
This book offers a critical reconstruction of the fundamental ideas and
methods of artificial intelligence research. Through close attention to the
metaphors of AI and their consequences for the field's patterns of success
and failure, it argues for a reorientation of the field away from thought in
the head and toward activity in the world.

By considering computational ideas in a philosophical framework, the
author eases critical dialogue between technology and the humanities and
social sciences. AI can benefit from new understandings of human na-
ture, and in return, it offers a powerful mode of investigation into the
practicalities and consequences of physical realization.
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Joshu asked Nansen: "What is the path?"
Nansen said: "Everyday life is the path."
Joshu asked: "Can it be studied?"
Nansen said: "If you try to study, you will be far away from it."
Joshu asked: "If I do not study, how can I know it is the path?"
Nansen said: "The path does not belong to the perception world,

neither does it belong to the nonperception world. Cognition is a
delusion and noncognition is senseless. If you want to reach the true
path beyond doubt, place yourself in the same freedom as sky. You
name it neither good nor not-good."

At these words Joshu was enlightened.

Mumons comment: Nansen could melt Joshu's frozen doubts at once
when Joshu asked his questions. I doubt though if Joshu reached the
point that Nansen did. He needed thirty more years of study.

In spring, hundreds of flowers; in autumn, a harvest moon;
In summer, a refreshing breeze; in winter, snow will accompany you.
If useless things do not hang in your mind,
Any season is a good season for you.

Ekai, The Gateless Gate, 1228
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Preface

Artificial intelligence has aroused debate ever since Hubert Dreyfus
wrote his controversial report, Alchemy and Artificial Intelligence (1965).
Philosophers and social scientists who have been influenced by European
critical thought have often viewed AI models through philosophical
lenses and found them scandalously bad. AI people, for their part, often
do not recognize their methods in the interpretations of the critics, and as
a result they have sometimes regarded their critics as practically insane.

When I first became an AI person myself, I paid little attention to the
critics. As I tried to construct AI models that seemed true to my own
experience of everyday life, however, I gradually concluded that the
critics were right. I now believe that the substantive analysis of human
experience in the main traditions of AI research is profoundly mistaken.
My reasons for believing this, however, differ somewhat from those of
Dreyfus and other critics, such as Winograd and Flores (1986). Whereas
their concerns focus on the analysis of language and rules, my own
concerns focus on the analysis of action and representation, and on the
larger question of human beings' relationships to the physical environ-
ment in which they conduct their daily lives. I believe that people are
intimately involved in the world around them and that the epistemologi-
cal isolation that Descartes took for granted is untenable. This position
has been argued at great length by philosophers such as Heidegger and
Merleau-Ponty; I wish to argue it technologically.

This is a formidable task, given that many AI people deny that such
arguments have any relevance to their research. A computer model, in
their view, either works or does not work, and the question is a purely
technical one. Technical practice is indeed a valuable way of knowing,
and my goal is not to replace it but to deepen it. At the same time, AI has
had great trouble understanding certain technical impasses that philo-
sophical methods both predict and explain. The problem is one of con-
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sciousness: the AI community has lacked the intellectual tools that it
needs to comprehend its own difficulties. What is needed, I will argue, is
a critical technical practice - a technical practice for which critical reflec-
tion upon the practice is part of the practice itself. Mistaken ideas about
human nature lead to recurring patterns of technical difficulty; critical
analysis of the mistakes contributes to a recognition of the difficulties.
This is obvious enough for AI projects that seek to model human life, but
it is also true for AI projects that use ideas about human beings as a
heuristic resource for purely technical ends.

Given that no formal community of critical technical practitioners
exists yet, this book necessarily addresses two very different audiences,
technical and critical. The technical audience consists of technical practi-
tioners who, while committed to their work, suspect that it might be
improved using intellectual tools from nontechnical fields. The critical
audience consists of philosophers and social scientists who, while perhaps
unhappy with technology as it is, suspect that they can make a positive
contribution to its reform.

In my experience, the first obstacle to communication between these
audiences is the word "critical," which for technical people connotes
negativity and destruction. It is true that critical theorists are essentially
suspicious; they dig below the surface of things, and they do not expect to
like what they find there. But critical analysis quickly becomes lost unless
it is organized and guided by an affirmative moral purpose. My own
moral purpose is to confront certain prestigious technical methodologies
that falsify and distort human experience. The purpose of critical work,
simply put, is to explain how this sort of problem arises. Technical people
frequently resist such inquiries because they seem to involve accusations
of malfeasance. In one sense this is true: we all bear some responsibility
for the unintended consequences of our actions. But in another sense it is
false: critical research draws attention to structural and cultural levels of
explanation - to the things that happen through our actions but that exist
beneath our conscious awareness.

In the case of AI, I will argue that certain conceptions of human life are
reproduced through the discourses and practices of technical work. I will
also argue that the falsehood of those conceptions can be discerned in
their impracticability and that new critical tools can bring the problem
into the consciousness of the research community. The point, therefore,
is not to invoke Heideggerian philosophy, for example, as an exogenous
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authority that supplants technical methods. (This was not Dreyfus's
intention either.) The point, instead, is to expand technical practice in
such a way that the relevance of philosophical critique becomes evident as
a technical matter. The technical and critical modes of research should
come together in this newly expanded form of critical technical
consciousness.

I am assuming, then, that both the technical and critical audiences for
this book are sympathetic to the idea of a critical technical practice.
Writing for these two audiences simultaneously, however, has meant
reckoning with the very different genre expectations that technical and
critical writing have historically entailed. Technical texts are generally
understood to report work that their authors have done; they are focused
on machinery in a broad sense, be it hardware, software, or mathematics.
They open by making claims - "Our machinery can do such and such
and others' cannot" - and they confine themselves to demonstrating
these claims in a way that others can replicate. They close by sketching
future work - more problems, more solutions. Critical texts, by contrast,
are the work that their authors have done. Their textuality is in the
foreground, and they are focused on theoretical categories. They open by
situating a problematic in an intellectual tradition, and they proceed by
narrating their materials in a way that exhibits the adequacy of certain
categories and the inadequacy of others. They close with a statement of
moral purpose.

When a technical audience brings its accustomed genre expectations to
a critical text or vice versa, wild misinterpretations often result, and I
have spent too many years revising this text in an attempt to avoid
seeming either scandalous or insane. The result of this effort is a hybrid
of the technical and critical genres of writing. By intertwining these two
strands of intellectual work, I hope to produce something new - the
discursive forms of a critical technical practice. This being a first at-
tempt, I will surely satisfy nobody. Everyone will encounter whole chap-
ters that seem impossibly tedious and other chapters that seem unrea-
sonably compressed. I can only ask forbearance and hope that each reader
will imagine the plight of other readers who are approaching the book
from the opposite direction.

This amalgamation of genres has produced several curious effects, and
rather than suppress these effects I have sought to draw them out and
make them explicit. One such effect is a frequent shifting between the
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levels of analysis that I will call reflexive, substantive, and technical. In
one section I will explicate the ground rules for a contest among substan-
tive theories, and on the next I will advocate one of these theories over the
others. In one chapter I will criticize technical uses of language, and in
the next I will start using language in precisely those ways in order to
show where it leads.

Another such effect is a frequent overburdening of terms. Sometimes,
as with "logic," a term has evolved in different directions within the
critical and technical traditions, so that it is jarring to bring the divergent
senses together in the same text. In other cases, as with "problem" and
"model," technical discourse itself employs a term in at least two wholly
distinct senses, one methodological and one substantive. And in yet other
cases, technical and critical vocabulary together have drawn so many
words out of circulation that I cannot help occasionally using some of
them in their vernacular senses as well. I have tried to make the senses of
words clear from context, and in most cases I have provided notes that
explain the distinctions.

The peculiarity of my project might also be illustrated by a com-
parison with Paul Edwards's (1996) outstanding recent history of AI. In
the language of social studies of technology (Staudenmaier 1985), Ed-
wards opposes himself to "internalist" studies that explain the progress
of a technical field purely through the logic of its ideas or the economics
of its industry. He observes that internalist studies have acquired a bad
name from their association with the sort of superficial, self-justifying
history that Kuhn (1962) lamented in his analysis of "normal science." In
response to this tendency, Edwards (1996: xiv) positions his work as a
"counterhistory," drawing out the interactions among cultural themes,
institutional forces, and technical practices that previous studies have
inadvertently suppressed.

While I applaud this kind of work, I have headed in an entirely
different direction. This book is not only an internalist account of re-
search in AI; it is actually a work #/AI - an intervention within the field
that contests many of its basic ideas while remaining fundamentally
sympathetic to computational modeling as a way of knowing. I have
written a counterhistory of my own. By momentarily returning the in-
stitutional dimensions of AI to the periphery, I hope to permit the
esoteric practices of the field to emerge in their inner logic. Only then will
it be possible to appreciate their real power and their great recalcitrance.
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Not only is the daily work of AI firmly rooted in practices of computer
system design, but AI researchers have also drawn upon deeper currents
in Western thought, both reproducing and transcending older ideas
despite their conscious intentions. Would-be AI revolutionaries are con-
tinually reinventing the wheel, regardless of their sources of funding, and
I hope to convey some idea of how this happens. AI is not, however,
intellectually consistent or static; to the contrary, its development can be
understood largely as successive attempts to resolve internal tensions in
the workings of the field. I want to recover an awareness of those tensions
through a critical exhumation of their sources.

My expository method is hermeneutic. I want to exhibit AI as a
coherent totality, and then I want to turn it inside out. To do this, I have
painted a big picture, examining the most basic concepts of computing
(bits, gates, wires, clocks, variables, seriality, abstraction, etc.) and
demonstrating their connection to seemingly more contentious ideas
about such matters as perception, reasoning, and action. I will pass
through some of these topics several times in different ways. My purpose
is not to produce an exhaustive linear history but to assemble a complex
argument. Technical ways of knowing are irreducibly intuitive, and each
pass will open up a new horizon of intuition based on technical experi-
ence. AI has told variations on a single story about human beings and
their lives; I believe that this story is wrong, and by forcing its tensions to
the surface I hope to win a hearing for a completely different story. My
goal, however, is not to convince everyone to start telling that same story.
Computer modeling functions as a way of knowing only if the modelers
are able to hear what the materials of technical work are trying to tell
them, and if they respond by following those messages wherever they
lead. The only way out of a technical impasse is through it.

I owe many debts. John Brace taught me mathematics, and Chuck Rieger
and Hanan Samet introduced me to the field of AI. At MIT, many of the
ideas in this book arose through conversations with David Chapman. He
is also the principal author of the computer program that I discuss in
Chapter 13. John Batali, Gary Drescher, Ken Haase, and Ian Horswill
were early members of the debating society in which I first practiced the
arguments. I appreciate the supportively skeptical comments of Randy
Davis, Ken Forbus, Pat Hayes, and Dan Weld, and the philosophical
assistance of Jon Doyle.
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As the internal problems in AI became clear, I went looking for people
who could explain them to me. Hubert Dreyfus, Harold Garfinkel, and
Lucy Suchman introduced me to the phenomenological tradition; Jean
Comaroff, John Comaroff, Bill Hanks, and Jean Lave introduced me to
the dialectical tradition; and George Goethals introduced me to the
psychoanalytic tradition.

Parts of this book began life in dissertation research that I conducted at
the MIT Artificial Intelligence Laboratory, and I am indebted to Mike
Brady, Rod Brooks, Gerald Jay Sussman, and Patrick Winston for their
guidance. Aside from the people I have already mentioned, Jonathan
Amsterdam, Mike Dixon, Carl Feynman, and Eric Saund wrote helpful
comments on drafts of that work. I was supported for most of that time
by a graduate fellowship from the Fannie and John Hertz Foundation,
and support for the AI Laboratory's artificial intelligence research was
provided in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract
N00014-85-K-0124.

Work on this manuscript began at the University of Chicago, and I
appreciate the support and comments of Tim Converse, Kris Hammond,
Charles Martin, Ron McClamrock, and the other members of the Uni-
versity of Chicago AI group. As the manuscript evolved and became a
book, it benefited greatly from extensive comments by Steve Bagley,
David Chapman, Julia Hough, Frederic Laville, Lucy Suchman, and
Jozsef Toth, and from the assistance of John Batali, Margaret Boden,
Bill Clancey, David Cliff, Mike Cole, Bernard Conein, Johan de Kleer,
Bruce Donald, Yrjo Engestrom, Jim Greeno, Judith Gregory, David
Kirsh, Rob Kling, Jim Mahoney, Ron McClamrock, Donald Norman,
Beth Preston, Stan Rosenschein, Penni Sibun, Rich Sutton, Michael
Travers, and Daniel Weise. Paul Edwards and Brian Smith were kind
enough to provide me with drafts of their own books prior to publication.
Mario Bourgoin directed me to the epigraph (which is taken from Paul
Reps, ed., Zen Flesh, Zen Bones [Anchor Press, n.d.], by permission of
Charles E. Tuttle Publishing Company of Tokyo, Japan). My apologies to
anybody I might have omitted.



Introduction

Activity

Computational inquiry into human nature originated in the
years after World War II. Scientists mobilized into wartime research had
developed a series of technologies that lent themselves to anthropomor-
phic description, and once the war ended these technologies inspired
novel forms of psychological theorizing. A servomechanism, for example,
could aim a gun by continually sensing the target's location and pushing
the gun in the direction needed to intercept it. Technologically sophisti-
cated psychologists such as George Miller observed that this feedback
cycle could be described in human-like terms as pursuing a purpose
based on awareness of its environment and anticipation of the future.1

New methods of signal detection could likewise be described as making
perceptual discriminations, and the analytical tools of information theory
soon provided mathematical ways to talk about communication. In the
decades after the war, these technical ideas provided the intellectual
license for a counterrevolution against behaviorism and a restoration of
scientific status to human mental life. The explanatory power of these
ideas lay in a suggestive confluence of metaphor, mathematics, and ma-
chinery. Metaphorical attributions of purpose were associated with the
mathematics of servocontrol and realized in servomechanisms; meta-
phorical attributions of discrimination were associated with the mathe-
matics of signal and noise and realized in communications equipment;
and metaphorical attributions of communication were associated with the
mathematics of information theory and realized in coding devices. The
new psychology sought to describe human beings using vocabulary that
could be metaphorically associated with technologically realizable mathe-
matics.
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The development of the stored-program digital computer put this
project into high gear. It is a commonplace that the computer contributed
a potent stock of metaphors to modern psychology, but it is important to
understand just how these metaphors informed the new research. The
outlines of the project were the same as with servocontrol, signal detec-
tion, and information theory: a bit of metaphor attached to a bit of
mathematics and realized in a machine whose operation could then be
narrated using intentional vocabulary.2 But the digital computer both
generalized and circumscribed this project. By writing computer pro-
grams, one could physically realize absolutely any bit of finite mathemat-
ics one wished. The inside of the computer thus became an imaginative
landscape in which programmers could physically realize an enormous
variety of ideas about the nature of thought. Fertile as this project was, it
was also circumscribed precisely by the boundaries of the computer. The
feats of physics and chemistry that supported the digital abstraction
operated inside the computer, and not outside.

In this way, a powerful dynamic of mutual reinforcement took hold
between the technology of computation and a Cartesian view of human
nature, with computational processes inside computers corresponding to
thought processes inside minds. But the founders of computational psy-
chology, while mostly avowed Cartesians, actually transformed Des-
cartes's ideas in a complex and original way. They retained the radical
experiential inwardness that Descartes, building on a long tradition, had
painted as the human condition. And they retained the Cartesian under-
standing of human bodies and brains as physical objects, extended in
space and subject to physical laws. Their innovation lay in a subversive
reinterpretation of Descartes's ontological dualism (Gallistel 1980: 6-7).
In The Passions of the Soul, Descartes had described the mind as an
extensionless res cogitans that simultaneously participated in and tran-
scended physical reality. The mind, in other words, interacted causally
with the body, but was not itself a causal phenomenon. Sequestered in
this nether region with its problematic relationship to the physical world,
the mind's privileged object of contemplation was mathematics. The
"clear and distinct ideas" that formed the basis of Descartes's epistemol-
ogy in the Meditations were in the first instance mathematical ideas (Rorty
1979: 57-62; cf. Heidegger 1961 [1927]: 128-134). Of course, genera-
tions of mechanists beginning with Hobbes, and arguably from antiquity,
had described human thought in monistic terms as the workings of
machinery (Haugeland 1985: 23). But these theorists were always con-
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strained by the primitive ideas about machinery that were available to
them. Descartes's physiology suffered in this way, but not his psychology.
Although they paid little heed to the prescriptive analysis of thought that
Descartes had offered,3 the founders of computational psychology none-
theless consciously adopted and reworked the broader framework of
Descartes's theory, starting with a single brilliant stroke. The mind does
not simply contemplate mathematics, they asserted; the mind is itself
mathematical, and the mathematics of mind is precisely a technical speci-
fication for, the causally explicable operation of the brain.

This remarkable proposal set off what is justly called a "revolution" in
philosophy and psychology as well as in technology. Technology is in
large measure a cultural phenomenon, and never has it been more plainly
so than in the 1950s. Computational studies in that decade were studies
of faculties of intelligence and processes of thought, as part of a kind of cult
of cognition whose icons were the rocket scientist, the symbolism of
mathematics, and the computer itself.4 The images now strike us as dated
and even camp, but we are still affected by the technical practice and the
interpretation of human experience around which artificial intelligence,
or AI, was first organized.

I wish to investigate this confluence of technology and human experi-
ence. The philosophical underside of technology has been deeply bound
up with larger cultural movements, yet technical practitioners have gen-
erally understood themselves as responding to discrete instrumental
"problems" and producing technologies that have "effects" upon the
world. In this book I would like to contribute to a critical technical practice
in which rigorous reflection upon technical ideas and practices becomes
an integral part of day-to-day technical work itself.

I will proceed through a study in the intellectual history of research in
AI. The point is not to exhaust the territory but to focus on certain
chapters of APs history that help illuminate the internal logic of its
development as a technical practice.5 Although it will be necessary to
examine a broad range of ideas about thought, perception, knowledge,
and their physical realization in digital circuitry, I will focus centrally on
computational theories of action. This choice is strategic, inasmuch as
action has been a structurally marginal and problematic topic in AI; the
recurring difficulties in this computational research on action, carefully
interpreted, motivate critiques that strike to the heart of the field as it has
historically been constituted. I aim to reorient research in AI away from
cognition - abstract processes in the head - and toward activity - concrete
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undertakings in the world. This is not a different subject, but a different
approach to the same subject: different metaphors, methods, tech-
nologies, prototypes, and criteria of evaluation. Effecting such a reorien-
tation will require technical innovation, but it will also require an aware-
ness of the structure of ideas in AI and how these ideas are bound up with
the language, the methodology, and the value systems of the field.

Roughly speaking, computational research into activity seeks technical
ideas about action and representation that are well suited to the special
requirements of situated, embodied agents living in the physical world. The
"agents" could be robots we would like to build or creatures we would
like to understand. The word agent, though common in AI, does not
appeal to everyone. Its advantage is its ambiguity - robots, insects, cats,
and people are all agents.6 Such vocabulary tacitly promises, of course,
that computation provides useful ways of talking about robots, insects,
cats, and people at the same time without reducing all of them to a
bloodless technical order. In any event, I will have little to say about
insects and cats. To say that an agent is situated is to emphasize that its
actions make little sense outside of the particular situation in which it
finds itself in the physical and social world; it is always provided with
particular materials and involved with particular other agents. To say that
an agent is embodied is simply to say that it has a body. Even better,
following Merleau-Ponty (1962 [1945]), it is a body or exists as a body. As
a physical being, it has a definite location, limited experience, and finite
abilities. It is in the world, among the world's materials, and with other
agents. The claim is not simply that these things are true (hardly anybody
would deny them), but also that taking them seriously requires an over-
haul of basic ideas about both computation and activity.

My project is both critical and constructive. By painting computa-
tional ideas in a larger philosophical context, I wish to ease critical
dialogue between technology and the humanities and social sciences
(Bolter 1984; Giizeldere and Franchi 1995). The field of AI could cer-
tainly benefit from a more sophisticated understanding of itself as a form
of inquiry into human nature. In exchange, it offers a powerful mode of
investigation into the practicalities and consequences of physical reali-
zation.

My recommendation of a shift of focus from cognition to activity
converges with a number of other intellectual trends, each of which is
also founded in a critique of Cartesianism. These include the otherwise
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disparate traditions that descend from Heidegger's phenomenological
analysis of routine activity, Vygotsky's theory of human development,
and GarfinkePs studies of the interactional construction of social reality.7
Each of these schools of thought has attempted to replace the philosophi-
cal opposition between a self-contained perceiving subject and an inde-
pendent external object by describing our relationships to things as fun-
damentally bound up with their role in our ongoing projects, which in
turn are defined by our cultures, located in forms of embodied activity,
and acquired through socialization into a system of cultural practices.
As AI reorients itself toward the study of activity, it will be able to en-
gage in mutually beneficial dialogue with these traditions of research.
This process begins with computational ways of thinking about routine
activity.

Planning

Although the AI tradition has placed its principal emphasis on
processes it conceives of as occurring entirely within the mind, there does
exist a more or less conventional computational account of action. The
early formulation of this account that had the most pervasive influence
was George Miller, Eugene Galanter, and Karl Pribram's book, Plans and
the Structure of Behavior (I960).8 These authors rejected the extreme
behaviorist view that the organized nature of activity results from isolated
responses to isolated stimuli. Instead, they adopted the opposite extreme
view that the organization of human activity results from the execution of
mental structures they called Plans. Plans were hierarchical in the sense
that a typical Plan consisted of a series of smaller sub-Plans, each of
which consisted of yet smaller sub-Plans, and so forth, down to the
primitive Plan steps, which one imagines to correspond to individual
muscle movements. (Miller, Galanter, and Pribram capitalized the word
"Plan" to distinguish their special use of it, especially in regard to the
hierarchical nature of Plans, from vernacular usage. Subsequent authors
have not followed this convention. I will follow it when I mean to refer
specifically to Miller, Galanter, and Pribram's concept.)

