idea of heredity coincides with computer memory, 
years before such memory was developed? In other words, what if the text lauded as 
launching modern genetics — because it postulated the existence of a genetic code-
script and because it inspired physicists such as Francis Crick and James Watson to 
move into biology from physics (even though the text was widely considered to be 
scientifi cally inaccurate or repetitive even at the time of its writing) — also inadver-
tently  “ launched ”  modern stored-program computers? What if the arrow of infl uence 
is not so simply one-sided (program moving from computers to biology), but rather 
part of a complex network of relations and productive, resonating misreadings? As I 
elaborate in more detail later, to reverse this arrow is not to imply a direct relationship 
between Schr ö dinger and von Neumann. Rather, it is to place both within a larger 
epistemic and governmental drive to make sense of the visible through an invisible 
program that links past to the present and that links individual to a population. As 
Jacob notes, the idea of reproduction as a combination of both parents, initially devel-
oped in the eighteenth century, necessitated the intervention of a  “ memory, ”  a 
hidden, third-order structure that guided heredity.  26   With modern genetics, changes 
in this memory stemmed not from an invisible all-knowing  “ mysterious hand, ”  but 
from the vagaries of population dynamics — what matters are not simply individuals, 
but rather the relations between them; it is these relations that elucidate invisible 
programs.  27   Both computer as memory machine and genetics as program are thus part 
of what Richard Panek has provocatively called  “ the invisible century, ”  a move within 
the sciences in the twentieth century away from studying what is simply visible and 
experientially based — such as organization — toward speculation, toward theorizing 
 “ that there is more to the universe  than meets the eye . ”   28   Intriguingly, both Schr ö dinger 
and Jacob described the  “ governance ”  within cells in industrial or military terms: for 
Schr ö dinger, cells acted like an ideal military, in which each soldier had a full set of 
orders; for Jacob, bacteria acted like chemical factories.  29   
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 What Is Software? 

 In  What Is Life? , Schr ö dinger, writing as an amateur biologist or  “ na ï ve physicist, ”  
outlines the challenge human genetics poses to then-current chemical and physical 
knowledge: given that statistical physics shows that Newtonian order only exists at 
large scales, how is it that the barely microscopic chromosomes guarantee the orderly 
succession of human traits? This question is, of course, one that only a modern 
physicist, familiar with Mendelian genetics, would ask, and this text — like Norbert 
Wiener ’ s 1948  Cybernetics, or, Control and Communication in the Animal and the Machine  
 — grapples with the ways in which life seems to defy the predictions of modern 
statistical physics. Life, Schr ö dinger writes, 

 seems to be orderly and lawful behaviour of matter, not based exclusively on its tendency to 

go over from order to disorder, but based partly on existing order that is kept up. To the 

physicist — but only to him — I could hope to make my view clearer by saying: The living organ-

ism seems to be a macroscopic system which in part of its behaviour approaches to that purely 

mechanical (as contrasted with thermodynamical) conduct to which all systems tend, as the 

temperature approaches absolute zero and the molecular disorder is removed.  30   

 More particularly, the regularity guaranteed by chromosomes defi es fundamental 
assumptions, for at such a microscopic level, chromosomes should be destabilized by 
the impact of heat motion from surrounding molecules. They should act statistically, 
rather than mechanically. Given that they do not, Schr ö dinger argues,  “ the arrange-
ments of the atoms in the most vital parts of an organism and the interplay of these 
arrangements differ in a fundamental way from all those arrangements of atoms which 
physicists and chemists have hitherto made the object of their experimental and 
theoretical research. ”   31   

 Importantly, although he argues that the regularity of heredity is evidenced by 
certain constant features such as the Hapsburg lip, Schr ö dinger sees heredity as encom-
passing far more than the transmission of certain permanent traits.  “ We must not 
forget, ”  Schr ö dinger writes, 

 that what is passed on by the parent to the child is not just this or that peculiarity, a hooked 

nose, short fi ngers, a tendency to rheumatism, haemophilia, dichromasy, etc. Such features we 

may conveniently select for studying the laws of heredity. But actually it is the whole (four-

dimensional) pattern of the  ‘ phenotype, ’  the visible and manifest nature of the individual, 

which is reproduced without appreciable change for generations, permanent within centuries —

 though not within tens of thousands of years — and borne at each transmission by the material 

in a structure of the nuclei of the two cells which unite to form the fertilized egg cell.  32   

 The visible regeneration of certain traits points to a larger invisible transmitted struc-
ture. To explain this  “ marvel ”  of regularity, Schr ö dinger argues that genes (which 
were then a hypothetical entity), and perhaps the chromosomes as a whole, must be 
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an aperiodic crystal, for such a structure would be both stable and suffi ciently complex 
to hold the entire  “ pattern ”  of an individual. Just as Morse code enables a complex 
message to be stored using just two signals — the dash and the dot — the gene could 
create a great many numbers by employing a simple number of signs. Since all crystals 
in the nonliving world are periodic, these structures would be peculiar to living 
organisms, but, importantly, they would still follow the laws of quantum mechanics: 
they would mutate into different isomers with the absorption of different quantae 
of energy. 

 Even if following quantum mechanics, living organisms — organisms that keep 
 “  ‘ doing something ’  for a much longer period than we would expect of an inanimate 
piece of matter to  ‘ keep going ’  under similar circumstances ”   33   — Schr ö dinger postulates, 
must have some other source than energy. Indeed Schr ö dinger speculates that, in order 
for living organisms to create order from order, they  “ feed ”  on what he calls  “ negative 
entropy. ”  That is, the living organism delays  “ the rapid decay into the inert state of 
 ‘ equilibrium ’  [death] ”  by digesting  “ extremely well-ordered state of matter in more or 
less complicated organic compounds. ”   34   This idea, which resonates with Shannon ’ s 
conception of information as negative entropy (a measure of randomness) and with 
Wiener ’ s of information as positive entropy (a measure of order or structure), has led 
many to see it as foreshadowing the concept of information itself.  35   

 The living organism — through its consumption of negative entropy and its embed-
ded code-script — enables a return to the all-penetrating mind postulated by Pierre-
Simon Laplace:  “ Every complete set of chromosomes contains the full code. . . . In 
calling the structure of the chromosome fi bres a code-script we mean that the all-
penetrating mind, once conceived by Laplace, to which every causal connection lay 
immediately open, could tell from their structure whether the egg would develop, 
under suitable conditions, into a black cock or into a speckled hen, into a fl y or a 
maize plant, a rhododendron, a beetle, a mouse or a woman. ”   36   This return to Laplace 
is also a return to the possibility of a sovereign subject capable of  “ knowing all ” : if 
liberal governmentality, as stated previously, based itself on the repudiation of such a 
position, Mendelian genetics — through its linking of the visible to the invisible via 
the concept of code-script — signals a different relationship between individual and 
society. Not accidentally, this cellular system is also framed by Schr ö dinger as an ideal 
system of governance: in our bodies, every single cell has the instruction code for 
every other cell. He compares our cells to the  “ intelligent and reliable ”  soldiers 
engaged in General Montgomery ’ s African campaign, all of whom were allegedly 
 “ meticulously informed of all his designs. ”   37   This, Schr ö dinger explains elsewhere, 
made the cell-state utopian:  “ A society which is organized on the principle that every 
offi cial, every civil-servant, every person who has any duty at all within that organiza-
tion is, at least in principle, given the same universal training and is so well informed 
about the plan of the whole, that every clerk could, in principle take over the duties 
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of the prime-minister, every police-man that of a chief-surgeon, etc., etc. ”   38   Schr ö ding-
er ’ s ideal is the mirror image of the utopia of Engelbart, Bush, and Hopper, in which 
the machine/code automates the position of the clerk, leaving the executives in place. 
In either case, however, one has an empowered individual agent capable of governing 
through enhanced knowledge. 

 Part of the  “ ideality ”  of Schr ö dinger ’ s system stems from the fact that execution 
is inscribed within these instructions. For Schr ö dinger, the code-script was not only 
a plan but also execution. It was  “ the entire pattern of the individual ’ s future devel-
opment and of its functioning in the mature state. ”   39   Because of this, Schr ö dinger 
argues that the term  code  is inadequate:  “ the term code-script is, of course, too narrow. 
The chromosome structures are at the same time instrumental in bringing about the 
development they foreshadow. They are law-code and executive power — or, to use 
another simile, they are architect ’ s plan and builder ’ s craft — in one. ”   40   To refer back 
to chapter 1, code-script is code as logos; it is Lessig ’ s  “ code as [automatically execut-
ing and regulating] law, ”  a knowledge/action that distorts liberalism ’ s blind  “ game. ”  

 This notion of code as both architect ’ s plan and builder ’ s craft in one clearly draws 
from, even as it mutates, the seventeenth-century notion of nature as the Book of Life. 
As Kay points out, few molecular biologists, even as they viewed life as a book, viewed 
God as its author.  41   Rather, as this notion of code as both execution and legislation 
makes clear, the writing becomes the writer; it becomes a powerful source that also 
teases us with the possibility of sovereign power, with the possibility of editing, rewrit-
ing, and creating new genetic codes.  42   Describing the power of natural selection, Jacob 
contends,  “ without any thought to dictate it, without any imagination to renew it, 
the genetic programme is transformed as it is carried out. ”   43   This sovereign power, 
sans Sovereign, makes the world infi nitely malleable: what natural selection uncon-
sciously accomplishes, humans can do deliberately. Tellingly Jacob, describing his 
embrace of atheism, writes,  “ If God did not exist, it was necessary to do without him. 
An empty heaven left an earth to fi ll, and it was up to me to fi ll it. A world to con-
struct, and it was up to me to construct it. ”   44   Jacob ’ s sentiment resonates with com-
ments made earlier regarding the power and pleasure of programming — programming 
as a form of pleasurable megalomania. 

 Assessments of the importance or accuracy of Schr ö dinger ’ s text vary widely — from 
biologists Watson and Crick, who have listed it as a direct inspiration; to chemist Linus 
Pauling, who viewed it as retarding the development of molecular biology by leading 
biologists to concentrate on life as entropy;  45   to historian of science Lily Kay, who has 
argued that Schr ö dinger ’ s concept of  “ pattern ”  does not correspond to modern molec-
ular biology, since it is aligned with the older, protein view of life.  46   According to his-
torian Donald Fleming,  What Is Life?  is  “ a book that was in league with the future but 
scientifi cally antiquated before it was written. ”   47   The only thing all the commentators 
agree on — and are perhaps puzzled by — is its enduring popularity. As phage biologist 
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Gunther Stent puts it,  “ just why this book should have made such an impact was never 
quite clear. After all, in it Schr ö dinger presented ideas that were even then neither par-
ticularly novel nor original. ”  By bringing biology to the attention of physicists, 
however, Stent contends,  What Is Life?  became  “  ‘ the Uncle Tom ’ s Cabin ’  of the revolu-
tion in biology that, when the dust had cleared, left molecular biology as its legacy. ”   48   
Relatedly, Fleming argues that  What Is Life?  was emblematic of the impact of  “  é migr é  
physicists, ”  whose move into biology inspired bold reductionist projects about  “ the 
secret of life. ”   49   In contrast to the biologists who, steeped in reverence for biological 
specifi city, issued cautious statements, physicists proffered grand simplifi cations and 
statements. According to Evelyn Fox Keller, this push toward all-encompassing rheto-
ric did not only stem from methodology: physics and physicists, such as Schr ö dinger, 
supplied biology with social authority and social authorization, enabling biology to 
borrow physics ’  agenda, language, and attitude, and even its names.  50   In response to 
these confl icting interpretations, Leah Ceccarelli theorizes that  What Is Life?  negotiates 
these different interests and beliefs through a strategic ambiguity that makes all these 
readings possible.  51   Ceccarelli ’ s reading is convincing, especially if one considers 
Schr ö dinger ’ s description of  “ code-script. ”  Even if Schr ö dinger ’ s concept of protein is 
aligned with the older protein view of life, the term  Morse code  implies the transfer of 
information. According to Ceccarelli ’ s rhetorical reading, Schr ö dinger ’ s text reveals the 
value that untrue, unoriginal —  “ vapory ”  — science can have.  52   

 The value of  What Is Life? , nevertheless, varies signifi cantly with the  “ future ”  from 
which  What Is Life?  is evaluated. Again, from the perspective of chemists or of those 
assessing the impact of Schr ö dinger ’ s text from molecular biology ’ s later turn away 
from physics toward chemistry, the value of  What Is Life?  is negative, or at the best 
inspirational (Schr ö dinger himself argued that biochemists, not physicists, were going 
to be responsible for the next advances in the study of heredity). For those working 
from the perspective of late twentieth-century genomics, focused on cracking the code 
of life, Schr ö dinger ’ s text is central. Doyle, for instance, contends that  What Is Life?  
made possible a  “ post-vital body, ”   “ a body in which the distinct, modern categories 
of surface and depth, being and living, implode into the new density of coding, what 
Jacob calls the  ‘ algorithms of the living world. ’  ”   53   That is: 

 No longer a refl ection or even a production of genotype,  “ pattern ”  is now literally inside geno-

type. By  “ troping ”  the trope of pattern, Schr ö dinger literally and grotesquely turns  “ pattern ”  

and the  “ organism ”  inside out. With this move — the metonymic substitution of  “ code ”  for 

 “ organism ”  — the entire future birth, life and death of the organism is  “ contained ”  or engulfed 

by the chromosomes. . . . Schr ö dinger mistakes or displaces the pattern of the organism by its 

 “ code-script, ”  injecting the life of the organism into its description . . . Schr ö dinger places all 

the power within the code and none within the development of the organism.  54   

 This rhetorical move of  “ troping the trope, ”  Doyle claims, also made it thinkable, 
practicable, for Watson and Crick to claim that  “ decoding ”  the structure of DNA equals 
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decoding life. With the  “ injection of  ‘ law code and executive power ’  into DNA,  code  
becomes as much a verb as noun, the double helix becomes as much body as its 
description. ”   55   Although Doyle is careful to point out that DNA as life is only possible 
 “ after the articulation of the structure of DNA and the tropics of  ‘ code ’  get played 
out, ”  his description does overlook the question of those other laws of nature that 
Schr ö dinger posits as necessary to  how  genes and chromosomes operate.  56   To 
Schr ö dinger, the main characteristic of life again was not the code, but the fact that 
the living organism  “ kept moving. ”  

 Stepping aside from debates over the value of  What Is Life? , I want to use Doyle ’ s 
argument to outline another debate: the relevance of this text, and modern concep-
tions of heredity in general, to the emergence of software, for Schr ö dinger ’ s positing 
of a code that is both law and execution arguably foreshadows code as computer. 
Alexander Galloway ’ s notion that hardware does not do anything, addressed in chapter 
1, itself depends on the tropics of code. Code-script is source code as logos. It axiom-
atically, temporarily, limits the entropic nightmare of decay that looms as an absolute 
limit to capitalist progress through a privileging of causality that stems in part from 
an acceptance of Mendelian laws of heredity — the fascination of the stability of hered-
ity reduced to the constancy of code. In other words, to understand the impact of 
Schr ö dinger ’ s text on biology, we need to look at its coincidence with computer tech-
nology. We need to look at the ways in which genetics has put in place, while also 
drawing from, dreams of programmability, dreams that computer technology and not 
biology would, and could, only come to instantiate. 

 Again, I am not arguing for a direct line, or secret meeting, between Schr ö dinger, 
John von Neumann, Alan Turing, and Grace Murray Hopper, for this argument seeks 
to break free from a logic that focuses solely on direct citations and that adjudicates the 
scientifi c validity of such borrowings. The connection I ’ m making is more general, 
almost archeological (in the Foucauldian sense). According to Michel Foucault, the 
archive is  “ fi rst the law of what can be said, the system that governs the appearance of 
statements as unique events. ”  The archive does not simply control the emergence of 
statements, but also  “ determines that all these things said do not accumulate endlessly 
in an amorphous mass, nor are they inscribed in an unbroken linearity, nor do they 
disappear at the mercy of chance external accidents; but they are grouped together in 
distinct fi gures, composed together in accordance with multiple relations, maintained 
or blurred in accordance with specifi c regularities. ”   57   Foucault emphasizes that these 
laws that  “ determine[   ] at the outset  the system of its functioning  ”  neither emanate from 
outside, nor from the object nor from an exterior idea (from what is not said), but 
rather are immanent in discourse itself.  58   The archive is what Foucault earlier calls the 
 “ positive unconscious of language ”  in  The Order of Things: An Archaeology of the Human 
Sciences ;  59   that is, the well-defi ned regularity of empirical knowledge, which is part of 
scientifi c discourses, even as it alludes to the consciousness of the scientist. 
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 As a system of regularities or the law that drives diverse statements, the archive is 
not, however, aligned with continuity (and, thus, with traditional history) — it does 
not place us in a realm of preserved discourse — but rather with discontinuities. The 
archive, Foucault emphasizes, deprives us of the continuities necessary to establish a 
stable temporal identity: 

 It breaks the thread of transcendental teleologies; and where anthropological thought once 

questioned man ’ s being or subjectivity, it now bursts open the other, and the outside. In this 

sense, the diagnosis does not establish the fact of identity by the play of distinctions. It estab-

lishes that we are difference, that our reason is the difference of discourses, our history the 

difference of times, our selves the difference of masks. That difference, far from being the 

forgotten and recovered origin, is this dispersion that we are and make.  60   

 Thus, regularity and subjectivity, for Foucault, are found in dispersion rather than 
in continuity or in stability. Discontinuity is key and this emphasis on disconti-
nuity encapsulates archaeology ’ s difference from traditional history as the history 
of (and as enabling) the continuity of human consciousness. Indeed Foucault 
describes  Archaeology of Knowledge  as an enterprise to  “ measure the mutations that 
operate in general in the fi eld of history. ”   61   Gilles Deleuze, summarizing Foucault ’ s 
archeological project, claims that each age has its own particular distribution of 
the visible and the articulable.  62   The archeological project attempts to map what 
is visible and what is articulable, and to understand how visibilities and language 
operate. 

 Crucially, the archeological project itself is not separate from the historical forma-
tion that makes possible  What Is Life?  as  What Is Software?  (or, in more Foucauldian 
terms, that makes them the same statement); Foucault ’ s archive — his search for fun-
damental codes and laws — is deeply intertwined with these projects. That is, the desire 
to map what is visible and what is articulable is key to understanding the impact 
of code and programmability — to the linking of the two  “ programmed visions. ”  
Programmability is thus not only crucial to understanding the operation of language, 
but also to how language comes more and more to stand in for — becomes the essence 
or generator of — what is visible. 

 Foucault ’ s reliance on notions of law and discontinuity, and the terms he uses to 
describe them, resonate with mathematics and cybernetics. The archive, he argues, is 
a  “ complex volume, ”  and order is one of the  “ fundamental codes of a culture. ”   63   The 
archeological project takes on this question: what  “ if errors (and truths), the practice 
of old beliefs, including not only genuine discoveries, but also the most na ï ve notions, 
obeyed, at a given moment, the laws of a certain code of knowledge? ”   64   Later in his 
writings, he describes power in terms of a  “ network ”  and archeology itself as a grid, 
which places power on one axis and knowledge on the other.  65   Intriguingly, he 
describes statements, the alleged fundamental elements of the archive, not as atomic 
units, but rather as an 
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 enunciative function that involved various units . . . and instead of giving a  “ meaning ”  to 

these units . . . relates them to a fi eld of objects; instead of providing them with a subject, 

it opens up for them a number of possible subjective positions; instead of fi xing their limits, 

it places them in a domain of coordination and coexistence; instead of determining their 

identity, it places them in a space in which they are used and repeated. In short, what has 

been discovered is not the atomic statement — with its apparent meaning, its origin, its limits, 

and its individuality — but the operational fi eld of the enunciative function and the conditions 

according to which it reveals various units.  66   

 This relation of what can be seen and what is not hidden yet driving — and which is 
not terminal — coincides with our perception of the relationship between a program 
and its interface. This is not to say that Foucault views statements as  “ source code ” ; 
this is the opposite of his approach. This is to say that this notion of an operational 
fi eld of enunciative function resonates with von Neumann ’ s notion of code as a 
dynamic  “ context, ”  as something that does not pin down a meaning, but rather 
guides — makes possible — certain calculations. 

 In other words, archeology, even as it admits to and emphasizes discontinuity and 
dispersion, also seeks to make causal relations between what is seeable and what is 
seen. This rhetoric and these coincidences are not accidental, but crucial to connecting 
the lines between Foucault ’ s project and the twin projects of genetics and computer 
technology. This chapter therefore does not simply  “ discover ”  the archeological link 
between computer technology and genetics, but rather contends that computer tech-
nology, genetics, and archeology are part of the same archive. They similarly rely on, 
they create, discontinuous rather than continuous knowledge and disperse knowledge 
along parallel trajectories. As I elaborate later, we can arguably now recognize these 
similarities, make sense of or outline this particular archive, because knowledge is 
moving elsewhere: the archive is only visible as it recedes from us. As Foucault puts 
it,  “ it is the border of time that surrounds our presence . . . the description of the 
archive deploys its possibilities (and the mastery of its possibilities) on the basis of the 
very discourses that have just ceased to be ours. ”   67   Foucault importantly supplemented 
archeology with genealogy and strategy. Quantum computing is closer to analog rather 
than discrete computing; there is no one-to-one relation between genes and enzymes; 
in fact the same DNA sequence can code more than one protein. Due to increased 
research on retroviruses such as AIDS, RNA, rather than DNA, is more and more con-
sidered the source of life.  68   That is, as chapter 4 argues, rather than producing possible 
actions and statements, the archive is a constantly rewritten storage system, driven 
by the ephemeral. 

 The Returns of Laplace 

 Tellingly, this return to Laplace takes place in an equally classic, if far less controversial, 
text in the fi eld that would become computer science: Alan Turing ’ s 1950  “ Computing 



Order from Order, or Life According to Software 115

Machinery and Intelligence, ”  in which he describes discrete state machines as univer-
sal mimics.  69   In discrete state machines, it is always possible to predict all future states, 
given the initial state of the machine and the input signals. This is reminiscent, he 
writes, of  “ Laplace ’ s view that from the complete state of the universe at one moment 
of time, as described by the positions and velocities of all particles, it should be pos-
sible to predict all future states. ”  Discrete state machines, however, enable a return to 
Laplace through a simplifi cation of mechanics. In  “ the system of the  ‘ universe as a 
whole ’  . . . quite small errors in the initial conditions can have an overwhelming effect 
at a later time. The displacement of a single electron by a billionth of a centimeter at 
one moment might make the difference between a man being killed by an avalanche 
a year later, or escaping. ”  By contrast, in the mechanical systems Turing explicates, 
this phenomenon does not occur. Even when we consider the actual physical machines 
instead of the idealized machines, reasonably accurate knowledge of the state at one 
moment yields reasonably accurate knowledge any number of steps later.  70   In discrete 
state  “ mechanical ”  machines, that is, order follows from order. Signifi cantly, in this 
passage, Turing is referring to hardware rather than to software — or, to be more precise, 
he is not dealing with the separation of software from hardware, which would take 
place much later, under commercial pressure. Discrete state machines are predictable 
because hardware is used in particular ways: gates are carefully timed so that delays 
do not produce signifi cant false positives or negatives, signals are rectifi ed so that they 
can be read correctly, hardware is carefully built to cut down on voltage spikes and 
crosstalk, and so on. Software is axiomatic, but only because our discrete hardware is 
constructed to be so. In contrast to analog computing, which sets the conditions and 
parameters for the analogy to run, discrete computing uses numerical methods, which 
demand step-by-step control and accuracy. Discrete hardware, in other words, is con-
structed to follow (and store) instructions. As I argue in the next chapter, digital logic, 
which makes software possible, is axiomatic. 

 Although hardware grounds universality (or something close to universality, that 
is, digitality), software, as an entity independent of hardware, is crucial to machines 
as  “ self-reproducing, ”  that is, key to Jacob ’ s reading of Schr ö dinger ’ s notion of hered-
ity as memory. In fact, von Neumann, as chapter 4 elaborates, turns from his usual 
cybernetic parallel between computing machines and the human nervous system 
toward genetics and programs when addressing the question of self-reproducing 
automata. As Kay notes, von Neumann ’ s interest in biology,  “ in general, and genetics, 
in particular, became closely linked to his mission of developing self-reproducing 
machines. ”   71   In his outline of a general descriptive theory of these types of automata 
in his 1951  “ General and Logical Theory of Automata, ”  von Neumann postulates that 
such automata contain within themselves an instruction set I D , which holds a descrip-
tion of itself. He argues:  “ It is quite clear that the instruction I D  is roughly effecting 
the functions of a gene. . . . It is, of course, equally clear at which point the analogy 
ceases to be valid. The natural gene probably does not contain a complete description 
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of the object whose construction its presence stimulates. It probably contains only 
general pointers, general cues. ”   72   This move toward what will become code as logos 
is thus linked to genetic inheritance. It is intriguing that, to make this move, von 
Neumann turns to a biological concept as fuzzy as memory for his analogy (like 
software as metaphor, memory as metaphor explains an unknown through another 
unknown). Thus to supplement Kay ’ s argument, it is not that von Neumann moves 
toward biological systems when he begins investigating self-reproducing automata —
 his description of the computer already compared biological and machine systems 
at the level of nerves and electricity — but that the move to self-reproduction and 
thus programmability marks a signifi cant change in the ways in which both biological 
and machine systems are compared, namely at the level of what would become 
software. The question of self-reproduction, as posed by von Neumann, is largely a 
question of transmission. That the instructions can effect development is already 
assumed. 

 But why is this move to genetics key to code as logos? Why this intertwining 
of programmability — the production of constantly transmitted visible characteristics —
 with genetics and to what extent does it rely on a certain discrete logic? What is 
the relationship between the transmissible, the programmable, and the discretely 
invisible? 

 Invisible Transmissions, Visible Results 

 As noted earlier, Schr ö dinger himself assumes that the transmission of certain features, 
such as the Hapsburg lip, is not only evidence of the stable transmission of that feature, 
but also of human heredity in general (according to his biographer, when informing 
his illegitimate daughter of her paternity, he pointed to their similar feet). This notion 
of a discrete trait as evidence for larger processes of human heredity — as a marker of 
history — is linked to the  “ rediscovery ”  of Mendel, itself an event, theorized by 
Vannevar Bush in his essay  “ As We May Think, ”  as revealing the need for better means 
of information archival and retrieval. As the rest of this section argues, Mendelian 
genetics, with its emphasis on discrete units within a population and on the relation-
ship between genotype and phenotype, provided a compelling model for the continu-
ing relevance of mechanistic and reductionist understandings of nature. This 
mechanism and reductionism not only made possible the description of heredity, but 
also the possibility of effecting heredity, of a genetic program. That is, in order for 
Mendelian genetics to operate as a science, it had to be able to make predictions. These 
predictions in turn were predicated on active interference and experimentation in 
model species such as drosophila, if not humans. As geneticist Hermann J. Muller in 
an unappreciated Marxist analogy stated at the Second Annual International Confer-
ence on Eugenics:  “ Beneath the imposing structure called  ‘ Heredity ’  there has been a 
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dingy basement called  ‘ Mutation. ’  ”   73   Mutation meant, especially for Muller, actively 
mutating the animal ’ s genotype. The methodology of breeding — especially breeding 
mutant lines — was thus fundamental to the establishment of genetics as a science. 

 Programmability — the past as determining the future — in other words, is not just 
the application of genetics, but also its proof and methodology. Mendelian genetics 
was proven as a true predictive science through successful breeding experiments, 
which visibly revealed invisible essences and mechanistic, causal laws. Eugenics was 
not simply an application of genetics, but rather proof of genetics ’  predictive power; 
early geneticists such as Muller were also eugenicists, and many early genetics texts 
such as Muller ’ s address and R. C. Punnett ’ s  Mendelism  explicitly link them together.  74   
When eugenics fell into scientifi c disrepute in part because human genetics was so 
diffi cult to program, the desire for programmability became encapsulated within soft-
ware and, as Lily Kay has outlined, within molecular biology. Mendelian genetics, by 
postulating a relationship between phenotype and genotype, also put into play a 
relationship between what is invisible and visible; the ambiguous distinction between 
the two would be generative for many years to come. 

 The historical events and controversy surrounding the  “ rediscovery ”  of Mendel 
have been well documented. Mendel ’ s experiments were  “ rediscovered ”  indepen-
dently by three different scientists at the end of the century, and each scientist, in 
presenting his fi ndings, claimed Mendel as a lost predecessor. These claims of the 
mythic, lone true experimentalist ignored by the scientifi c establishment, however, 
are not limited to Hugo de Vries, Carl Correns, and Erich Tschermak von Seysenegg. 
As Jan Sapp has revealed, Gregor Mendel seems to have (at least) nine lives. They are: 

 1.   Mendel was a non-Darwinian. Although he was an evolutionist, he did not entirely agree with 

Darwin ’ s views and set out to disprove them. (Bateson 1909) 

 2.   Mendel was a good Darwinian. His experimental protocols and reported results can be 

explained on the assumption that he had no objections to Darwinian selection theory. (R. A. 

Fisher 1936) 

 3.   Mendel was not directly concerned with evolution at all. He placed it on the back burner 

while he investigated the laws of inheritance. (Gasking 1959) 

 4.   Mendel rejected evolutionary theory. (Callender 1988) 

 5.   Mendel laid out the laws of inheritance, which justifi ably carry his name. (Standard view: see, 

e.g., Zirkle 1951, Mayr 1982) 

 6.   Mendel was no Mendelian. He was not trying to discover the laws of inheritance, and several 

Mendelian principles are lacking in his papers. (Callender 1988; Brannigan 1979, 1981; Olby 

1979) 

 7.   Some of Mendel ’ s data was falsifi ed. (R. A. Fisher 1936) 

 8.   None of Mendel ’ s data was falsifi ed. (See, e.g., Beadle 1966, Dunn 1965, Olby 1966, Wright 

1966, Thoday 1966, Mayr 1982, Pilgrim 1984, Edwards 1987, Van Valen 1987) 

 9.   Mendel ’ s reported experiments set out in his paper of 1866 are wholly fi ctitious. (Bateson 

1909)  75   
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 To explain these confl icting interpretations, Sapp claims that Mendel ’ s place in 
history is not determined by his writings published in the 1860s, but rather 
through posthumous stories about Mendel and his experiments.  76   At stake in these 
interpretations, Sapp argues,  “ is a defi nition of the concepts and/or movements 
that can be legitimately associated with the genetics tradition, ”  that is, Mendel 
as source.  77   

 Crucially — although this seems a trivial point — all these interpretations agree that 
Mendel treated continuous traits discontinuously. Whether Mendel was a Mendelian 
and thus considered these traits to prove the laws of heredity or whether he worked 
in the tradition of plant hybridizers and thus focused on breeding  “ true ”  new species, 
Mendel isolated traits — such as wrinkled (or not), round (or not) — and treated these 
traits independently (a forerunner of the law of segregation). Following these discrete 
characteristics rather than the organism as a whole, or more clearly continuous and 
blended traits, allowed Mendel to focus on questions of stability rather than dynamic 
change. This focus, Daniel J. Kevles has revealed, contributed to Mendel ’ s neglect, 
since it ran counter to the then-current thinking in evolutionary biology, which cen-
tered on modes of adaptation and change.  78   Mendel also differed from his scientifi c 
contemporaries in his focus on inter- rather than intraspecies (i.e.,  “ racial ” ) hybrids. 
Raphael Falk and Sahotra Sarkar argue that Mendel was responding to his Moravian 
countrymen farmers ’  concern with the return in their new breeds of what would 
become known as recessive traits. He thus sought to document the phenomenon of 
dominance in hybrids and to formulate the laws of the reappearance and disappear-
ance of traits (regardless of whether or not he distinguished between phenotype and 
genotype).  79   Most pointedly, Punnett — an early adapter and advocate of Mendelian 
genetics — developed a theory of absence and presence, which made genetic traits 
fundamentally binary: it was not that dominant and recessive factors produced dif-
ferent characteristics, but rather that dominance marked the presence of a factor and 
the recessive its absence.  80   

 This focus on discrete traits separated Mendelians, such as Punnett and William 
Bateson, from the more established biometricians, such as Francis Galton, Karl 
Pearson, and Walter Raphael Weldon, founders of British eugenics. The biometricians 
viewed evolution as working through small continuous changes. The main tool of 
Galton was the normal curve. Busily plotting graphs of various characteristics (such 
as height), Galton believed that the mean represented the center of a trait and that 
natural selection worked by moving this center elsewhere, although there was an 
overwhelming tendency to regress to some  “ racial center. ”  Pearson, responding to 
the empirical fact that humans did not seem to regress in this manner and that small, 
seemingly statistically insignifi cant fl uctuations could effect change, argued that the 
focus of regression was the immediately prior generation. Selective breeding could 
thus easily change this center. 
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 In many ways, the biometrician ’ s version of eugenics was more optimistic — or at 
least more inclusive — than that of the Mendelians, since there were no pesky recessive 
genes, which Mendelian eugenicists believed made a  “ melting pot ”  impossible. 
Although many biometricians supported the sterilization of extreme statistical outliers 
(Galton indeed coined the term  eugenics  as  “ the science which deals with all infl uences 
that improve the inborn qualities of a race; also with those that develop them to the 
utmost advantage ” ) and although they separated transmission from development, 
their belief in the normal curve meant accepting those on either side of the norm as 
part of the same curve and thus their offspring as possibly  “ improvable, ”  rather than 
as carriers of recessive traits that could forever damage their spawn.  81   The focus was 
not on the creation of pure lines. This curve, of course, was racialized — different races 
were represented by different curves.  82   This  “ optimism ”  regarding the improvability 
of the human race by the biometricians also did not translate into progressive politics. 
Both biometrician and Mendelian eugenicists were politically diverse: Galton was a 
conservative while Pearson a socialist; similarly, Charles Davenport a conservative 
while Muller a radical. 

 The biometricians, unlike the Mendelians, focused on what was visible. Even 
though the norm was an abstract principle, enumeration, as Kevles contends, did 
not mean penetrating beyond the phenomenological surface.  83   Heredity was a quan-
titative, correlative relationship between generations, not a causal one. As Galton 
explains, whereas  “ formerly the quantitative scientist could think only in terms of 
causation, now he can think also in terms of correlation. ”   84   For this reason, the 
biometricians were heavily involved in mass calculation. Mendelians too relied on 
statistical analysis, but for the early Mendelian geneticist, statistics were used to 
determine whether or not a trait was Mendelian. The seductiveness of early forms 
of Mendelianism lay in their mechanistic, causal laws.  85   

 Classical Mendelian genetics separated genotype from phenotype — that is, what was 
transmissible from what was visible — as well as transmission from development (like 
the biometricians). This distinction between genotype and phenotype was fi rst postu-
lated by Wilhelm Johannsen, who experimented with inbred beans.  “ Natural ”  selec-
tion, Johannsen showed, did not effect these beans ’  length and breadth: the progeny 
of the beans consistently followed the same curve as that of their parents, proving the 
constancy of genetic materials. Johannsen ’ s formulation of a genotype relied on treat-
ing a continuous characteristic — height — discontinuously, as a Mendelian feature that 
was passed on or not.  86   Johannsen ’ s genotype, though, was not an actual entity. Accord-
ing to Nils Rolls-Hansen, his genotype was an ideal, inaccessible form, whose existence 
was posited through inference.  87   Although this concept seems very close to the 
biometricians ’  concept of a norm, Johannsen ’ s distinction between genotype 
and phenotype suggested a new level of analysis and intervention for the Mendelians 
that followed him.  88   That is, rather than quantifying the visible surface, the 
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genotype implied that one had to penetrate the organism to understand the relation-
ship between what could or could not be seen. Indeed, most Mendelians believed that 
the trait itself was not transmitted, but rather the potential for the trait: something 
that could make this trait visible, something invisibly visible or visibly invisible. 
Johannsen argued that the genotype, rather than the phenotype, was transferred 
between parent and offspring: according to his argument, both shared the exact same 
genotype, making the genotype, like computer memory, a strangely ahistorical entity 
nonetheless key for any historical relationship.  89   

 Eugenics as Nurture 

 The understanding of genes as ahistorical also depends on the separation of transmis-
sion from development. It is a reduction of heredity to transmission, a clear separation 
of nature from nurture, of germline from somatic cells. As George Stocking Jr. has 
explained, the nineteenth century generally did not distinguish defi nitively between 
race and nation: 

 In 1896, the processes and the problems of heredity were little understood, and  “ blood ”  was 

for many a solvent in which all problems were dissolved and all processes commingled. 

 “ Blood ”  — and by extension  “ race ”  — included numerous elements that we would today call 

cultural; there was not a clear line between cultural and physical elements or between social 

and biological heredity. The characteristic qualities of civilizations were carried from one 

generation to another both in and with the blood of their citizens.  90   

 Instead of race and nation standing for two different entities in the nineteenth 
century, Stocking contends that they were separated by degree, with race implying a 
greater degree of kinship.  91   Nineteenth-century views on race, in other words, included 
what are now considered effects of culture; they were also far more Lamarckian, since 
acquired characteristics were transmitted from generation to generation. Darwin, for 
instance, condemned slavery as a major cause of the physical degradation of native 
Africans. Darwin believed in  “ pangenesis, ”  that is, a hereditary mechanism in which 
every cell in the body played a part in forming the reproductive cells by shedding 
 “ gemmules. ”  According to William Provine, Darwin ’ s attitude was heavily infl uenced 
by animal breeders, who believed that virtually all physical and behavioral features 
were partially hereditary.  92   As Stocking notes, this more Lamarckian view of race was 
hardly less racist, and the subsequent separation of nature and nurture not only fos-
tered more overt racism, but also more antiracist positions, such as that of Franz Boas, 
who emphasized the importance of nurture over nature.  93   

 The nature – nurture divide, however, also originated in the nineteenth century, with 
Galton ’ s refutation of what Ernst Mayr — in language clearly resonating with computer 
technology — has called Darwin ’ s theory of  “ soft inheritance. ”   94   Through an experi-
ment with blood transfusions and subsequent inbreeding in rabbits, Galton showed 
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that the color of the offspring of the transfused rabbits never deviated from the paren-
tal color. Rather than all cells contributing gemmules, Galton theorized a  “ hard 
inheritance, ”  in which the reproductive  “ stirp ”  (germ plasm transmitted from parents 
to child) was segregated from the rest of the body. August Weismann infl uentially 
drew from Galton to theorize the  “ continuity of the germ plasm, ”  in which the  “ germ 
track ”  is separated from the  “ soma track ”  from the very beginning.  95   Eugenics — both 
biometrician and Mendelian — thus initiated the separation of nature (the hard) from 
nurture (the soft) by positing inheritance as outside experience, although again, what 
was considered hard versus soft is far different than it is today. 

 The standard position on the nurture – nature divide is, of course, that it coincides 
with a divide between what is and what is not under human control. Diane Paul offers 
the following concise summary of this standard position:  “ In the twentieth century, 
to hold that differences among human groups are biologically-based is necessarily to 
imply that those differences are largely outside of human control. . . . In this context, 
the epithet  ‘ racist ’  has come to be applied almost exclusively to those views which 
ascribe non-trivial differences among human populations to biological, hence more 
or less permanent, differences. ”   96   This popular opinion, however, misses the point. 
The distinction between nature and nurture made possible by eugenics and by 
advances in human physiology, which showed that the reproductive cells segregated 
and formed at an early stage in human development, did not place nature outside of 
human control. The battle between nature and nurture was a battle over what type 
of control to use: eugenics or social welfare. In other words, the insightful observations 
by Evelyn Fox Keller and Eve Kosofsky Sedgwick that now (with the possibility of 
genetic engineering) nature is viewed as more fl exible than nurture/culture needs 
to be pushed further, for the very positing of the nurture – nature divide established 
nature as an object of control and manipulation.  97   

 Genetics separated cultural and biological transmission, but in doing so also made 
biological transmission a question of transmissible, cultural knowledge — a question 
of and for the archive. Although both the biometricians and the Mendelians sepa-
rated the germline from somatic cells, the Mendelians ’  emphasis on invisible causal, 
mechanistic laws, rather than on visible statistical relationships, made their theories 
more pointed for theorizing the human body as archive. Punnett, for instance, 
insisted that the effects of education and hygiene were salutary but had to be 
renewed with each generation because they were not biologically inherited. He 
compared the human hoard of knowledge to a bee ’ s store of honey:  “ each genera-
tion in using it sifts, adds, and rejects, and passes it on to the next a little better 
and a little fuller. ”  This knowledge, however, is not an inheritance because 

 the handing on of such knowledge has nothing more to do with heredity in the biological sense 

than has the handing on from parent to offspring of a picture, or a title, or a pair of boots. All 

these things are but the transfer from zygote to zygote of something extrinsic to the species. . . . 
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 Better hygiene and better education, then, are good for the zygote, because they help him 

to make the fullest use of his inherent qualities. But the qualities themselves remain unchanged 

in so far as the gamete is concerned, since the gamete pays no heed to the intellectual 

development of the zygote in whom he happens to dwell.  98   

 Although this would seem to construct biological transmission (nature) as trumping 
human control, it nevertheless places human evolution — as a matter of reproductive 
choice — within human control. Punnett goes on to state,  “ by regulating their mar-
riages, by encouraging the desirable to come together, and by keeping the undesirable 
apart we could go far towards ridding the world of squalor and the misery that come 
through disease and weakness and vice. ”   99   Key to doing this, however, is more knowl-
edge:  “ Before we can be prepared to act, except, perhaps, in the simplest of cases, we 
must learn far more about them. At present we are woefully ignorant of much, though 
we do know that full knowledge is largely a matter of time and means. ”   100   Similarly, 
Charles Davenport — the father of the U.S. eugenics movement and founding director 
of the Station for Experimental Evolution at Cold Spring Harbor, Long Island (now 
one of the most respected centers for the study of genetics) — ends his infl uential 
eugenics textbook  Heredity in Relation to Eugenics  by arguing for the necessity of a state 
eugenic survey. Eugenics is based on a fundamental belief in the knowability of the 
human body, an ability to  “ read ”  its genes and to program humanity accordingly. 