What is a Plan? "A Plan is any hierarchical process in the organism that
can control the order in which a sequence of operations is to be per-
formed" (Miller et al. 1960: 16). They state, as a "scientific hypothesis"
about which they are "reasonably confident," that a Plan is "essentially
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the same as a program for a computer," a connotation the term has
carried to the present day. Shortly thereafter, though, they state that "we
shall also use the term 'Plan' to designate a rough sketch of some course
of action, just the major topic headings in the outline, as well as the
completely detailed specification of every detailed operation" (Miller et
al. 1960: 17). Thus a new Plan's hierarchical structure need not initially
reach down to the most primitive actions, though the hierarchy must be
constructed in full detail by the time any given step of it is executed.
They define execution by saying that "a creature is executing a particular
Plan when in fact that Plan is controlling the sequence of operations he is
carrying out" (Miller et al. 1960: 17).

Miller, Galanter, and Pribram applied the term "Plan" as broadly as
they could. In considering various aspects of everyday life, they focused
everywhere on elements of intentionality, regularity, and goal-directed-
ness and interpreted each one as the manifestation of a Plan. As with the
servos, radars, and codes that first inspired Miller and his contemporaries
in the 1940s, the concept of a Plan combined the rhetoric of structured
behavior with the formalisms of programming and proposed that the
latter serve as models of biological systems. A great difficulty in evaluat-
ing this proposal is the imprecise way in which Miller, Galanter, and
Pribram used words like "Plan." They demonstrated that one can find
aspects of apparent planfulness in absolutely any phenomenon of human
life. But in order to carry out this policy of systematic assimilation,
important aspects of activity had to be consigned to peripheral vision.
These marginalized aspects of activity were exactly those which the
language of Plans and their execution tends to deemphasize.

These ideas had an enormous influence on Al, but with some differ-
ences of emphasis. Although they occasionally employ the term "plan-
ning," Miller, Galanter, and Pribram provide no detailed theory of the
construction of new Plans. The Al tradition, by contrast, has conducted
extensive research on plan construction but has generally assumed that
execution is little more than a simple matter of running a computer
program. What has remained is a definite view of human activity that has
continued, whether implicitly or explicitly, to suffuse the rhetoric and
technology of computational theories of action. In place of this view, I
would like to substitute another, one that follows the anthropologically
motivated theoretical orientations of Suchman (1987) and Lave (1988) in
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emphasizing the situated nature of human action. Let me contrast the old
view and the new point by point:

• Why does activity appear to be organized?
Planning view: If someone's activity has a certain organization,
that is because the person has constructed and executed a repre-
sentation of that activity, namely a plan.
Alternative: Everyday life has an orderliness, a coherence, and
patterns of change that are emergent attributes of people's inter-
actions with their worlds. Forms of activity might be influenced
by representations but are by no means mechanically determined
by them.

• How do people engage in activity?
Planning view: Activity is fundamentally planned; contingency
is a marginal phenomenon. People conduct their activity by
constructing and executing plans.
Alternative: Activity is fundamentally improvised; contingency
is the central phenomenon. People conduct their activity by
continually redeciding what to do.

• How does the world influence activity?
Planning view: The world is fundamentally hostile, in the sense
that rational action requires extensive, even exhaustive, attempts
to anticipate difficulties. Life is difficult and complicated, a se-
ries of problems to be solved.
Alternative: The world is fundamentally benign, in the sense
that our cultural environment and personal experiences provide
sufficient support for our cognition that, as long as we keep our
eyes open, we need not take account of potential difficulties
without specific grounds for concern. Life is almost wholly rou-
tine, a fabric of familiar activities.

The alternative view of human activity that I have sketched here contains
a seeming tension: how can activity be both improvised and routine? The
answer is that the routine of everyday life is not a matter of performing
precisely the same actions every day, as if one were a clockwork device
executing a plan. Instead, the routine of everyday life is an emergent
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phenomenon of moment-to-moment interactions that work out in much
the same way from day to day because of the relative stability of our
relationships with our environments.

My sketched alternative also denies a central role to the use of plans.
People certainly use plans. But real plans are nothing like computer
programs. Sensibly organized goal-directed activity need not result from
the use of a plan. And plans never serve as direct specifications of action.
Instead, a plan is merely one resource among many that someone might
use in deciding what to do (Suchman 1987). Before and beneath any use
of plans is a continual process of moment-to-moment improvisation.
"Improvisation," as I will employ the term, might involve ideas about the
future and it might employ plans, but it is always a matter of deciding
what to do now. Indeed, the use of plans is a relatively peripheral phe-
nomenon and not a principal focus here.9

To speak of a "planning view" is misleading in one respect: few people
are aware of having committed themselves to such a view. Future chap-
ters will explain more precisely the sense in which the planning view has
governed research in AI. For the time being, it will be helpful to consider
Heidegger's (1961 [1927]) account of why the emergence of something
like the planning view is nearly inevitable. Most of us, Heidegger ob-
serves, spend our days immersed in practical concerns. We are concerned
with the traffic, the paperwork, the dust, the celery - with the objects that
we encounter as we pursue our goals and enact our identities. We find it
natural, therefore, to see the world as a constellation of objects. More-
over, the occasions on which particular objects really come to our atten-
tion are not representative of activity as a whole. Sometimes we momen-
tarily detach ourselves from our daily concerns to contemplate an object
in a special way - as, for example, a work of art. And sometimes an object
simply becomes obstinate; perhaps it is broken, or missing, or not the
right size. In these situations, we confront the object as a stranger - as
something very much separate from us. It is problems that attract our
attention, and problems play a wildly disproportionate role in the stories
we tell about our lives. We hardly notice the vast background of ordinary,
routine, unproblematic activities from which our lives are largely made.
Even when a problem does arise, the detection and resolution of the
problem both consist of concrete activities that are mostly routine. Be-
cause this unproblematic background of routine activity goes largely
unnoticed, we can succumb to the illusion that life is basically a series of
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problems, that situations in life typically require thinking and planning,
and that our normal way of relating to objects involves detached con-
templation. This illusion does not simply arise in individual experience;
it is also handed down through metaphors, narrative conventions, philo-
sophical systems, and other cultural constructs. It is this illusory view of
life - the planning view - that first crystallized in its modern form in
Descartes and that originally defined the tacit agenda for research in AI.
Yet, I will argue, the planning view is inadequate both as an account of
human life and as an approach to computational modeling.

It is hard to know, of course, how to evaluate Heidegger's argument.
Perhaps we should treat it as a just-so story; Heidegger, in any case,
presented it as a phenomenological description and a reconstruction of
the history of philosophy, not a logical deduction from premises or a
scientific inference from evidence. For our purposes here, though, that is
enough. Heidegger's story is useful in several ways. It confers an overall
sense on the more detailed analyses of Descartes and other theorists of
mechanism. It also directs our attention heuristically to technical diffi-
culties that might otherwise have gone undiagnosed or misunderstood.
Above all, it helps us cultivate an awareness of our own experience as
human beings. Heidegger's crucial insight is that philosophical ideas
tend to formalize the ways we experience our lives; if we experience our
lives in superficial ways then our philosophies will be correspondingly
superficial. The same reasoning applies to computational models, which
(whether the model-builders realize it or not) are derived from philo-
sophical theories and guided in their development by experiences of
everyday life. Better descriptions of everyday life do not disprove techni-
cal ideas, but they do motivate different intuitions, and they also help
evaluate the appeals to everyday intuition that are found throughout AI
research. APs pervasive focus on problems, for example, aligns with the
unreflective emphasis on problems that Heidegger finds in the modern
experience of everyday life. By failing to place problems in the context of
an unproblematic background, AI may fall prey to a mistaken conception
of them and an excessive emphasis on attempts to solve them. The point
in each case is not to debunk AI or technology in general, but to gain
what Heidegger would call a "free relation" to it, so that technological
modes of thinking do not colonize our awareness of our lives (Dreyfus
1995). Let us turn to the methodological issues that arise as AI research is
rethought in this way.
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Why build things?

Every discipline has its distinctive ways of knowing, which it
identifies with the activities it regards as its own: anthropologists do
fieldwork, architects design buildings, monks meditate, and carpenters
make things out of wood. Each discipline wears its defining activity as a
badge of pride in a craftworker's embodied competence. It will be said,
"You can read books all your life, but you don't really know about it until
you do it." Disciplinary boundaries are often defined in such ways - you
are not an anthropologist unless you have spent a couple years in the
field; you are not an architect unless you have built a building; and so
forth - and neighboring disciplines may be treated with condescension or
contempt for their inferior methods. Each discipline's practitioners carry
on what Schon (1983: 78) would call "reflective conversations" with their
customary materials, and all of their professional interactions with one
another presuppose this shared background of sustained practical en-
gagement with a more or less standard set of tools, sites, and hassles.
Defining a discipline through its own special activity carries risks. If a
disciplinary community cultivates invidious contrasts between its own
methods and those of other fields, it will surely become inbred and
insular, emptied by hubris and intolerance. If it is guided by critical
reflection on its practices and presuppositions, however, it has at least a
chance of continually deepening its self-awareness, renewing itself
through interdisciplinary dialogue without losing its distinctive advan-
tages. The culture of any particular discipline will presumably be found
somewhere between these extremes.

The discipline in question here is computational modeling, and specif-
ically AI. Although I will criticize certain computational ideas and prac-
tices at great length, my enterprise is computational nonetheless. AFs
distinctive activity is building things, specifically computers and compu-
ter programs. Building things, like fieldwork and meditation and design,
is a way of knowing that cannot be reduced to the reading and writing of
books (Chapman 1991: 216-217). To the contrary, it is an enterprise
grounded in a routine daily practice. Sitting in the lab and working on
gadgets or circuits or programs, it is an inescapable fact that some things
can be built and other things cannot. Likewise, some techniques scale up
to large tasks and others do not; and some devices operate robustly as
environmental conditions fluctuate, whereas others break down. The AI
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community learns things by cultivating what Keller (1983) calls a "feeling
for the organism," gradually making sense of the resulting patterns of
what works and what does not. Edwards (1996: 250, italics in the original)
rightly emphasizes that much of APs practitioners' technical framework
"emerged not abstractly but in their experiences with actual machines"
And Simon (1969: 20) speaks of computing as an "empirical science" - a
science of design.

I take an unusual position on the nature of computation and computa-
tional research. For my purposes, computation relates to the analysis and
synthesis of especially complicated things.10 These analytic and synthetic
practices are best understood as nothing less grand or more specific than
an inquiry into physical realization as such. This fact can be lost beneath
ideologies and institutions that define computation in some other way,
whether in terms of Turing machines, mathematical abstraction, inten-
tionality, symbolic reasoning, or formal logic. Nonetheless, what truly
founds computational work is the practitioner's evolving sense of what
can be built and what cannot. This sense, at least on good days, is a
glimpse of reality itself. Of course, we finite creatures never encounter
this "reality" except through the mediation of a historically specific
ensemble of institutions, practices, genres, ideologies, tools, career paths,
divisions of labor, understandings of "problems" and "solutions," and so
forth. These mediating systems vary historically through both practical
experience and broader shifts of social climate. Nonetheless, at each point
the technologist is pushing up against the limits of a given epoch's
technology, against the limits of physical reality conceived and acted
upon in a specific way. These limits are entirely real. But they are not
simply a product of reality-in-itself; nor are they simply internal conse-
quences of the idea-systems on their own, considered in abstraction from
particular attempts to get things to work.

This is the sense in which people engaged in technical work are - and,
I think, must be - philosophical realists. The something-or-other that
stands behind each individual encounter with the limits of physical real-
ization I would like to call practical reality. Practical reality is something
beyond any particular model or ontology or theory. A given model might
seem like the final word for years or centuries, but ultimately the limit-
pushing of technical work will reveal its margins. The resulting period of
stumbling and improvisation will make the previously taken-for-granted
model seem contingent: good enough perhaps for some purposes, but no
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longer regarded (if it ever has been) as a transparent description of reality.
Much of the sophistication of technical work in mechanical engineering
and semiconductor physics, for example, lies in the astute choice of
models for each purpose.

Technical communities negotiate ceaselessly with the practical reality
of their work, but when their conceptions of that reality are mistaken,
these negotiations do not necessarily suffice to set them straight. Com-
putational research, for its part, has invested an enormous amount of
effort in the development of a single model of computation: the dual
scheme of abstraction and implementation that I will describe in Chapter
4. This framework has motivated a multitude of technical proposals, but
it has also given rise to recurring patterns of technical trouble. Although
computationalists do possess a certain degree of critical insight into the
patterns of trouble that arise in their work, they also take a great deal for
granted. Beneath the everyday practices of computational work and the
everyday forms of reasoning by which computationalists reflect on their
work, a vast array of tacit commitments lies unexamined. Each of these
commitments has its margins, and the field's continual inadvertent en-
counters with these margins have accumulated, each compounding the
others, to produce a dull sense of existential chaos. Nobody complains
about this, for the simple reason that nobody has words to identify it. As
successive manifestations of the difficulty have been misinterpreted and
acted upon, the process has become increasingly difficult to disentangle
or reverse.

In trying to set things right, a good place to start is with AI re-
searchers' understanding of their own distinctive activity: building com-
puter systems. AI people, by and large, insist that nothing is understood
until it has been made into a working computer system. One reason to
examine this insistence critically is its association with research values
that disrupt interdisciplinary communication. This disruption goes in
two directions - from the inside out (i.e., from AI to the noncomputa-
tional world) and from the outside in (i.e., the other way round) - and it is
worth considering these two directions separately.

Research based on computer modeling of human life often strikes
people from other fields as absurd. AI studies regularly oversimplify
things, make radically counterfactual assumptions, and focus excessive
attention on easy cases. In a sense this is nothing unusual: every field has
to start somewhere, and it is usually easier to see your neighbor's leading
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assumptions than your own. But in another sense things really are
different in AI than elsewhere. Computer people believe only what they
can build, and this policy imposes a strong intellectual conservatism on
the field. Intellectual trends might run in all directions at any speed, but
computationalists mistrust anything unless they can nail down all four
corners of it; they would, by and large, rather get it precise and wrong
than vague and right. They often disagree about how much precision is
required, and what kind of precision, but they require ideas that can be
assimilated to computational demonstrations that actually get built. This
is sometimes called the work ethic: it has to work. To get anything nailed
down in enough detail to run on a computer requires considerable effort;
in particular, it requires that one make all manner of arbitrary commit-
ments on issues that may be tangential to the current focus of theoretical
interest. It is no wonder, then, that AI work can seem outrageous to
people whose training has instilled different priorities - for example,
conceptual coherence, ethnographic adequacy, political relevance, math-
ematical depth, or experimental support. And indeed it is often totally
mysterious to outsiders what canons of progress and good research do
govern such a seemingly disheveled enterprise. The answer is that good
computational research is an evolving conversation with its own practical
reality; a new result gets the pulse of this practical reality by suggesting
the outlines of a computational explanation of some aspect of human life.
The computationalist's sense of bumping up against reality itself - of
being compelled to some unexpected outcome by the facts of physical
readability as they manifest themselves in the lab late at night - is deeply
impressive to those who have gotten hold of it. Other details - con-
ceptual, empirical, political, and so forth - can wait. That, at least, is how
it feels.

How, then, can we keep what is good about AFs methods without
falling into disciplinary chauvinism? We can start by rejecting the idea,
derived from the institutions of engineering, that the sole test of com-
putational research is whether it produces solutions to problems. These
terms presuppose and conflate two unfortunate doctrines: Turing's
model of computation (problems as input-output mappings) and the
instrumentalism of engineering (problems as the unquestioned goals of
one's employer).11 On this view, the work ethic is both right and wrong.
It is right in the sense that building things is a valuable way of knowing. It
is wrong, however, in that "working" is too narrow as a criterion of
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success. It is well known that a technical method can be perfectly well
defined and perform exactly according to its specification, while at the
same time being as wrongheaded as you like (Jirotka and Goguen 1994).
The point of a critical technical practice is that learning from technical
experience takes sustained, sophisticated thought. Technical methods do
not simply "work" or "fail to work." The picture is always mixed. Every
method has its strengths and weaknesses, its elegance and its clumsiness,
its subtle patterns of success and failure. These things ought to be the
subject of intellectual discussion and dispute, both in particular cases and
as general matters of methodology - and not as a separate category of
research but as something continuous with the presentation of technical
projects.

The work ethic needs to be qualified in another way as well. To
understand what is implied in a claim that a given computer model
"works," one must distinguish two senses of "working." The first, nar-
row sense, again, is "conforms to spec" - that is, it works if its behavior
conforms to a pregiven formal-mathematical specification. Since every-
thing is defined mathematically, it does not matter what words we use to
describe the system; we could use words like "plan," "learn," and "un-
derstand," or we could use words like "foo," "bar," and "baz." In fact,
programmers frequently employ nonsense terms like these when testing
or demonstrating the logical behavior of a procedure. Local program-
ming cultures will frequently invent their own sets of commonly used
nonsense terms; where I went to school, the customary nonsense terms
also included "blort," "quux," and "eep." But nonsense terms are not
adequate for the second, broad sense of "working," which depends on
specific words of natural language. As I mentioned at the very beginning,
an AI system is only truly regarded as "working" when its operation can
be narrated in intentional vocabulary, using words whose meanings go
beyond the mathematical structures. When an AI system "works" in this
broader sense, it is clearly a discursive construction, not just a mathe-
matical fact, and the discursive construction succeeds only if the com-
munity assents.12 Critics of the field have frequently complained that AI
people water down the meanings of the vernacular terms they employ,
and they have sought to recover the original force of those terms, for
example through the methods of ordinary language philosophy (Button,
Coulter, Lee, and Sharrock 1995). But these critics have had little influ-
ence on the AI community's own internal standards of semantic probity.
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The community is certainly aware of the issue; McDermott (1981: 144),
for example, forcefully warns against "wishful mnemonics" that lead to
inflated claims. But these warnings have had little practical effect, and
the reward systems of the field still depend solely on the production of
technical schemata - mathematically specified mechanisms and conven-
tions for narrating these mechanisms' operation in natural language. The
point, in any case, is that the practical reality with which AI people
struggle in their work is not just "the world," considered as something
objective and external to the research. It is much more complicated than
this, a hybrid of physical reality and discursive construction. The trajec-
tory of AI research can be shaped by the limitations of the physical
world - the speed of light, the three dimensions of space, cosmic rays that
disrupt memory chips - and it can also be shaped by the limitations of the
discursive world - the available stock of vocabulary, metaphors, and
narrative conventions. Technical tradition consists largely of intuitions,
slogans, and lore about these hybrids, which AI people call "techniques,"
"methods," and "approaches"; and technical progress consists largely in
the growth and transformation of this body of esoteric tradition. This is
the sense in which computers are "language machines" (e.g., Edwards
1996: 28).13 Critical reflection on computer work is reflection upon both
its material and semiotic dimensions, both synchronically and his-
torically.

More specifically, the object of critical reflection is not computer
programs as such but rather the process of technical work. Industrial
software engineering is governed by rigid scripts that are dictated more
by bureaucratic control imperatives than by the spirit of intellectual
inquiry (Kraft 1977), but research programming is very much an im-
provisation - a reflective conversation with the materials of computa-
tional practice. As it expands its collective understanding of this process,
AI will become aware of itself as an intellectual enterprise whose con-
cerns are continuous with those of numerous other disciplines. We are a
long way from that goal, but any journey begins with wanting to go
somewhere, and above all it is that desire itself that I hope to cultivate
here.

To sum up, programming is a distinctive and valuable way of knowing.
Doing it well requires both attunement to practical reality and acuity of
critical reflection. Each of these criteria provides an indispensable guide
and reinforcement to the other. Research always starts somewhere: within
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the whole background of concepts, methods, and values one learned in
school. If our existing procedures are inadequate, practical reality will
refuse to comply with our attempts to build things. And when technical
work stalls, practical reality is trying to tell us something. Listening to it
requires that we understand our technical exercises in the spirit of reduc-
tio ad absurdum, as the deconstruction of an inevitably inadequate sys-
tem of ideas. Technique, in this sense, always contains an element of
hubris. This is not shameful; it is simply the human condition. As the
successive chapters of this book lay out some technical exercises of my
own, the attentive reader will be able to draw up an extensive intellectual
indictment of them, consisting of all the bogus assumptions that were
required to put forth some proposal for evaluation. But the point of these
technical exercises does not lie in their detailed empirical adequacy, or in
their practical applicability; they do not provide canned techniques to
take down from a shelf and apply in other cases. Instead, each exercise
should be understood in the past tense as a case study, an attempt in good
faith to evolve technical practice toward new ways of exploring human
life. What matters, again, is the process. I hope simply to illustrate a kind
of research, a way of learning through critical reflection on computa-
tional modeling projects. Others are welcome to form their own interpre-
tations, provided that the practice of interpretation is taken seriously as a
crucial component of the discipline itself.

How computation explains

Artificial intelligence, then, is a potentially valuable enterprise in
need of considerable reform. It remains, however, to make precise the
sense in which computation explains anything. A crucial conceptual
difficulty is the complex manner in which AI straddles the boundary
between science and engineering. Even though science and engineering
have different goals and methods and vocabularies, the AI literature has
drawn from both of them, often without any clear distinction. This is
understandable enough, given the cross-fertilization that has contributed
to the progress of computational science and engineering. (It is also
understandable in the institutional context of early AI research, which
was conducted largely by psychologists who were funded by instrumen-
tally oriented military research agencies.) Still, it is sometimes important
to distinguish clearly between the two projects, at least as ideal types.
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Science explains things that exist, aiming to learn the truth; engineering
builds new things, aiming to serve instrumental goals. When a word like
"planning" or "knowledge" or "reasoning" becomes a technical term,
science and engineering pull it in different directions: science toward
human planning and knowledge and reasoning; engineering toward what-
ever phenomena can profitably be realized within the existing technology
(Woolgar 1987: 320). Yet the term "artificial intelligence" refers to a
tradition of research that includes both scientific and engineering
projects. Despite its ambiguity, I will use the term in the conventional
way to refer to this tradition, and I will use the term "computational
psychology" to name the scientific project of using computational
methods to explain human phenomena. The term "cognitive science"
will refer to the interdisciplinary scientific movement that began in the
1950s and gained steam in the 1980s, not all of which uses computational
methods. The adjective "technical" will relate to any discipline of design
that employs mathematical formalization (including any sort of digital
design or computer software), whether for engineering design or for
scientific modeling.