 The move from  “ they ”  to  “ we ”  in Punnett ’ s statement is telling: eugenics is a col-
lective program of controlling others and thus improving ourselves. With this  “ we, ”  
the knowledge of scientists and their capacities to intervene are confl ated with those 
of society as a whole. Like cybernetics, eugenics is a means of  “ governing, ”  or navi-
gating nature. Similarly, Julian Huxley believed that the goal of eugenics was to 
control the evolution of the species and to guide it in a desirable direction.  101   Curt 
Stern, writing in the twentieth century in a textbook on human genetics claimed: 
 “ Natural selection will be superseded by socially decreed selection. In the course of 
time . . . the control by man of his own biological evolution will become imperative, 
since the power which knowledge of human genetics will place in man ’ s hands cannot 
but lead to action. Such evolutionary controls will be world wide in scope, since, by 
its nature, the evolution of man transcends the concept of unrestricted national 
sovereignty. ”   102   Thus, it is not simply, as Garland Allen argues (in  “ The Social and 
Economic Origins of Genetic Determinism: A Case Study of the American Eugenics 
Movement 1900 – 1940 and Its Lessons for Today ” ) that hereditarian thinking, stem-
ming from economic and social conditions, distracts us from the social solutions 
before us by promising technological fi xes, but also that eugenics and hereditarian-
based political arguments more generally are themselves social solutions that demand 
further development of the human archive of knowledge.  103   

 Eugenics, in other words, is a key component of what Michel Foucault in his  History 
of Sexuality , volume 1, called biopower. According to Foucault, biopower is power 
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focused on administering life or disallowing it to the point of death; it is  “ power bent 
on generating forces, making them grow, and ordering them, rather than one dedicated 
to impeding them, making them submit or destroying them. ”   104   Eugenics, according to 
Galton, was a science focused on improving stock; Galton  “ derived ”  eugenics from 
 eugenes , the Greek term meaning  “ well born. ”  Eugenics is biopower, situated and exer-
cised, as Foucault insisted,  “ at the level of life, the species, the race, and the large-scale 
phenomena of population. ”   105   It is based on  “ the fundamental fact that human beings 
are a species, ”   106   and it substitutes  “ population ”  for the rights and responsibilities of the 
subject or the sovereign as the  “ vis- à -vis of government, of the art of government. ”   107   
Indeed, Davenport in  Heredity in Relation to Eugenics  debates whether or not an indi-
vidual who commits premeditated murder is  “ responsible ”  for the crime. Putting 
himself in that situation, he argues,  “ I am not responsible in the sense of  ‘ deserving ’  
pain because of the inadequacy of the determiners in my protoplasm. . . . I am not 
responsible for my early culture nor for reactions determined by it; but that culture is 
partly determined by my makeup, as when I fi nd pleasure in the society of bad com-
panions, and partly is imposed by formal  ‘ good infl uences ’  that society has orga-
nized. ”   108   This, however, is no excuse to add another burden to society, and so organized 
society must prevent the  “ automatic ”  effects of bad breeding through eugenics, 
 “ preventing the mating that brings together the antisocial traits of the criminal. ”   109   
In Davenport ’ s formulation, humans are both evaluated in terms of their economic 
costs to society and viewed as a form of capital: breeding must control both  “ innate ”  
and acquired elements (innate qualities can be controlled through human, not techni-
cal, reproduction).  110   Sexuality knits the individual to the population and privileges the 
population — and its betterment — over the individual, bizarrely absolving him of both 
rights and responsibilities. Also, although moving responsibility from the individual to 
society in general, eugenics offers the individual the means to  “ map ”  an otherwise 
invisible system so that she can make the right marriage decisions. 

 Eugenics, like biopower more generally, focuses on sexuality — the early eugenics 
(and some early genetics) textbooks read like early twentieth-century marriage guides, 
educating its middle-class readers on how to marry wisely. The most powerful and 
long-lasting effect of the early eugenicist movement in the United States is the birth 
control pill. Margaret Sanger, an important birth control advocate, argued in 1920: 
 “ Birth control itself, often denounced as a violation of natural law, is nothing more 
or less than the facilitation of the process of weeding out the unfi t, of preventing the 
birth of defectives or of those who will become defectives. ”   111   According to Foucault, 
biopower brings together a focus on the individual body (mechanisms of discipline) 
with a focus on the general population  “ through concrete arrangements, ”  or technolo-
gies of power, of which the deployment of sexuality is the most important:  “ at the 
juncture of the  ‘ body ’  and the  ‘ population, ’  sex became a crucial target of a power 
organized around the management of life rather than the menace of death. ”   112   
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 Eugenics is clearly a means by which both individual and population were managed; 
it is also a means by which biopower could focus on questions of death in order to 
foster life. As a large-scale project, it is a manifestation of biopolitical governmentality, 
wherein governmentality is  “ a state of government that is no longer essentially defi ned 
by its territoriality, by the surface occupied, but by a mass: the mass of the population, 
with its volume, its density, and, for sure, the territory it covers, but which is, in a 
way, only one of its components. ”   113   In such a state, one that  “ takes life as both its 
object and its objective, ”  eugenics and state racism become ways of giving the state 
the power of death. Racism, Foucault argues,  “ is primarily a way of introducing a break 
into the domain of life that is under power ’ s control: the break between what must 
live and what must die. ”  It introduces a difference — a discontinuity — that perpetuates 
a lethal difference. In biopolitical governmentality, the death of the other is also linked 
to the improvement of one ’ s  “ race ” : 

 Killing or the imperative to kill is acceptable only if it results not in a victory over political 

adversaries, but in the elimination of the biological threat to and the improvement of the 

species or race. . . . racism makes it possible to establish a relationship between my life and 

the death of the other that is not a military or warlike relationship of confrontation, but a 

biological-type relationship:  “ The more inferior species die out, the more abnormal individuals 

are eliminated, the fewer degenerates there will be in the species as a whole, and the more 

I — as species rather than individual — can live, the stronger I will be, the more vigorous I will 

be. I will be able to proliferate. ”   114   

 Again, eugenics makes clear the impact of one ’ s individual actions and life to the 
population as a whole. It allows the  “ I ”  to stand in for both the individual and the 
species, while at the same time delineating the difference between this  “ I ”  and 
the other. Negative eugenics — the sterilization or death of others — made this differ-
ence stark; eugenics, however, was not simply  “ negative eugenics ”  but also  “ positive 
eugenics ”  — the creation of a better species through positive choices in breeding. 
Indeed breeding encapsulates an early logic of programmability that inspired genetics 
and recognition of heredity as physical transmission. Eugenics, in other words, was 
not simply a factor driving the development of high-speed mass calculation 
at the level of content (the statistical demands of the biometricians helped foster 
mass calculation), but also at the level of logic or of operationality. 

 Breeding Programs 

 As Jann Sapp among others has claimed, genetics and eugenics were both intimately 
intertwined with the less elite practice of breeding — the  American Breeders ’  Magazine  
(the offi cial journal of the American Breeders ’  Association), for instance, had the sub-
title  A Journal of Genetics and Eugenics ; breeders viewed heredity as an important eco-
nomic force more wonderful than electricity since, once generated, it needed no 
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additional force to sustain it.  115   Heredity was a living perpetual motion machine. 
Fran ç ois Jacob introduced the notion of a genetic program in  The Logic of Life  by 
arguing for breeding as an early  “ use ”  of heredity:  “ few phenomena in the living world 
are so immediately evident as the begetting of like by like . . . mankind early learnt 
to interpret and exploit the permanence of forms through successive generations. To 
cultivate plants, to breed animals, to improve them for food or to domesticate them, 
all require long experience. ”   116   Schr ö dinger, to repeat, used the steady transmission of 
certain features, such as the Hapsburg lip, as evidence of a genetic code-script. Breed-
ing programs did not become separate, yet powerful, sources of power until after 1915, 
with the institutionalization of genetics.  117   The methodology of breeding — especially 
breeding mutant lines — was fundamental to the establishment of genetics as a science, 
that is, as a fi eld that can produce hypotheses to be tested and predict future results 
regarding the transmission of discrete traits. 

 The interrelationship of eugenics, genetics, breeding, and capital was made most 
explicit by Charles Davenport, who was also a founder of the American Breeders ’  
Association. According to Davenport, in  Heredity in Relation to Eugenics ,  “ eugenics is 
the science of the improvement of the human race by better breeding ” ;  “ human babies 
born each year constitute the world ’ s most valuable crop ” ; and the goal of the eugeni-
cist is to induce young people  “ to fall in love intelligently. ”   118   The references to breed-
ing and other species were deliberate, and Davenport used them to emphasize the 
defi ciencies of human reproductive control.  “ That marriage should be only an  experi-
ment  in breeding, while the breeding of many animals and plants has been reduced 
to a science, ”  he writes,  “ is ground for reproach. Surely the human product is superior 
to that of poultry; and as we may now predict with precision the characters of the 
offspring of a particular pair of pedigreed poultry so may it sometime be with man. ”   119   
To produce such a science of heredity, one needed to delineate the Mendelian units 
responsible for — and the focus of — heredity. One needed to treat humans as carriers 
of defi nable genetic inheritances, which determined their worth and the cost of 
reproduction. Since direct human experimentation was not possible, Davenport and 
his helpers produced copious charts, based on human  “ history. ”  Tracking everything 
from eye color to criminality, Davenport saw his work as essentially determining the 
independent unit characters and their impact on American society. 

 Mendelism hence made it much easier and more diffi cult to predict human hered-
ity: easier because there were laws in place — most importantly, the law of dominance —
 but also harder because characters were not visible (but again, rather invisibly visible 
or visibly invisible). Early Mendelian genetics, because it relied on mechanistic laws 
rather than solely on statistics (in contrast to biometrics), could offer a strong notion 
of causal programmability: the notion that an invisible marker was responsible for a 
visible trait and that such a marker could be deleted through selective breeding pro-
grams. The goal of eugenics was to advise the government so that  “ good ”  blood could 
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be fostered, especially with respect to immigration. The benefi t of such breeding, as 
with domestic animals, was fi nancial. Following the descendants of the legendary 
 “ Jukes ”  family of New York State, Davenport explains: 

 Thus, in the same environment, the descendents of the illegitimate son of Ada are prevailingly 

 criminal ; the progeny of Bell are  sexually immoral ; the offspring of Ellie are  paupers . The differ-

ence in the germ plasm determines the difference in the prevailing trait. But however varied 

the forms of non-social behavior of the progeny of the mother of the Jukes girls the result was 

calculated to cost the State of New York over a million and a quarter of dollars in 75 years — up 

to 1877, and their protoplasm has been multiplied and dispersed during the subsequent 34 

years and is still marching on.  120   

 Human genetics thus limited the effectiveness of government plans to  “ uplift ”  the 
nation through social welfare programs such as universal education or healthcare. 
 “ The expert teacher, ”  Davenport claimed,  “ can do much with good material; but his 
work is closely limited by the protoplasmic makeup — the inherent traits — of his 
pupils. ”   121   So, while education was important, the best way to improve society was 
through better breeding: 

 Indeed, while by good conditions we help the individual to make the most of himself, by good 

breeding we establish a permanent strain that is strong in its very constitution. The experience 

of animal and plant breeders who have been able by appropriate crosses to increase the vigor 

and productivity of their stock and crops should lead us to see that proper matings are the 

greatest means of permanently improving the human race — of saving it from imbecility, 

poverty, disease and immorality.  122   

 Breedability became the proof of programmability in a bizarre logic that assumed any 
repetition evidence of inheritance, that is, repetition with no difference. It is program-
mability at its most rigorous. A self-propelled  “ living ”  repetition that also encapsulates 
death by condemning some to immediate death, and others to nonreproduction 
(thus ending repetition). This version of programmability also asserts a reverse-
programmability, that is, the ability to determine an original algorithm — a strategy, 
or plan for action — based on interactions with unfolding events. 

 Programmability Continued 

 The fact that these claims could not be scientifi cally backed became clear as genetics 
began to examine the complexities of human heredity and of human populations. 
Many geneticists withdrew their early support of eugenics. By 1915, T. H. Morgan 
quietly severed his ties to the eugenics movement, although he did not speak publicly 
against the eugenics movement until many years later. According to Diane Paul, 
however, throughout the 1920s and 1930s, most geneticists remained supportive of 
eugenics, even though the scientifi c problems were well known by the 1920s.  123   As 
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Paul and William Provine among others have argued, the horrors of Nazi science 
forced many geneticists to review their relationship to eugenics and its assumptions 
and to speak publicly against it. According to Provine, however, the consensus that 
races did not vary hereditarily in intelligence did not take place until the 1950s.  124   

 Although eugenics was eventually repudiated — and eugenics and genetics cannot 
be reduced to each other — the desire for the type of control openly embraced by 
eugenics did not fade. The confi dence in and hope for a scientifi c future, Lily Kay 
has explicated in  The Molecular Vision of Life , became folded into the project of 
molecular biology, which she reveals developed from the Rockefeller Foundation ’ s 
 “ Science of Man ”  agenda. This agenda sought to  “ develop the human sciences as a 
comprehensive explanatory and applied framework of social control grounded in the 
natural, medical, and social sciences. Conceived during the late 1920s, the new agenda 
was articulated in terms of the contemporary technocratic discourse of human engi-
neering, aiming toward an endpoint of restructuring human relations in congruence 
with the social framework of industrial capitalism. ”   125   As a form of human engineer-
ing, which cut across the various disciplines, it was a form of biopolitical govern-
mentality. Even though the agenda changed in the 1930s, by which time eugenics 
had become a liability, Kay contends  “ the quest for rationalized human reproduction, 
however, never quite lost its intuitive appeal (even when it was later modifi ed by the 
Nazi experience) . . . eugenic goals played a signifi cant role in the conception and 
design of the molecular biology program. ”  In particular, the failure of the old eugen-
ics movement created a space for a new, more rigorous physiochemically based study 
of human heredity and behavior still focused on social betterment:  “ The molecular 
biology program, through the study of simple biological systems and analyses of 
protein structure, ”  she writes,  “ promised a surer, albeit much slower, way toward 
social planning based on sounder principles of eugenic selection. ”   126   

 The molecular vision of life, Kay relates, was amenable to strategies of control 
because it was governed by a faith in technology and in the ultimate power of upward 
causation.  127   It was control over nature through the study of the  “ ultimate littleness 
of things. ”   128   Molecular biology did not give up on mechanistic conceptions of life, 
but rather depended on the causal explanations of physics and chemistry.  129   The 
technological and the biological drove — and still drive — each other:  “ The enormous 
faith in the power of molecular genetics to explain human order and disorder has 
paralleled the enormous investments in genetic engineering in agriculture and medi-
cine; the technological and cognitive realms drive and justify each other. This dialectic 
process of knowing and doing, empowered by a synergy of laboratory, boardroom, 
and federal lobby, has sustained the rise of molecular biology into the twenty-fi rst 
century. ”   130   As Kay points out in her next book,  Who Wrote the Book of Life? , this 
molecular vision of life would become supplemented by an  “ informational gaze, ”  
causing a profound rupture in  “ representations of life . . . from purely material and 
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energetic to the informational. ”   131   As information displaced older visions of chemical 
and biological specifi city and DNA was articulated as a programmed text,  “ the material 
control of life would be now supplemented by the promise of controlling its form and 
 logos , its information. ”   132   In  Who Wrote the Book of Life? , as noted earlier, Kay elegantly 
and convincingly reveals the ways in which information was adopted as a metaphor 
into biology in the period from 1953 to 1967. 

 This chapter has sought to show how this faith in and desire for a clear causality 
and programmability also dovetails with the rise of software as logos, as always already 
there, as something that persists and enables persistence. Agreeing that the move 
toward information changed discussions of biological control, it also argues that this 
turn to information as source did not simply emerge from elsewhere. Rather, it 
stemmed in part from the early eugenic belief in programmability, in an invisible 
mechanistic causality. The belief that DNA could be coded instructions thus was not 
simply a translation into biology of an idea already embedded within computer tech-
nology, but also something that preceded and indeed foreshadowed instructions 
becoming something in their own right. The bold belief in a code-script that could 
be both execution and plan found its real home in computers, which were constructed 
to enable this dream and then rediscovered as this dream come true. To be clear, this 
is not to say that computer programs are simply eugenic ones. Computer code-script 
confl ates legislation with execution, but also reveals both the possibility and impos-
sibility of a eugenic programmability: although  “ rules ”  may be followed, goals often 
are not. As well, code as logos resonates with the American eugenics movement ’ s 
emphasis on individual decision making, rather than its overt message of social engi-
neering. Important to this parallel structure — to this larger epistemic and governmen-
tal structure of programmability — is heredity as storage (this further turn of the helix 
is addressed in chapter 4). This dream of permanence, of something to be transferred 
in tact from generation to generation, makes lasting what is only ever ephemeral. The 
enduring ephemeral — that which repeats over and over again — becomes that which 
guarantees stability. 

 This chapter has also highlighted questions of neoliberal governmentality addressed 
in chapters 1 and 2. Whereas part I of the book focused on issues of hierarchy and 
bureaucracy, gender and labor, in part II, chapters 3 and 4 concentrate on how the 
computer, understood as code come true, encapsulates a certain logic of arranging, of 
taking care of, the relation between  “ men and things. ”  It links the computer, and 
other projects of programmability, to biopower not simply in terms of content — the 
eugenics-based push for statistical analysis — but also in terms of logic. Cybernetics is 
a form of  “ governing, ”  of navigating, in more than one sense. As Jacob notes,  “ the 
isomorphism of entropy and information establishes a link between two forms of 
power: the power to do and the power to direct what is done. . . . Information, an 
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abstract entity, becomes the point of junction of the different types of order. ”   133   This 
juncture within neoliberalism becomes concentrated on the individual as human 
capital and individual decisions; governmentality is not simply or ever a process of 
overt engineering, of introducing death into a system focused on life and on freedom. 
In its neoliberal form, the form most resonant with computers, governmentality con-
structs the individual as both driven by and needing certain freedoms and desires that 
invisibly support a larger system. The term  liberal  contains within itself a reference to 
liberty. Foucault, elaborating on this necessary relationship between liberalism and 
liberty, claims that liberalism is  “ a consumer of freedom ”  

 inasmuch as it can only function insofar as a number of freedoms actually exist: freedom of 

the market, freedom to buy and sell, the free exercise of property rights, freedom of discussion, 

possible freedom of expression, and so on. . . . It consumes freedom, which means that it must 

produce it. It must produce it, it must organize it. The new art of government therefore appears 

as the management of freedom, not in the sense of the imperative:  “ be free, ”  with the immedi-

ate contradiction that this imperative may contain. The formula of liberalism is not  “ be free. ”  

Liberalism formulates simply the following: I am going to produce what you need to be free. 

I am going to see to it that you are free to be free.  134   

 Liberalism needs both to produce freedom and to devise mechanisms to control it. 
Neoliberalism, Foucault goes on to argue, focuses on the production and control of 
this freedom through competition. Thus, biopower as a form of power focused on 
 “ yes ”  rather than  “ no, ”  on fostering life rather than death, encourages and is encour-
aged by a certain drive for life and independence, albeit one that is also linked to a 
tightly prescribed logic of programmability. 

 Both eugenics and software as logos have moved away from overt restrictions and 
toward a celebration of individual freedom and voluntary empowerment. Genetic 
counseling and birth control are not  “ negative eugenics ”  — the forced sterilization of 
the  “ weak ”  — but rather a framework for an informed decision that empowers those 
who engage it. Computing is not submission to the machine, but rather a means by 
which human intellect can be augmented (the race thus improved). This combination 
of empowerment with restrictions, of feelings of power generated by systems initially 
designed to restrict, drives the seductiveness of computing as a metaphor and as a way 
of encapsulating and experiencing power. 

 Relatedly, there have been movements in both biology and computation away 
from strict models of programmability, from the notion that the program or the 
map encapsulates the system or the organism. The rapidly growing discipline of 
systems biology — biology allegedly for the twenty-fi rst century — for instance, empha-
sizes once more the importance of interactions or  “ communication ”  between cellular 
components, rather than reducing everything to the genetic code. Although it reso-
nates with cybernetics and other early attempts to mathematically model biological 
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systems, it stems from the  “ success ”  of the Human Genome Project, namely the 
deluge of data that project has produced, which has made clear the limitations of 
reductionism and traditional programmability (rather than producing algorithms 
that  “ explain ”  or encapsulate a behavior, programming is increasingly focused on 
using machine learning to  “ reverse engineer ”  the patterns driving data. Hence the 
term  data-driven programming ).  

 This turn to systems biology has also been driven by recent advances in math-
ematical models of biological systems, models that have been used to  “ validate 
hypotheses made from experimental data [and] designing and testing these models 
has led to testable experimental predictions. There are now impressive cases in 
which mathematical models have provided fresh insight into biological systems, 
by suggesting, for example, how connections between local interactions among 
system components relate to their wider biological effects. ”   135   This move away from 
specifi c genes and their corresponding functions (the idea that the genome is a 
code that can be cracked, that it is analogous to a software program that simply 
drives protein expression) toward a more nuanced understanding of the cell as 
comprised of various networks and signals (cell as an ecosystem) poses important 
new questions to science and technology studies, including a serious challenge to 
a politics that endorses the importance of nurture over nature. Considered for years 
as the automatically progressive, antiracist position, this new work on the impor-
tance of the environment — of local interactions — brings forward new, explicitly 
neoliberal questions of control. This is also clear in the move toward epigenetics. 
The widely cited article by Weaver and colleagues,  “ Epigenetic Programming by 
Maternal Behavoir, ”   136   which showed that mice that were licked by their mothers 
were less anxious than their unlicked counterparts, as Hannah Landecker has argued, 
makes  “ good mothers ”  a focus of attention in problematic ways.  137   Catherine 
Malabou has similarly outlined the parallels between current neuronal understand-
ings of the brain as a network and neoliberal management techniques, which 
emphasize  “ creativity, reactivity, and fl exibility ”  and which also give the impression 
that  “ everyone . . . must take up the task of  choosing everything  and  deciding every-
thing . ”   138   Both brain as network and neoliberal management techniques move away 
from the notion of a central program or central power toward a decentralized 
network of agents. 

 Computing as well has moved toward less strictly  “ programmable ”  systems — in 
theory if not yet in everyday practice. From quantum, nonuniversal computers that 
lay down a path that can perhaps be taken to more software-based solutions such as 
genetic programs, the non-strictly programmable, the randomly produced is becoming 
ever more in vogue. The pressing question therefore is: What do we do with this 
move away from the map that nonetheless presupposes the map in a fundamental 
way? Another question then arises: What are both the drawbacks and the possibilities 
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of becoming and processes, rather than of being and identity? Crucially, Malabou 
does not simply denunciate neurobiology, but rather engages it closely to argue for 
the difference between fl exibility — which is capitulation — and plasticity. Plasticity, 
situated between two extremes —  “ the taking on of form ”  and  “ the annihilation of 
form ”  — enables a double movement, an explosive self-creation, that offers resistance 
to global neoliberalism.  139   How might we understand plasticity in relation to the 
ongoing transformation of programmable visions? 
 





  The Undead of Information  

 Computers have confl ated memory with storage, the ephemeral with the enduring. 
Rather than storing memories, we now put things  “ into memory, ”  both consciously 
and unconsciously.  “ Memory ”  — computer memory — has become surprisingly perma-
nent. As Matthew Kirschenbaum has argued, our digital traces remain far longer than 
we suppose.  1   Hard drives fail, but can still be  “ read ”  by forensic experts (optically, if 
not mechanically); our ephemeral documents and other  “ ambient data ”  are written 
elsewhere — that is  “ saved ”  — constantly. Again, to read information is to write it else-
where. At the same time, however, the enduring is also the ephemeral. Not only 
because even if data storage devices can be read forensically after they fail they still 
eventually fail, but also because — and more crucially — what is not constantly upgraded 
or  “ migrated ”  or both becomes unreadable. As well, our interactions with computers 
cannot be reduced to the traces we leave behind. The experiences of using — the exact 
paths of execution — are ephemeral. Information is  “ undead ” : neither alive nor dead, 
neither quite present nor absent. 

 Memory and storage are different. Memory stems from the same Sanskrit root for 
 martyr  and is related to the ancient Greek term for baneful, fastidious. Memory con-
tains within it the act of repetition: it is an act of commemoration — a process of recol-
lecting or remembering. In contrast, a store, according to the OED, stems from the Old 
French term  estorer  meaning  “ to build, establish, furnish. ”  A store — like an archive — is 
both what is stored and its location. Stores look toward a future: we put something in 
storage in order to use it again; we buy things in stores in order to use them. By bring-
ing memory and storage together, we bring together the past and the future; we also 
bring together the machinic and the biological into what we might call the archive. 

 Sigmund Freud famously modeled the human memory system, which he posited 
as fundamentally unconscious, on a toy called the  Mystic Writing Pad . Describing the 
device, he wrote: 

 The surface of the Mystic [Writing] Pad is clear of writing and once more capable of receiving 

impressions. But it is easy to discover that the permanent trace of what was written is retained 

upon the wax slab itself and is legible in suitable lights. Thus the Pad provides not only a 
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receptive surface that can be used over and over again, like a slate, but also permanent traces 

of what has been written like an ordinary paper pad . . . this is precisely the way in which, 

according to the hypothesis which I mentioned just now, our mental apparatus performs its 

perceptual function. The layer which receives the stimuli — the system  Pcpt.-Cs . [Perception-

Consciousness]  —  forms not permanent traces; the foundations of memory come about in other, 

adjoining, systems.  2   

 According to Derrida, Freud, through this formulation posits a  “ prosthesis of the 
outside, ”  which makes psychoanalysis a theory of the archive as well as of memory. 
It makes possible the  “ idea of an archive properly speaking, of a hypomnesic or tech-
nical archive, of a substrate or the subjectile (material or virtual) which, in what is 
already a psychic  spacing , cannot be reduced to memory. ”   3   Memory in psychoanalysis 
is not fi rst  “ live ”  and is not outside representation. Contemplating the importance of 
technology to this theory, Derrida asks,  “ Is the psychic apparatus  better represented  or 
is it  affected differently  by all the technical mechanisms for archivization and for repro-
duction . . . (microcomputing, electronization, computerization, etc.)? ”   4   Intriguingly, 
the Mystic Writing Pad — or more properly its modern version, the Etch A Sketch ®  —
 returns as the model for the hard drive in a textbook on computer forensics. To explain 
the  “ unerasability ”  of hard drives, Warren G. Kruse II and Jay G. Heiser compare them 
to Etch A Sketches: 

 When data is written onto magnetic media, a faint image of what was previously on the drive 

remains. A hard drive is like the child ’ s drawing toy, the Etch A Sketch. Well, hard drives don ’ t 

leak silver powder, but we are referring to the faint traces left after you erase an Etch A Sketch. 

The Etch a Sketch is erased by turning it over and shaking it, allowing the silver powder to 

coat the inside of the clear plastic window, preparing it for more drawings. But if you ’ ve used 

this popular toy, you ’ ll remember that the faint traces of the previous drawing are always left 

behind. . . . Magnetic media — including hard drives — are similar in that every write leaves faint 

traces behind it, even when media have been overwritten numerous times.  5   

 Data on a hard drive, Kruse and Heiser emphasize, leave a permanent trace, even 
as the drive makes room for new  “ impressions. ”  This description of the hard drive, 
written by information security experts, eerily repeats Freud ’ s description of the uncon-
scious. It also highlights the work that  “ memory ”  (in contrast to archiving) entails — to 
be retrieved, these traces must be submitted to a rigorous process of reading. 

 How are we to understand archives as linking the machinic to the human to the 
written? As linking the ephemeral to the lasting? The alive to the dead? Two things 
to consider: 

 1.    The RNA world    As mentioned previously, scientists are considering RNA more and 
more as primary. What is called the RNA world thesis argues that RNA is the  “ origin ”  
of life, since RNA can act as both genes and enzymes and because DNA replication 
depends on  “ an enormous amount of proteins ”  (thus making DNA as origin unlikely).  6   
Through retroviruses, RNA also rewrites DNA. This thesis fascinatingly questions the 
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confl ation of legislation with execution that grounds code as logos. RNA does not 
simply code for proteins; DNA is no simple source. 
 2.    Cybernetics as memory    Jacques Derrida, in  Of Grammatology , linked together 
writing and cybernetics:  “ The entire fi eld covered by the cybernetic  program  will be 
the fi eld of writing. If the theory of cybernetics is by itself to oust all metaphysical 
concepts — including the concepts of soul, of life, of value, of choice, of memory —
 which until recently served to separate the machine from man, it must conserve the 
notion of writing, trace, gramm è  [written mark], or grapheme, until its own historico-
metaphysical character is also exposed. ”   7   Cybernetics, however, did not only have 
to conserve the notion of writing, but also that of memory. Memory links together 
the man and the machine. Memory also bridges across the machinic and human 
unknowns. 

 Moreover, to understand information as undead, we need to understand its relation 
to that other undead thing — the commodity. If a commodity is, as Marx famously 
argued, a  “ sensible supersensible thing, ”  information would seem to be its comple-
ment: a supersensible sensible thing.  8   The literature, of course, on the relationship 
between information and the commodity is dense: from procapitalist celebrations of 
information as the new commodity to neo-Marxist ruminations on the impact of 
information on labor practices. Rather than rehearse these arguments, I want to 
emphasize that this parallel between information (as a general, rather than technical 
term) and commodities intersects with the emergence of source code as information 
outlined in chapter 1. That is, if information is a commodity, it is not simply due to 
historical circumstances or to structural changes; it is also because commodities, like 
information, depend on a ghostly abstraction. 

 Thomas Keenan, in  “ The Point Is to (Ex)Change It: Reading  Capital  Rhetorically, ”  
unpacks Marx ’ s use of ghostly rhetoric to explain capital, in particular the capitalist 
exchange. Abstraction, Marx argues, transforms material things and their embedded-
use values, into things that can be exchanged: commodities. This transformation 
fundamentally changes the  “ atomic ”  structure of things:  “ as exchange-values, [things] 
can be only different qualities, and thus not contain an atom . . . of use-value. ”  Keenan 
asks: What, after this abstraction, is left? If exchange value eviscerates use — if it must 
eviscerate use to work — what makes possible exchange? What remains, Keenan con-
tends, is a  “ ghost,  gespenstige Gegenst ä ndlichkeit , spectral, haunting, surviving objectiv-
ity.  ‘ There is nothing of them left over but this very same . . . ghostly objectivity, a 
mere jelly . . . of undifferentiated human labor. ’  ”   “ This very phantom, ”  Keenan goes 
on to insist,  “ makes possible the relation between (or within) things or uses, grants 
the common axis of similarity hitherto unavailable, precisely because it is a ghost and 
no longer a thing or a labor. ”   9   That ghostly jelly, Keenan argues, is humanity — the 
common humanity that survives in the things exchanged and, like language, makes 
exchange possible. 





 4     Always Already There, or Software as Memory 

 Software — as instructions and information (the difference between the two being 
erased by and in memory) — not only embodies the always already there, it also 
grounds it. It enables a logic of  “ permanence ”  that confl ates memory with storage, 
the ephemeral with the enduring. Through a process of constant regeneration, of 
constant  “ reading, ”  it creates an enduring ephemeral that promises to last forever, 
even as it marches toward obsolescence/stasis. The paradox: what does not change 
does not endure, yet change — progress (endless upgrades) — ensures that what endures 
will fade. Another paradox: digital media ’ s memory operates by annihilating memory. 

 Remarkably, digital media has been heralded as  “ saving ”  analog media from 
destruction and obscurity. Many users, blind to the limitations of electromagnetic 
materials, assume that one can actually  “ store ”  things in memory. They assume that 
data saved on their DVDs, hard drives, and jump drives will always be there, that 
disk failure and the loss of memory it threatens are accidents instead of eventualities. 
Digitization surprisingly emerged as a preservation method in the 1990s by becoming 
a major form of  “ reformatting, ”  a procedure designed to save intellectual content 
threatened by decaying materials — such as acidic wood-pulp paper and silver-nitrate 
fi lm — by reproducing it.  1   Indeed, the National Endowment for the Humanities ’  1988 
 “ Brittle Books Program, ”  which microfi lmed millions of books in peril of  “ slow burn, ”  
viewed digitization as the preferred preservation method, even given a computer fi le ’ s 
fi ve-year shelf life. This celebration of the digital as archives ’  salvation stems in part 
from how digital fi les address another key archival issue: access. From the Library of 
Congress ’ s early attempt to digitize its collections, the American Memory Pilot program 
(1990 – 1994), to Google ’ s plan to digitize over ten million unique titles through its 
Book Search Program (announced in 2004), digitization has been trumpeted as a 
way for libraries fi nally to fulfi ll their mission: to accumulate and provide access to 
human knowledge. Digital archives are allegedly H. G. Wells ’ s  “ World Brain ”  and 
Andr é  Malraux ’ s museum without walls, among other dreams, come true. 

 At the same time, however, computer archives have been targeted as  the source  of 
archival decay and destruction, their liquidity threatening both the possibility and the 
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authenticity of cultural memory. Digital media disrupt the archive because they them-
selves are diffi cult to archive or have not been properly archived or both. The 1999 
Modern Languages Association (MLA) report,  “ Preserving Research Collections: A Col-
laboration between Librarians and Scholars, ”  summarizes the dual challenges of the 
hard and the soft:  “ Imagine a historian opening a late nineteenth-century text and 
helplessly watching as the title page breaks in her hand. Imagine another scholar, ten 
years from now, inserting a disk containing an important document into the computer 
and reading only a  “ fatal error ”  message on his screen. These two examples illustrate 
the Janus-like preservation challenge faced by research libraries today: fragility of the 
print past and the volatility of the future. ”   2   The material limits of materials not only 
cause the future to be volatile, but also, again, so do the ever-updating, ever-prolifer-
ating, and increasingly incompatible soft and hard technologies — the challenges to 
the historical preservation of software outlined in the introduction to this book. 
Moreover, digital imaging potentially destabilizes authenticity. If libraries and archives, 
as Abby Smith has argued,  “ serve not only to safeguard that information [which has 
long-term value], but also to provide evidence of one type or another of the work ’ s 
provenance, which goes to establishing the authenticity of that work, ”  this function 
is seriously undermined by electronic images and documents, which are easily changed 
or falsifi ed.  3   The sheer plethora of digital fi les also calls into question the importance 
of the libraries ’  and archives ’  traditional gatekeeping function. This is most clear in 
the Internet Wayback Machine (IWM) ’ s approach to selection: this site creates a 
 “ library of the Internet ”  by backing up all accessible sites. If libraries and archives 
traditionally distinguished between materials of enduring value and  “ other bits of 
recorded information, like laundry lists and tax returns, ”  which were allowed to 
vanish, the IWM has solved the extremely time-consuming task of selecting the endur-
ing from the ephemeral by saving everything. (Although it originally tried to save 
only  “ signifi cant ”  material, it soon became an automatic archive of everything.) In 
addition to all these diffi culties, attempts to digitize content have been frustrated by 
copyright issues, with rights holders demanding compensation or refusing permission. 
Digital copies — allegedly defi ned by their immateriality — are, as the introduction has 
emphasized, more closely regulated than their material counterparts, especially since 
their use can be controlled by private contracts rather than by copyright or patents. 

 As this discussion makes clear, digital media ’ s promise is also its threat; the two 
cannot be neatly divided into the good and the bad. Digital media, if it  “ saves ”  
anything, does so by transforming storage into memory, by making what decays 
slowly decay more quickly, by proliferating what it reads. By animating the inani-
mate — crossing the boundary between the live and the dead — digital media poses 
new challenges and opportunities for  “ the archive. ”  

 Taking up the intertwining of the biological and the technological addressed previ-
ously, this chapter investigates how something as admittedly  “ soft ”  (and vapory) as 



Always Already There, or Software as Memory 139

software hardened into something that allegedly guarantees heredity, and perma-
nence. Looking in particular at von Neumann ’ s early formulation of stored-memory 
computer architecture, chapter 4 argues that memory became confl ated with storage 
through analogies to analogies: through analogies to cybernetic neurons, to genetic 
programs, to what would become  “ analog ”  media itself. Through these analogies (and 
their erasure), the new and the different have been reduced to the familiar. I uncover 
these differences and analogies not to attribute blame, but rather to reveal the dreams 
and hopes driving these misreadings: the desire to expunge volatility, obliterate 
ephemerality, and neutralize time itself, so that our computers can become synony-
mous with archives.  4   These desires are key to stabilizing hardware so that it can 
contain, regenerate, and thus reproduce what it  “ stores. ”  Further, they are central to 
the twin emergence of neoliberalism and computer programs as strategic games. 

 These analogies also ground one of the fundamental axioms of digital media, 
namely that the digital reduces the analog — the real world — to 1s and 0s. By doing so 
the digital allegedly releases and circulates information that before clung stubbornly 
to material substances, effectively erasing the importance of context and embodiment. 
The fact that this has become an axiom should make us pause, especially since the 
evidence against it is substantial: the digital has proliferated, not erased, media types; 
what has become the analog is not the opposite, but rather the  “ ground ”  of the digital; 
and last, information is not naturally or inherently binary. Rather than making every-
thing universally equivalent, the digital has exploded differences among media 
formats. Proprietary and nonproprietary electronic fi le formats such as jpeg, gif, mp3, 
QuickTime, doc, txt, rtf, and so on, not only distinguish between image, sound, and 
text, but also introduce ever more numerous differences among them. This explosion 
is not accidental to the digital, but rather, as I argue later, central to it. Also, the term 
 analog , based on the word  analogy , does not simply refer to what is real. After the 
emergence of electronic, arithmetically based computers, the term  analog  was adopted 
to describe computers that solved problems using similar physical models, rather than 
numerical methods. And fi nally, information is not simply digital, for information 
stems from the transmission of continuous electronic signals. The information travel-
ing through computers is not 1s and 0s; beneath binary digits and logic lies a messy, 
noisy world of signals and interference. Information — if it exists — is always embodied, 
whether in a machine or an animal. To make information appear disembodied requires 
a lot of work, work that is glossed over if we just accept the digital as operating 
through 1s and 0s. 

 Revising the working thesis of chapters 2 and 3 — software as axiomatic — chapter 
4 contends that the digital is axiomatic. The digital emerges as a clean, precise logic 
through an analogy to an analogy, which posits the analog as real/continuous. 
Looking at the differences between analog and digital computers, this chapter reveals 
how discrete logical devices work by restricting possibilities and possible decodings. 
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It also examines how the development of these devices drives the need for  “ memory, ”  
a regenerating and degenerating archive that paradoxically, as Geoffrey C. Bowker 
notes, annihilates memory by substituting generalized patterns for particular memo-
ries.  5   This does not simply erase human agency, however, but rather fosters new 
dreams of human intervention, action, and incantation. It does not absolve us of 
responsibility, but instead calls on us to respond constantly, to save actively, if we 
are to save at all. 

 Biological Abstractions 

 John von Neumann ’ s mythic, controversial, and incomplete 1945  “ First Draft of a 
Report on the EDVAC ”  introduced the concept of stored program computing and 
memory to the U.S. military and the academic  “ public. ”  This report is remarkably 
abstract: rather than describing actually existing components, such as vacuum tubes 
and mercury delay lines, it offers  “ hypothetical elements. ”  According to von 
Neumann, it does so because, although dealing with real elements such as vacuum 
tubes would be ideal, such specifi city would derail the process by introducing specifi c 
radio engineering questions at too early a stage. Thinking concretely in terms of 
types and sizes of vacuum tubes and other circuit elements  “ would produce an 
involved and opaque situation in which the preliminary orientation which we are 
now attempting would be hardly possible. ”  To avoid this, von Neumann bases his 
consideration  “ on a hypothetical element, which functions essentially like a vacuum 
tube — e.g., like a triode with an appropriate associated RLC-circuit — but which can 
be discussed as an isolated entity, without going into detailed radio frequency electro-
magnetic considerations. ”   6   The vagaries of the machinery (vacuum tubes etc.), which 
are not necessarily digital but can be made to act digitally, threaten the clean sche-
matic logic needed to design this clean, logical machine. Von Neumann describes 
this deferral as  “ only temporary. ”   7   However, J. Presper Eckert and John Mauchly, 
the original patent holders of stored program computing, would allege that von 
Neumann did not touch on the  “ true electromagnetic nature ”  of the devices because 
it was outside his purview: von Neumann, they contended, merely translated their 
concrete ideas into formal logic.  8   In fact, rather than a temporary omission, abstract-
ness was von Neumann ’ s modus operandi, central to the  “ axiomatic ”  (blackboxing) 
method of his general theory of natural and artifi cial automata and consonant with 
his game theory work. 