My own intention is to do science, or at least to learn something about
human nature, and not to solve industrial problems. But I would also like
to benefit from the powerful modes of reasoning that go into an engineer-
ing design rationale. One way to reconcile the claims of science and
engineering is to posit that people are, in some sense, well engineered. If
this is actually the case, then the engineering task of building synthetic
intelligence might discover truths of "human design" as well. This is a
tricky proposition, given that engineering is geared to the construction of
devices with well-defined instrumental purposes. People, of course, have
no such well-defined purposes and can be spoken of as "engineered" only
in some special and limited sense. In particular, it is not necessary to
embrace the dangerous notion that people are "optimal" from the point
of view of some instrumental criterion. It is enough to understand how
the existence of creatures such as ourselves might be possible at all.

How, then, can computation explain things about people? The most
common proposal is that human beings instantiate some mechanism,
psychology tries to discover what that mechanism is, and success is
judged by matching the input-output behavior of hypothesized mecha-
nisms to the input-output behavior of human beings (Fodor 1968: 121—
152). This view of computational explanation had great appeal in the
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early days of computational psychology, since it promised to bring preci-
sion to a discipline that had long suffered from the vagueness and expres-
sive poverty of its concepts. For many, a computer program was a theory
whose predictions were its outputs. Such was the view of Feigenbaum
and Feldman in their introduction to the influential anthology Computers
and Thought (1963). In one of the papers in that volume Newell and
Simon pursued the input-output matching view of computational the-
orizing, comparing the operation of the General Problem Solver (GPS)
program step by step against the reports of an experimental subject. (I
will return to GPS repeatedly in subsequent chapters.) This was an
extraordinary advance in psychological method: computer programming
had made it imaginable to explain singular events, not just statistical
averages over large populations. Newell and Simon went to great lengths
to fashion an experimental situation for which a comparison could be
made (Dreyfus 1972: 112-114). They chose a task with definite formal
rules and a well-defined goal, limited the subject's choice of actions,
entrusted the execution of the actions to the experimenter, ensured that
the subject had no experience with the task before the experiment began,
and generally arranged for the subject to conform to all of the premises of
the theory. Subsequent research in their school has mounted impressive
campaigns of this kind, systematically constraining aspects of theories
through precisely contrived experimental setups (Anderson 1983; New-
ell 1990).14

This approach has an honorable history, but it also assumes a definite
conception of research. Bound to the artificial and easily manipulated
conditions of the laboratory, it gains precision at the risk of detaching
itself from the ordinary reality of human life; models that are wildly
incongruent with that reality may seem reasonable in the laboratory. I
would like to pursue a different approach, one that preserves a connec-
tion between technical practice and ordinary experience. In doing so, I
must somehow replace the whole system of research values that begins
with the testing of input-output predictions. I doubt if it is possible yet
to draw meaningful comparisons between computers and people across
the vast majority of human activities. Looser comparisons will suffice,
however, provided that we bring some analytical rigor to the question of
why human beings are the way they are. Forty years of computational
studies have shown that it is easy to build systems that resemble human



Introduction 19

activities in one way or another. What is harder is to specify the computa-
tional principles that might make such a resemblance significant.

A computational principle is a verity of design, some kind of conclu-
sion about the practicalities of the physical realization of complicated
things. One example of a computational principle is commonly known as
least commitment (Marr 1982: 106; Stefik 1981). This is the idea that a
system should, other things being equal, only derive the logically neces-
sary conclusions of each new item of information, thus keeping its op-
tions open to the greatest possible extent. Another is the slogan that "a
good representation exposes domain constraint," meaning that a good
representation scheme expresses things in a way that makes it easy to
formulate patterns of deduction that have utility within a given activity.15

Another is the concept of nearly decomposable systems (Simon 1969: 100),
which suggests that well-designed artifacts will consist of loosely coupled
components whose interactions are simple enough to be understood.
Computational principles are, of course, always open to debate and refor-
mulation. Indeed, each of these principles contains assumptions that
would be worth reconsidering. (For example, the first two are often
interpreted as requiring that computation be understood in terms of
mathematical logic.) Nonetheless, principles like these help articulate a
design community's accumulated experience in a way that can offer
provisional guidance to theorizing. A theory cast in these terms will seek
to portray hypothesized mechanisms not simply as real but as necessary,
at least in particular aspects, due to the constraints of physical realization.
The complexity and variety of psychological phenomena make such a
mode of explanation especially valuable.

The most influential conception of computational principles comes
from David Marr (1982), who prescribed a definite format for computa-
tional theories. For Marr, each theory had three tiers: a computational
theory of some problem, a specification of the algorithm by means of
which the brain solves this problem, and the implementation of this al-
gorithm in neural machinery. This scheme is attractive because it offers a
way to decompose the research task, one problem at a time, and because it
demands clarity about what the machinery is supposed to be explaining.
Computational principles mediate between the analysis of a problem and
the design of its solution, and an analysis of the problem can indeed
clarify many issues without all the complications that mechanisms intro-
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duce. Unfortunately, Marr's conception of computation presupposes
particular forms of machinery. Marr interprets the word "problem" in
roughly the same way as the conventional theory of computation, as a
mathematical function from an input representation to an output repre-
sentation. In Marr's case these representations are derived from retinal
images, but they could also be derived from auditory inputs or databases
or a variety of other things. In any event, the technical notion of a
problem found in both Marr and Turing presupposes a restrictive view of
an agent's relationships to its surroundings, with single isolated inputs
mapped to single isolated outputs. This might be a good way to think
about the earliest stages of visual processing, but it is not (I will argue) a
good way to think about human activity in general. Computational in-
quiry into human activity thus requires a broader conception of com-
putation itself.

Chapter 3 sketches a way of thinking about computation that provides
an alternative to the conventional notion of a problem and is better suited
to the study of activity. Whereas Marr proposed focusing research on
distinct mappings from inputs to outputs, I propose focusing research on
aspects of agents' interactions with their environments. Computational
principles, on my view, relate the analysis of a form of interaction to the
design of machinery. These principles are irreducibly intuitive, taking
precise form only in the context of particular technical proposals. In
computational psychology, they attempt to explain something about hu-
man nature starting from basic facts: that we have bodies, that our en-
vironment is extensively adapted to our culture's ways of doing things,
and that everyday life contains a great deal that is cyclical, repetitive, and
routine.

Critical orientation
Several previous authors have cast a critical eye on AI research.

Weizenbaum (1976), for example, draws on the critique of technology in
the Frankfurt School. Focusing on the culture of computer programmers
and their use of machine metaphors for human thought, he argues that
AI promotes an instrumental view of human beings as components in a
rationalized society. In doing so, he largely accepts as practicable the
construction of rationality found in AI and other engineering fields, even
though he rejects it on ethical grounds.
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Other authors have argued that AI as traditionally conceived is not just
wrong but impossible, on the grounds that its technical methods presup-
pose mistaken philosophies. The first and most prominent of these critics
was Dreyfus (1972), who pointed out that symbolic methods in AI are all
based on the construction of rules that gloss English words and sentences
as formally defined algorithms or data structures. Although these rules
seem perfectly plausible when presented to audiences or displayed on
computer screens, Dreyfus argued that this plausibility was misleading.
Since philosophers such as Heidegger and Wittgenstein had shown that
the use of linguistic rules always presupposes an embodied agent with a
tacit background of understanding, attempts to program a computer
with formal versions of the rules would necessarily fail. Unable to draw
on tacit understandings to determine whether and how a given rule
applied to a given situation, the computer would be forced into a regres-
sive cycle of rules-about-how-to-apply-rules (Collins 1990). Later,
Winograd and Flores (1986) extended this argument by describing the
numerous ways in which language use is embedded in a larger way of life,
including an individual's ceaseless construction of self and relationship,
that cannot itself be framed in linguistic terms except on pain of a similar
regress.

The AI community has, by and large, found these arguments incom-
prehensible. One difficulty has been AI practitioners' habit, instilled as
part of a technical training, of attempting to parse all descriptions of
human experience as technical proposals - that is, as specifications of
computing machinery. Given the currently available schemata of com-
putational design, this method of interpretation will inevitably make the
theories of Dreyfus and of Winograd and Flores sound naive or impossi-
ble, or as deliberate obscurantism, or even, in many cases, as mystical
rejections of the realizability of human thought in the physical, causal
world.16

Another difficulty has been the hazardous procedure, shared by practi-
tioners and critics alike, of "reading" computer programs and their ac-
companying technical descriptions as if they encoded a framework of
philosophical stances. Of course, technical ideas and discourses do encode
philosophical stances, and these stances generally are reflected in the
programs that result. But as I have already observed, the programs
themselves - particular programs written on particular occasions -
inevitably also encode an enormous range of simplifications, stopgap
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measures, and practical expedients to which nobody is necessarily com-
mitted. As a result, many members of the AI community do not believe
that they have actually embraced the philosophical stances that their
critics have found wanting. In fact, AFs engineering mindset tends to
encourage a pragmatic attitude toward philosophical stances: they are
true if they are useful, they are useful if they help to build things that
work, and they are never ends in themselves. If a particular stance toward
rules, for example, really does not work, it can be abandoned. Instead, the
fundamental (if often tacit) commitment of the field is to an inquiry into
physical realization through reflective conversations with the materials of
computer work. This is not always clear from the rhetoric of the field's
members, but it is the only way I know to make sense of them.

Dreyfus as well as Winograd and Flores have conducted their critiques
of AI from a standpoint outside of the field. Dreyfus is a philosopher by
background, though in recent work with Stuart Dreyfus he has increased
his constructive engagement with the field by promoting connectionism
as a philosophically less objectionable alternative to the symbolic rule-
making of classical AI (Dreyfus and Dreyfus 1988). Winograd began his
career as a prominent contributor to AI research on natural language
understanding and knowledge representation (1972), but his critical
writing with Flores marked his departure from AI in favor of research on
computer systems that support cooperative work among people (Wino-
grad 1995). Dreyfus and Winograd both define themselves against AI as
such, or the whole realm of symbolic AI, and they advocate a wholesale
move to a different theory. Each of them effectively posits the field as a
static entity, doomed to futility by the consequences of an impracticable
philosophy.

Another approach, which I adopt in this book, takes its point of depar-
ture from the tacit pragmatism of engineering. I regard AI as a potentially
valuable enterprise, but I am equally aware that right now it is a mis-
guided enterprise as well. Its difficulties run deep: we could sink a probe
through the practices of technology, past the imagery of Cartesianism,
and into the origins of Western culture without hitting anything like a
suitable foundation. And yet it is impossible simply to start over. The
troubles run deeper than anyone can currently articulate, and until these
troubles are diagnosed, any new initiative will inevitably reproduce them
in new and obscure forms. This is why we need a critical technical
practice.17 The word "critical" here does not call for pessimism and
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destruction but rather for an expanded understanding of the conditions
and goals of technical work. A critical technical practice would not model
itself on what Kuhn (1962) called "normal science," much less on con-
ventional engineering. Instead of seeking foundations it would embrace
the impossibility of foundations, guiding itself by a continually unfolding
awareness of its own workings as a historically specific practice. It would
make further inquiry into the practice of AI an integral part of the
practice itself. It would accept that this reflexive inquiry places all of its
concepts and methods at risk. And it would regard this risk positively, not
as a threat to rationality but as the promise of a better way of doing
things.

One result of this work will be a renewed appreciation of the extent to
which computational ideas are part of the history of ideas. The historicity
of computational ideas is often obscured, unfortunately, by the notion
that technical work stands or falls in practice and not in principle. Many
times I have heard technical people reject the applicability of philosophi-
cal analysis to their activities, arguing that practical demonstration forms
a necessary and sufficient criterion of success for their work. Technical
ideas are held to be perfectly autonomous, defined in self-sufficient for-
mal terms and bearing no constitutive relationship to any intellectual
context or tradition. The Cartesian lineage of AI ideas, for example, is
held to be interesting but incidental, and critiques of Cartesianism are
held to have no purchase on the technical ideas that descend from it. This
view, in my opinion, is mistaken and, moreover, forms part of the phe-
nomenon needing explanation. Technical practitioners certainly put
their ideas to the test, but their understandings of the testing process
have placed important limits on their ability to comprehend or learn
from it. Advances in the critical self-awareness of technical practice are
intellectual contributions in their own right, and they are also necessary
conditions for the progress of technical work itself.

Limitations in a certain historical form of technical practice do not,
however, result from any failings in the people themselves. Such is the
prestige of technical work in our culture that the AI community has
attracted a great many intelligent people. But they, like you and I, are the
products of places and times. The main units of analysis in my account of
technical practice are discourses and practices, not the qualities of indi-
vidual engineers and scientists. A given individual can see only so far in a
fog. Periodic moments of clarity are but the consolidation of changes that
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have been gathering in the works; their full-blown emergence in the
composition of great books is a convenient outcome to an orderly process.
Equipped with some understanding of the mechanics of this process,
critical inquiry can excavate the ground beneath contemporary methods
of research, hoping thereby to awaken from the sleep of history.

In short, the negative project of diagnosis and criticism ought to be
part and parcel of the positive project: developing an alternative concep-
tion of computation and an alternative practice of technology. A critical
technical practice rethinks its own premises, revalues its own methods,
and reconsiders its own concepts as a routine part of its daily work. It is
concerned not with destruction but with reinvention. Its critical tools
must be refined and focused: not hammers but scalpels, not a rubbishing
of someone else but a hermeneutics and a dialectics of ourselves.

Outline

Chapter 2 states the book's theses: the reflexive thesis (which
concerns the role of metaphors in computer modeling), the substantive
thesis (which proposes replacing one set of metaphors with another), and
the technical thesis (which describes the basis in technical experience for
proposing such a shift). It then discusses the reflexive thesis at length,
developing a vocabulary for analyzing the metaphors in technical re-
search. The point is not simply to discover the right set of metaphors but
to encourage a critical awareness of the role of metaphors in research.
The chapter concludes with a sketch of reflexive issues that must await
further work.

Chapter 3 concerns the substantive thesis. It describes the metaphor
system of mentalism, which portrays the mind as an abstract territory set
apart from the "outside world." Put into practice in day-to-day technical
work, mentalism participates in characteristic patterns of success and
failure, progress and frustration. An alternative is to ground AI in inter-
actionist metaphors of involvement, participation, and reciprocal influ-
ence. I introduce some vocabulary and methodological ideas for doing
interactionist AI research.

Chapter 4 analyzes the mentalist foundations of computing, starting
with the tension between abstraction and implementation in conven-
tional computer science. The technical notion of a variable provides an
extended case study in this tension that will turn up in subsequent



Introduction 25

chapters. The tension between abstraction and implementation is also
evident in the history of cognitive science, and its outlines provide some
motivation for interactionist alternatives.

Chapter 5 continues the analysis of conventional computer science
with a critical introduction to the workings of digital logic. Computers
these days are made of digital logic, and throwing out digital logic alto-
gether would leave little to build models with. Instead, this chapter
prepares the way for a critical engagement with digital logic by describing
the peculiar ideas about time that have accompanied it.

Chapter 6 shifts into a more technical voice, developing a set of fairly
conventional ideas about the relationship between digital logic and hu-
man reasoning. It is a costly and difficult matter to think anything new,
and so "dependencies" provide a means of recording, storing, and auto-
matically recapitulating common lines of reasoning. In addition to pre-
senting dependencies as a technical proposal, this chapter also briefly
recounts the tradition of ideas about habit and learning from which they
arise.

Chapter 7 introduces a simple rule-based programming language
called Life that aids in the construction of artificial agents whose reason-
ing can be accelerated through dependency maintenance. Execution of
Life programs depends on some formal properties of conventional AI
rule languages that I define just well enough to permit an expert to
reconstruct the details. Some cartoon programming examples demons-
trate the Life language in use.

Chapter 8 presents a detailed analysis of the early planning literature,
from Lashley's (1951) "serial order" paper to Newell and Simon's (1963)
GPS program to Miller, Galanter, and Pribram's (1960) theory to the
STRIPS program of Fikes, Hart, and Nilsson (1972). Through this
history, a complicated pattern of difficulties develops concerning the
relationship between the construction and execution of plans. Viewed in
retrospect, this pattern has pushed AI research toward a different pro-
posal, according to which activity arises through improvisation rather
than the execution of plans.

Chapter 9 develops this proposal in more detail by introducing the
notion of a running argument, through which an agent improvises by
continually redeciding what to do. This scheme will not work in a chaotic
world in which novel decisions must be made constantly, but it might
work in a world in which more routine patterns of activity are possible. A
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set of Life rules is described through which an agent might conduct
arguments about what to do. The chapter concludes by describing an
architecture for such an agent, called RA.

Chapter 10 demonstrates RA in action on a series of simple tasks
drawn from APs conventional "blocks world." The chapter detects a
series of difficulties with the program and, in the spirit of reductio ad
absurdum, traces these back to common assumptions and practices. In
particular, difficulties arise because of the way that the system's ideas
about the blocks are connected to the blocks themselves.

Chapter 11 takes heed of this conclusion by reexamining the mentalist
understanding of representation as a model of the world. The shortcom-
ings of this view emerge through an analysis of indexical terms like
"here" and "now," but they also emerge through the technical difficulty
of maintaining and reasoning with such a model. The path to interac-
tionist alternatives begins with the more fundamental phenomenon of
intentionality: the "aboutness" of thoughts and actions. Some phenom-
enologists have proposed understanding intentionality in terms of cus-
tomary practices for getting along in the world.

Chapter 12 attempts to convert this idea into a technical proposal. The
basic idea is that an agent relates to things through time-extended pat-
terns of causal relationship with it - that is, through the roles that things
play in its activities. The concept of deictic representation makes this
proposal concrete.

Chapter 13 describes a computer program called Pengi that illustrates
some of these ideas. Pengi plays a video game calling for flexible actions
that must continually be rethought. As with RA, reflection on the
strengths and weaknesses of this program yields lessons that may be
valuable for future theorizing and model-building. Some of these lessons
concern the tenacity of mentalism in the face of attempts to replace it;
others concern the role of attention in the organization of improvised
action.

Chapter 14 summarizes a variety of other research projects whose
approaches converge with my own. It also offers some reflections on the
reflexive thesis concerning the role of metaphor in technical modeling.



Metaphor in practice

Levels of analysis

The Introduction has sketched the notion of a critical technical
practice, explored the distinctive form of knowledge associated with AI,
and described a reorientation of computational psychology from a focus
on cognition to a focus on activity. It should be clear by now that I am
proceeding on several distinct levels at once. It is time to systematize
these levels and to provide some account of the theses I will be develop-
ing on each level.

On the reflexive level, one develops methods for analyzing the dis-
courses and practices of technical work. Reflexive research cultivates a
critical self-awareness, including itself among its objects of study and
developing useful concepts for reflecting on the research as it is happen-
ing. To this end, I will begin by suggesting that technical language - that
is, language used to investigate phenomena in the world by assimilating
them to mathematics - is unavoidably metaphorical. My reflexive thesis
is that predictable forms of trouble will beset any technical community
that supposes its language to be precise and formally well defined. Aware-
ness of the rhetorical properties of technical language greatly facilitates
the interpretation of difficulties encountered in everyday technical prac-
tice. Indeed, I will proceed largely by diagnosing difficulties that have
arisen from my own language - including language that I have inherited
uncritically from the computational tradition, as well as the alternative
language that I have fashioned as a potential improvement.

On the substantive level, one analyzes the discourses and practices of a
particular technical discipline, namely AI. Chapter 1 has already outlined
my substantive thesis, which has two parts. Part 1: For about forty years,
the discourse of AI has been organized around a particular metaphor
system according to which the mind is a space with an inside, an outside,
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a boundary, and contents. The resulting project suffers from recurring
difficulties whose form can be predicted in some detail. Part 2: A better
starting point is the complementary metaphor system organized by
the notion of interaction. A good understanding of the interactional
dynamics of a particular form of activity can greatly simplify the machin-
ery necessary to explain it. The point, however, is not simply to substitute
new metaphors for old metaphors, but to employ the new metaphors with
a reflexively critical awareness of the role that metaphors play in technical
work.

On the technical level, one explores particular technical models, em-
ploying a reflexive awareness of one's substantive commitments to attend
to practical reality as it becomes manifest in the evolving technical work.
My particular case study will explore the relationships between action,
perception, and representation in the context of certain highly simplified
improvised activities. Specifically, I will argue that the phenomena of
human activity normally understood in terms of representation need to
be partitioned under two headings: the first and more fundamental of the
two defines things in terms of their roles in conventionalized activities;
the second and more complex involves internalized symbolic representa-
tions. One confirmation of this distinction is its utility in phenomenolog-
ical analysis. Another is that it leads to simpler forms of machinery.

The balance of this chapter will develop a reflexive analysis of techni-
cal language and technical work. Chapter 3 will then employ these reflex-
ive ideas to develop a substantive analysis of AI, including a critique of its
existing metaphor system and a proposed alternative.

Language in practice

Philosophers and linguists have long asked, do we speak lan-
guage or does language speak us? In other words, is language a tool for the
expression of thoughts and actions, or do the forms of a given language
determine the forms of thought and action of its speakers? Views on this
matter in Western thought might be sorted into two broad categories. On
one side is an Enlightenment tradition, for which the principles of reason
are universal, and Chomsky (1966, 1979) in particular, for whom the
generativity of grammar is a mark of human freedom. On the other side
is a counter-Enlightenment tradition, including theorists of culture from
Vico (1968 [1774]; see Berlin 1976) through Wilhelm von Humboldt (see
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R. Brown 1967) to Whorf (1956 [1941]) to numerous modern-day an-
thropologists. This alternative tradition holds that in learning to speak
the language of one's culture, one acquires that culture's way of living in
and seeing the world.