 This fateful abstraction, this erasure of the vicissitudes of electricity and magnetism, 
surprisingly depends on an analogy to the human nervous system. As cited earlier, 
von Neumann specifi es the major components of the EDVAC as corresponding to 
different neurons:  “ The three specifi c parts CA [central arithmetic], CC [central control] 
(together C) and M [memory] correspond to the associative neurons in the human 
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nervous system. It remains to discuss the equivalents of the  sensory  or  afferent  and the 
 motor  or  efferent  neurons. These are the  input  and the  output  organs of the device. ”   9   
These neurons, however, are not simply borrowed from the human nervous system. 
They are the controversial, hypothetical neurons postulated by Warren McCulloch 
and Walter Pitts in their  “ A Logical Calculus of Ideas Immanent in Nervous Activity, ”  
a text McCulloch claims von Neumann saved from obscurity.  10   (Von Neumann would 
later describe these neurons as  “ extremely amputated, simplifi ed, idealized. ” )  11   In 
accordance with McCulloch and Pitts, von Neumann expunges the messy materiality 
of these  “ neurons ” : 

 Following W. S. McCulloch and W. Pitts . . . we ignore the more complicated aspects of neuron 

functioning: thresholds, temporal summation, relative inhibition, changes of the threshold by 

after-effects of stimulation beyond the synaptic delay, etc. It is, however, convenient to con-

sider occasionally neurons with fi xed thresholds 2 and 3, that is, neurons which can be excited 

only by (simultaneous) stimuli on 2 or 3 excitatory synapses (and none on an inhibitory 

synapse). . . . It is easily seen that these simplifi ed neuron functions can be imitated by tele-

graph relays or by vacuum tubes. Although the nervous system is presumably asynchronous 

(for the synaptic delays), precise synaptic delays can be obtained by using synchronous setups.  12   

 This analogy thus depends on and enables a reduction of both technological and 
biological components to blackboxes. In this simplifi ed analogy, the effects of time 
are ignored to the extent that the synchronous can substitute for the asynchronous 
and interactions or  “ after effects ”  are erased. 

 So: to what extent are these abstractions and analogies necessary? What did 
and do they make possible? Clearly, this blackboxing, by divorcing symbolic analysis 
from material embodiment, has fostered a belief in information as immaterial, but 
more is at stake in this move to  “ biology. ”  Notably, Claude Shannon ’ s infl uential 
1936 masters thesis, which showed that relay and switching can be symbolically 
analyzed (and designed) using Boolean logic, did not rely on an analogy between 
relays and neurons.  13   In  A Symbolic Analysis of Relay and Switching Circuits , Shannon 
develops a means for simplifying and systematizing the development of complex 
electrical systems. He argues,  “ Any circuit is represented by a set of equations, the 
terms of the equations corresponding to the various relays and switches in the 
circuit. ”  He then goes on to develop a calculus  “ for manipulating these equations 
by simple mathematical processes, most of which are similar to ordinary algebraic 
algorisms. ”   14   Shannon neither turns to biology nor elaborates on the material 
details of switches to ground his symbolic analysis. So why should the formal 
schematic of an automatic stored-memory computer be biologically infl ected? And, 
why does a logical calculus — Boolean, digital logic — necessitate the erasure of the 
actual functioning of elements, such as vacuum tubes? To respond to these ques-
tions, I begin with another: How exactly are analog and digital related in electronic 
computing? 
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 Nothing but Analog, All the Way Down 

 According to von Neumann in his 1948  “ General and Logical Theory of Automata, ”  
a text that intriguingly reverses his initial analogy between vacuum tubes and neurons, 
the difference between  “ analogy and digital machines ”  lies in the ways they produce 
errors. Analogy machines, von Neumann contends, treat numbers as physical quanti-
ties. In order to perform a calculation, they thus fi nd  “ various natural processes which 
act on these quantities in the desired way, ”  such as wheel and disk integrators (which 
lie at the heart of the fi rst computer mice). According to von Neumann, the guiding 
principle of analogy machines is the classic signal/information-to-noise ratio, a concept 
Shannon addresses in his  Mathematical Theory of Information . That is,  “ the critical 
question with every analogy procedure is this: How large are the uncontrollable fl uc-
tuations of the mechanism that constitute the  ‘ noise, ’  compared to the signifi cant 
 ‘ signals ’  that express the numbers on which the machine operates? ”   15   If the calculation 
to be performed is complex and multistepped, such as the solving of partial differential 
equations, noise is amplifi ed at every juncture, making it diffi cult to separate error 
from answer. Digital machines, in contrast, treat numbers as  “ aggregates of digits, ”  
rather than as physical quantities or signals. Because of this, they are not subject to 
noise constraints and offer the possibility of absolute precision, although von Neumann 
points out that round-off errors (now largely addressed by fl oating-point arithmetic) 
limit a digital machine ’ s accuracy. Regardless,  “ the real importance of the digital pro-
cedure lies in its ability to reduce the computational noise level to an extent which 
is completely unobtainable by any other (analogy) procedure. ”   16   

 Crucially, this reduction in noise occurs by ignoring the  “ analogy ”  aspect of digital 
components, for almost every element is a mixture of analogy and digit, as von 
Neumann acknowledges in  “ General and Logical Theory of Automata. ”  In opposition 
to his  “ First Draft, ”  this later article treats  “ living organisms as if they were purely 
digital automata. ”  Responding to objections to this treatment, such as the fact that 
neurons do not simply work in an all-or-none fashion, he contends: 

 In spite of the truth of these observations, it should be remembered that they may represent 

an improperly rigid critique of the concept of an all-or-none organ. The electromechanical 

relay, or the vacuum tube when properly used, are undoubtedly all-or-none organs. Indeed, 

they are the prototypes of such organs. Yet both of them are in reality complicated analogy 

mechanisms, which upon appropriately adjusted stimulation respond continuously, linearly 

or non-linearly, and exhibit the phenomena of  “ breakdown ”  or  “ all-or-none ”  response only 

under very particular conditions of operation.  17   

 The digit, in other words, often treats a quantity as a discrete number, its accuracy 
resulting from a cut in a signal. The circularity of this passage, in which vacuum tubes 
are declared prototypes for all-or-none machines, is remarkable. Based on an analogy 
to computing elements, neurons, which themselves grounded computing elements as 
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digital, are declared digital: an initial analogy is reversed and turned into ontology. At 
the base of this logic lies a redefi nition of analogy itself as a complicated mechanism 
that operates on continuous quantities, rather than on discrete units. 

 This redefi nition of analog as continuous, still present with us today whenever we 
refer to fi lm and other media as  “ analog media, ”  reveals a fundamental ambiguity at 
the core of what would become known as analog machines: does the analogy take 
place at the level of the machine architecture or at the level of signal? Analog as model 
emphasizes analogous differential equations and thus nonobvious analogous effects; 
analog as continuous buries these likenesses and privileges data over process. Accord-
ing to Thomas D. Truitt and A. E. Rogers in their 1960  Basics of Analog Computers : 

 The word  “ analog ”  (or  “ analogue ” ) has been used and misused. It has one meaning to some 

people, and a variety of uses to others. Webster speaks of a thing which maintains  “ a relation 

of likeness with another, consisting in the resemblance not of the things themselves, but of 

two or more attributes, or effects. . . . It is important to recognize that while  analog computer  

refers most commonly to this one specifi c type of analog computer [general purpose d-c elec-

tronic analog computer], it can just as well refer to certain mechanical and hydraulic devices, 

to general purpose a-c electronic computers, and to a variety of special purpose computers. All 

of these have one characteristic in common — that the components of each computer or device 

are assembled to permit the computer to perform as a model, or in a manner analogous to 

some other physical system.  18   

 Truitt and Rogers contend that similarities in system behavior, rather than resem-
blances between individual components, are key. In this sense, analog machines are 
simulation machines par excellence. Analog computers are based on similar physical 
relationships between mechanical and electronic systems and emphasize quantities 
over numbers. That is, the  “ signal ”  operated on and the result measured is a physical 
quantity, such as the intensity of an electrical current, or the rotation of a disk. Impor-
tantly, the notion of these machines as  “ analogy ”  machines only became apparent 
after the introduction of what would become digital computers, simulacra par 
excellence. 

 Analog to What? 

 Analog elements, even as they  “ ground ”  digital ones such as transistors and neurons, 
are not simple predecessors to digital computers. Analog and digital machines both 
thrived in the 1940s through the 1960s. Analog computers were used regularly in 
nuclear reactors for real-time data processing, as part of real-time control systems, 
such as fl ight simulators, and to simulate guided missiles in 3D (they were used to 
build the intercontinental ballistic missiles, which made the SAGE (Semi-Automatic 
Ground Environment) air defense system obsolete by the time it was completed).  19   
So-called analog computers were popular because of their speed: they could solve 
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problems in parallel, rather than serially (one step at a time), and although digital 
machines could complete one operation (such as subtraction) much more quickly 
than analog machines, they were not necessarily faster at complex operations. Early 
analog machines, as argued earlier, also offered a real-time graphical display that 
allowed engineers to see immediately how changing a coeffi cient or variable would 
alter a problem. Last, the fact that analog computers offered fewer decimal points in 
their solutions than their digital counterparts was often not important, since the 
accuracy of the calculation was frequently limited by other factors (measuring input, 
inadequate equations, etc.) and since early digital computers had signifi cant digit 
control problems. 

 Not only were analog computers not viewed or accepted as stepping-stones toward 
digital ones, but also the division itself between analog and digital electronic com-
puters was not clear. Electronic differential analyzers such as MADDIDA (Magnetic 
Drum Digital Differential Analyzer), which operated using Boolean algebra and 
digital electronic circuits, yet treated the signals to be operated as quantities rather 
than numerical entities, muddied the boundary between analog and digital machines
 — a boundary that arguably did not then exist. Indeed, analyzers only became 
analog computers rather than  “ mechanical mathematical ”  machines after electronics 
had displaced electromechanics in the production of discrete and nondiscrete 
machines.  20   

 Electronics arguably marked a  “ break ”  between newer and older calculating 
machines in the 1940s as signifi cant as the difference between digital and  “ analogy. ”  
In the May 1946 press release announcing the ENIAC (Electronic Numerical Integrator 
and Computer — the fi rst working electronic digital computer), the U.S. War Depart-
ment introduced it as the fi rst  “ all-electronic general purpose computer, ”  and under-
scored its  “ electronic methods. ”   21   Electronics marked the ENIAC ’ s difference from both 
the mechanical  “ analog ”  differential analyzer and the  “ digital ”  (yet electromechanical) 
Harvard Automatic Sequence Calculator (Mark 1). In Vannevar Bush ’ s 1945 Franklin 
Institute article introducing the electromechanical Rockefeller Differential Analyzer 
(RDA, built in 1942)  22   and in the press releases circulated that year, the RDA is never 
described by its makers/promoters as an analog machine, but rather as a  “ machine 
approach ”  to mathematics,  23   a  “ computing machine which marks a signifi cant advance 
in the fi eld of mechanized mathematics ”   24   or, more colloquially, as an  “ electro-
mechanical giant, ”   25   a  “ tireless ally of science. ”   26   In response to these publications 
and to the War Department’s announcing the ENIAC, newspapers reported on the 
machines together, calling them both  “ Magic Brains ”   27   and  “ Mathematical Robots. ”   28   

 Electronic devices were an important breakthrough because of their speed, and 
because they were built using nonspecialized labor. Mechanical differential analyzers 
required trained operators to be present at all times and inadvertently  “ taught ”  
calculus to its  “ uneducated ”  operators. Bush claimed that the integraph (an early 
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electronic version of the differential analyzer) enabled operators/students to cope with 
diffi cult mathematical questions by providing  “ the man who studies it a grasp of the 
innate meaning of the differential equation. ”  For such a man,  “ one part at least of 
formal mathematics will become a live thing. ”   29   Seeing wheel and disk integrators in 
action makes calculus  “ live, ”  moving it from formal writing to actual experience. 
According to Larry Owens, differential analyzers offered engineering students a graphic 
way to  “ think straight in the midst of complexity ”  — a type of thinking indebted to 
an engineering  “ graphical idiom, ”  which operated as a universal language. 

 At the core of early analog analyzers lie ordinary differential equations. Similar 
ordinary differential questions describe seemingly disparate and unrelated electrical, 
electromechanical, mechanical, and chemical phenomena, all of which can be under-
stood as closed  “ circuits. ”  Analog machines, in this sense, work because ordinary 
differential equations are universal at a large scale, and because Newton ’ s laws describ-
ing force can also describe electrical charge and water capacity.  30   For instance, the 
mechanical spring circuit represented in   fi gure 4.1  corresponds to the RLC circuit in   
fi gure 4.2 :      

 The mechanical spring system corresponds to the following formula: 

  m (d 2  x /d t  2 ) = F [force]  − kx  [oscillating force of spring] −  D (d x /d t ) 
 [dissipative force of friction] 

 The electrical system of   fi gure 4.2  has the following analogous differential equation 
(see   table 4.1  for the corresponding quantities): 

  L (d 2  q /d t  2 ) = V [voltage] − 1/ Cq  [oscillating capacitor charge] −  R (d q /d t ) 
 [charge lost over resistor] 

 Figure 4.1 
 Mechanical spring circuit  
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 Figure 4.2 
 RLC circuit 

  Table 4.1 
 Analogous entities in the two systems  

 Mechanical  Electrical 

 force  F   voltage  V  

 mass  m   inductance  L  

 friction coeffi cient  D   resistance  R  

 displacement  x   charge  q  

 velocity d x /d t   current  I  

 spring coeffi cient  k   reciprocal of capacity 1/ C  

   All these equations could be put in the form 

 D n−1  y /d x  n−1  =  ∫  d n  y /d x  n d x . 

 For the mechanical spring system, this would be 

 d x /d t  [velocity] = (1/ m )  ∫ (F −  kx  −  D (d x /d t ))d t . 

 These equations are not usually solvable using normal analytic methods, but can be 
solved using numerical methods (desk calculators generally produced tables of solu-
tions to differential equations before the popularization of machinic computers). MIT ’ s 
differential analyzers employed a wheel and disc integrator to solve these differential 
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 Figure 4.3 
 Schematic of a basic wheel and disk integrator 

equations mechanically, using feedback to solve for values, which appeared on both 
sides of the equation sign.   Figure 4.3  gives the basic design and principle of the 
integrator. 

    As fi gure 4.4 makes clear, the distance  y  is not a static value, but rather a function 
given determined by the rotation of another shaft. 

    So that 

  W  =  k  ∫  v1  v   U d V . 

 To schematically represent the various operations, Bush used the following symbols 
(  see fi gure 4.5 ):      

    So, using the equation d 2  y /d x  2  = f( x ), in which case f( x ) is known in order to solve 
for  y , one would build the setup outlined in fi gure 4.6. 

    Crucially, the differential analyzer employed  “ generative ”  functions — that is, the 
output could feed into itself. It could thus solve for variables on both sides of the equa-
tion. For instance, consider the solution for d 2  y /d x  2  = f(    y ), which is shown in fi gure 4.7. 

    These generative functions mark a fundamental difference between digital machines, 
which solve problems step by step, and analog machines. 
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 Figure 4.4 
 Integrator geometry 

 Because of this mechanical yet  “ live, ”  analogous relationship, analog machines 
have generally been conceptualized as more transparent and intuitive than digital 
ones. Samuel Caldwell, director of MIT ’ s Center of Analysis, stated,  “ There is a 
vividness and directness of meaning of the electrical and mechanical processes 
involved . . . [whereas] a Digital Electronic computer is bound to be a somewhat 
abstract affair, in which the actual computational processes are fairly deeply sub-
merged. ”   31   Historian Paul Nyce has argued this mechanical mirroring made the 
move from analogy to essence or ontology diffi cult: one always dealt with — made 
visible — two analogous situations, rather than a universal solution. Nyce contends 
that analog devices 

 belong to a long tradition of scientifi c instruments, starting in the seventeenth century, that 

 “ made visible what could not be seen ”  . . . Unlike most scientifi c instruments, however, analog 

devices supported both understanding (literally by measurement and number, like an astrolabe) 

and investigation for they, like an orrery, were  “ models ”  of phenomena. . . . What also made 

them persuasive is that they were both statements about and direct imitations of the things 

they represented. Mimesis is  “ hidden ”  or absent in digital machines: analog machines represent 

phenomena vividly and directly. ”   32   

 Intriguingly, direct representation — or more accurately correspondence — makes analog 
machines live, vivid, and direct. It is a representation that always is tethered to another 
 “ source, ”  which it does not try to hide. The differential analyzer was not, as the digital 
computer would be, amenable to notions of  “ universal ”  disembodied information. 
The differential analyzer simulated other phenomena, whereas digital computers, by 
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 Figure 4.5 
 Symbols used in connection diagrams for a differential analyzer 



150 Chapter 4

 Figure 4.7 
 d 2  y /d x  2  = f(    y ) 

 Figure 4.6 
 d 2  y /d x  2  = f( x ) 
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hiding mimesis, could simulate any other machine. That is, while both digital and 
analog computers depend on analogy, digital computers, through their analogy to the 
human nervous system (which we will see stemmed from a prior analogy between 
neurons and Turing machines), simulate other computing machines using numerical 
methods, rather than recreating specifi c mechanical/physical situations. They move 
us from  “ artifi cial representation ”  or mechanical analysis (description) to simulacra or 
 “ information ”  (prescription). They move us from solving a problem by defi ning its 
parameters to solving it by laying out a procedure to be followed step by step. Depend-
ing on one ’ s perspective, analog computers either offer a more direct,  “ intuitive, ”  and, 
according to Vannevar Bush,  “ soul-satisfying ”  way of solving differential equations or 
they are imprecise and noisy devices, which add extra steps — the translation of real 
numbers into physical entities.  33   The fi rst, the engineer ’ s perspective, views computers 
as models and differential equations as approximations of real physical processes; the 
second, the mathematician’s perspective, treats equations as predictors, rather than 
descriptors of physical systems — the computer becomes a simulacrum, rather than a 
simulation. 

 To be clear, though, analog machines did not simply operate via analogy; again, 
the notion that they operated through analogy would only be apparent later. They 
dealt with  “ signals, ”  from which the notion and the theory of information would 
emerge, and further Vannevar Bush, as an electrical engineer, considered electricity 
to be a universal principle.  34   As well, to return to the question of electronics, all 
analog machines are not large,  “ intuitively understood, ”   ” live ”  mechanical devices. 
The electronic machines of the 1950s and 60s differed signifi cantly from their 
mechanical predecessors. We thus need to be careful not to base arguments about 
analog machines as a whole on Vannevar Bush ’ s early machines.  35   Indeed, Bush 
and Caldwell argued that one benefi t of the electromechanical RDA was the fact 
that a trained operator was not necessary. As they explained, the user no longer 
had to  “ keep up  “ with the machine.  36   Op-amps as integrators, or even multipliers, 
were not  “ seeable ”  and graspable in the same fashion as wheel and disks.  37   Last, 
analog computational structures do not have to coincide perfectly with the problem 
to be solved: one can reuse an integrator in the same way that one can reuse 
an adder. 

 The move to electronics not only deskilled operators, it also made computers mass 
producible. The mechanical differential analyzers were steeped in the  “ odor ”  and the 
specialized labor of the machine lab, and they used special cams hand-crafted by 
highly skilled mechanics (the University of Pennsylvania Moore School Differential 
Analyzer was a WPA [Works Progress Administration] project, designed to employ 
mechanics). B. Holbrook, who worked at Bell Labs, argued that wire-wound potenti-
ometers  “ offered the possibility of getting a completely new and relatively trainable 
type of labor into the manufacture of these things instead of the very high precision 
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mechanics that were necessary by using the prior method. ”   38   Electronic analog and 
digital computers used mass-produced vacuum tubes and later transistors. Thus, both 
electronic analog and digital  “ machines ”  participate in Fordist logic: they automate 
calculation and production and make invisible the mathematics or calculations on 
which they rely. 

 Digital machines, however, are more profoundly Fordist than analog ones. The 
War Department ENIAC press release states that the ENIAC will eliminate expensive 
design processes:  “ Many electrical manufacturing fi rms, for instance, spend many 
thousands of dollars yearly in building  ‘ analogy ’  circuits when designing equip-
ment. ”   39   Most signifi cant, they are more Fordist because their programming breaks 
down problems into simple, repeatable discrete steps. It is in programming, or to 
be more precise, programming in opposition to coding, that analog and digital 
machines most differ. Douglass Hartree, in his 1949  Calculating Instruments and 
Machines , reserves the terms  programming  and  coding  for digital machines, even 
though the RDA used tapes to specify the required interconnections between the 
various units, the values of ratios for the gearboxes, and the initial displacements 
of the integrators.  40   These tapes, unlike ones used for digital electronic computers, 
did not contain instructions necessary for sequencing a calculation; like von 
Neumann, Hartree describes programming as the  “ drawing up [of a] schedule of 
[the] sequence of individual operations required to carry out the calculation, ”  and 
coding as the  “ process of translating operations into instructions in the particular 
form in which they are read by the machine. ”   41   Digital and analog electronic pro-
gramming both retained the iconographic language of the differential analyzers, 
and in this sense were both grounded in mechanical methods or in their simula-
tion. However, whereas digital fl ow charts produce a sequence of individual opera-
tions, analog programming produces a  “ circuit ”  diagram of systematic relations (see 
  fi gure 4.8 ). These differences in programming also point toward key internal dif-
ferences in representation, namely numbers versus quantities. Coded digital machines 
are much easier to follow. At a certain level then, analog machines (especially 
mechanical ones) were not simply more visual or transparent, but rather more 
complicated. 