This latter view has attracted considerable abuse, particularly from
those American philosophers who equate it with idealism.1 At issue is the
way in which people can use language to represent the world. If language
represents reality through a transparent mapping of grammatical struc-
ture to the structure of the world, then it is indeed hard to imagine how
different cultures could legitimately speak about the world in different
ways: different representations would imply different realities. But is that
the nature of language? Does anyone ever describe a given piece of the
world in such a transparent way? The question becomes particularly
urgent if one believes, as many do, that competent action depends on
knowledge of the world, that knowledge consists in true descriptions, and
that truth consists in a commonality of form between descriptions and
the things described. The theory of knowledge as commonality of form
can be found in Aristotle,2 but in the period after Descartes it came
increasingly to be overlaid with a specific, mathematical notion of
"form." With this shift, and particularly with the contemporaries of
Newton, comes a view of language founded not on poetry or rhetoric or
dialogue but on mathematics (Markley 1993). The world, on this view,
does not exceed language. Rather, the world effectively possesses the
same mathematical forms as language, so that any inexactitude of linguis-
tic expression is merely a matter of error, and any incompleteness of
linguistic expression is merely a matter of degree (Burtt 1959 [1924]: 96-
110,302-305).

Modern philosophical logic has systematized this approach to lan-
guage. No longer the empirical investigation of the forms and properties
of reasoning, logic as a field of study is now understood as specifying the
conditions for any empirical investigation, and indeed for inquiry in gen-
eral. Barwise and Perry (1985), for example, regard their theory of situa-
tion semantics not simply as a systematic account of the structures of
language but also literally as a series of discoveries about reality itself.
The logical form of language is, in this sense, simultaneously the logical
form of the world. Though Barwise and Perry's theory represents a
substantial advance over previous logical theories of semantics (see Chap-
ter 11), it will nonetheless strike the scientist as metaphysical: its discov-



30 Computation and human experience

eries are not presented as contingent facts but rather as analytic conclu-
sions about the logical form of both language and reality. In this way,
philosophical logic increasingly presupposes that reality enjoys the same
kind of perfectly determinate existence as that of mathematics, and con-
sequently that scientific language is the prototype of human language
because its explicitly mathematical nature ensures its transparency in
relation to that reality.

This interpretation of language and reality and the relationship be-
tween them is not explicitly or uniformly adhered to by all technical
people, but it is nonetheless an important element of the culture of
present-day technical practice. This influence is easily seen in the
method of theory construction that I described in the introduction:
lashing a bit of metaphor to a bit of mathematics and embodying them
both in computational machinery. The everyday work of AI consists, to a
large extent, in the alignment of these disparate resources (Suchman and
Trigg 1993) and, specifically, in an unrelenting reconstruction of ordi-
nary language in technical terms. How this enterprise proceeds will
depend, to an equal extent, on the ideas about language that underlie it.
Just how the enterprise's progress depends on its ideas about language is a
difficult matter that deserves investigation.

In recent years the counter-Enlightenment tradition has grown an-
other branch, starting with authors like Foucault, for whom language is
part and parcel of a certain material organization of the world. Whorf and
Foucault share certain concerns; both, for example, applied their views to
the analysis of technical practices - Whorf in his anecdotes from his day
job as an insurance inspector (1956 [1941]) and Foucault in historical
studies of biology, linguistics, and medicine (1970, 1973). The common
accusation of idealism against these theories presupposes a particular
understanding of the operation of language in activity, namely, the se-
mantic notion of structural correspondence to reality. Yet something
more is clearly required to account for historical episodes in which prac-
tices have achieved and maintained an obstinate stability over long peri-
ods despite their adherence to the most disparate discourses imaginable.
What remains is the philosophical, anthropological, and historical task of
understanding what relationships did obtain between the forms of lan-
guage and practice in question.

Whorf and Foucault understood the relationship between language
and practice in different ways. Whorf investigated how the grammatical
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forms of language shape perception, reasoning, and action; Foucault
viewed language as part of the locally organized means of producing
whatever counts as truth in a given setting. For Whorf, language is a
distinct and bounded phenomenon; for Foucault, language is simply one
element of the much more expansive category of "discourse." Foucault's
notion of discourse, then, includes language, but it also includes tech-
nologies, practices, and any other resources that people draw on to con-
struct reality. Because my own argument will turn on the properties of
language as such, however, I want to retain the term "discourse" for
something narrower: the forms and structures of language that a given
community uses in organizing its customary activities. I will then need to
specify some of the relationships between the discourses and practices of
technical modeling in AI.

Before moving along to that work, however, let us briefly consider the
path I have not taken. Edwards (1996) employs Foucault's more expan-
sive concept of discourse in his history of the origins of AI. He is
concerned with the institutional and cultural context within which the
core ideas and practices of AI arose, and he organizes his discussion
around two discourses that situate AI within this larger context. These
discourses are closed world discourse and cyborg discourse. Closed world
discourse is roughly the discourse of the Cold War: treating the earth as a
single closed system, the United States as a bounded territory to be
defended, and the Soviet Union as a closed society to be contained.
Cyborg discourse is the discourse of human-machine symbiosis: treating
the whole world as a militarized command-and-control structure that
operates on rational, technological principles, from the highest levels of
global strategy to the lowest levels of individual cognition. Edwards
defines the notion of discourse in this way:

[Discourse goes beyond speech acts to refer to the entire field of signifying or
meaningful practices: those social interactions — material, institutional, and
linguistic - through which reality is interpreted and constructed for us and with
which human knowledge is produced and reproduced. A discourse, then, is a
way of knowledge, a background of assumptions and agreements about how
reality is to be interpreted and expressed, supported by paradigmatic metaphors,
techniques, and technologies and potentially embodied in social institutions.
(1996: 34, emphasis in the original)

Observe that these definitions of discourse and a discourse reproduce the
divide that I just described: discourse is defined as a matter of practices -
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social interactions - and a discourse is defined as a worldview - "assump-
tions and agreements" - that is "supported" by other things. In practice,
Edwards, like Foucault, treats discourse as an assemblage of "hetero-
geneous" elements: techniques, artifacts, practices, experiences, fictions,
and language, including metaphors. Foucault's purpose in defining
discourse so broadly is to disrupt any sense that knowledge consists in a
collection of linguistic representations. Instead, Foucault wishes to em-
phasize that knowledge is something produced in the material world. He
resists any formula that would derive knowledge by combining language
and practice in fixed proportions, and Edwards (1996: 38) quotes his
famous description of discourse as "a series of discontinuous segments
whose tactical function is neither uniform nor stable" (Foucault 1980:
100). This sense of locality - the improvised assembly of parts into
wholes in various sites - serves Edwards well in describing the emergence
of the fundamental discourses of AI. For example, he traces lines of
intellectual and technical development that did not mature, or that re-
mained marginalized for many years, because they were not able to gain
traction in the larger institutional and cultural context of the times. My
own study is concerned with the lines that survived this early winnowing
and stabilized in canonical forms at a handful of well-funded research
institutions. The resulting schools of research were products of the Cold
War in certain important senses, but they also drew on older and deeper
trends in Western intellectual history, and they evolved with a significant
degree of autonomy and a complex inner logic.

I will return to the substantive particulars of that research in the next
chapter. For the moment, I want to explore in greater detail the relation-
ship between discourse - in the narrower sense, now, of the forms and
structures of a community's language - and practice - a community's
forms of action upon the objects of its work. In terms of the two di-
vergent branches of the counter-Enlightenment tradition, I have re-
turned to the anthropological notion of language as shaping a worldview
for a community. One objection to this notion has some force: if language
shapes a culture's understanding of the world, how might people attain
any critical consciousness of the role of language in their lives? At the
beginning of his most influential paper, for example, Whorf quotes this
passage from Sapir:

Human beings do not live in the objective world alone, nor alone in the world of
social activity as ordinarily understood, but are very much at the mercy of the
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particular language which has become the medium of expression for their so-
ciety. It is quite an illusion to imagine that one adjusts to reality essentially
without the use of language and that language is merely an incidental means of
solving specific problems of communication or reflection. The fact of the matter
is that the "real world" is to a large extent unconsciously built up on the
language habits of the group. . . . We see and hear and otherwise experience very
largely as we do because the language habits of our community predispose
certain choices of interpretation. (1956 [1941]: 134)
Language, on this account, limits consciousness. We have a great deal of
choice in how we interpret the world, yet we are often unaware of making
any choices. Sapir does not claim that our interpretations of the world are
completely determined by our language, only "very largely" so. Lan-
guage's effect on consciousness is thus a matter of degree. What Sapir
leaves unclear is whether the magnitude of the effect is fixed or whether it
varies historically. Can we become more aware of our interpretive
choices? Can the study of rhetoric, for example, confer any immunity to
the manipulations of politics and advertising? Perhaps an explicit under-
standing of language's ability to shape experience, or even a relatively
crude understanding, can make apparent the contingent nature of a
cultural or professional worldview. Every culture has some explicit under-
standings of language use - a linguistic ideology (Woolard and Schieffelin
1994). Silver stein (1979) has argued that a given culture's linguistic
ideology stands in a dialectical relationship with the language itself,
exerting a long-term influence on it and being influenced reciprocally by
it.3 The linguistic ideology will be open to all of the social influences of
any other ideology, so that one might trace a chain of reciprocal influence
between a society and its language, with the linguistic ideology as one
critical link. Sapir's fatalistic assertion that we are "at the mercy" of our
language may well be false, at least in this one sense: that research into the
workings of language in society might help ameliorate some of the limita-
tions of our understanding of the world.

Metaphors in technical work
In order to apply these ideas to technical work, it is necessary to

understand technical communities as analogous to discrete cultures (cf.
Forsythe 1993b). Such analogies operate on two levels. The twentieth
century has seen the rise of hundreds of technical discourses, each orga-
nized by a different confluence of metaphor and mathematics: informa-
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tion theory, control theory, chaos theory, general systems theory, opera-
tions research, rational expectations theory, and so forth. Inasmuch as
these disciplines are embedded in a larger culture, their local configura-
tions of language correspond to distinct worldviews only in some re-
stricted sense. More fundamentally, though, technical language as such
encodes a cultural project of its own: the systematic redescription of
human and natural phenomena within a limited repertoire of technical
schemata that facilitate rational control.4 Technical communities are
strikingly uniform in their sociologies and methods, considering the
heterogeneity of their metaphors. But it is precisely this phenomenon
that makes it especially important to investigate the role of metaphors in
technical practice.5

Several authors have described the role of metaphors in organizing
scientific research programs. Mirowski (1989), for example, argues that
metaphors of equilibrium from physics provided a model for the creation
of neoclassical economics; as economic questions arose, economists could
look to physics as a metaphorical resource in formulating theories to
address them. Likewise, E. Martin (1987) describes how cultural con-
structions of gender are transferred into reproductive physiology, and
Young (1985) traces the use of sociological metaphors in evolutionary
biology. Schon (1979) in particular suggests using techniques from liter-
ary criticism to identify the generative metaphors of the "stories" told in
his own field of social policy. A metaphor establishes an open-ended
mapping from one discursive domain to another (economics and physics,
reproductive physiology and cultural gender roles, evolutionary biology
and social structures), and a metaphor is "generative" in the sense that a
research community can extend its own discourse by carrying one ele-
ment after another through the mapping.6 The discovery that disciplin-
ary discourses frequently employ generative metaphors gives critical re-
flection a reliable starting place. But metaphors are not simply a literary
device. Schon emphasizes the role of metaphors in the complex process
of constructing a version of social reality:
Each story constructs its view of social reality through a complementary process
of naming and framing. Things are selected for attention and named in such a
way as to fit the frame constructed for the situation. Together, the two processes
construct a problem out of the vague and indeterminate reality which John
Dewey called the "problematic situation." They carry out the essential problem-
setting functions. They select for attention a few salient features and relations
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from what would otherwise be an overwhelmingly complex reality. They give
these elements a coherent organization, and they describe what is wrong with the
present situation in such a way as to set the direction for its future transforma-
tion. (1979: 264-265)

When this construction is not understood as & construction, Schon ar-
gues, descriptions flow far more easily into prescriptions than a real
critical awareness of the process would permit (1979: 268).7 The identi-
fication of a generative metaphor is often a liberating experience, giving
concise expression to a previously diffuse sense of being oppressed by
unarticulated false assumptions. Unfortunately, the most common re-
sponse to such a discovery is to place the blame on metaphors themselves,
rather than on the unreflexive neglect of metaphors and their conse-
quences.8

This view of metaphor as pathological does not account for the con-
structive role that generative metaphors play in organizing scientific
inquiry. Boyd (1979) has described the place of theory-constitutive meta-
phors in the construction of scientific theories. Opposing the conven-
tional view that scientific language should be as precise as possible, Boyd
argues that the open-ended nature of metaphors is a virtue. Extending
Black's (1962) interaction theory of metaphor, he emphasizes the ability of
metaphors to draw in new themes and pose new questions when the
outlines of a given phenomenon are still unclear (1979: 403).9 As a result,
the referential properties of scientific language must be understood in
dialectical terms, as the result of a sustained conversation with the phe-
nomena rather than an unproblematic relation of designation between
discrete terms and discrete things.

Reference has an essential dynamic and dialectical aspect. Changes in language
use - when they reflect the dialectics of accommodation [of theories to
phenomena] - do not represent changes of reference in any philosophically
puzzling sense of that term. Instead, such dialectical changes of reference are
characteristic of referential continuity and represent perfectly ordinary vehicles
for the reporting of new discoveries. (Boyd 1979: 382)

One consequence of Boyd's view is that the essence of scientific terminol-
ogy lies not in fixed relations to reality but in changing relations to
scientific enterprises:

Theory-constitutive metaphorical terms - when they refer - refer implicitly, in
the sense that they do not correspond to explicit definitions of their referents,
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but instead indicate a research direction toward them. The same thing is appar-
ently true of theoretical terms in science generally. (Boyd 1979: 406)

In short, it is impossible to extract the referential function of scientific
language from the ongoing research project within which a given net-
work of terms is evolving.

An example of Boyd's account of scientific metaphors can be found in
the history of the clock metaphor in psychology. As McReynolds (1980)
has observed, the metaphor of human beings as clockwork devices helped
legitimize the emerging mechanistic philosophy of the seventeenth cen-
tury. Numerous authors in this period suggested that a mainspring
"drives" a clock in the same way that inner motivations "drive" people.
Thus, seventeenth-century clocks played a rhetorical role somewhat anal-
ogous to the twentieth-century servomechanisms that provided one of
the principal inspirations for cognitivism.10 As McReynolds points out,
metaphors like human-being-as-clock do not themselves generate scien-
tific innovations. Nor, on the other hand, do the metaphors simply sum-
marize or encode an insight previously given explicit articulation in a
philosophy or technical proposal. Instead, a metaphor will emerge from a
cultural stock in order to give shape to a scientific intuition that is still
inchoate. Once it has taken hold, such a metaphor may become the
generative principle of a new discourse, facilitating the elaboration of a
scientific picture across a range of topics (McReynolds 1980: 108-109).
The simple prevalence of a given metaphor, then, does not explain the
circumstances that permitted it to rise up and flourish at a particular
point in history.

Boyd's account of theory-constitutive metaphors raises significant is-
sues that run throughout the philosophy and sociology of science. Kuhn
(1979), for example, argues that Boyd's account has no explanatory force
except on the assumption of an objective system of things-in-themselves
upon which the dialectical process of establishing reference settles down.
The problem is epistemological: unless he can explain how scientists
navigate the open-ended space of potential meanings that a metaphor
opens up within their research, the argument collapses into simple rela-
tivism. Rather than take that path, Kuhn observes, Boyd veers instead
into simple realism by speaking of scientists' "epistemic access" to the
matters they are studying (cf. Bloor 1976).

Bono (1990) provides another explanation of why Boyd's argument
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goes wrong. Bono observes that Boyd tries to delimit the phenomenon of
scientific metaphor, dissociating it from the "unruliness" (Bono 1990:
66) of literary metaphor and confining its operation within the bound-
aries of a particular scientific community. Bono asserts that neither of
these moves is tenable. The whole purpose of a metaphor is to join two
distinct semantic fields, and metaphors operate as a "medium of ex-
change" (Bono 1990: 72) between different parts of society. As a result,
shifts in the social environment can destabilize an otherwise esoteric
discipline. The novel technologies of World War II, for example, con-
tributed to a revolution in psychology by expanding and giving new life
to the ancient metaphor of human-being-as-machine. Boyd (1979: 361)
had cited this case to suggest that "at least for a time, [the] cognitive
content [of scientific metaphors] cannot be made explicit." But whereas
Boyd viewed the dialectical establishment of reference as a unidirectional
process, Bono follows Arbib and Hesse (1986) in arguing that scientific
metaphors always exist in a state of tension:

To use Kuhnian terminology, in the development of science a tension always
exists between normal and revolutionary science: normal science seeks to reduce
instability of meaning and inconsistency and to evolve logically connected theo-
ries; revolutionary science makes metaphoric leaps that are creative of new
meanings and applications and that may constitute genuine theoretical progress.
(Arbib and Hesse 1986: 157)

For Bono, the two features of scientific metaphor - its connection to
other social domains and the internal continuity of the tension between
the "normal" and "revolutionary" modes - combine to create a powerful
framework for historical analysis.11 Individual scientists are always the
inheritors of a rich constellation of metaphors, many of which are likely
to stand in stable relationships to established practices of a field. In
applying those metaphors to new circumstances, however, these individ-
ual scientists must reckon with the whole elaborate economy of meaning
in the contemporary intellectual environment (Bono 1990: 77). Since the
formations that result are "hybrid" in character, "even the most coherent
of them will contain inherent tensions, if not contradictions, which are
usually kept submerged but are never completely hidden" (78). The
formation that Edwards identifies as cyborg discourse, for example, arises
historically in just this way, through the adaptation of old themes to an
ensemble of new circumstances. The rise and evolution of this discourse



38 Computation and human experience

are driven not only by institutional circumstances, but (I will argue at
length) in large part by tensions that become inevitable as a particular
system of metaphors is put into practice.

Centers and margins

My own account of scientific metaphors builds on those of pre-
vious authors by describing some of the dynamics of a particular class of
scientific projects: those that proceed through technical modeling. This
class includes much of cognitive science, as well as an increasing number
of other fields. Technical model-making is always in part a discursive
enterprise: the model-maker establishes the relevance of a given model to
reality by demonstrating that the operation of both model and reality can
be narrated in a common vocabulary.12 As I suggested in Chapter 1,
computational model-building proceeds through the application of a
repertoire of schemata, each of which joins a metaphor to a bit of mathe-
matics that can be realized on a computer. And model-building is an
ongoing enterprise, proceeding through the incremental, generative ap-
plication of metaphors to new issues and questions. As Boyd pointed out
for the application of metaphors in general, the complex process of
model-building needs to be understood as a process, as inherently in
motion.

This section concerns the practical logic of technical model-building.
By "practical logic" I mean what happens when people who possess some
definite worldview, for example one that has been shaped by certain
generative metaphors, put that worldview into practice.13 Technical ideas
develop through a roughly cyclical process: ideas are made into tech-
niques, these techniques are applied to problems, practitioners try to
make sense of the resulting patterns of promise and trouble, and revised
ideas result. Inasmuch as the practitioners' perceptions are mediated by
their original worldview, and given the near immunity of such worldviews
from the pressures of practical experience, the result is likely to be a series
of steadily more elaborate versions of a basic theme.14 The generative
principle behind this process will become clear only once the practi-
tioners' worldview comes into question, that is, when it becomes possible
to see this worldview as admitting alternatives. Until then, the whole
cycle will make perfect sense on its own terms, except for an inchoate
sense that certain general classes of difficulties never seem to go away.
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The practical logic of technical work has numerous facets, including
training regimens, funding pressures, career paths, cultural fashions, and
academic politics. I will focus on one particular facet: the relation be-
tween the practical logic of technical projects and those projects' genera-
tive metaphors. In doing so, I will draw on some of the analytic devices
that Derrida introduced in his analyses of Western philosophy, namely
presence, effacement, margin, reversal, and displacement.15 I intend these
terms seriously: it will be the gist of my account that technical model-
building projects deconstruct themselves.

The target of Derrida's critical project is the notion that human ideas
stand in a transparent correspondence to reality (cf. Arbib and Hesse
1986: 159). Derrida refers to this notion as "presence," after one of its
variants, the idea that perception simply records what is present to the
senses. Notions of presence can be found in more or less obvious forms
throughout philosophy. One particularly obvious form, already remarked
upon, is the idea that reality can be mapped perfectly onto a mathemati-
cal structure. Such a mathematical representation would be so accurate
that it would no longer have the central property of a representation: the
necessity of interpreting it. By standing in unmediated correspondence
to the world, it would be "effaced" as a contingent interpretation. Per-
haps the most striking philosophies of effacement are those formal-
logical conceptions of natural language semantics which hold representa-
tion and reality to be, in a mathematical sense, isomorphic.

One way to understand the tacit philosophy of presence in mathema-
tization is through HusserPs account of the origin of geometry. For
Husserl (1970 [1954]), the history of geometry held clues to a "crisis" in
science. Husserl did not mean that the accomplishments of the mathe-
matizing sciences are illusory. Instead, he wished to suggest that these
accomplishments have been misunderstood and require a more complex
analysis than they have usually been given. The key, for Husserl, is the
difference between ideal mathematical forms and the concrete phenom-
ena that people, scientists included, encounter in their activities. An
abstract geometric shape such as a triangle, for example, is quite different
in kind from a concrete triangular object such as a plot of land. Yet this
difference is frequently covered over by scientists in their daily practice.
The beginnings of this pattern, Husserl contends, can be found in
Galileo's use of mathematics, particularly in the highly developed practi-
cal arts that he had inherited from generations of craft workers. Galileo's
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research, as embodied work, consisted in part of complex practical ac-
tivities that drew on traditional methods for describing and measuring
geometrical shapes. Precisely because those methods were unproblema-
tic, Galileo could have a sense of "seeing" the ideal forms whose existence
his theories posited. That is, he could describe nature as consisting of
certain abstract geometric shapes, and he could operationalize this
description by going out and "finding" those shapes in his experimental
apparatus and astronomical observations.

What Galileo lost, in Husserl's view, was any awareness of the relation-
ship between the abstract forms of his theories and the concrete phenom-
ena from which these forms were derived. Once the concrete phenomena
were lost from view, it became possible to understand the universe as a
multitude of abstract forms - ideal entities with no necessary connection
to history or culture and no relationship to the phenomena of embodied
activity. Husserl conceded that the universe was essentially mathematical
in its basic spatiotemporal structure. He also accepted that the practical
work of techne required scientists to become lost periodically in the
manipulation of ideal forms and their mathematical representations. His
concern was simply with the view of the universe, and of individual
subjectivity, that arose when these ideal forms were mistaken for the
phenomena of experience. In this way, Husserl asserted, the rise of sci-
ence simultaneously uncovered and obscured reality. He did not doubt
the power of its discoveries, but he simultaneously regretted the progres-
sive detachment from concrete human experience that accompanied
them.

The point of Husserl's theory of science, then, is not that ideal forms
are false representations of reality, much less that science as such is a
pathological enterprise. He believed that the passing-over of concrete
phenomena called for a kind of philosophical reform - not just a reform
of ideas, but a reform of experience itself, gradually restoring awareness
of the phenomena from which scientific ideality has distracted us. Hus-
serl's reform project prefigures later empirical research into laboratory
science whose purpose is not to debunk science or relativize its discov-
eries, but simply to recover an awareness of the lived work by which those
discoveries are produced (Latour and Woolgar 1986 [1979]; Lynch 1985;
Pickering 1984).

Husserl's theory of ideal forms and concrete experience is one precur-
sor of Derrida's notion of effacement. Derrida (1978 [1962]) argued that
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Husserl failed, and necessarily so, in his attempt to reactivate the origin-
ary perception of concrete phenomena - the direct presence of things -
that supposedly lies beneath the obfuscations of abstraction. Nonethe-
less, the analogies between the two authors are extensive. The whole
point of effacement is that abstractions can take on a false transparency
when they are mistaken for apodictic representations, or indeed when
they are mistaken for the things themselves. HusserPs prototype of
effacement is mathematization, and Derrida's prototype is found in phil-
osophical language. Both of them initiate a search for something that has
been lost, but they are heading in opposite directions: Husserl suggests
that the scientist loses track of concrete experience while absorbed in
abstractions, while Derrida (1976 [1967]: 20) suggests that the ordinary
speaker of language loses track of the materiality of the signifier while
absorbed in speaking. Each project of recovery speaks to the irreducibly
contingent nature of representation: it is always something constructed
in human activity, and yet it always exceeds any attempt to fasten it to a
determinate phenomenon. Each project, moreover, provides a corrective
to the other: Husserl encourages us to investigate the lived activity of
mathematization, but Derrida cautions us against expecting to recover
this activity as a bounded category of experience; Derrida directs our
attention to the spaces between signifiers and the impossibility of trans-
parent representation, but Husserl cautions us against lapsing at this
point into agnosticism, simply quitting our work because the signifiers
want to play.16 In studying computational work, the critique of represen-
tation is located exactly within this productive dialogue between Hus-
serPs project and Derrida's. Computer systems are defined mathe-
matically, like Galileo's apparatus, but they are also designed to embody
ideas about language, action, learning, communication, and so on whose
nature is specified using language. Computer systems are thus, among
other things, also philosophical systems — specifically, mathematized
philosophical systems - and much can be learned by treating them in the
same way.

These considerations encourage us to recover a full sense of the place
of language in the construction of technology. As Knoespel puts it:
[T]he reification of geometry in architecture and technology has enormous
implications for language. Once geometry becomes manifest in artifacts, these
artifacts retain an authority radically different from that accessible to natural
language. By virtue of their being manifested as physical objects they acquire
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what appears as an autonomy utterly separated from language. The apparent
separation of both architecture and technology from language has great signifi-
cance, for it works to repress the linguistic framework that has allowed them to
come into being. (1987: 42)
Having employed certain discursive forms in designing technological
artifacts such as buildings and computers, it becomes possible - indeed,
almost inevitable - to treat the linguistic forms as if they were perfectly
embedded in the artifacts. A computer might be constructed so that its
operation can be narrated using words like "knowing" or "reminding,"
but those words have a life that goes far beyond - and may even conflict
with - the artifacts that are supposed to embody them. When this is
forgotten, Smith (1996) speaks of an "inscription error": inscribing one's
categories onto an artifact and then turning around and "discovering"
them as if they had already been there. And Derrida speaks of the
effacement of signifiers. The point is not that technological artifacts
inherently suppress language, but that a historically specific experience of
artifacts has arisen and needs to be undone.

Derrida seeks to discover the effacement of signifiers not through a
generalized argument but through a practice of deconstruction (Culler
1982). He wants to demonstrate how a particular system fails in its
attempt to establish unmediated correspondences between symbols and
phenomena. Deconstruction does not portray itself as an ultimate theory
standing upon an Archimedian point external to all theories. Nor does it
proceed by comparing each particular symbolic system with another,
supposedly more accurate description of reality. (Either of these ap-
proaches would obviously fall prey to deconstructive analysis them-
selves.) Instead, it argues within the premises of a given system, exhibit-
ing the reductio ad absurdum that follows from that system's version of
effacement. This strategy makes its point in each case without being
founded on a systematic set of premises of its own.

The arguments by which Derrida deconstructs particular proposals
take numerous forms, some of which might be taken to exemplify heuris-
tic formulae for producing such arguments. I will concentrate on one
such heuristic here. This heuristic applies when a philosophical system
employs a hierarchical opposition: that is, a classification of phenomena
into two categories, one of which is central, normal, and well behaved,
and another of which is peripheral, abnormal, and ill behaved. Simplify-
ing Derrida's terminology, I will refer to these as the center and the
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margin of the opposition. A given center-margin distinction might be an
explicitly established partition, as with the distinction between literal and
figurative uses of language, or it might be tacit, as when all the examples
provided in some exposition are central, "easy" cases of a theory. It is
extraordinarily common for a philosophical system to elevate some
central category as the "normal" case, so that the integrity of the system
depends on its success in hiding or explaining away the associated margi-
nal category.17 A theory of truth based on the correspondence between
literal sentences and reality, for example, immediately faces the problem
of figurative sentences. Figurative sentences might be regarded as para-
phrases of literal ones, as meaningless, as false, as immature or provi-
sional stages in the development of literal concepts, or in some other way
as inessential to the central, normal phenomenon of literal truth. It is
probably impossible to demonstrate that all such attempts must fail, but
it has proved possible to demonstrate the internal inconsistency of each
one in turn.

Systems that are founded on hierarchical oppositions tend to exhibit
characteristic difficulties, simply because the supposedly marginal cases
refuse to go away. Systematizers are often found elaborately rationalizing,
trivializing, obfuscating, or ignoring the marginal areas of their systems.
This is not to say that systematizers are dishonest. When a scholar
attempts to work out a system, the system will undergo one revision
after another until no more problems are apparent to the thought of that
day. As a result, the difficult bits of intellectual systems tend to be lo-
cated in obscure places: in footnotes, systematic ambiguities, or sup-
posedly unproblematic assumptions. These small symptoms may be hard
to find. Once discovered, though, they frequently reveal systemic fissures
within the discourse: deeply rooted tensions or contradictions hidden
beneath tacit equivocations, bland evasions, or a problematic shifting of
the trouble into a lost origin, an idyllic future, or a parallel realm of ideals.

One of the heuristics for discovering such things is called "reversal"
(Derrida 1981: 41-44,1982b: 329).18 It is simple enough: given a system
based on a hierarchical opposition, propose another system based on a
reversal of the same opposition. The point of this exercise is to make
obvious the ways in which the supposedly central cases of the original
system depend on the supposedly marginal cases. A classification for-
merly held up as natural and obvious is thereby exposed as artificial and
obscure. In the case of the literal-figurative opposition, for example, the
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very notion of literality turns out to be defined in a figurative way. In
general, the goal of the strategy of reversal is not to replace an existing
theory but rather to displace the whole practice of theory-making, that is,
to promote a reflexive awareness of the complex role of language in
practical action. Specifically, displacement makes evident the fact that
theories are interpretations of their supposed referents. These interpreta-
tions are not underwritten by an objective correspondence, but they are
also far from being arbitrary. To someone who equates reasoned thought
with some philosophy of presence, this whole project will sound like
either idealism or nihilism. But this is a mistake. The impossibility of
transparent knowledge does not render all practices of inquiry in-
coherent. These practices have logics that can themselves be made into
objects of hermeneutic inquiry.

A particularly subtle class of hierarchical oppositions is found in sys-
tems that assimilate all phenomena in a given territory to a particular
metaphor. In these cases, the opposition is tacit and more of a gradient
than a sharp divide: in the center are those phenomena that are readily
assimilated to the system's generative metaphor; in the margin are those
phenomena that can be assimilated to the generative metaphor only by
means of unreasonable convolutions. A generative metaphor also induces
centers and margins within the construction of particular phenomena:
every metaphor constructs a mapping between two semantic fields, and
in doing so it inevitably draws certain elements of each field into the
foreground and relegates others to the background. Metaphors that liken
society to an organism, for example, draw attention to issues of structure,
symbiosis, and reproduction, while also distracting attention from issues
of consciousness, conflict, and social mobility. Every generative meta-
phor, therefore, has a margin, which consists of those practical phenom-
ena for which the metaphor provides no ready account. Marginality, of
course, is a matter of degree; one will find phenomena being shoe-horned
into explanatory frameworks through various ad hoc extensions and ex-
trapolations that are not parsimonious but that are not easily refuted
either.

Margins in practice
The application of these ideas to technical discourse is straight-

forward; their application to technical practice is not.
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First, discourse. Technical people are systematizers too, even if a
computer system does not immediately seem to resemble a philosophical
system. But the analogy between technical and philosophical system-
building is close: both are intended to assimilate some territory of phe-
nomena in a systematic and complete way to a formal scheme. Technical
work is special in that, unlike most philosophical enterprises, the "formal
scheme" in question is "formal" in the strong sense of "mathematical."
At the same time, technical work assimilates phenomena to the meta-
phors associated with established model-building techniques. The gener-
ative metaphors of any given technical project thereby define a hierarchi-
cal opposition between central and marginal cases, that is, between those
phenomena that are readily assimilated to the metaphor and those that
are not. When the technical practice shaped by a given technical dis-
course runs into trouble, therefore, its difficulties may conform to a
characteristic pattern. Specifically, it will persistently fail to produce
reasonable accounts of the phenomena it treats as marginal.

Then, practice. A discourse suggests a way of talking about the world.
As Feenberg (1995: 144) points out, it is frequently instructive to watch
what happens when a discourse is put into practice. How can we charac-
terize the practical logic of research projects that embody a given dis-
course in technical artifacts, and specifically in computer models? I have
suggested that a technical practice will get itself into trouble around the
margins of its generative metaphors. This seems obvious enough when
stated abstractly. But it is much more complicated in practice, as re-
searchers move through the cycle of building systems, testing their per-
formance, interpreting what happens, revising their ideas, and building
new systems. A research community may accumulate a great deal of
experience through this cycle without ever understanding its own under-
lying discourse or its margins. This does not, in itself, imply that the
technical proposals themselves are necessarily misguided (as scientific
theories) or useless (as engineering techniques). It could be that the
margins of a particular theory really are distinctive in some way, so that
they do deserve different treatment than the central cases. (Chapter 14
will return to the point.) More prosaically, an engineering technique that
works well 90 percent of the time might be an enormous advance, pro-
vided that it fails safely the other 10 percent of the time. This reckoning
of percentages, of course, requires the same kind of critical analysis as any
other technical practice; the point is that a technical project need not
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employ representations that transparently grasp the project's practical
reality in order to engage it productively.

It is now possible to provide a reasonably precise statement of the
reflexive thesis of the book. A technical research program based on a
particular generative metaphor will encounter difficulties around its mar-
gins. When these difficulties are recognized at all, they will not have
words like "margin" written on them; instead they will seem like new
technical problems to be identified as topics for future research through
technical methods. In particular, when a technical research community
encounters manifestations of trouble, it will interpret them within its
existing discourse. That is, the community will try to assimilate these
manifestations to its customary metaphors and thereby motivate techni-
cal solutions to them. Different sections of a community might frame the
difficulties in different ways, depending on their particular slants. But
the metaphors themselves will not come into question unless the com-
munity is aware that they exist and possesses the intellectual tools to
analyze them. When this sort of reflexive awareness is lacking, the meta-
phors will hover in the background, acting as arbiters of plausibility
without taking any of the blame. As a result, the research process will
resemble a treadmill, in the form of a cyclic incorporation of margins.
Every turn of this cycle will seem like technical progress, and indeed it
often will be, within certain limits. Yet fundamental commitments will go
unquestioned and fundamental difficulties will go unaddressed. Given an
awareness of these phenomena, the patterns of difficulty in a technical
project can serve as diagnostics, leading the research community to artic-
ulate and evaluate previously implicit commitments.

Let me summarize the argument in another way. Scientific inquiries
based on technical modeling should be guided by a proper understanding
of the nature of models. A model is, before anything else, an interpretation
of the phenomena it represents. Between the model and the putative
reality is a research community engaged in a certain discursive operation,
namely, glossing some concrete circumstances in a vocabulary that can be
assimilated to certain bits of mathematics. The discourses within which
this process takes place are not transparent pictures of reality; nor are
they simply approximations of reality. On the contrary, such discourses
have elaborate structures and are thoroughly metaphorical in nature.
These discourses are not simply ways of speaking; they also help organize
mediated ways of seeing. They provide the vocabulary for formulating
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models, interpreting results, and then choosing among revised models. It
is thus important that model-builders understand the properties of meta-
phor systems. This is not a simple matter, since a generative metaphor
will have an utterly pervasive influence on the techniques, methods, and
priorities of a field. The procedure of diagnosing generative metaphors
and deconstructing the discourses they shape does not disprove a theory.
Instead, it encourages an awareness of the nature of theories. The theory
may still be useful; it may still be the best theory available; but its
development risks getting mired in epicycles unless its developers are
fully aware of the dynamics of model-building. Attention to a research
project's margins is useful not because the theory is necessarily any less
true in its margins, but rather because the systemic "bias" or "spin" of a
model's metaphors will become most apparent in its margins.

This version of the reflexive thesis is, unfortunately, incomplete. Let
me sketch some of the additional issues, which I hope to take up in
another publication. The reflexive thesis, as it is, sets up a dichotomy
between a completely unconscious existing practice and a perfectly self-
aware alternative practice. Things are obviously more complicated than
that. Existing research communities do have reasonably useful ways of
talking about the margins of their practices. For example, a given techni-
cal method is often spoken of as making "assumptions," which serve to
mark out the space of situations within which the method can be applied.
Or a theory might involve "idealizations" that cause it to "approximate"
the reality it attempts to explain. A more detailed theory of technical
work would describe how the practical logic of a given community's
projects interacts with its particular modes of self-awareness. The vocab-
ulary of assumptions and approximations reflects one kind of self-
awareness; the vocabulary of practical logics and margins reflects an-
other. Neither one is perfect, but the former has the important limitation
that the various assumptions and approximations are themselves formu-
lated within the reigning discourse of the community. Far from calling
into question the consequences of language, they are part of the intellec-
tual apparatus by means of which the various practical manifestations of a
given practice's margins are managed. Thus, a technique that works 90
percent of the time and fails safely 10 percent of the time is readily
understood as making certain assumptions that are sometimes false,
without at the same time casting doubt on the generative metaphors that
lie behind entire classes of such methods.
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Another shortcoming of my account of the practical logic of technical
work is that my focus on metaphors, while useful, is nonetheless limiting.
Before proceeding to substantive applications of my account, I will sketch
a more satisfactory account, the elaboration of which will have to await
future work. Technical discourses entail a practice of systematic assimila-
tion, by means of which a large number of phenomena are described in a
special vocabulary. In cognitive science, this vocabulary includes terms
like "knowledge," "planning," and "reasoning." The workings of these
terms are not exhausted by laying out an underlying metaphor system.
What these terms share with metaphors, however, is a sort of doubled
meaning. Just as a metaphor (e.g., lion-hearted or insipid) establishes a
point of contact between two normally distinct territories (animals and
people; cooking and art), each of these technical terms establishes a point
of contact between the world of computational formalism and the world
of human existence.19 It is frequently said that technical practice employs
an especially precise and well-defined form of language, but this is mis-
leading. In fact, terms like "knowledge," "planning," and "reasoning"
are simultaneously precise and vague. Considered as computational
structures and processes, these terms are as precise as mathematics itself.
Considered as descriptions of human life, however, they are profoundly
imprecise.20 AI continually tries to assimilate the whole of human life to a
small vocabulary. Human life, though, is far more complex and varied
than any known means of describing it. As a result, technical discourses
in cognitive science routinely employ their terminology in an extremely
vague way, the better to assimilate a broad range of phenomena to a
narrow range of themes. Many technical people are painfully aware of the
vagueness of their vocabulary. Their attempts to solve the problem,
unfortunately, are founded on a misguided conception of linguistic
clarity that requires ever more ambitious and elaborate formalizations.
This procedure exacerbates the problem by proliferating vague terminol-
ogy. As a result, it has become spectacularly difficult to think clearly with
computational ideas. This is too bad, and I hope that a better understand-
ing of technical language can alleviate the problem.
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Mentalism

As a substantive matter, the discourse of cognitive science has a
generative metaphor, according to which every human being has an
abstract inner space called a "mind." The metaphor system of "inside,"
which Lakoff and Johnson (1980) call the CONTAINER metaphor, is ex-
traordinarily rich. "Inside" is opposed to "outside," usually in the form
of the "outside world," which sometimes includes the "body" and some-
times does not.1 This inner space has a boundary that is traversed by
"stimuli" or "perception" (headed inward) and "responses" or "be-
havior" (headed outward). It also has "contents" - mental structures and
processes - which differ in kind from the things in the outside world.
Though presumably somehow realized in the physical tissue of the brain,
these contents are abstract in nature. They stand in a definite but uncom-
fortable relation to human experiences of sensation, conception, recogni-
tion, intention, and desire. This complex of metaphors is historically
continuous with the most ancient Western conceptions of the soul
(Dodds 1951; Onians 1954) and the philosophy of the early Christian
Platonists. It gradually became a secular idea in the development of
mechanistic philosophy among the followers of Descartes. In its most
recent formulation, the mind figures in a particular technical discourse,
the outlines of which I indicated in Chapter 1.

This metaphor system of inside and outside organizes a special under-
standing of human existence that I will refer to as mentalism. I am using
the term "mentalism" in an unusually general way. The psychological
movements of behaviorism and cognitivism, despite their mutual antago-
nism, both subscribe to the philosophy of mentalism. Behaviorism, on
this account, comprises several forms of mentalism that employ the
inside-outside language while perversely negating some of its terms:

49



50 Computation and human experience

speaking of internal mental entities, various behaviorists held, is either
senseless, or bad methodology, or just scientifically premature. Indeed,
the densely organized conflict between behaviorism and cognitivism is
the clearest indication of their underlying unity. The victory over be-
haviorism has become codified as the cognitivist movement's origin
myth. Like all such myths, conventional narratives of this forty-year-old
fight unintentionally obscure the movement's premises by redirecting
attention to secondary issues. (Since I am concerned entirely with those
underlying premises, I will bother to distinguish between mentalism and
cognitivism only when specifically discussing the cognitivists' debate
with behaviorism.) It is striking, for example, that the literature on psy-
chological metaphors exhaustively catalogs metaphors for the mind's
internal workings without ever mentioning the inside-outside meta-
phors that constitute the very idea of the mind (Berman 1989; Edwards
1996: 147-173; Hampden-Turner 1981; Leary 1990; Turbayne 1991;
West and Travis 1991b).2 To my knowledge, the only author to have
noted the central role of inside-outside metaphors in AI is K. Gardner
(1991), who employed Lakoff and Johnson's (1980) image schema theory
to analyze the metaphors of expert systems research. Gardner notes that
this literature treats an expert's knowledge as a collection of objects
stored in a container; knowledge is structured according to various order-
ing schemas (surface-deep, part-whole, center-periphery), and knowl-
edge engineers "acquire" it through forcible extraction.3 AI has elabo-
rated an enormous space of metaphors to describe the internal workings
of minds - as static hierarchies or bustling anarchies, constantly innova-
tive or mechanically rote, homogeneous or heterogeneous, largely innate
or wholly constructed (Lugowski 1985). This proliferation of surface
metaphors (Schon 1979: 267) can seem chaotic if the deep metaphor lying
beneath them is not clear. The practical logic of mentalist research begins
with this pattern.

The metaphor system of inside and outside weaves through a massive
vocabulary for talking about structures and processes inside machines.
This vocabulary has often been characterized in terms of computer meta-
phors for human thought, or else human metaphors for the operation of
computers (e.g., Davis and Hersh 1986: 240-254; Edwards 1996; G.
Miller 1974). But as West and Travis (1991a) have pointed out, things are
more complex than this. The word "computers" does not name a fixed
quantity; rather, understandings of machinery and of minds have influ-
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enced one another for centuries within a deeper discursive field. (Both of
them have also influenced, and been influenced by, ideas about social
structure.) Moreover, the mentalist tradition has drawn computational
vocabulary from a wide range of resources. In comparing these vocabu-
lary items with their earlier meanings, two related patterns emerge:

1. A word that once referred to something in the world now refers
to a structure in the computer. Common examples include "sit-
uation," "pattern," "context," "object," "list," "map," "struc-
ture," and "problem." Individual AI researchers have defined
hundreds of others.

2. A word that once referred to an activity conducted by agents in
the world now refers to a process occurring entirely in the com-
puter. Examples include "search," all verbs for operations on
data structures ("construct," "manipulate," "inspect," "point
at," "traverse," "collect," "recycle"), and many predicates on the
internal operations of technical entities.