    This complexity made it unlikely that analog computers could spawn or support 
code as logo s . Code as logos — code as the machine — is intimately linked to digital 
design, which enables a strict step-by-step procedure that neatly translates time into 
space. Although later it would threaten to reduce all hardware to memory devices 
in the minds of most of its users, code as logos depended on a certain  “ hard ”  
digital logic. This logic turns neurons and vacuum tubes themselves into logos and 
produces an insatiable need for memory, understood as regenerative circuits. This 
logic again stems from  “ biology, ”  or, rather, from technologically enhanced biology: 
cybernetics. 
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 Figure 4.8 
 An analog program diagram, based on an image from Albert S. Jackson,  Analog Computation  (New 

York: McGraw-Hill Book Company, 1960), 266 

 In the Beginning Was Logos (Again) 

 In  “ A Logical Calculus of the Ideas Immanent in Nervous Activity, ”  McCulloch and Pitts 
seek to explain the operation of the brain in logical terms. This paper is part of 
McCulloch ’ s larger project of  “ experimental epistemology, ”  his effort to explain  “ how 
we know what we know . . . in terms of the physics and chemistry, the anatomy and 
physiology, of the biological system. ”   42   This experimental epistemology did not shun 
theory, but rather sought to weave together philosophy and neurophysiology. At its 
heart lies the equation of  “ the  ‘ all-or-none ’  character of nervous activity ”  with proposi-
tional logic. It reduces a neuronal action to a statement capable of being true or false, 
 “ to a proposition which proposed its adequate stimulus. ”   43   This equation once more 
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confl ates word with action: in this particular case, the fi ring of a neuron with the propo-
sition that  “ made ”  it fi re. (Not surprisingly, McCulloch describes his examination of the 
human mind as a  “ quest of the Logos. ” )  44   This equation also concretizes the mind and 
ideas:  “ With the determination of the net, ”  McCulloch and Pitts write,  “ the unknow-
able object of knowledge, the  ‘ thing itself, ’  ceases to be unknowable. ”   45   

 As the quotations around  “ all-or-none ”  imply, this description is a simplifi cation, 
one coupled with assumptions such as:  “ a certain fi xed number of synapses must be 
excited within a period of latent addition in order to excite a neuron at any time, and 
this number is independent of previous activity and position on the neuron. ”   46   Despite 
this, they argue that the all-or-none behavior of neurons makes them the fundamental 
psychic units or  “ psychons, ”  which can be compounded  “ to produce the equivalents 
of more complicated propositions ”  in a causal manner.  47   Indeed, the goals of McCulloch 
and Pitts ’ s logical calculus are to calculate the behavior of any neural net and to fi nd 
a neural net that will behave in a specifi ed way.  48   Remarkably, their method to  “ know 
the unknowable ”  not only simplifi es nervous activity, it also does not engage the 
actual means by which inhibition or excitation occurs. This is because their method 
considers circuits equivalent if their result — their perceived behavior — is the same (as 
I explain later, this was crucial to cybernetic memory). Further, they erase actual altera-
tions that occur during facilitation and extinction (antecedent activity temporarily 
alters responsiveness to subsequent stimulations of same part of the net) and 
learning (activities concurrent at some previous time alters the net permanently) 
via fi ctitious nets composed of ideal neurons whose connections and thresholds are 
unaltered.  49   Even though they state that formal equivalence does not equal factual 
explanation, they also insist that the differences between actual and idealized action 
do not affect the conclusions that follow from their formal treatment, namely the 
discovery/generation of a logical calculus of neurons. 

 Importantly, this logic of equivalence between neural nets and propositional logic 
was grounded, for McCulloch, in the nature of numbers themselves. In  “ What Is a 
Number, that Man May Know It, and a Man, that He May Know a Number?, ”  he draws 
from David Hume to argue that only numbers truly can be equal. McCulloch ’ s defi ni-
tion of numbers is Bertrand Russell ’ s,  “ a number is the class of all those classes that 
can be put into one-to-one correspondence to it. ”   50   McCulloch ’ s logical calculus, in 
other words, could only be digital with 1s and 0s corresponding to true and false. 
McCulloch later made this explicit, in his 1951  “ Why the Mind Is in the Head, ”  
distinguishing the nervous system from sense organs in terms of digital versus analog. 
 “ In so-called logical, or digital contrivances, ”  he writes,  “ a number to be represented 
is replaced by a number of things — as we may tally grain in a barn by dropping a 
pebble in a jug for each sheaf . . . the nervous system is par excellence a logical 
machine. ”   51   To McCulloch, logical equals digital because they both rely on numbers. 
Although analog machines also imply and are based on one-to-one models, McCulloch, 
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focusing on signals rather than on the machine, claims,  “ in so-called analogical con-
trivances a quantity of something, say a voltage or a distance, is replaced by a number 
of whatnots or conversely, quantity replaces the number. Sense organs and effectors 
are analogical. ”   52   In this schema, analog to digital conversion takes place at the level 
of data — the difference in machine technology is completely erased through a logic 
of equivalence. 

 By calling the cortex a digital machine, McCulloch sought to displace the then 
popular theory of the mind as functioning mimetically. According to Seymour Papert, 
McCulloch liberated the theory of perception from  “ the idea that there must be in the 
brain some sort of genetically faithful representation of the outside world. ”   53   This is 
most clearly seen in his 1959  “ What the Frog ’ s Eye Tells the Frog ’ s Brain, ”  (an article 
with J. Y. Lettvin, H. R. Maturana, and W. H. Pitts). In it, they argue that because a 
frog ’ s eye does not transmit a copy of what it sees but rather detects certain patterns 
of light and their changes in time, the  “ eye speaks to the brain in a language already 
highly organized and interpreted, instead of transmitting some more or less accurate 
copy. ”   54   Even earlier, though, and before von Neumann ’ s preliminary draft, the cortex 
for McCulloch was a Turing machine. In  “ A Logical Calculus, ”  McCulloch and Pitts 
state,  “ Every net, if furnished with a tape, scanners connected to afferents and suitable 
efferents to perform necessary motor-operations, can compute only such numbers as 
can a Turing machine. ”   55   Neural nets are inspired by and aspire to be Turing machines.  56   
Von Neumann ’ s use of McCulloch and Pitts ’ s analysis is thus an odd and circular way 
of linking stored-memory digital computers to computing machines — once more, an 
over-determined discovery of a linkage between biology and computer technology, yet 
another turn of the double helix (before, of course, there was a double helix). 

 This linkage not only establishes a common formal logic, it also enables the emer-
gence of computer  “ memory. ”  Moving away from ideas of fi eld-based, analogical 
notions of memory, McCulloch ’ s neural nets produce transitory memories and ideas 
through circular loops. Drawing from Wiener ’ s defi nition of information as order 
(negative entropy), McCulloch argues that ideas are information: they are regularities 
or invariants that conserve themselves as other things transform.  57   McCulloch conten-
tiously claims that this stability is produced by reverberating  “ positive-feedback ”  
circuits, that is, transitory memory (reverberatory memory cannot survive a  “ shut 
down, ”  such as a deep sleep or narcosis).  58   These reverberatory circuits, though, even 
as they enable memory, also render  “ reference indefi nite as to time past, ”   59   for what 
is retained is the memory, not all the events that led to that memory. In this sense, 
they threaten to become  “ eternal ideas, ”  separated from context. This separation, 
combined with the fact that the neural nets can specify the next but not the previous 
state, means that  “ our knowledge of the world, including ourselves, is incomplete as 
to space and indefi nite as to time. ”   60   Causality runs only one way: one cannot 
decisively  “ reverse engineer ”  a neural net ’ s prior state. 
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 This emergence of memory is thus, as Bowker notes, also a destruction of memory. 
Thinking through cybernetician Ross Ashby ’ s claim that  “ memory is a metaphor 
needed by a  ‘ handicapped ’  observer who cannot see a complete system, ”  Bowker 
writes,  “ The theme of the destruction of memory is a complex one. It is not that past 
knowledge is not needed; indeed, it most certainly is in order to make sense of current 
actions. However, a  conscious  holding of the past in mind was not needed: the actant 
under consideration — a dog, a person, a computer — had been made suffi ciently differ-
ent that, fi rst, past knowledge was by defi nition retained and sorted and, second, only 
useful past knowledge survived. ”   61   What is truly remarkable is that this destruction of 
memory has spawned the seemingly insatiable need for computer memory. Memories 
are rendered into context-free circuits freed from memory, circuits that are necessary 
to the operation of the animal/machine. 

 Although the past may not be determinable from the present, memories — as 
context-free invariant patterns — ground our ability to predict the future. This pre-
diction — causality — according to McCulloch (drawing from Hume) is only a  “ sus-
picion ”   62   that there is  “ some law compelling the world to act hereafter as it did 
of yore. ”   63   Like those of ideas, these predictive circuits persist. Indeed, McCulloch 
argues,  “ the earmark of every predictive circuit is that if it has operated long uni-
formly it will persist in activity, or overshoot; otherwise it could not project regu-
larities from the known past upon the unknown future. ”   64   The endurance of these 
circuits, however, threatens closure, threatens to make the unknown imperceptible, 
something that McCulloch  “ as a scientist . . . dread[s] most, for as our memories 
become stored, we become creatures of our yesterdays — mere has-beens in a chang-
ing world. This leaves no room for learning. ”   65   Memory, then, which enables a 
certain causality as well as an uncertainty as to time and place, threatens to over-
whelm the system, creating networks that crowd out the new. A neural circuit, if 
it persists — programmability — makes prediction possible. It, however, also puts in 
jeopardy what for McCulloch is most interesting and vital about humanity: the 
ability to learn and adapt to the unknown, that is, the future as future. 

 This notion of memory as circuit/signal underscores McCulloch ’ s difference from 
cognitive psychology, which, following developments in computer technology, would 
consider the brain hardware and the mind software.  66   In McCulloch ’ s system, the mind 
and body are intimately intertwined, with the mind becoming less  “ ghostly ”  — more 
concrete — perhaps paradoxically by becoming signal.  67   Signals bridge mind and brain 
because they have a double nature; they are both physical events and symbolic 
values.  68   They are both statement and result. The logic of computers as logos stems 
from the disciplining, the axiomatizing, of hardware. This in turn  “ solidifi es ”  instruc-
tions into things in and of themselves. Notably, McCulloch in his later work did 
address software, or programs, but referred to them as instructions to be operated 
on by data in memory, rather than as stored themselves in memory.  69   Instructions, in 
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other words, did not drive the system — the logic, the logos, happened at the level of 
fi ring neurons. 

 Thus, by turning to McCulloch and Pitts rather than to Shannon, von Neumann 
gains a particular type of abstraction or logical calculus: an axiomatic abstraction and 
schematic design that greatly simplifi es the behavior of its base components. Von 
Neumann also gains a parallel to the human nervous system, key to his later work 
on  “ general automata. ”  Last, he  “ gains ”  the concept of memory — a concept that 
he would fundamentally alter by asserting the existence of biological organs not 
known to exist. Through this hypothetical  “ memory organ, ”  and his discussion of 
the relationship between orders and data, his model would profoundly affect the 
development of cognitive science and artifi cial intelligence (AI) and life (AL). Through 
this memory organ, von Neumann would erase the difference between storage and 
memory, and also open up a different relationship between man and machine, one 
that would incorporate instructions — as a form of heredity — into the machine, making 
software fundamental. If word (as description) becomes event in McCulloch and Pitts ’ s 
theory, in von Neumann ’ s theory event once again becomes word, word becomes 
instruction. 

 Memories to Keep in Mind 

 Von Neumann ’ s work with natural and artifi cial automata in general reverses the arrow 
of the analogy established in  “ First Draft. ”  Rather than explaining computers in terms 
of the human nervous system, he elucidates the brain and its functioning in terms of 
computational processes. This is most clear in von Neumann ’ s discussion of memory, 
which he considered to be a  “ much more critical and much more open ”  issue than 
logical processing.  70   In computer systems, memory was the bottleneck, for the limita-
tions of memory on the machine created an  “ abnormal economy, ”  in which the 
computer is forced to store all the information it needs to solve a problem on the 
equivalent of one page.  71   

 The term  memory organ  clearly borrows from biology. This borrowing, however, was 
not necessary. Prior to  “ First Draft, ”  mechanisms designed to store numbers and func-
tions necessary for computing were called storage devices or  “ the store, ”  following 
Babbage ’ s terminology. J. Presper Eckert ’ s 1944  “ Disclosure of Magnetic Calculating 
Machine, ”  used as evidence in the patent trial, refers concretely to the disks or tapes 
used to store data; his 1946 patent application, in contrast, employs the term  electrical 
memory . This movement from storage to memory lies at the heart of the computer 
as archive, the computer as saving us from the past, from repetition through 
repetition. 

 Computer storage devices as memory is no simple metaphor, since it asserts the 
existence of an undiscovered biological organ. Although von Neumann initially 
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viewed memory as comprising afferent neurons, he soon changed his mind, based on 
his own experience with computers, in particular with the number of vacuum tubes 
needed to create the types of reverberatory circuits McCulloch and Pitts described. In 
a reverse move, he postulated human memory as something unknown but logically 
necessary, making clear that his fi rst analogy was based on a leap of faith. In  The 
Computer and the Brain , written ten years after  “ First Draft, ”  von Neumann writes,  “ the 
presence of a memory — or, not improbably, of several memories — within the nervous 
system is a matter of surmise and postulation, but one that all our experience with 
artifi cial automata suggests and confi rms. ”  Von Neumann goes on to emphasize our 
ignorance regarding this memory: 

 It is just as well to admit right at the start that all physical assertions about the nature, embodi-

ment, and location of [human memory] are equally hypothetical. We do not know where in 

the physically viewed nervous system a memory resides; we do not know whether it is a separate 

organ or a collection of specifi c parts of other already known organs, etc. It may well be residing 

in a system of specifi c nerves, which would then have to be a rather large system. It may well 

have something to do with the genetic mechanism of the body. We are as ignorant of its nature 

and position as were the Greeks, who suspected the location of the mind in the diaphragm. 

The only thing we know is that it must be a rather large-capacity memory, and that it is hard 

to see how a complicated automaton like the human nervous system could do without one.  72   

 This passage reveals how quickly the computer moved from a system modeled on ideal 
neurons to a concrete model for more complex biological phenomena. This statement, 
which seems to be so careful and qualifi ed — we basically do not know what the 
memory is or where it resides — at the same time asserts the existence of a memory 
organ or set of organs based on an analogy to computers:  “ The only thing we know 
is that it must be a rather large-capacity memory, and that it is hard to see how a 
complicated automaton like the human nervous system could do without one. ”  This 
guess regarding capacity assumes that the brain functions digitally, that it stores infor-
mation as bits, which are then processed by the brain, rather than functioning more 
continuously in a  “ fi eld-based ”  manner. Again, this assumption was by no means 
accepted whole-heartedly by biologists. Dr. Lashley, among others, responded to von 
Neumann ’ s diffi culty with neuronal capacity by arguing that the memory was more 
dynamic rather than static and that  “ the memory trace is the capacity of many 
neurons to work together in certain permutations. ”   73   

 Neurons as switching elements drive von Neumann ’ s  “ logical ”  guess regarding 
memory capacity, as well as his confusion over its location: 

 In the human organism, we know that the switching part is composed of nerve cells, and we 

know a certain amount about their functioning. As to the memory organs, we haven ’ t the faint-

est idea where or what they are. We know that the memory requirements of the human organ-

ism are large, but on the basis of any experience that one has with the subject, it ’ s not likely that 

the memory sits in the nervous system, and it ’ s really very obscure what sort of thing it is.  74   
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 Digital switching devices, based on the reduction of all processes to true/false 
propositions, insatiably demand memoryless memory. As von Neumann explains 
in  “ First Draft, ”  the need for memory increases as problems are broken down into 
long and complicated sequences of operations (described in chapter 1 of this book 
by Bartik and Holberton). Digital computation needs to store and have access to 
intermediate values, instructions, specifi c functions, initial conditions and boundary 
conditions, etc. Prior to the EDVAC, these were stored in an outside recording 
medium such as a stack of paper cards. The EDVAC was to increase the speed of 
calculation by putting some of those values inside the memory organ, making 
porous the boundaries of the machine. Memory instituted  “  a prosthesis of the inside . ”   75   
Memory was not simply sequestered in the  “ organ ” ; it also bled into the central 
arithmetic unit, which, like every unit in the system, needed to store numbers in 
order to work. 

 To contain or localize memory, von Neumann organized it hierarchically: there 
were to be many memory organs, defi ned by access time rather than content. For 
instance, in the 1946 work  “ Preliminary Discussion of the Logical Design of an Elec-
tronic Computing Instrument, ”  von Neumann and colleagues divide memory into 
two conceptual forms — numbers and orders, which can be stored in the same organ 
if instructions are reduced numbers — and into two types — primary and secondary.  76   
The primary memory consists of registers, made of fl ip-fl ops or trigger circuits, which 
need to be accessed quickly and ideally randomly. Primary memory, however, is very 
expensive and cumbersome. A secondary memory or storage medium supplements 
the fi rst, holding values needed in blocks for a calculation. Besides being able to store 
information for periods of time, such a memory needs to be controllable automatically 
(without the help of a person), easily accessed by the machine, and preferably rewrite-
able. Interestingly, the devices listed as possible secondary memories are other forms 
of media: for instance, teletype tapes, magnetic wire or tapes, and movie fi lm. (The 
primary media was also another medium — the Selectron was a vacuum tube similar 
to one used for television.)  77   This gives a new resonance to McLuhan ’ s assertion that 
new media do not make preexisting media obsolete but merely change their use.  78   
Von Neumann and colleagues also outlined a third form of memory,  “ dead storage, ”  
which is an extension of secondary memory, since it is not initially integrated with 
the machine. Not surprisingly, input and output devices eventually become part of 
 “ dead storage. ”  As von Neumann argues later in  The Computer and the Brain ,  “ the very 
last stage of any memory hierarchy is necessarily the outside world, that is, the outside 
world as far as the machine is concerned, i.e. that part of it with which the machine 
can directly communicate, in other words the input and the output organs of the 
machine. ”   79   In this last step, the borders of the organism and the machine explode. 
Rather than memory comprising an image of the world in the mind, memory 
comprises the whole world itself as it becomes  “ dead. ”  
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 This last step renders the world dead by confl ating memory — which is traditionally 
and initially regenerative and degenerative — with other more stable forms of media 
such as paper storage, a comparison that is still with us today at the level of both 
memory (fi les) and interface (pages and documents). This confl ation both relied on 
and extended neurophysiological notions of memory as a trace or inscription, like the 
grooves of a gramophone record. McCulloch, for instance, in 1951, in response to 
objections posed by von Neumann over memory as reverberatory circuits, outlined a 
hierarchical memory system that resonated with von Neumann ’ s schema. There are 
fi rst temporary reverberations, and second, nervous nets that alter with use (central 
to conditioned behaviors). The third type of memory, which he sees as an informa-
tional bottleneck, however, leaves him unhappily stumped; he is at a loss to describe 
its location and its operation: 

 I don ’ t see how we can tell where we have to look as yet, because in many of the experiments 

in which there are lesions made in brains, we have had large amounts of territory removed. 

However, usually we fail to destroy most fi xed memories: therefore, we cannot today locate the 

fi ling cabinets. I think that sooner or later answers to the question of those fi ling cabinets, or 

whatever it is on which is printed  “ photographic records ”  and what not, will have to be found.  80   

 The term  fi ling cabinet  is drawn from von Neumann ’ s own terminology. In his 
response to McCulluch ’ s paper, von Neumann, perhaps informed by psychoanalytical 
arguments that memories never die (one of von Neumann ’ s uncles introduced psy-
choanalysis to Hungary and von Neumann apparently loved to analyze jokes) or by 
his personal experience (he allegedly had a photographic memory and could recall 
conversations word for word), presents the following  “ negative ”  and not entirely 
 “ cogent ”  argument against memory as residing in the neurons: 

 There is a good deal of evidence that memory is static, unerasable, resulting from an irrevers-

ible change. (This is of course the very opposite of a  “ reverberating, ”  dynamic, erasable 

memory.) Isn ’ t there some physical evidence for this? If this is correct, then no memory, once 

acquired, can be truly forgotten. Once a memory-storage place is occupied, it is occupied 

forever, the memory capacity that it represents is lost; it will never be possible to store anything 

else there. What appears as forgetting is then not true forgetting, but merely the removal of 

that particular memory-storage region from a condition of rapid and easy availability to one 

of lower availability. It is not like the destruction of a system of fi les, but rather like the removal 

of a fi ling cabinet into the cellar. Indeed, this process in many cases seems to be reversible. 