Concisely put, mentalism provides a simple formula that gives plausible
answers to all questions of psychological research: put it in the head. If
agents need to think about the world, put analogs of the world in the
head. If agents need to act in situations, put data structures called "situa-
tions" in the head. If agents need to figure out what might happen, put
simulations of the world in the head. The tacit policy of mentalism, in
short, is to reproduce the entire world inside the head.4 In planning
research, this policy is found in the notion of a world model, according to
which reasoning about the world depends on having access to a suffi-
ciently detailed simulacrum (see Chapters 8 and II).5 It is also found in
the notion of inverse optics (Edelman and Poggio 1989; Hurlbert and
Poggio 1988), whereby the visual system works backward from retinal
images to compute a model of the objects in the world that caused them.
The development of computational methods over the past forty years has
been shaped by the steady encouragement of this discursive pattern. The
sophisticated structures and processes that form the basis for AI research
are not geared to living in the world; they are geared to replacing it.

Mentalism is often closely associated with another doctrine that tends
to duplicate the world in abstract form, namely Platonism. Although it
comes in numerous varieties, the core idea of Platonism is that alongside
the material world there stands a parallel world of ideal forms. Theories
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of logic and language, for example, frequently veer between psycholog-
ism, according to which things like "meanings" are mental structures,
and Platonism, according to which those things rest in the timeless,
extensionless world of ideals. (See Chapter 11.) What is most striking is
how little this distinction has mattered in practice. The mind would seem
to be located in space and time - in virtue of being causally associated
with someone's head - but theories of the mind have always had extraor-
dinary difficulty relating the mind's internal contents to the external
circumstances that those contents represent. The source of this difficulty,
often enough, is that theories of human conduct have evolved into Pla-
tonic formalisms, losing all reference to human bodies and lives along the
way. In other cases, theories of mind are really Platonic theories of ideal
form that have simply been transplanted into the head. So, for example,
West and Travis (1991a) have also noticed the tendency of AI research to
reproduce the world in the head. Yet they attribute the effect not to
mentalism but rather to the use of "context-free symbols" in computa-
tional models (cf. Collins 1990; Dreyfus 1972). Their explanation might
be understood as the flip side of mine, with context-free symbols as a
variety of Platonic form. Husserl (1970 [1954]: 60-69) argues that men-
talist dualism and the world of abstract idealities in its modern, quasi-
mathematical guise are, in fact, internally related, having arisen through
the same historical process. If Husserl is right, in retrospect it seems
nearly inevitable that thought should have been understood as the ma-
nipulation of abstract idealities - context-free symbols - that mirror
concrete forms in the world.

Interactionism

Mentalism, like any other discourse with a generative metaphor,
has a center and a margin. The central phenomena of mentalist discourse
are the varieties of abstract, detached mentation that are loosely grouped
under the notion of "cognition"; their paradigm is the culturally orga-
nized experience of standing apart from things, orienting oneself to some
complex practical difficulty, and engaging in the internalized speech that
is sometimes called "thinking." The marginal phenomena of mentalist
discourse are those that involve any complex interaction between an
individual and an "outside" world. The center and margin of mentalism
are not, however, predefined sets of already existing phenomena. Instead,
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mentalism must be understood as partly a discursive enterprise in which
the phenomena of human life are described using a particular metaphor
system. The margins of mentalism show themselves in the frequent
strangeness of these descriptions. Among the strangest, as will become
clear, are the descriptions of phenomena that involve interactions be-
tween a person and an environment, even to a minimal degree.

To deconstruct mentalism and explore alternatives, it will be useful to
reverse it. Doing so brings us to a perspective on human existence that
might generically be called interactionism. The generative metaphor here,
"interaction," suggests that two entities are acting reciprocally upon one
another, back and forth, continually and symmetrically. Interaction is a
metaphor, and not just an abstract description, to the extent that it
describes both entities, in this case individual and environment, as taking
actions, not just causing effects. Individual and environment are still
understood as different things, but it becomes impossible to understand
them except as participants in a third figurative "thing," namely the
interaction itself Interactionism, therefore, is more than the study of
interaction; it is, more fundamentally, the use of theoretical categories
(units of analysis) that are defined in terms ^/interaction. Whereas men-
talism gives a central role to mentation and a marginal role to interaction,
interactionism does the opposite. Interactionist words - "interaction,"
"conversation," "involvement," "participation," "feedback," "metabo-
lism," "regulation," "cooperation," "improvisation," "turntaking,"
"symbiosis," "management," and so forth - shift attention from cogni-
tion to activity. They lead to the positing of structures and processes that
cross the boundaries of agents' heads. If some structures and processes
are entirely inside of agents' heads, interactionism would regard them as
simply an unusual special case with no particular privilege.

Later chapters will describe some interactionist computational ideas.
The concept of describing human life using metaphors of interaction is,
of course, hardly new. After all, one of the lines of computational research
that symbolic AI largely displaced in the 1960s - cybernetics - employs a
particular set of qualitatively limited but mathematically complex inter-
actionist technical schemata (Ashby 1956; Edwards 1996: 180-187;
Hayles 1990; Heims 1991; Wiener 1948). Indeed, interactionism is not
really a specific doctrine but a space of possibilities, constructed to facili-
tate a reorientation of AI. My project has accomplished something if it
allows AI people to converse with the disparate intellectual traditions -
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dialectical, feminist, phenomenological, biological, and so forth - that
have already developed valuable interactionist theories of one sort or
another.6

Given the options of mentalism and interactionism, how can one
decide between them? Considered simply as discursive formations, nei-
ther of them has any special advantages over the other. If interactionism
someday attains the unreflectively hegemonic status in AI that mentalism
enjoys now, the best antidote will no doubt be a mentalist revival. The
grounds for deciding between them are more complex; they lie in each
discourse's relationship to the technical practice within which it guides
day-to-day work. Moreover, principled comparison between the two
frameworks is frustrated by their contrasting metaphor systems. They
are not simply means of description; they are also means of choosing
problems, evaluating solutions, judging plausibility, setting priorities,
and parceling out phenomena to subfields. An interactionist AI would be
nearly incommensurable with the mentalist one.

Nonetheless, we can obtain some provisional guidance by further ana-
lyzing the discourse of mentalism. What kinds of troubles would plague
mentalist research if interactionism were a better way to talk about hu-
man activity? Interactionism constantly directs attention to the connec-
tions between inside and outside; it offers constant reminders that inside
and outside are inextricably bound up with each other. If mentalist
research always starts by drawing a sharp distinction and firm boundary
between mind and world, one should expect inside and outside to try to
reunite in some covert way. And this is exactly what happens when
mentalism tacitly reconstructs the world inside the head. The attempt to
partition inside from outside subverts itself in practice as the mentalist
research program is driven to blur the difference between inside and
outside. The problem is remarkably systematic. The blurring need not be
deliberate, of course; it is more likely to operate through the ambiguous
use of language and the subtle redefinition of terms. It also happens when
computer simulations of thought are designed as if their physical en-
vironments were actually part of their mental models of the world.

The early cognitive models of Newell and Simon illustrate this effect.
In one report on GPS (Newell, Shaw, and Simon 1960), for example,
they introduced the notion of problem solving this way:

A problem exists whenever a problem solver desires some outcome or state of
affairs that he does not immediately know how to attain. . . . A genuine problem-
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solving process involves the repeated use of available information to initiate
exploration, which discloses, in turn, more information until a way to attain the
solution is finally discovered. (257, emphasis in original)

The language here suggests some activity in the world: obtaining a
desired outcome by exploring and acquiring information. These con-
notations persist when the authors introduce the GPS program on the
next page:

GPS operates on problems that can be formulated in terms of objects and
operators. An operator is something that can be applied to certain objects to
produce different objects (as a saw applied to logs produces boards). The objects
can be characterized by the features they possess, and by the differences that can
be observed between pairs of objects. . . .

Various problems can be formulated in a task environment containing objects
and operators: to find a way to transform a given object into another; to find an
object possessing a given feature; to modify an object so that a given operator
may be applied to it; and so on. (258)

"Objects" would seem to be physical things in the world ("the task
environment") and "operators" would seem to be physical operations
(such as sawing) that can be performed upon them. To solve "problems"
would seem to entail that objects are physically discovered or manufac-
tured. The examples they provide, however, are more ambiguous:

In chess, for example, if we take chess positions as the objects and legal moves as
the operators, then moves produce new positions (objects) from old. . . .

The problem of proving theorems in a formal mathematical system is readily
put in the same form. Here the objects are theorems, while the operators are the
admissible rules of inference. To prove a theorem is to transform some initial
objects - the axioms - into a specified object - the desired theorem. (258)

The significance of chess positions and mathematical proofs is that they
can be represented wholly within the machine: the object and the internal
representation of the object are the same. Of course this is not really true,
given that a machine representation will fail to capture numerous aspects
of chess-playing and theorem-proving as embodied activities. Chess, for
example, has rules about touching the pieces and the clock. But the
narrative conventions of chess normally delete these details without com-
ment, and so do Newell and Simon. To be sure, when describing a
problem that GPS solves, the authors will often (as in the first quotation)
use a formula like "find a way to transform" that leaves it ambiguous
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whether the program will actually do the transforming or whether it will
simply specify a procedure by which the transforming might be done.
But just as often (as in the second quotation) they will speak as if (for
example) "the problem of proving a theorem" is precisely "to transform
some initial objects" into desired products. In general, the terms "object"
and "operators" are ambiguous: they refer both to real things and actions
and to the representations of things and actions within the program.7

Another example of this phenomenon is found in Simon's (1969: 24-
25) famous discussion of the ant on the beach. He begins by suggesting
that organized activity arises from the interaction between relatively
simple creatures with complex but benign worlds. Yet one page later, he
asserts that he is interested only in cognition and not in embodied agency,
and he moves on to discuss his studies of human performance on cryp-
tarithmetic puzzles. Hoc (1988: 16) similarly declares, "Throughout this
study of planning mechanisms, psychological activity will be seen in an
interactionist perspective." But perhaps because it is specifically psycho-
logical activity that concerns him, he defines an activity not as the interac-
tion between an agent and a world, but as "the interaction between a
subject and a task" (16; emphasis in original). The word "task" is defined
in a manner similar to Newell and Simon's problem-solving framework.
His substantive theory of plans and their execution, which resembles that
of Wilensky (1983), lies within the mainstream AI planning tradition. He
defines a plan (1988: 84) as "a schematic and/or hierarchical representa-
tion whose function is to guide activity."

The point of this exercise is not that mentalist AI research necessarily
blurs its concepts in this way. Although this particular pattern is fairly
common, other research projects might manifest the underlying tensions
of mentalism in quite different ways. Each project must be considered on
its own terms, and my purpose here is simply to offer a vocabulary for
analyzing such projects. Nor do I wish to say that mentalism is useless.
Considered as an engineering framework, it is likely that applications
exist for which devices conceived in a mentalist fashion would be useful.
Simple, computationally tractable world models are often sufficient for
devices that represent specific environments for specific practical pur-
poses, especially environments that have been deliberately constructed or
reconstructed to suit the needs of the device. A critical technical practice
would attempt to understand these phenomena, working out better ways
of recognizing the practical logic underlying the impasses and trade-offs
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of engineering work. My own concern, however, is with the scientific
question of which framework works best for the description of human
beings and their lives. The promise of computational psychology is that
the technical practice of psychological model-building, done in a critical
way, can cast light on the phenomena of human life. I cannot provide an a
priori argument that such a thing is possible. Instead, beginning with the
next section, I will develop the outlines of a computational psychology,
and indeed a version of computation itself, that takes the interactions of
human beings with their environment to be the central phenomenon for
computational study.

Machinery and dynamics

Reinventing computation is a considerable task. Whole vocabul-
aries, institutions, curricula, artifacts, workspaces, value systems, and
industrial organizations are built around a conception of computation as
abstract processes and structures inside of machines. What I can do here
is sketch an alternative vocabulary and methodology for AI, motivating
them in a loose way with some stories about ordinary activities. Later
chapters will analyze fundamental concepts of AI in more detail, leading
to some experiments with implemented systems.

I propose thinking about computation in terms of machinery and
dynamics. A machine, as usual, is a physically realized, formally specified
device. It is an object in the physical world that obeys the laws of physics.
It might have some capacity for change. Its means of operation might be
analog or digital or both. The mass noun "machinery" is intended to
suggest particular metaphors for thinking about the machinery's physical
realization: its operation depends on a configuration that is more or less
fixed. Talk of inside and outside applies to machinery, but only in the
straightforward physical sense: we have brains in our heads. It might
make sense to say that the machinery has "inputs" and "outputs," but
these words must be construed cautiously, in a minimal way; as Maturana
and Varela (1988: 169) point out, if the machinery engages with its
environment differently in the course of different activities, it may be
impossible to define a fixed array of "inputs" and "outputs" that are
always useful in describing it.

The notion of dynamics is less familiar. It concerns the interactions
between an individual (robot, ant, cat, or person) and its surrounding
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environment. The word might be used in a number of ways. In making
dynamic explanations one often isolates a particular "dynamic," which is
a common regularity in the way that some sort of individual interacts
with some sort of world. One might employ the word as an adjective by
speaking of "dynamic explanations," "dynamic theories," and the like.
One might also speak of the "dynamics" of an interaction between a
particular class of agent and a particular class of world. This simply
means "everything one might say about the way the agent and world
interact."

A few examples of specific dynamic regularities will motivate some
general points about the notion of dynamics.

In your kitchen cupboard you probably have a set of bowls stored
in a stack. If you use one of them, you are likely to return it to the
top of the stack. Over time, the bowls you never use (or no longer
use, or have not begun using) tend to sink to the bottom. If you
use some of the bowls and not others, then the bowls you often
use and the bowls you rarely use become segregated.

These sinking and segregation effects are dynamics. Though they are
regularities in the interaction between a cook and a kitchen, they are
neither explicit policies followed by cooks nor inherent properties of
kitchens. Instead, they are the joint product of actions aimed at other
goals and environments organized according to customs. The bowls do
not sink and segregate because the dynamics act upon them as an outside
force; they do so because on a series of occasions you returned the bowls
you have used to the top of the stack. The effect is an emergent property
of particular concrete interactions.

This notion of the emergent organization of activity has not been
central to computational discourse. Among AI people, therefore, the
notion of a dynamic risks being confused with the notion of a plan. But a
dynamic is not a structure in any agent's head. Theorists might describe
dynamics, but these descriptions need not be realized in a data structure
or a plan or a mental object of any kind. Having identified a recurring
form of interaction between an agent and its world, one can set about
determining what kinds of machinery might be compatible with it. The
agent participates in the dynamic but is not solely responsible for it. Here is
another example of this point:
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When I was first writing this book, I had a record player and a
shelf of records in my office. Since I played upward of two dozen
records a day when I was working, a routine slowly arose for
getting a record down off the shelf, removing it from its sleeve,
picking a side to play, putting it down on the turntable, cleaning
it and setting it going, removing it from the turntable when it's
done, returning it to its sleeve, and returning it to its place in
alphabetical order on the shelf. Though this routine happened
quickly (about fourteen seconds to put the record on and about
twelve seconds to put it back), it was enormously complex, in-
volving several changes of grip and orientation. One evening I
went through this routine about thirty times and wrote down
every detail of it. In doing so, I was able to satisfy myself of the
accuracy of the following hunch about it: if I always played only
side A (say) of a given record, then side A would always be facing
up at the point in my routine where, having just removed the
record from its sleeve, I checked whether the side I wished to
play was facing upward or downward. This is unfortunate; since
I happened to be holding the record from underneath just then,
it would be much less clumsy to turn it over in the course of
putting it down on the turntable. This invariant in my interac-
tions with my office is a dynamic.

A dynamic continues occurring only ceteris paribus; many different
events might interrupt it. You might use all the bowls in a stack for a
party one evening so that the next morning the newly reconstituted stack
will be scrambled; or someone might play my records in my absence. In
studying an activity, it is probably best to concentrate on its more stable
dynamics. But any dynamic description that would aspire to the status of
natural law is limited by the possibility that any of a thousand additional
factors might arise to change the outcome next time.

A given dynamic can depend on a wide variety of facts about both the
individual and the world. It depends on the world in that stacks require
gravity, objects are often designed to stack, stacks tend to stay orderly
unless disturbed, my records are at eye level whereas my turntable is at
waist level, and so on. These particular dynamics depend only on some
rather vaguely described aspects of the individual who participates in
them (puts the stacked objects back reliably, checks record labels). Many
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others depend on more specific aspects of the individual. Consider, for
example, the following:

This story covers four days one winter. One morning upon
arriving at my office, I decided I was tired of my coat cluttering
my office, so I decided to leave the coat lying on top of the file
cabinet just outside my office door. Shifting my concern to the
day's work, I walked into my office and pushed the door shut
behind me as always - except that today it didn't slam behind me
as usual. Investigating, I found that an edge of the coat had
caught in the door jamb, preventing the door from closing. I
moved the coat out of the way, closed the door, and went back to
work. The next day I left the coat on top of the file cabinet,
headed into my office, and pushed the door shut as always - and
it didn't slam behind me again. This time, though, I immediately
knew what the problem was. The next day I left the coat on top
of the file cabinet as before, but as soon as I turned to head into
my office I realized that the coat was liable to get caught, so I
moved the coat out of the way again. The fourth day, I was aware
of the problem as I was placing the coat down on the file cabinet,
so I made a point of placing it as far as practicable from the door
jamb. On each day, a bit of the previous day's insight had drifted
back toward the beginning of the routine.

A dynamic description is not simply a description of an agent's outward
behavior. Instead, a dynamic pertains to a recurring causal chain whose
path passes back and forth between components of the individual's ma-
chinery and objects in the world. The dynamic in this case is the "drift"
of certain recurring elements back toward the beginning of a cycle. This
dynamic is the sort of thing that classical psychology called transfer. For
mentalist psychology, transfer occurs between one isolated situation and
another. The interactionist approach, by contrast, is to view transfer as
part of the larger dynamics of activity in the world of everyday life.
(Transfer and the other phenomena in these stories are discussed further
in Chapter 6.)

The continued existence of a dynamic can also depend on the dynamic
remaining unnoticed. It is common to notice and describe an interac-
tional invariant in one's life (though few people call them "interactional
invariants" or have any need to make scientific generalizations about
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them). The dynamic picture might then become more complicated if you
begin deliberately doing things differently or if you go out of your way to
encourage or retard the effect. Having noticed your stack of bowls segre-
gating, for example, you might deliberately put a more valuable bowl back
toward the bottom of the stack to ensure that more expendable bowls are
subjected to the risks of everyday use.

Interactionist methodology
The examples in the preceding section all illustrate the idea that

the organization of everyday activity is a product of interactions between
agents and environments. They are not a proof, of course, but rather
some initial hints toward the cultivation of a worldview. In particular,
they are intended to help establish a new and different connection be-
tween technical ideas and the experience of everyday life. Just as mental-
ist AI has been influenced by a Cartesian preoccupation with personal
isolation, an interactionist AI will require an increased awareness of
personal involvement in the physical and social world. New modes of
experiences will lead to new technical intuitions. In particular, attention
to the dynamics of everyday activity can impress us with the inherent
orderliness of everyday life. Once intuitions are revised in this way, the
agenda for AI research begins to change.

Interactionist AI is a broad and ecumenical activity. Its fundamental
question is: what kinds of machinery get into what kinds of dynamics in
what kinds of environments? We can ask this question about robots in
factories, insects in factories, insects in the jungle, cats in the jungle, cats
in the suburbs, people in the suburbs, people in factories, or whatever and
wherever we like. As these examples make evident, the answers to this
fundamental question will depend in important ways on the kinds of
agents and worlds we choose to investigate. The question, moreover,
leads quickly to other, older questions about biology and culture and
history. AI does not replace these older questions; nor does it supplant
the older answers. Quite the contrary, AI ought to participate in a
dialogue with a variety of other intellectual projects. What it brings to
each such conversation is a body of experience investigating issues of
physical realization. In using the term "machinery," I am not restricting
attention to engineered artifacts, much less to factory machines. Nor, in
using the term "dynamics," am I restricting attention to processes that
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can be characterized using differential equations or any other sort of
mathematical description. The intuitions and methods of AI had their
origins in engineering, but with a sufficiently critical attitude they can be
much more general than that, applying just as well to scientific enter-
prises.

Interactionist research methodology consists of a sustained inquiry
into issues of machinery and dynamics. Good research will move back
and forth between the two of them, using insights about each to deepen
inquiry into the other. Machinery and dynamics constrain one another:
only certain kinds of machinery can participate in given kinds of
dynamics in a given environment. For example, an agent that always puts
its tools back where they belong may need simpler means of finding those
tools than an agent that leaves them lying about. Likewise, an agent
whose machinery is immutable can change its interactions with the world
only by changing the world or its relationship to the world.

The mutual constraint between machinery and dynamics is the subject
matter of computational intuitions and of the principles that give these
intuitions heuristic form. In practice, research will generally start from
certain leading assumptions about machinery, for example that the agents
in question employ a particular architecture whose properties have been
explored by the existing literature. Given this starting point, design
issues pertaining to any aspect of that machinery (such as timing, internal
state, speed, digital vs. analog, or noise tolerance) will make predictions
about the dynamics of that agent's interactions with particular environ-
ments. Questions about dynamics can be addressed to the empirical
phenomena, either by formal appeal to existing fields of study (an-
thropology, phenomenology, biology) or by informal collection of anec-
dotes such as the ones I reported earlier. Anecdotes prove little on their
own, of course, but computational research is sterile if it proceeds in the
abstract, without some kind of experiential contact with the phenomena.
Research is progressing if design issues are steadily raising questions
about dynamics and observations about dynamics are steadily deepening
the designer's understanding of the practical reality of design.

The most important principle of interactionist methodology is ma-
chinery parsimony: postulate the simplest machinery that is consistent
with the known dynamics. This principle is critical when, as so often in
technical work, the temptation arises to build some very general type of
machinery to model some broadly characterized phenomenon. Instead of
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designing steadily more general-purpose machinery, it is better to under-
stand the dynamics that people (or cats or insects, etc.) actually get into.
Often such inquiries will turn up empirical distinctions that correspond
to distinctions of technical practicality (Horswill 1995). Attempts to
equip an agent with elaborate schemes for mapping its environment, for
example, are often halted by the combinatorial complexity of the requi-
site algorithms. But general-purpose mapping devices seem less neces-
sary after some empirical study of the signs and sight lines and sources of
advice that the world makes available; a few simple way-finding strategies
might interact with these helpful resources to achieve the same effect. All
of the technical arguments in this book are instances of the principle of
machinery parsimony. Deeper understandings of dynamics can lead to
simpler theories of machinery.