Various situations may bring the  “ fi ling cabinet ”  up from the  “ cellar ”  and make it rapidly and 

easily available again.  81   

 Von Neumann ’ s  “ negative argument ”  relies on fi les and the human mind as the 
owner/manipulator — or, to return to Cornelia Vismann ’ s argument outlined in chapter 
2, chancellor — of fi les. It also depicts the human brain as surprisingly nonplastic: easily 
used up and unerased, hence once more the need for great storage. It also moves away 
from memory as based on erasable  “ regenerative ”  traces toward fantasies of traces 
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that do not fade: immortality within the mortal machine.  82   This is a far cry from Van-
nevar Bush ’ s description of the human mind in chapter 2 as fundamentally ephemeral 
and prone to forgetting. The digital paradoxically produces memory as storage, in part 
because logical algorithms need to read and write values. An entire process can fail if 
one variable is erased. 

 Memory as storage also allows von Neumann to describe genes as a form of human 
memory. In  The Computer and the Brain , he writes,  “ another form of memory, which 
is obviously present, is the genetic part of the body; the chromosomes and their con-
stituent genes are clearly memory elements which by their state affect, and to a certain 
extent determine, the functioning of the entire system. ”   83   With this move toward 
genes as memory — necessary for his theory of self-reproducing formula — neurons 
would not stand in for words (true or false propositions), but words (instructions) 
would come to stand in for neurons. 

 Descriptions that Can 

 The deed is everything, the Glory naught. 

  —  Faust , Part II 

 According to William Poundstone, the last anecdote of von Neumann ’ s  “ total recall ”  
concerns his last days, when he lay dying of cancer at Walter Reed Hospital, a cancer 
caused by his work on nuclear weapons (the drive for nuclear weapons also powered 
the development of digital electronic computers; American computers and neoliberal-
ism are both reactions to Nazism).  84   His brother Michael read  Faust  in the original 
German to von Neumann and,  “ as Michael would pause to turn the page, von 
Neumann would rattle off the next few lines from memory. ”   85   Converting to Catholi-
cism before his death, von Neumann was deeply infl uenced by the work of Goethe, 
 Faust  in particular. Said his brother Nicholas,  “ We studied  Faust  in school very thor-
oughly, both parts, in original and in Hungarian translation. And we discussed it for 
years and rereading it occasionally thereafter, throughout our respective lifetimes. ”   86   
One of the three passages Nicholas describes as particularly important to his brother 
was Faust ’ s grappling with logos:  “ Faust ’ s monologue at the opening of the First Part: 
 ‘ In the beginning was the Act, ’  and the corresponding statement in Part II:  ‘ The deed 
is everything, the Glory naught. ’  This we discussed in the context of the redeeming 
value of action. ”   87   According to Nicholas, this passage led  “ ultimately to John ’ s views 
emphasizing the redeeming value of practical applications in his profession. ”   88   John 
von Neumann as an unredeemed (although not yet fallen) Faust. 

 This passage, however, has other resonances, intersecting with the question of logos 
weaving through this book. Faust, seeking to translate the Bible into German pauses 
over  “ in the beginning was the Word ” : 
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 I ’ m stuck already! I must change that; how? 

 Is then  “ the word ”  so great and high a thing? 

 There is some other rendering, 

 Which with the spirit ’ s guidance I must fi nd. 

 We read:  “ In the beginning was the Mind. ”  

 Before you write this fi rst phrase, think again; 

 Good sense eludes the overhasty pen. 

 Does  “ mind ”  set worlds on their creative course? 

 It means:  “ In the beginning was the Force. ”  

 So it should be — but as I write this too, 

 Some instinct warns me that it will not do. 

 The spirit speaks! I see how it must read, 

 And boldly write:  “ In the beginning was the Deed! ”   89   

 Faust, after a failed encounter with a spirit he conjured but cannot control, replaces 
Word with Deed, which, rather than Word, Force, or Mind, creates and rules the hour. 
Ironically, Faust, of course, is later saved by the Word — a technicality regarding his 
statement of satisfaction. Regardless, this substitution of Word with Deed sums up 
von Neumann ’ s axiomatic approach to automata and his attraction to McCulloch and 
Pitts ’ s work. It also leads him to conceive of memory as storage: as a full presence that 
does not fade, even though it can be misplaced. What is intriguing, again, is that this 
notion of a full presence stems from a bureaucratic metaphor: fi ling cabinets in the 
basement. This reconceptualization of human memory bizarrely offers immortality 
through  “ dead ”  storage: information as undead. 

 McCulloch and Pitts ’ s methodology again depends on axiomatizing idealized 
neurons, where, according to von Neumann,  “ axiomatizing the behavior of the ele-
ments means this: We assume that the elements have certain well-defi ned, outside, 
functional characteristics; that is, they are to be treated as  ‘ black boxes. ’  They are 
viewed as automatisms, the inner structure of which need not be disclosed, but which 
are assumed to react to certain unambiguously defi ned stimuli, by certain unambigu-
ously defi ned responses. ”   90   This controversial axiomatization, which von Neumann 
would employ later in his theory of self-reproducing automata, reduces all neuronal 
activities to true/false statements.  91   Neurons follow a propositional logic. Von 
Neumann contends that this axiomatizing and the subsequent logical calculus it 
allows means that McCulloch and Pitts have proven that  “ any functioning . . . which 
can be defi ned at all logically, strictly, and unambiguously in a fi nite number of words 
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can also be realized by such a formal neural network. . . . It proves that anything 
that can be exhaustively and unambiguously described, anything that can be com-
pletely and unambiguously put into words, is ipso facto realizable by a suitable fi nite 
neural network. ”   92   Words that describe objects, in other words, can be replaced by 
mechanisms that act, and all objects and concepts, according to von Neumann, can 
be placed in this chain of substitution.  “ There is no doubt, ”  he asserts,  “ that any 
special phase of any conceivable form of behavior can be described  ‘ completely and 
unambiguously ’  in words. This description may be lengthy, but it is always possible. 
To deny it would amount to adhering to a form of logical mysticism which is surely 
far from most of us. ”   93   This does not mean, however, that such a description is simple; 
indeed, von Neumann stresses that McCulloch and Pitts ’ s theorizing is important for 
its reverse meaning:  “ there is a good deal in formal logics to indicate that the descrip-
tion of the functions of an automaton is simpler than the automaton itself, as long 
as the automaton is not very complicated, but that when you get to high complica-
tions, the actual object is simpler than the literary description. ”   94   

 This notion of an actual object is not outside of language, even if it is outside  “ liter-
ary description, ”  for, to von Neumann, producing an object and describing how to 
build it were equivalent. For instance, he argues that the best way to describe a visual 
analogy may be to describe the connections of the visual brain.  95   According to this 
logic, the instructions to construct a machine can substitute for the machine itself, to 
the extent that it can produce all the behaviors of the machine. 

 This logic is most clear in von Neumann ’ s earliest model of self-reproduction, which 
Arthur Burks later dubbed a  “ robot ”  or  “ kinematic ”  model.  96   In this model,  “ construct-
ing automata ”   A  are placed in a  “ reservoir in which all elementary components in 
large numbers are fl oating. ”   97   Automaton  A   “ when furnished the description of [an]
other automaton in terms of appropriate functions will construct that entity. ”  This 
description  “ will be called an instruction and denoted by a letter  I . . . . All [ A s] have 
a place for an instruction  I . ”   98   In this system, instruction drives construction. In addi-
tion to automata  A , there are also automata  B , which can copy any instruction  I  given 
to them. The decisive step, von Neumann argues, is the following instruction to the 
reader about embedding instructions: 

 Combine the automata  A  and  B  with each other, and with a control mechanism  C  which 

does the following. Let  A  be furnished with an instruction  I . . . . Then  C  will fi rst cause  A  to 

construct the automaton, which is described by this instruction I. Next  C  will cause  B  to copy 

the instruction  I  referred to above, and insert the copy into the automaton referred to above, 

which has just been constructed by  A . Finally,  C  will separate this construction from the 

system  A + B + C  and  “ turn it loose ”  as an independent entity.  99   

 This independent entity is to be called  D . Von Neumann then argues,  “ In order to func-
tion, the aggregate  D = A + B + C  must be furnished with an instruction  I , as described 
above. This instruction, as pointed out above, has to be inserted into  A . Now form an 
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instruction  I D  , which describes this automaton  D , and insert  I D   into  A  within  D . Call 
the aggregate which now results  E .  E  is clearly self-reproductive. ”   100   This instruction  I D   
(which nicely resonates with ID and id), he claims, is roughly equivalent to a gene. He 
also contends that  B   “ performs the fundamental act of reproduction, the duplication 
of the genetic material, which is clearly the fundamental operation in the multiplica-
tion of living cells. ”  This analogy fails, however, because  “ the natural gene does prob-
ably not contain a complete description of the object whose construction its presence 
stimulates. It probably contains only general pointers, general cues. ”   101   Thus, the 
memory of the system — here postulated as a more vibrant form of memory than  “ paper 
tape ”  — becomes the means by which the automaton can self-reproduce.  102   

 This description is amazing for several reasons. In it, von Neumann transforms 
McCulloch and Pitts ’ s schematic neural networks, in which there is no separation of 
software from hardware, into the basis for code as logos for the instructions replace 
the machine. What becomes crucial, in other words, and encapsulates the very being 
of the machine, are the instructions needed to construct it. Furthermore, and insepa-
rable from the translation of event into instruction, this description — as a set of 
instructions itself — contains a bizarre, almost mystical, address. For, when von 
Neumann says,  “ Now form an instruction  I D  , which describes this automaton  D , and 
insert  I D   into  A  within  D , ”  or  “ Combine the automata  A  and  B  with each other, and 
with a control mechanism  C , ”  who will do this forming and combining; who will 
perform these crucial steps and how? What mystical force will respond to this call? 
Like Faust before Mephistopheles arrives, are we to incant spells to create spirits? The 
transformation of description into instruction leaves open the question: who will do 
this? Who will create the magical description that goes inside? Remarkably, this call 
makes clear the fact that humans are indistinguishable from automata, something that 
bases von Neumann ’ s game theory as well. 

 Games and Universes 

 This replacement of descriptions by instructions (or choices among instructions) also 
grounds von Neumann ’ s work in game theory, which corresponds to his work on 
automata in many ways, as Arthur Burks has pointed out.  “ There is a striking parallel, ”  
Burks writes,  “ between von Neumann ’ s proposed automata theory and his theory of 
games. Economic systems are natural competitive systems; games are artifi cial com-
petitive systems. The theory of games contains the mathematics common to both 
kinds of competitive systems, just as automata theory contains the mathematics 
common to both natural and artifi cial automata. ”   103   This comparison, however, not 
only occurs at the level of mathematics or mathematization, but also at the level of 
heuristics, descriptions, and strategies. Game theory, which has been a key tool of 
neoliberal economic theory, seeks to understand the problem of exchange through 
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the perspective of a  “ game of strategy, ”  in which participants create strategies in 
response to others ’  moves, the rules of the game, and (objective) probabilities.  104   
Similar to von Neumann ’ s  “ First Draft, ”  von Neumann and Oskar Morgenstern ’ s 1944 
 Theory of Games and Economic Behavior  (their preliminary discussion of game theory) 
serves as a  heuristic , a  “ phase of transition from unmathematical plausibility consid-
erations to the formal procedure of mathematics. ”   105   Also like his theory of automata, 
and indeed like most of von Neumann ’ s mathematical work, game theory is based on 
an axiomatic method. Most importantly, von Neumann and Morgenstern introduce 
the notion of  strategy  to replace or simplify detailed description. Describing the process 
of giving an exact description of what comprises a game, they write,  “ we reach — in 
several successive steps — a rather complicated but exhaustive and mathematically 
precise scheme. ”  Their key move is  “ to replace the general scheme by a vastly simpler 
one, which is nevertheless equivalent to it. Besides, the mathematical device which 
permits this simplifi cation is also of an immediate signifi cance for our problem: It is 
 “ the introduction of the exact concept of a strategy. ”   106   A strategy is a complete plan 
that  “ specifi es what choices [the player] will make in every possible situation, for every 
possible actual information which he may possess at that moment in conformity with 
the pattern of information which the rules of the game provide for him for that 
case. ”   107   This replacement of a complete description with a strategy is not analogous 
to the replacement of machine code with a higher-level programming language, or 
what von Neumann calls  “ short code. ”  This  “ equivalence ”  is not based on a simplifi -
cation through the creation of a language that reduces several events into one state-
ment, but rather on a fundamental transformation of a step-by-step description of 
events into a description of the premises — the rules and related choices — driving the 
player ’ s actions. This strategy, which game theory remarkably assumes every player 
possesses before the game, is analogous to a program — a list of instructions to be fol-
lowed based on various conditions. A player ' s strategy is not a summary of the rules 
of the game, but rather a list of choices to be followed — it is, to return to a distinction 
introduced in chapter 1, a product of  “ programming ”  rather than coding. Or, to put 
it slightly differently, understanding game strategy as a program highlights the fact 
that a program does not simply establish a universe as Weizenbaum argues; it is one 
possible strategy devised within an overarching structure of rules (a programming 
language). A strategy/program thus emphasizes the programming/economic agent as 
freely choosing between choices.  108   

 This program/strategy has been the basis of much of the criticism directed against 
game theory, such as Gregory Bateson ’ s contention: 

 What applications of the theory of games do is to reinforce the player ’ s acceptance of the rules 

and competitive premises, and therefore make it more and more diffi cult for the players to 

conceive that there might be other ways of meeting and dealing with each other. . . . Von 

Neumann ’ s  “ players ”  differ profoundly from people and mammals in that those robots totally 
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lack humor and are totally unable to  “ play ”  (in the sense in which the word is applied to 

kittens and puppies).  109   

 Bateson is absolutely correct in his assessment: in outlining such a comprehensive 
version of a strategy, game theory assumes a player who could only be — or later would 
become — an automaton. Furthermore, von Neumann admits that game theory is 
prescriptive rather than descriptive. He writes,  “ the immediate concept of a solution 
is plausibly a set of rules for each participant which will tell him how to behave in 
every situation which may conceivably arise. ”   110   Thus, game theory presumes a strat-
egy and the production of a strategy, as well as the replacement of a detailed descrip-
tion of every action with a more general procedural one. A strategy is something an 
automaton — or more properly a programmer — working non- “ interactively ”  with a 
computer has. Game theory ’ s assumptions again resonate with those of neoliberalism 
(Milton Friedman, to take one example, theorizes the day-to-day activities of people 
as analogous to those of  “ the participants in a game when they are playing it ” ).  111   

 Words, as instructions that stand in for deeds, are also crucial to von Neumann ’ s 
desire to make his machines  “ universal. ”  Von Neumann approaches the concept of 
universality through an interpretation of Alan Turing ’ s  “ On Computable Numbers, 
with an Application to the Entscheidungsproblem, ”  the 1936 paper that initially 
inspired McCulloch and Pitts.  112   In this paper, Turing shows that Hilbert ’ s  Entscheid-
ungsproblem  (the decision problem) cannot have a solution through theoretical 
machines, analogous to a  “ man, ”  that can compute any number. He also posits the 
existence of a  “ universal machine, ”   “ a single machine which can be used to compute 
any computable sequence. ”   113   Von Neumann, in a rather historically dubious move, 
equates abstract or universal Turing machines with higher-level languages. 

 To make this argument, von Neumann separates codes into two types: complete and 
short. In computing machines, complete codes  “ are sets of orders, given with all neces-
sary specifi cations. If the machine is to solve a specifi c problem by calculation, it will 
have to be controlled by a complete code in this sense. The use of a modern computing 
machine is based on the user ’ s ability to develop and formulate the necessary complete 
codes for any given problem that the machine is supposed to solve. ”   114   Short codes, in 
contrast, are based on Turing ’ s work, in particular his insight that  “ it is possible to 
develop code instruction systems for a computing machine which cause it to behave 
as if it were another, specifi ed, computing machine. ”   115   Importantly, Turing himself 
did not refer to short or complete codes, but rather to instructions and tables to be 
mechanically — meaning faithfully — followed. Despite this, von Neumann argues that 
a code following Turing ’ s schema must do the following: 

 It must contain, in terms that the machine will understand (and purposively obey), instructions 

(further detailed parts of the code) that will cause the machine to examine every order it gets 

and determine whether this order has the structure appropriate to an order of the second 
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machine. It must then contain, in terms of the order system of the fi rst machine, suffi cient 

orders to make the machine cause the actions to be taken that the second machine would have 

taken under the infl uence of the order in question. 

 The important result of Turing ’ s is that in this way the fi rst machine can be caused to imitate 

the behavior of  any  other machine.  116   

 Thus, in a remarkably circular route, von Neumann establishes the possibilities of 
source code as logos: as something iterable and universal. Word becomes action 
becomes word becomes the alpha and omega of computation. 

 Enduring Ephemeral 

 Crucially, memory is not a static but rather an active process. A memory must be held 
in order to keep it from moving or fading. Again, memory does not equal storage. 
Although one can conceivably store a memory,  storage  usually refers to something 
material or substantial, as well as to its physical location: a store is both what is stored 
and where it is stored. According to the OED, to store is to furnish, to build stock. 
Storage or stocks always look toward the future. In computer speak, one reverses 
common language, since one stores something in memory. This odd reversal and the 
confl ation of memory and storage gloss over the impermanence and volatility of 
computer memory. Without this volatility, however, there would be no memory. To 
repeat, memory stems from the same Sanskrit root for  martyr . Memory is an act of 
commemoration — a process of recollecting or remembering. 

 This commemoration, of course, entails both the permanent and the ephemeral. 
Memory is not separate from questions of representation or enduring traces. Memory, 
especially artifi cial memory, traditionally has brought together the permanent and the 
ephemeral; for instance, the wax tablet with erasable letters (the inspiration for clas-
sical mnemotechnics). As Frances A. Yates explains, the rhetorician treated architecture 
as a writing substrate onto which images, correlating to objects to be remembered, 
were inscribed. Summarizing the  Rhetorica Ad Herennium , the classic Latin text on 
rhetoric, she states: 

 The artifi cial memory is established from places and images . . . the stock defi nition to be 

forever repeated down the ages. A  locus  is a place easily grasped by the memory, such as a 

house, an intercolumnar space, a corner, an arch, or the like. Images are forms, marks or simu-

lacra . . . of what we wish to remember. For instance, if we wish to recall the genus of a horse, 

of a lion, of an eagle, we must place their images on a defi nite  loci . 

 The art of memory is like an inner writing. Those who know the letters of the alphabet can 

write down what is dictated to them and read out what they have written. Likewise those who 

have learned mnemonics can set in places what they have heard and deliver it from memory. 

 “ For the places are very much like wax tablets or papyrus, the images like the letters, the 

arrangement and disposition of the images like the script, and the delivery is like the reading. ”   117   
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 Visiting these memorized places, one revives the fact to be recalled. This discussion 
of memory offers a different interpretation of the parallels between human and com-
puter memory. The rhetorician was to recall a physical space within her mind — the 
image is not simply what is projected upon a physical space, but also the space for 
projection. Similarly, computer memory (which, too, is organized spatially) is a storage 
medium  like  but not quite paper. Both degenerate, revealing the limitations of the 
simile. 

 Memory as active process is seen quite concretely in early forms of  “ regenerative 
memory, ”  from the mercury delay line to the Williams tube, the primary memory 
mentioned earlier. The serial mercury delay line (  fi gure 4.9 ) took a series of electrical 
pulses and used a crystal to transform them into sound waves, which would make 
their way relatively slowly down the mercury tube. At the far end, the sound waves 
would be amplifi ed and reshaped.  118   One tube could usually store about a thousand 
binary bits at any given moment. 

    Another early memory device, the Williams tube (  fi gure 4.10 ), derived from devel-
opments in cathode ray tubes (CRTs); the television set is not just a computer screen, 
but was also once its memory. The Williams tube takes advantage of the fact that a 
beam of electrons hitting the phosphor surface of a CRT not only produces a spot of 
light, but also a charge. This charge will persist for about 0.2 seconds before it leaks 

 Figure 4.9 
 Schematic of the mercury delay line 
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 Figure 4.10 
 Schematic of the Williams tube 

away and can be detected by a parallel collector plate. Thus, if this charged spot can 
be regenerated at least fi ve times per second, memory can be produced in the same 
manner as the mercury delay tube. Current forms of computer memory also require 
regeneration. 

    Today ’ s RAM is mostly volatile and based on fl ip-fl op circuits and transistors and 
capacitors, which require a steady electrical current. Although we do have forms of 
nonvolatile memory, such as fl ash memory, made possible by better-insulated capaci-
tors, they have a limited read-write cycle. Memory traces, to repeat Derrida ’ s formula-
tion,  “ produce the space of their inscription only by acceding to the period of their 
erasure. ”   119   

 Thus, as Wolfgang Ernst has argued, digital media is truly  time-based media , which, 
given a screen ’ s refresh cycle and the dynamic fl ow of information in cyberspace, turns 
images, sounds, and text into a discrete moment in time. These images are frozen for 
human eyes only.  120   Information is dynamic, however, not only because it must move 
in space on the screen, but also, and more important, because it must move within 
the computer and because degeneration traditionally has made memory possible while 
simultaneously threatening it. Digital media, allegedly more permanent and durable 
than other media (fi lm stock, paper, etc.), depends on a degeneration so actively 
denied and repressed. This degeneration, which engineers would like to divide into 
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useful versus harmful (erasability versus signal decomposition, information versus 
noise), belies and buttresses the promise of digital computers as permanent memory 
machines. If our machines ’  memories are more permanent, if they enable a perma-
nence that we seem to lack, it is because they are constantly refreshed — rewritten — so 
that their ephemerality endures, so that they may  “ store ”  the programs that seem to 
drive them. To be clear, this is not to say that information is fundamentally immate-
rial; as Matthew Kirschenbaum has shown in his insightful  Mechanisms: New Media 
and the Forensic Imagination , information (stored to a hard drive) leaves a trace that 
can be forensically reconstructed, or again, as I ’ ve argued elsewhere, for a computer, 
to read is to write elsewhere.  121   This is to say that if memory is to approximate some-
thing so long lasting as storage, it can do so only through constant repetition, a repeti-
tion that, as Jacques Derrida notes, is indissociable from destruction (or in Bush ’ s 
terminology, forgetting).  122   

 This enduring ephemeral — a battle of diligence between the passing and the repet-
itive — also characterizes content today. Internet content may be available 24/7, but 
24/7 on what day? Further, if things constantly disappear, they also reappear, often 
to the chagrin of those trying to erase data. When A3G (article III groupie), the gossipy 
conservative and supposedly female author of underneaththeirrobes.blogs.com — a 
blog devoted to Supreme Court personalities — came out as a thirty-year-old Newark-
based U.S. attorney named David Lat in an interview with the  New Yorker , his site was 
temporarily taken down by the U.S. government.  123   Archives of his site — and of every 
other site that does not reject robots — however, are available at the Internet Wayback 
Machine (IWM, web.archive.org) with a six-month delay. 

 Like search engines, the Internet Wayback Machine comprises a slew of robots and 
servers that automatically and diligently, and in human terms, obsessively, back up 
most web pages. Also like search engines, they collapse the difference between the 
Internet, whose breadth is unknowable, and their backups; however, unlike search 
engines, the IWM does not use the data it collects to render the Internet into a library, 
but rather use these backups to create what the creators of the IWM call a  “ library of 
the Internet. ”  The library the IWM creates, though, certainly is odd, for it has no 
coherent shelving system: the IWM librarians do not offer a card catalog or a compre-
hensive, content-based index.  124   This is because the IWM ’ s head librarian is a machine, 
only capable of accumulating differing texts. That is, its automatic power of discrimi-
nation only detects updates within a text. The IWM ’ s greatest oddity, however, stems 
from its recursive nature: the IWM diligently archives itself, including its archives, 
within its archive. 

 The imperfect archives of the IWM are considered crucial to the ongoing relevance 
of libraries. The IWM ’ s creators state:  “ Libraries exist to preserve society ’ s cultural arti-
facts and to provide access to them. If libraries are to continue to foster education and 
scholarship in this era of digital technology, it ’ s essential for them to extend those 
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functions into the digital world. ”   125   The need for cultural memory drives the IWM and 
libraries more generally. Noting the loss of early fi lm archives due to the recycling of 
early fi lm stock, the archivists describe the imperative of building an  “ internet library ” : 

 Without cultural artifacts, civilization has no memory and no mechanism to learn from its 

successes and failures. And paradoxically, with the explosion of the Internet, we live in what 

Danny Hillis has referred to as our  “ digital dark age. ”  

 The Internet Archive is thus working to prevent the Internet — a new medium with major 

historical signifi cance — and other  “ born-digital ”  materials from disappearing into the past. 

Collaborating with institutions including the Library of Congress and the Smithsonian, we are 

working to preserve a record for generations to come.  126   

 The IWM is necessary because the Internet, which is in so many ways  about  memory, 
has, as Ernst argues, no memory — at least not without the intervention of something 
like the IWM.  127   Other media do not have a memory, but they do age and their degen-
eration is not linked to their regeneration. As well, this crisis is brought about because 
of this blinding belief in digital media as cultural memory. This belief, paradoxically, 
threatens to spread this lack of memory everywhere and plunge us negatively into a 
way-wayback machine: the so-called  “ digital dark age. ”  The IWM thus fi xes the Inter-
net by offering us a  “ machine ”  that lets us control our movement between past and 
future by regenerating the Internet at a grand scale. The Internet Wayback Machine 
is appropriate in more ways than one: because web pages link to, rather than embed, 
images, which can be located anywhere, and because link locations always change, 
the IWM preserves only a skeleton of a page, fi lled with broken — rendered — links and 
images (  fi gure 4.11 ). The IWM, that is, only backs up certain data types. These  “ saved ”  

 Figure 4.11 
 Screenshot of IWM backup of  < http://www.princeton.edu/~whkchun/index.html >  
 
 



172 Chapter 4

pages are not quite dead, but not quite alive either, for their proper commemoration 
requires greater effort. These gaps not only visualize the fact that our constant regen-
erations affect what is regenerated, but also the fact that these gaps — the irreversibility 
of this causal programmable logic — are what open the World Wide Web as archive to 
a future that is not simply stored upgrades of the past. 

    Repetition and regeneration open the future by creating a nonsimultaneous new 
that confounds the chronological time these processes also enable. Consider, for 
instance, the temporality of weblogs (also known as  blogs ). Blogs seem to follow the 
timing of newspapers in their plodding chronology, but blogs contain within them-
selves archives of their posts, making the blog, if anything, like the epistolary novel. 
Unlike the epistolary novel, which, however banal, was focused on a plot or a moral, 
the blog entries are tied together solely by the presence of the so-called author. What 
makes a blog  “ uninteresting ”  is not necessarily its content, which often reads like a 
laundry list of things done or to do, but rather its immobility. The ever-updating, 
inhumanly clocked time in which our machines and memories are embedded and 
constantly refreshed makes the blog ’ s material stale. The chronology, seemingly 
enabled by this time, is also compromised by these archives and the uncertainty of 
their regular reception. An older post can always be  “ discovered ”  as new; a new post 
is already old. This nonsimultaneousness of the new, this layering of chronologies, 
means that the gap between illocutionary and perlocutionary in high-speed telecom-
munications may be dwindling, but — because everything is endlessly repeated —
 response is demanded over and over again. The new is sustained by this constant 
demand to respond to what we do not yet know, by the goal of new media czars to 
continually create desire for what one has not yet experienced. 

 Digital media networks are not based on the regular obsolescence or disposability 
of information, but rather on the resuscibility or the undead of information. Even text 
messaging, which seems to be about the synchronous or the now, enables the endless 
circulation of forwarded messages, which are both new and old. Reliability is linked 
to deletion: a database is considered to be unreliable (to contain  “ dirty data ” ), if it 
does not adequately get rid of older, inaccurate information. Also, this repetition, 
rather than detracting from the message, often attests to its importance. Repetition 
becomes a way to measure scale in an almost inconceivably vast communications 
network. 

 Rather than getting caught up in speed then, what we must analyze, as we try to 
grasp a present that is always degenerating, are the ways in which ephemerality is 
made to endure. Paul Virilio ’ s constant insistence on speed as distorting space-time 
and on real-time as rendering us susceptible to the dictatorship of speed has gener-
ated much good work in the fi eld, but it can blind us to the ways in which images 
do not simply assault us at the speed of light.  128   Just because images fl ash up all of 
a sudden does not mean that response or responsibility is impossible, or that scholarly 
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analysis is no longer relevant. As the news obsession with repetition reveals, an image 
does not fl ash up only once. The pressing questions are: why and how is it that the 
ephemeral endures? And what does the constant repetition and regeneration of infor-
mation effect? What loops and what instabilities does the enduring ephemeral intro-
duce to the logic of programmability? What is surprising is not that digital media 
fades, but rather that it stays at all and that we remain transfi xed at our screens as 
its ephemerality endures. 
           
 





 Conclusion: In Medias Res 

 No matter how forewarned we are, thanks to the forearmaments of the knowledge of the secret 

of commodity exchange and its resulting fetishism, as long as exchange (language) goes on we 

are powerless to overcome its diffi culties. And knowing makes it more scary.  “ Je sais bien, mais 

quand m ê me. ”  As Marx says, this is the path of madness:  “ If I state that coats or boots stand in 

a relation to linen because the former is the universal embodiment of abstract human labor, the 

craziness . . . of the expression hits you in the eye. But when the producers of coats and boots 

bring these commodities into relation with linen . . . the relation . . . appears to them in this 

crazy . . . form. ” . . .  “ Humanity ”  is this madness, its subject and its object. It is not simply the 

ignorance of not knowing what to do; it is rather the terror of still having to do, without knowing. 

And we have no magic caps, only ghosts and monsters. 

  — Thomas Keenan  1   

 This book has traced the emergence of programmability through various theoretical 
and historical threads: code — both computer and genetic — as logos, user as sovereign, 
interfaces as  “ enlightening ”  maps, computer as metaphor for metaphor, and program-
mability as both thriving on and annihilating memory. It explores the extent to which 
computers, understood as networked software and hardware machines, are — or perhaps 
more precisely set the grounds for — neoliberal governmental technologies. And it 
examines how computers accomplish this not simply through the problems (popula-
tion genetics, bioinformatics, nuclear weapons, state welfare, and climate) they make 
it possible to both pose and solve, but also through their very logos, their embodiment 
of logic. 

 The book began in part I with the question of code as logos, that is, with a 
 “ sourcery ”  that posited code written in higher-level programming languages as auto-
matically and unfailingly  “ doing what it says. ”  As the perfect performative utterance, 
code brought together two separate powers, the legislative and the executive, making 
execution and hardware largely irrelevant. This sourcery also opened part II, which 
posited genetics and computer code as complementary strands of a stylized double 
helix. Notably, code as logo s  within genetics precedes (rather than simply follows) its 
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appearance in computer technology: Erwin Schr ö dinger famously hypothesized a 
genetic-code script that was  “ law-code and executive power . . . architect ’ s plan and 
builder ’ s craft — in one. ”   2   Both these cases, via their simplifi ed maps of power, made 
possible the reemergence of a small- s  sovereign subject, that is, one who could read 
and  “ speak ” /manipulate these codes cum laws. This subject — described by Joseph 
Weizenbaum among others, as more powerful than emperors, playwrights, and chan-
cellors — is the ultimate creator and master of completely knowable worlds. Not acci-
dentally, both Alan Turing and Schr ö dinger, in explaining discrete computing and 
genetic codes respectively, return to  “ Laplace ’ s view that from the complete state of 
the universe at one moment of time, as described by the positions and velocities of 
all particles, it should be possible to predict all future states. ”   3   Crucially, this power to 
know and create is not limited to programmers, but also spreads to users. Looking in 
particular at graphical user interfaces (GUIs) (which, along with higher-level program-
ming languages, have been eroding the difference between users and programmers), 
this book outlines the ways in which computer interfaces  “ empower ”  users by ampli-
fying their actions; this makes them the source of the action, putting them, in Douglas 
Engelbart ’ s words, in the  “ bull-dozer ’ s cab. ”  Grounded on the principles of  “ direct 
manipulation ”  and  “ direct engagement, ”  GUIs offer users a way to act and navigate 
an increasingly complex world. The maps they offer, as well as the paths they outline, 
seem to give individuals a way to comprehend their relationship to that  “ vaster and 
properly unrepresentable totality which is the ensemble of society ’ s structures as a 
whole. ”   4   Fundamental to this mapping — which is offered by both computers and 
genetics — is memory, for memory makes possible both programs that link the past to 
the future and a  “ memoryless ”  inheritance. By storing programs and becoming 
archives, computers make the future predictable; by enabling a  “ hard ”  unconscious 
inheritance from generation to generation, genetics offers  “ you, ”  as a form of human 
capital, powers (and  “ disabilities ” ) that exceed personal experience. All of these threads 
together make the computer – genetics double helix a form of enlightenment: an 
empowering knowledge that fi nally enables man to forego his self-incurred tutelage 
and to be free. Freedom here stems from individual knowledge and actions, a central 
tenet of neoliberal governmentality. 

 At the same time, however, this book calls into question this narrative of overarch-
ing knowledge and freedom through these very concepts. Code as logos not only 
extends the power of individual programmers, it also makes code itself both legisla-
tion and execution: it spreads a neoliberal empowerment through the embedding of 
governmental enforcement into everyday situations, making us  “ subjects ”  of code. 
The gendered, military and eugenic histories examined bear witness to the constant 
anxiety that we programmers are not sovereigns, but slaves, that abstraction fosters 
greater ignorance. Further, the maps offered by GUIs are fundamentally mediated: as 
our interfaces become more  “ transparent ”  and visual, our machines also become more 
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dense and obscure. Indeed, the call to map may be the most obscuring of all: by 
constantly drawing connections between data points, we sometimes forget that the 
map should be the beginning, rather than the end, of the analysis. Through our clicks, 
we perhaps always escape, but never leave, embroiled more strongly in an ideology 
that persists through our changes rather than our knowledge.  5   Our archive of knowl-
edge as well seems to promise destruction and forgetfulness, as much as it promises 
permanence and stability. Memory would seem to be dynamic: an enduring ephemeral 
that disappears if it is not repeated (and also disappears through its repetition). So, 
instead of being enlightened and free, we seem to be caught in a certain madness: 
constantly acting without knowing, moving from crisis to crisis.  6   We seem to be free 
only within certain constraints, within a  “ mousetrap. ”  

 Crucially, this book has sought neither to condemn nor to celebrate software. 
Rather, it has been implicitly arguing that software can only be understood  in media 
res  — in the middle of things. In media res is a style of narrative that starts in the middle 
as the action unfolds. Rather than offering a smooth chronology, the past is introduced 
through fl ashbacks — interruptions of memory. To return to the parable of the six blind 
men relayed in the introduction, this means that the position of the blind men who 
know without knowing is not one to be superseded, but rather it is the position from 
which we can intervene and know. Software in media res also means that we can only 
begin with things — things that we grasp and touch without fully grasping, things that 
unfold in time, things that can only be rendered  “ sources ”  or objects (if they can) 
after the fact. Further, it means addressing the move within programming toward 
data-driven programming — a form of programming that, because it starts with data 
and then seeks (through machine learning algorithms) to discover the pattern  “ driving ”  
behavior, is programming in media res. Last, in media res means taking seriously the 
computer ’ s peculiar status as medium. It means grappling with the implications of the 
fact that a means of computation has also become a channel of communication and 
a storage device. Hence the emphasis on what is ghostly or undead, on what cuts 
across the human and the machine, on how we can make our interfaces more, rather 
than less, productively spectral; hence the emphasis on code as a  re-source , rather than 
a source. Source code becomes a source only through its destruction, through its 
simultaneous nonpresence and presence.  7   Code (both biological and technological), 
in other words, is  “ undead ”  writing, a writing that — even when it repeats itself — is 
never simply a deadly or living repetition of the same.  8   

 I thus want to end by addressing how being  “ in the middle of things, ”  rather than 
in the driver ’ s seat, can enable freedom and movement. My last book,  Control and 
Freedom: Power and Paranoia in the Age of Fiber Optics , argued that freedom, rather than 
being the fl ip side of control, makes control possible, necessary, and never enough. 
In it I pondered freedom as an experience: as a giving over of ourselves to what is 
unknown, as an immersion that makes relation possible. Tellingly, although Milton 
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Friedman in his highly infl uential neoliberal theorization,  Capitalism and Freedom , 
initially linked economic and political freedom, by 2002 (after a visit to Hong Kong), 
he delinked them, arguing  “ while economic freedom is a necessary condition for civil 
and political freedom, political freedom, desirable though it may be, is not a necessary 
condition for economic and civil freedom. . . . political freedom, which under some 
circumstances promotes economic and civic freedom, and under others, inhibits eco-
nomic and civic freedom. ”   9   Political freedom cannot always support neoliberal eco-
nomic freedom precisely because it is dangerous, because it is a dangerous experience 
that undoes, as much as it supports, the autonomous subject. 

 An anecdote relayed by Vicente Rafael in his insightful analysis of the 2001 People 
Power II protest makes this point nicely. This peaceful protest, which overthrew the 
government of Philippine President Joseph Estrada, in part was organized through text 
messages: illustrating how computer and networked technology can foster the desire 
for (and fear of) connection as much as they can for individualism. Neoliberalism is 
being superseded by neoconservatism: a drive to compensate for neoliberal isolation 
and chaos through a return to communal conservative values.  10   Neoconservatism, 
however, is not the only way in which networks are being reimagined. Rafael repeats 
the following online account of anonymous participant Flor C. ’ s encounter with the 
streaming crowd of people during the protest: 

 When I fi rst went to the fl yover, I was caught in the thick waves of people far from the center 

of the rally. I could barely breathe from the weight of the bodies pressing on my back and 

sides. I started to regret going to this place that was [so packed] that not even a needle could 

have gone through the spaces between the bodies. After what seemed like an eternity of 

extremely small movements, slowly, slowly, there appeared a clearing before me ( lumuwag bigla 

sa harap ko ). I was grateful not because I survived but because I experienced the discipline and 

respect of one for the other of the people — there was no pushing, no insulting, everyone even 

helped each other, and a collective patience and giving way ruled ( kolektibong pasensiya at 

pagbibigayan ang umiral ).  

 The night deepened. Hungry again. Legs and feet hurting. I bought squid balls and sat on 

the edge of the sidewalk. . . . While resting on the sidewalk, I felt such immense pleasure, safe 

from danger, free, happy in the middle of thousands and thousands of anonymous buddies.  11   

 For Flor C., freedom stems from a collective patience and giving way — a collective fl ow 
in which one is immersed and imperiled. This freedom does not offer a feeling of 
mastery; it neither relies on maps nor sovereign subjects nor strategies, but rather 
depends on a neighborhood of relations and on unfolding actions. These actions, 
these movements reveal that  “ having to act without knowing ”  does not simply inspire 
terror — or if it does, it does not only do so; rather, such unknowing action makes 
possible collective human freedom. 



 Epilogue: In Medias Race 

 I want to conclude (again) by referring to a thread that has been largely invisible and 
yet central. This book initially was inspired by the striking parallels between software 
 in medias res  and race — that is, parallels between  software  and  race  as key terms in the 
current frenzy of and decline in visual knowledge. Linked together in the early twen-
tieth century through the notion of a  “ genetic program, ”  software and race embody 
two important ways of conceptualizing a seductively causal relationship between order 
and vision, the visible and invisible, the imaginable and readable — a causal relation-
ship that contradicted early twentieth-century visions of a dark entropic future. Race 
and software are both nebulous entities (race cannot be scientifi cally defi ned; software 
cannot be physically separated from hardware), yet solid everyday experiences. We are 
expected to be as blind to software as we are to race; but race and software both act: 
both maintain visual literacy in an age of waning indexicality. 

 Like software, race was, and still is, a privileged way of understanding the relation-
ship between the visible and invisible: it links visual cues to unseen forces. Interpreted 
through the lens of Mendelian genetics in the early- to mid-twentieth century, the 
consistent hereditability of racial features seemed to encapsulate an orderly transfer of 
traits, which belied the disorderly future predicted by statistical physics. A dream of 
order from order inspired conceptions of a strictly causal genetic code, which soft-
ware — and not genetics — would be able to fulfi ll. Changes to conceptualizations of race 
are also key to understanding the vexed relationship between indexicality and causality 
this book has addressed. Although race since World War II no longer credibly links 
physical differences with innate mental differences, race remains a valid category. In 
the work of population geneticists, racial groups have become  “ breeding populations ” ; 
in the work of molecular biologists, racial groups are defi ned by the probability of 
having a combination of mainly unexpressed genetic material (the relationship between 
phenotype and genotype, which race supposedly explained, has resolved into DNA, 
and thus intersected with software). Culturally, as Toni Morrison has argued, race has 
become more on display than ever, even as the question of what race indexes — cultural 
or genetic differences, the results of economic injustice — remains unresolved.  1   
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 Race and software therefore mark the contours of our current understanding of 
visual knowledge as  “ programmed visions. ”  As human vision is increasingly deval-
ued through technological mediation in the sciences and through ideals of  “ color-
blindness, ”  images, graphics, and simulations proliferate. While writing this book, 
however, it became clear that the topic  “ race as archive ”  was too big to be included.  2   
It has become a project in its own right, but I conclude with software in medias 
 race  because it has haunted this book and its vision. 



  You, Again  

    By now you should realize that there are many yous. Not simply because you adjoins the 
singular and the plural, but also because every you is haunted by what remains: by what 
remains as you read, by you as what remains.  

  The question: how are we to imagine you? By tracing the moments of connection — the 
ways in which the local unfolds to the global, constituting the  “ glocal ” ? Or, by taking these 
tracings as the beginnings of a more powerful imagining, a more powerful hallucination?  
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