Why might an understanding of an agent's interactions with its world
lead to simpler hypotheses about its machinery? Far from the Cartesian
ideals of detached contemplation, real agents lean on the world. The world
is its own best representation and its own best simulation (Brooks 1991).
Interactions with the world, both past and present, provide many ways to
alleviate computational burdens (McClamrock 1995). Symmetries and
rhythms allow us to organize our physical activities with simpler control
mechanisms (Raibert 1986). Direct observation can often replace elabo-
rate deductions (Kirsh 1995). Inspection of one's materials can often
indicate what has to be done next, eliminating the need for complex
control structures (Hammond, Converse, and Grass 1995; Norman
1988). Cultures provide representational artifacts that support complex
forms of cognition (Goody 1986; Latour 1986). Activities are arranged in
space in meaningful ways (Harre 1978; Lansky and Fogelsong 1987).
Improvisation often eliminates the need for detailed plans (Agre and
Horswill 1992). Complex tasks are distributed among participants in
group activities (Cole and Engestrom 1993; Hutchins 1995). Incremental
learning can substitute for mechanisms whose great generality is ren-
dered useless by their great expense (Berwick 1985). The social world
organizes activity and learning in numerous helpful ways (Lave and
Wenger 1991). Past experience provides abundant precedents for the
decisions we must make in our activities (Schank 1982). By investigating
the full range of these dynamic phenomena, designers can gain experi-
ence with the "fit" between particular types of machinery and particular
kinds of environments.



64 Computation and human experience

Making technical sense of these intuitions is, of course, hard work.
The hardest part is accounting for all of the phenomena which interac-
tionism understands as marginal. The long-cultivated habits of mental-
ism place enormous emphasis on these phenomena: on innovation,
cogitation, problem solving, and so forth. The point is that these phe-
nomena are considerably more complex - heterogeneous, error-prone,
socially organized, culturally specific, and so forth - than mentalism
makes out. They will be the last phenomena to receive satisfactory com-
putational explanation, not the first, and interactionist research will as-
sign them a lower priority than mentalist research will. Chapter 14 will
return to them. Meanwhile, the empirical and theoretical investigations
in other fields can serve as rough guides to the sort of theory one might
hope to obtain.

Interactionist and mentalist methodologies also differ in the way that
they individuate "problems" for research. The interactionist seeks prin-
ciples about the relationship between machinery and dynamics, isolating
particular dynamic phenomena and asking about their implications for
machinery. The mentalist, by contrast, generally studies something that
(as I mentioned in Chapter 1) mathematical theories of computation
since Turing have misleadingly called a "problem": a mathematical func-
tion from a finite input set to a finite output set. An algorithm "solves" a
problem if it computes this function. The difficulty with this sort of
problem and solution is that they make strong assumptions about the
kind of interaction a given device will have with its world: a single input,
a spell of abstract computing, and a single output. While this is conceiva-
bly a reasonable description of some human activities, it is surely a poor
description of most of them. This conventional notion of "problem-
solution" covertly prescribes the use of mentalist metaphors in the very
specification of research topics. It follows that both the theory of Turing
computability (Turing 1936) and the theory of computational complexity
(Tarjan 1987) introduce some strong and rarely acknowledged assump-
tions into AI. This is a serious situation, since these theories provide the
principal technical means of answering questions like "What is a compu-
ter?" and "What can computers do?"

In summary, I am suggesting a reversal of AI research values. Faced
with an empirical phenomenon to explain, our first explanatory recourse
should be to dynamics, not to machinery. Likewise, faced with a technical
problem to solve, our design methods should begin with dynamics, not
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with machinery. Heretofore, AI has placed a high value on new machin-
ery. Instead, I would like to suggest that we place our highest value on
getting rid ̂ /machinery. We should aspire to invent novel dynamic effects
and experience regret when forced to invent novel devices. As a result,
the models I will present employ simple, largely familiar forms of ma-
chinery. This machinery, however, is not the critical contribution of the
work. My contributions are my case studies of a new perspective, my
description of certain dynamic aspects of activity, and my tentative sug-
gestions about how a particular type of simple machinery is capable of
participating in these dynamics.



Abstraction and implementation

Structures of computation

All engineering disciplines employ mathematics to represent the
physical artifacts they create. The discipline of computing, however, has a
distinctive understanding of the role of mathematics in design. Mathe-
matical models can provide a civil engineer with some grounds for confi-
dence that a bridge will stand while the structure is still on paper, but the
bridge itself only approximates the math. The computer, by contrast,
conforms precisely to a mathematically defined relationship between its
inputs and its outputs. Moreover, a civil engineer is intricately con-
strained by the laws of physics: only certain structures will stand up, and
it is far from obvious exactly which ones. The computer engineer, by
contrast, can be assured of realizing any mathematical structure at all, as
long as it is finite and enough money can be raised to purchase the
necessary circuits.

The key to this remarkable state of affairs is the digital abstraction: the
discrete Os and Is out of which computational structures are built. This
chapter and the next will describe the digital abstraction and its elaborate
and subtle practical logic in the history of computer engineering and
cognitive science. The digital abstraction is the technical basis for the
larger distinction in computer work between abstraction (the functional
definition of artifacts) and implementation (their actual physical construc-
tion). Abstraction and implementation are defined reciprocally: an ab-
straction is abstracted from particular implementations and an imple-
mentation is an implementation of a particular abstraction. This
relationship is asymmetrical: a designer can specify an abstraction in
complete detail without making any commitments about its implementa-
tion.1 The relationship is confined to the boundaries of the computer; it
does not depend on anything in the outside world.

66
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Computer engineering uses abstraction to organize its work into a
hierarchy of relatively independent levels, each with its own research
community. At the lowest level, device physicists can use any materials
they like to build their circuitry, as long as they can support the most
basic abstraction of binary arithmetic. Computer designers, likewise, can
specify whatever architectures they like, as long as they can be pro-
grammed in a general way. The authors of compilers (the programs that
translate high-level programming languages such as Fortran and Pascal
into a form that computer hardware can interpret directly) can explore a
wide variety of techniques, as long as their compilers support the seman-
tics of some language that programmers find congenial. These program-
mers, finally, can implement whatever abstractions they choose, simply
by writing programs. These programs may employ several levels of ab-
straction as well, each with a formally defined relationship to the levels
below and above it.

Philosophical accounts of computation and its relationship to AI have
placed much emphasis on the independence of the various levels of a
computational system (e.g., Haugeland 1985: 58). And indeed, a
snapshot of computational practice at any given place and time will
probably resemble this picture of neatly separated levels of abstraction.
The historical reality, though, is more complicated. The practical logic of
computing is driven by a variety of factors, but the most pervasive factor
is straightforward efficiency: the amount of useful computational work
that gets done in the service of specified goals by a given amount of
machinery in a given period of time. The demands of efficiency con-
tinually undermine the independence of the various levels of abstraction
in conventional computer systems; more generally they undermine the
separation between abstraction and implementation. At any given junc-
ture in technical history, this tension becomes manifest through the
emergence of new and often surprising design trade-offs, as well as a
coevolutionary pressure for mutual adaptation among the various levels
of abstraction.

In their everyday practice, few computer programmers must con-
sciously negotiate trade-offs between matters of abstraction and imple-
mentation. Programmers are very concerned with efficiency, of course,
and they have accumulated and codified a great deal of experience in
choosing the most efficient algorithms for a given task. Nonetheless, their
design choices are heavily constrained by the particular computer archi-
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tectures with which they work. The vast majority of programmers work
on computers with serial architectures. A serial processor is called "se-
rial" because it performs only a single small operation, or "instruction,"
at a time.2 It has often been observed that a serial computer attempts to
defy the demands of physical implementation. Though it might consist
of several million circuits distributed through a cubic foot of space, only a
small proportion of these circuits will actually be doing useful work at
any given time (Hillis 1985: 1-5). Serial machines are thus located at an
extreme in the space of trade-offs between freedom of abstraction and
efficiency of implementation: they offer a maximum of freedom with a
minimum of efficiency.

As a result, many people have assumed that computers would be much
more efficient if they were highly parallel, that is, if they worked by
performing a large number of useful operations all the time. A highly
parallel computer would distribute the useful work uniformly through-
out its circuitry rather than trying to cram it into a single central proces-
sor. Computational theorists and computer designers have invested enor-
mous effort into exploring the forms that distributed computation might
take (Almasi and Gottlieb 1994; Denning and Tichy 1990; Hillis and
Barnes 1987; Kitano and Hendler 1994). But parallel computers have not
become prevalent, because programmers have not been willing to give up
the freedom of serial computing. The performance of a serial machine
might be tolerable for most tasks, and so the computer market provides
manufacturers with the enormous amount of capital required to produce
successive generations of serial machines. Any given parallel architecture,
by contrast, will probably occupy a niche market because its performance
will be extremely high on some categories of tasks and relatively poor on
others. For example, a computer that consists of a dozen serial processors
communicating over a network will perform well on tasks that can be
decomposed into a moderate number of roughly independent subtasks;
on other tasks, the processors will probably spend most of their time
waiting for the network rather than doing useful work. Discovering a
suitable decomposition for a task is often difficult. Specifically, in order
to benefit from parallel execution, a computation must be organized so
that it can be distributed in a natural way across the spatial extent of a
parallel machine (cf. Hillis 1985: 137-144). On this view, one foundation
of efficient design is a natural correspondence between the structure of a
computation and the structure of its physical implementation.
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An important example of this principle is found in the first several
stages of visual processing (known as "early vision"), according to com-
putational neurophysiologists such as Marr (1982). According to this
theory, the visual cortex is organized, at least in part, as a set of modules,
each of which computes some function from one version of the visual
image to another. Although the exact roster of these computations is still
uncertain, a typical proposal is that a certain module takes in a slightly
blurred version of the retinal image and produces a map of where the
edges in the image are located. Another module takes in these edge maps
for both eyes (i.e., a stereo edge map) and produces a map of "depth"
(i.e., how far away the physical edges actually are). The salient aspect of
these computations for our purposes here is their physical organization.
Nature might have implemented these modules in many ways, but in fact
they are constructed in accord with a natural correspondence between
the uniform two-dimensional structure of the images and the uniform
two-dimensional structure of the neural machinery itself. That is, each
successive stage of the cortical circuitry that implements early visual
processing is organized as a flat sheet of computing elements. As a result,
most of the wires within a given stage can be fairly short, transporting a
signal from a given computing element to its neighbors.3 The resulting
visual architecture has a striking simplicity: whereas a serial computer
must constantly shift its attention among different processes and
different data, every element of the early visual system performs its single
assigned task all the time. But not all computations will be so lucky.
When computations are less naturally implemented, the work is
distributed less evenly through the circuitry. Of course, a designer might
have good reasons for building a computer that implements its computa-
tions in a relatively inefficient way: standardization, maintenance issues,
functional flexibility, conventional divisions of design labor, and so forth.
That these nonoptimal design options are available at all is testimony to
the power of computation: the separation between abstraction and imple-
mentation remains perfectly valid as a conceptual matter, regardless of
how natural it is as a practical matter.

What makes the conceptual separation between abstraction and imple-
mentation possible is a simple but profound invention: the wire. By
connecting two physically distant points in a circuit, wires allow the
designer the maximum latitude in choosing the manner in which a given
abstraction is to be implemented. Given enough wires, a computer de-
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signer can physically implement an arbitrary abstract network of com-
puting elements. This is why technical papers about computer architec-
tures can provide functional specifications using diagrams made of boxes
and arrows without providing any clue as to the actual physical geometry
of the circuits that implement them. And indeed, the people who finally
build these computers spend a large part of their time getting the sheer
mass of wires under control. By loosening the constraints imposed on a
designer by the three-dimensional geometry of space, wires allow the
designer to decouple the causal patterns of an abstractly specified device
from the spatially localized causality of its physical implementation.

It is thus possible, as an engineering option, to implement one's com-
putations in perfect defiance of physical locality. But in doing so one pays
a price in the efficiency of the resulting artifacts: computers with shorter
wires are faster, other things being equal, because electrical signals travel
along wires at a finite speed. As computers grow larger and the pure
velocity of computation becomes a dominant design goal, the technology
begins to break down and reorganize itself within new, more rigorous
correspondences between abstraction and implementation. Hardware
designers, for example, often cut wires to precise lengths, so that each
signal will arrive at its destination at the exact moment when it is needed.
Similarly, even though a memory chip maintains the digital abstraction
in its outward behavior (if you store a 1 in a given memory location, you
will get a 1 back later on), most memory chips do not actually employ the
digital abstraction in their internal circuitry, which is in fact a sophisti-
cated analog circuit that takes advantage of the physical properties of the
materials from which it is made. Furthermore, one of the innovations of
the IBM 801 computer, which started the trend toward RISC (reduced
instruction-set computing) processor architectures, was that the proces-
sor and its compilers were codesigned, introducing peculiar instructions
that permitted the processor to keep more of its circuitry usefully busy in
complex situations (Hennessy and Patterson 1994; Radin 1983). In each
case, the drive for efficiency has brought a more detailed understanding
of the physical reality of computation to bear on the problem of imple-
menting digital abstractions.

The moral of the story is that abstraction and implementation, far
from being independent levels of technical description, are actually en-
gaged in a dialectical relationship. Though one might wish to define each
of them without any heed to the other, their fates will necessarily become
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intertwined as demands for efficiency intensify. As technological
development explores the endlessly ramifying space of design trade-offs,
implementation and abstraction will continue to be pulled into a close
and potentially complicated relationship. Factors of marketing and man-
agement have largely hidden this dialectic from the consumers and phi-
losophers of computation. Yet, I would like to argue, it is a fact with
important and little-understood consequences for computational psy-
chology.

A case study: variables

The history of computer design can be understood in large part,
then, as the unfolding of dialectical interactions among various aspects of
implementation and abstraction. A case study in this history that will
take on particular significance in later chapters of this book concerns the
development of two central abstractions of serial-computer program-
ming, pointers and variables.

Serial computers were originally designed to automate calculations
already performed in a routinized fashion by human beings - themselves
often called computers - in military and business environments. Today
this type of step-by-step calculation scheme is probably most familiar, at
least in the United States, from income tax forms. A typical calculation
step, or instruction, might be glossed as "Add lines 31 and 40 and enter
the result on line 41." This instruction would be represented inside the
machine using a sequence of four numbers, one for the "add" operation
and the other three for the addresses of the registers containing the oper-
ands (31 and 40) and the result (41). This is the register-transfer model of
computation upon which virtually all modern computers are based. Each
register, or "word," of the computer's memory is implemented by an
actual physical circuit that stores a sequence of binary values.4 The first
computers had only a few hundred words of memory, but memories of
several million words are common today. Each register's address is itself a
binary quantity. In a thousand-word memory an address can be specified
with ten bits; in a million-word memory twenty bits are required. As a
result, a single instruction can require nearly seventy bits: half a dozen to
specify the operation ("add," "subtract," "compare," etc.), twenty each
for the operands and result, and a few more for other miscellaneous
purposes.
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In practice this way of specifying instructions is too cumbersome.
Much space is wasted by instructions that do not require the full three-
operand format. As a result, computer architects began to reserve the
word "register" for a small portion of the memory. In the tax-form
analogy, registers corresponded to scraps of paper where individual oper-
ations were set up and performed, with the results being copied back
onto the indicated line of the tax form. An instruction such as uAdd
words 31 and 40 and store the result in word 41" would now be broken
into three parts:

1. Load word 31 into register 3.
2. Add word 40 into register 3.
3. Store register 3 into word 41.

Breaking instructions into smaller pieces permitted each instruction to
be specified in a single word of memory (perhaps five bits for the opera-
tion, five bits for the register, twenty bits for the memory address, and a
few miscellaneous bits). Furthermore, since the registers could be imple-
mented in faster circuitry than the millions of general-purpose memory
words, many computations could be accelerated by keeping frequently
used quantities in registers as long as possible. More generally, computer
memory is now organized in a hierarchy, with small numbers of faster
memory elements close to the central processor and large numbers of
slower elements farther away.

An important extension to the register-transfer model of computation
was the invention of indirect reference. In the conventional model, a word
of memory contains either an instruction or an item of data, and these
data refer to things in the outside world, such as an air pressure or an
adjusted gross income. In the extended model, a word of memory can
also contain the address of another word of memory. An instruction can
now refer indirectly to a quantity in memory, not by specifying its ad-
dress but by specifying an address where its address can be found. For
example, consider this instruction:

Load word @7 into register 3.

The "@" symbol indicates indirect reference. The execution of this
instruction proceeds in two steps: the processor first reads the contents
of register 7 and then, interpreting the resulting value as a memory
address, loads the value at that address into register 3. Without indirect
reference, any given serial-machine computation is laid out across the
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machine's memory in a fixed configuration, in the same way that an
income-tax calculation is laid out across a piece of paper; every word of
memory has a fixed meaning ("dividend income," "social security bene-
fits," "alternative minimum tax," etc.). Indirect reference frees a com-
putation from this fixed correspondence to the underlying hardware. In
practice, programmers use indirect reference in stereotyped ways, using
a set of conventions that collectively implement some useful form of
abstraction. As with all abstractions, systematic use of indirect reference
entails a decrease in efficiency, since an additional memory "fetch" is now
required to load each value from memory. Programmers have often ar-
gued about the costs and benefits of programming innovations based on
indirect reference, but the cause of increased abstraction has usually won.

One such innovation is the use of pointers to create dynamically linked
record structures. A particularly simple form of record structure is the
list, in which each record includes the address of the next record. This
address is called a pointer. The records can be located anywhere in
memory, but a program can step through them by following the pointers.
In the Lisp programming language, for example, the simple list of four
symbols that would be notated as (london par i s Zurich prague)
would be implemented using four records, as follows:

address 704:
value = "paris"
next = 1731

address 1030:
value = "london"
next = 704

address 1366:
value = "prague"
next = 0

address 1731:
value = "zurich"
next =1366

A register could "point" at the list simply by containing the number
1030, which is the address of the first record in the list. By convention,
the pointer to address 0 in the "prague" record indicates that the list has
ended (Knuth 1983).
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By using enough interlinked lists, a programmer can construct enor-
mous symbolic structures. These structures might be interpreted as
computer programs (in a compiler) or as syntactic structures (in linguis-
tics) or as a representation of the outside world (a "knowledge base" or
"world model"). Given some memory and the operations for manipulat-
ing pointers, a program can build new structures, tear down old ones,
revise existing ones in accord with changing conditions, and so forth.
This idea is the basis of symbolic programming (Abelson and Sussman
1984; Newell 1961).

The notion of a variable is more subtle. The problem is that the term
"variable" has no single definition. In fact it has a wide variety of defini-
tions, some computational and some not. Historically, the algebraic no-
tion of a variable arose slowly, acquiring a recognizably modern form only
during the Renaissance (Klein 1968). This is the kind of variable one
encounters in middle school, in exercises such as

3x - 4 = 5.

Here, at least on one conception, the variable x "stands in" for a definite
but currently unknown quantity. Another mathematical use of variables
is in defining functions, as in

fix) = x2 - Ix + 5.

In this case, the meaning is something more like "Whatever x is, fix) is
this," where each occurrence of x is supposed to correspond to the same
value. In set-theoretic terms, a function is simply a set of pairs, each
matching a value of x to the corresponding value of fix). The word
"variable" does not refer to any part of this structure; instead, it refers
ambiguously to the symbol x and to the single argument position of the
function/(a "function of one variable"). Yet a third use of variables is
quantification in formal logic, for example:

\/{x)person{x) —» 3(y)mother(y,x).
"Everyone has a mother."

Even more obscure types of variables are found in higher branches of
mathematics. Galois theory, for example, can be used to investigate the
solutions of polynomials; one begins by taking some field, F, adding a
symbol such as X, and then "closing" the resulting set under the field's
equivalents of addition and multiplication to obtain a new extended field,
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F[X\ of polynomial formulas (Goldstein 1973: 301-323). This X, how-
ever, is not just an element of notation like the x's of earlier examples; it
also designates a symbol-like component of the mathematical structures
that are being investigated.

In each of these cases, the common element is a syntactic indication of
reference within some range of possibilities without a predetermined
choice among them. But this is just a family relationship across a dispa-
rate series of phenomena, each of which is perfectly well defined in its
own context. Nonetheless, it will be useful to give this vague general
notion a name, so I will call it nonspecificity.

Programming languages employ a wide range of variable-like mecha-
nisms, each of which resolves the tension between abstraction and imple-
mentation in its own way. In each case, the purpose is to permit an
algorithm to be expressed without reference to particular numbers or
symbols. Just as a million people can fill out the same tax form and come
up with different correct answers, so a million computers can run the
same program on different input data and return different correct out-
puts. Every programming language comes with its own abstract concep-
tion of computation (its virtual machine), which may or may not stand in
any direct correspondence to the machinery that will run the programs.
Programming languages are generally reckoned as "low-level" or "high-
level" according to the closeness of this correspondence. At the lowest
extreme, a machine language consists of the bit-patterns that a given
computer architecture can execute directly. An assembly language pro-
vides the programmer with comprehensible symbolic codes that can be
translated straightforwardly into a given machine language. A slightly
higher-level language, like the widely used language C, maps closely onto
the generic register-transfer model of serial computing without being
biased toward any particular serial architecture. And a truly high-level
language, like Lisp, will include a variety of abstract features whose
mapping onto a conventional register-transfer architecture is not
straightforward. In order to execute a program in such a language, the
programmer provides the program as input to a compiler, which trans-
lates it into a given architecture's machine language.

The "height," or degree of abstraction, of a programming language
can be measured in a rough way by the extent to which it uses indirect
reference to loosen the correspondence in time and space between the
program and the machinery that implements it. In early programming
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languages the correspondence was strong. A variable in such a language
was implemented through a direct reference to a word of memory whose
contents could actually vary: it might have the value of 23 at nine o'clock
and the value of 31 a minute later. Variables seemed like mutable, physical
things and bore little resemblance to variables in mathematics.

The spatial and temporal correspondence between the program and its
implementation dissolved quickly with the development of high-level
languages. These languages implement variables not in definite memory
locations but rather in stack frames which allow several instances of the
same stretch of code to be in progress at the same time. To load the value
of a variable, the machine performs an indirect reference within an area
of memory known as a stack. A given instance of some variable has a
definite lifetime, during which its value is unlikely to change. In general,
the trend is for variables to become less like physical things and more like
the variables of mathematics. Indeed, in a language like Prolog the notion
of time has almost no place, so that variables become abstractions with
complex mathematical properties and a highly indirect relationship to the
underlying hardware. (In practice, however, Prolog programmers are
vividly aware of the temporal order in which their programs will be
executed.)

The most extreme accomplishment in the general trend toward com-
putational abstraction is Smith's (1985) 3-Lisp language, whose formal
specification envisions an infinitely deep tower of abstractions that never
"grounds out" in physical hardware. As a result, a 3-Lisp program can
sustain the illusion of actually modifying the machinery upon which it is
running. The actual running system underwrites this illusion by quickly
interpolating a new layer of abstraction between the implementation and
the previously existing abstractions each time the immutable hardware
threatens to "show through." The 3-Lisp language encounters the trade-
off between efficiency of implementation and freedom of abstraction in
its most radical form.

When high-level languages were first developed, it was not obvious
that they were worth the trouble. Computers were still relatively expen-
sive to operate and the compiled programs were slow. But compiler
technology has grown steadily more sophisticated, so that little is lost by
taking advantage of the convenience of high-level languages. As a result,
assembly languages are used only for exceptional purposes. But com-
pilers for serial computers have a relatively easy job because they have
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little to gain by reasoning about the relationship between the structure of
a computation and the structure of its physical implementation.5 The
compiler's only goal is minimizing the number of instructions that are
executed within the extended register-transfer framework.

This issue is particularly crucial for computational theories of cogni-
tion that rely on highly abstract notions of variables. Competent agency
requires a significant degree of nonspecificity: one must be equally alert
on Monday and Tuesday, in conversing with this person or that, drinking
from one cup or another, walking down one street or the next. Computa-
tional models have generally achieved this nonspecificity of reference to
the concrete particulars of thought and action through the use of vari-
ables. In some theories these are explicitly the quantified variables of
formal logic. In other theories, for example in production systems, the
notion of variable is tied to a specific mechanism in which nonspecific
"rules" have certain effects when the agent's database contains specific
structures that they "match." (This is discussed further in Chapter 7.) In
each case, the agent represents the objects in specific situations by assign-
ing them names, or "constants," such as BLOCK-9 and CAR-37. The
agent applies its nonspecific knowledge to particular individuals by "fill-
ing in" the variables with the names. Likewise, the agent formulates the
general lessons it learns in a given situation by replacing the constants
with variables, thus producing nonspecific knowledge that can be applied
to other individuals on another day. In each case, the use of variables
induces a degree of seriality in a computation that might otherwise be
performed in parallel; the relatively complex mechanism that matches
variables with constants is a scarce resource that can be assigned to only
one purpose at a time (Newell 1980). This understanding of nonspecific
knowledge will take on a deeper significance toward the end of Chapter
10. For the moment, the important point is its high degree of abstraction
from conventional computer architectures. The steady increase in basic
circuit speeds has long allowed computer science to take advantage of the
virtues of abstraction without the costs of abstraction becoming obtru-
sive. This trend has reinforced, and has been reinforced by, the tendency
of cognitive science to understand a wide variety of concepts in abstract
terms. In each case, I will argue, the result has been the steady entrench-
ment in computational practice of a mentalist view of both human beings
and computation.

The example of variables demonstrates how such an entrenchment
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might take place. Recall that specific conceptions of human beings do not
inhere in machinery as such. Instead, they adhere in design practices
whereby machines are built whose operations can be narrated in inten-
tional terms. On this view, the variables of logic formalisms and program-
ming languages provide a way of building a machine whose operation can
be narrated as the application of a nonspecific competence to specific
circumstances. Technical innovations might someday supersede the use
of variables, of course, but only if they provide alternative discursive
forms for narrating the operation of an agent's machinery. As a practical
matter, any such innovations will be available to designers only once the
technical community has routinized their use and integrated them into
the whole support network of factories, instruction manuals, technical
standards, repair facilities, programming language features, testing
methods, and so on. The AI research community has historically invested
enormous energy in maintaining its own largely distinctive infrastruc-
ture, including its own programming languages and computer architec-
tures, precisely to provide itself with the technical resources to construct
computer systems within its evolving repertoire of technical schemata.
But this infrastructure rests upon, and in recent times has been increas-
ingly subsumed by, the larger infrastructure of the computer industry
generally.

The connectionist movement makes the practical logic of this process
evident. Starting in the late 1970s, computational psychologists in the
connectionist movement attempted to reinvent computation. Rejecting
the model of computation implicit in symbolic programming, they began
again from machinery whose form is modeled more closely on the circui-
try of animal and human nervous systems. Instead of employing the
register-transfer model of computing, connectionist models employ large
networks of computationally simple "nodes" (loosely modeled on neu-
rons) that are connected by a mostly fixed set of wires (loosely modeled
on axons and dendrites) that are capable of transmitting only simple
codes (such as binary values or firing rates). In making these alternative
commitments, the connectionists lost access to the wide range of techni-
cal schemata that symbolic programmers use to design systems whose
operation can be narrated in intentional terms. Dreyfus and Dreyfus
(1988), among others, have hoped that connectionist research would
develop an alternative repertoire of technical schemata based on
different, nonsymbolic commitments about representation and cogni-
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tion. One starting place is the idea of distributed representation (Rumelhart
and McClelland 1986; van Gelder 1992), according to which the basic
elements of representation are inductively derived and semantically
open-ended, as opposed to the fixed categories of formal logic. This idea,
though suggestive, immediately casts off most of the traditional means by
which the operation of cognitive models can be narrated.

To fill this vacuum, researchers immediately set to work fashioning
connectionist equivalents to conventional programming constructs -
especially variable binding (Norman 1986). Touretzky and Hinton
(1988), for example, built a connectionist production system, and Smol-
ensky (1987) built a variable-binding mechanism in which each variable-
constant pair was effectively represented by its own node. Though highly
cumbersome, these systems provided an existence proof that inspired
further refinements. Ajjanagadde and Shastri (1989) demonstrated that
one could dynamically bind a handful of variables using strobe signals
that synchronized the firing of variables and their values across long
distances. Lange and Dyer (1989) and Sun (1992) described schemes in
which relatively complex codes, representing either variable-constant
pairs or the constants themselves, were passed along the wires. This
research explores a space of trade-offs whose organizing principle is the
tension between the frequent changes in a variable's value, which invite a
high degree of abstraction, and the static connectivity of connectionist
networks, which invites a low degree of abstraction.6 This research, in
short, is effectively reinventing the register-transfer model of computa-
tion - not because the register-transfer model is preferable on technical
or empirical grounds, but simply because it is the only model for which a
large repertoire of technical schemata has been developed. The demands
of narration and the demands of architecture, in other words, are pulling
connectionist research in opposite directions.

The purpose of this exercise is not to disparage connectionism but
simply to describe the tides of practical logic that threaten to sweep it into
the familiar channels of symbolic abstraction. In preparing the way for an
interactionist alternative, Chapman (1991: 36-41) has suggested a way of
distinguishing the neurophysiological facts of essential connectionism:
• is made up of a great many components (about 1011 neurons)
• each of which is connected to many other components (about 104)
• and each of which performs some relatively simple computation (whose na-

ture is unclear)
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• slowly (less than a kHz)
• and based mainly on the information it receives from its local connections (36)

from the empirically unsupported assumptions of many connectionist
models:

• neurons are connected randomly or uniformly
• all neurons perform the same computation
• each connection has associated with it a numerical weight
• each neuron's output is a single numerical activity
• activity is computed as a monotonic function of the sum of the products of the

activities of the input neurons with their corresponding connection weights.
(40, emphasis in the original)

The essential connectionist commitments are firmly grounded in imple-
mentation. As Chapman observes, however, they preclude the use of
pointers, and so they rule out virtually the whole tradition of symbolic
programming. The models in later chapters will explore the practical
logic of AI model-building within the essential connectionist commit-
ments. But first let us consider the historical development within AI of
the divide between implementation and abstraction.

Architectural and generative reasoning
In the founding documents of the cognitivist movement - the

works from the early 1950s to the early 1960s by Chomsky, Lashley,
McCarthy, Miller, Minsky, Newell, Simon, and others - the overwhelm-
ing intellectual concern is the refutation of behaviorism (e.g., Chomsky
1959; Lashley 1951; Newell and Simon 1972). The sharply focused
nature of the struggle against behaviorism lends these documents a cer-
tain unity: they all argue for mental content as an explanatory category in
human psychology. But as Chapter 3 has pointed out, the cognitivist
movement shared another kind of unity as well: the background of as-
sumptions against which the behaviorist-cognitivist debate was con-
stituted. Among these background assumptions was the mentalist meta-
phor system of inside and outside: both sides spoke of stimuli and
responses, or at least of input and output, debating only whether any-
thing "mental" could be found in between. Another shared assumption
was a certain conception of science: since the behaviorists had originally
criticized introspectionism for its vagueness, the cognitivists would
demonstrate that their theories were precise. In these ways, the cogniti-
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vist movement could win the day by presenting itself as a legitimate
alternative to the stagnation of behaviorism.

Against the background of this commonality, the cognitivist move-
ment exhibited considerable internal diversity as well. The leading fig-
ures just mentioned took their inspiration in various proportions from
neurophysiology, feedback control, computer programming, and formal
language theory. These various intellectual strands take up different
relationships to the themes of implementation and abstraction: neu-
rophysiology is concerned by definition with implementation and had no
systematic framework for theories of abstraction; feedback control
devices implemented a small set of mathematical abstractions in a wide
variety of ways; research on computer programming developed ab-
stractions that were ever more distant from issues of physical implemen-
tation on computers; and formal language theory was concerned almost
entirely with abstraction, investigating whether procedures related to the
formal properties of languages could be implemented without much
concern for how. All of them had already been combined in other ways to
form cybernetics, recursion theory, and a dozen other less readily
distinguishable movements. Having come together under the common
flag of cognitivism, they were now vigorously sorted out as each principal
figure began training students within his own synthesis. It will be in-
structive to look at some of these syntheses in relation to the tension
between implementation and abstraction. Though all of them have great
historical significance, I will concentrate on the three that are most
immediately relevant to my project: Newell and Simon (who wrote to-
gether during the 1960s), Chomsky, and Minsky. Though all of these
authors have made steady progress on their respective projects over the
last thirty years, their basic premises have changed little.

Chapters 1 and 3 have already mentioned Newell and Simon's theory
of thought as search in a mathematically defined "problem space." To
test their Logic Theorist and GPS models (1963, 1972) against the
behavior of experimental subjects, they and their collaborator Shaw
wrote some of the most sophisticated computer programs of that day.
Newell, Shaw, and Simon, though, did not regard these programs them-
selves as models of human cognition, since human brains probably do not
implement serial architectures like the ones on which they worked. Their
theoretical claims were not for their programs as such, but simply for the
abstractly defined problem-space scheme. Their programs are existence
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proofs for the possibility of implementing their abstractions, as well as
ways of mechanically generating predictions from their theory, and they
have only gradually been working toward proposals about physical imple-
mentation (Newell 1990).

Chomsky, similarly, defined his project in linguistics in terms of a
distinction between "competence" and "performance." Linguistic com-
petence is a mathematical abstraction expressing in ideal terms the gram-
mar of a given language. Linguistic performance, by contrast, concerns
the actual situated employment of language by real people. The relation-
ship between competence and performance is different from the
software-hardware distinction in computer programming, since it is not
necessary for linguistic performance to implement linguistic competence
in precise detail. (Actual speakers can experience slips of the tongue,
misunderstand complex sentences, suffer brain injuries, make jokes by
deliberately mangling grammar, etc.)

Newell and Simon's problem-space theory of thinking and Chomsky's
formal theory of grammatical competence are both generative theories,
meaning that they involve mathematical operations capable of generating
an infinite number of mental structures by the repeated application of a
small number of basic rules. Chapter 3 has introduced Newell and Si-
mon's theory, in which one engages in a search of a formally defined
space of states, each of which provides a choice among several operators.
In Chomsky's theory, each sentence has a derivation consisting of several
steps each of which permits one to apply several different rules. It is a
characteristic of generative theories that they envision an exponentially
expanding number of possible courses of reasoning. Given four operators
and a single state, Newell and Simon will predict 4 possible outcomes
from the application of a single operator, 16 possible outcomes from the
application of two operators in sequence, 64 from the application of
three, 256 from four, and so forth (although some of these multitudinous
states might duplicate others). Likewise, the iterative application of the
rules of linguistic competence can rapidly produce an enormous variety
of sentences. Newell and Simon regarded the generative application of
operators as a psychologically real phenomenon, whereas Chomsky was
agnostic about whether people perform grammatical derivations in their
heads or whether they generate and parse sentences by some other
method whose results are simply consistent with the grammar. For New-
ell and Simon the empirical question was whether their model applied
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the same operators as experimental subjects. For Chomsky the empirical
question was whether the iterative application of a grammar's rules pro-
duced exactly the set of grammatical sentences, no more and no less.
Newell and Simon's project was subject to experimental falsification in a
way different from Chomsky's. But in each case, the possibility of gener-
ating an infinity of possible mental structures was an emphatic point of
contrast with the relatively impoverished scope of human possibility that
seemed implicit in behaviorist theories. Chomsky in particular described
grammars as making "infinite use of finite means" and invoked the
thought of Descartes as precedent for his rigorous distinction between
competence, qua abstract forms of thought, and performance, qua imple-
mented action (Chomsky 1966).

In contrast to the generative theorists, Minsky (1985) has consistently
been concerned with issues of implementation. His work represents the
deepest and most sustained inquiry into the practicalities and conse-
quences of the physical implementation of the various aspects of human
intelligence. Where the generativists portray human reasoning as gener-
ating and exploring infinite abstract spaces, Minsky's theories have been
resolutely finite: he has constantly reformulated his understandings of
human intelligence in accord with the constraints of physical implemen-
tation. Though intended as a foundation for neurophysiology, his models
do not invoke in any detail the claimed behavior of human neurons.
Instead, he starts from the fundamental nature of physical implementa-
tion as such: the locality of causal interactions, the nearly fixed structure
of physical artifacts, the logistical difficulties of centralized control, and
the inevitability of conflict and inconsistency in a large system of any
sort.

Minsky's theories employ an architectural style of reasoning. Architec-
tural reasoning attempts not merely to implement a given abstraction but
to discover abstractions that both do the required work and admit of
natural implementations. Engineers who design computer hardware en-
gage in architectural reasoning all the time, since it is their job to mediate
between the abstractions that programmers presuppose and the cur-
rently available circuit fabrication and packaging technologies. But, as I
have explained, today's computer designers are highly constrained by the
expensive freedoms of serial architectures. The evolutionary processes
that produced the human brain were probably not under any comparable
constraints. Minsky views the human brain as a decentralized and mas-
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sively parallel computational system, with an enormous number of spe-
cialized functionalities each occupying a localized region of neural
circuitry.

The generative and architectural styles of research have led to
different views about the relationship between abstraction and imple-
mentation in human cognition.7 Generative theories posit large, consis-
tent abstractions that operate by their own formally specifiable laws.
McCarthy and the other proponents of the reconstruction of human
knowledge in formal logic, for example, take as their starting point the
generative power of logical formalisms and the formal consistency pre-
supposed by their semantics (McCarthy 1958; Genesereth and Nilsson
1987). Some generativists have begun constructing large abstract theo-
ries that they refer to as architectures. Foremost among these theorists is
Newell (1990), who presents his SOAR architecture as a "unified theory
of cognition."8 Yet such theories, valuable as they are, are concerned
primarily with abstraction. They appeal to the practicalities of physical
implementation only in a general way, for example in the parallelism that
ought to be obtainable in the mechanism that selects rules to run.9

Architectural theories, by contrast, hold that the demands of physical
implementation have profound consequences for the formulation of ab-
stract theories of cognition. Minsky in particular emphasizes physical
locality so strongly that cognition becomes a large, fragmentary collec-
tion of mutually inconsistent abstractions, each bearing a different rela-
tionship to its physical implementation. He formulates his theory not as a
single unified mechanism, or even as a single list of axioms of design, but
as a constellation of mini-theories, each examining some feature of hu-
man intelligence - whether language, reasoning, decision-making, mem-
ory, emotion, imagination, or learning - on the level of engineering
intuition. The emphasis on physical implementation and its conse-
quences for theories of cognition is also present in the connectionist
movement. Feldman (1985), for example, has offered architectures for
the human visual system that are compatible with both the phenomena of
human vision and the practicalities of architectural design. Likewise,
research in cognitive neuroscience has made a principle of shaping its
abstractions in accord with the empirically discovered structures of the
brain (Churchland and Sejnowski 1992). But whereas these projects
hypothesize mechanisms to explain detailed empirical data, Minsky uses
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general principles of physical implementation to drive the formulation of
explanatory theories of cognitive architecture.

The dialectical relationship between abstraction and implementation
is evident in the patterns of dispute between generative and architectural
theorists. Whereas the generative theorists promote the virtues of ab-
stract rigor and generality, the architectural theorists emphasize physical
realizability. The literature on these disputes has focused principally on
the difficulty of reconciling the generative view of cognition with con-
nectionist implementation (Clark 1992; Fodor and Pylyshyn 1988; Pinker
and Prince 1988; van Gelder 1992). The problem, already apparent in the
case of variables, is a conflict of metaphors: whereas a connectionist
network has a fixed pattern of connectivity, general-purpose symbolic
processing requires the continual reconfiguration of the symbolic struc-
tures that implement the agent's mental states. It seems safe to predict
that the dispute will continue, and that the respective demands of ab-
straction and implementation will continue to influence the models of
both the generative and architectural theorists. I believe that this impasse
cannot be resolved without considerable rethinking of the generative
view of cognition. My own project, however, is not to participate in the
debate but to explore alternatives to the hidden assumptions that have
determined its structure.

Generative reasoning and mentalism
The versions of computational research that I have surveyed

differ in their details, but all of them define their problems within the
framework of abstraction and implementation. The dialectical relation-
ship between abstraction and implementation defines a space within
which various projects trace particular trajectories. Though this history
is complicated, a fundamental determinant of its overall pattern is the
metaphor system of mentalism within which the distinction between
abstraction and implementation makes sense.

Cognitivism and behaviorism, as we have seen, shared the mentalist
vocabulary of inside and outside, stimulus and response, contents and
behavior. At issue was the question of whether scientific sense could be
made of the notion of abstract mental structures and processes: thoughts
and thinking, memories and remembering, plans and planning, and a
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boundless repertoire of other nouns and verbs that shuttle easily between
the vernacular and scientific vocabularies of psychology. The conception
of computation as implemented mathematics provided the license that
cognitivism needed. Make it mathematical, or make it seem likely to
admit finite formalization, and it becomes a valid psychological category.
As the project of AI accelerated, the mind became a space for the free
exercise of the theoretical imagination.

The multiplication of mental constructs reached its point of greatest
fertility in the AI research of the 1970s: mental structures that remain
largely fixed or that continually change; mental languages based on En-
glish, formal logic, programming languages, or some composite of these;
reasoning that proceeds through a detailed simulation of the outside
world or through the calculation of obscure numerical functions; pro-
cessing organized in a centralized or a decentralized manner; processes
that cooperate or compete; and so forth. The metaphor system of mental-
ism has lent itself to this explosive unity in diversity for several reasons.
The first is that everyone in Western culture, computationalists included,
inherits a substantial degree of mentalist self-understanding from the
philosophy that lies sedimented in the vernacular language. The second
is that the computer itself arose within the discursive environment of a
cultural enthusiasm for the symbols of cognition, mentioned in Chapter
1, that has waxed and waned from the manifestos of George Boole to the
popular images of Einstein and rocket scientists and "giant brains"
(Berkeley 1961) of the Cold War (Edwards 1996). The third and most
important reason concerns the specific metaphors of mentalism. The
Cartesian mind is both inaccessible and transcendent: on the one hand, it
is the private domain of a unique individual who has incorrigible access to
its states; on the other hand, it is also a perfectly generic cognitive essence
found within every human being. This ambiguity is found as well in the
phrase "the mind": in announcing its intention to study the mind, with
its singular form and definite article, psychology does not assert that only
one person in the world has a mind, but rather that all minds are, in the
relevant sense, identical. Laboratory scientists studied the mind with
great difficulty, but the practitioners of AI generated numerous personal
intuitions about their own minds and made them real, on a small scale, in
computational demonstrations (Turkle 1984: 265-267).

Abstraction, then, took on a special meaning within cognitivist psy-
chology. The conceptual independence of mental abstractions from their
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physical implementations was the modern computational version of the
soul's distinction from the body. Computationalists emphasize that an
abstractly specified computation can be implemented on any device capa-
ble of supporting the digital abstraction and the register-transfer model,
be it a supercomputer or a gadget made of thread spools and rubber
bands; and they identify a computation with its abstraction, not its
implementation. In this way, AI has reproduced in technological form
the theological and philosophical individualism that became radicalized
in Descartes's method of systematic doubt. The object of inquiry was not
the individual in society or the person in the world, but the self-sufficient
inner realm of the mind. The conceptual autonomy and infinite genera-
tive power of mental computations has played the same role in the com-
putational theory of mind that the transcendence of the soul played for so
long in philosophy.

One might hope for an alternative conception of computation, one that
is better suited to an understanding of human beings as creatures bound
up in their environments. An alternative to the mentalist opposition of
abstraction and implementation can perhaps be found in the interaction-
ist concepts of intentionality and embodiment. Later chapters will
discuss these terms in detail, but I will offer minimal definitions here to
indicate what is at stake. Intentionality relates to the general phenomenon
of an agent's taking up a relation to something in the world: picking it up,
drawing it, telling a story about it, avoiding it, or trying to figure out
where it is. A theory of intentionality must explain, for example, how to
distinguish intentional acts from ordinary causal events such as rocks
rolling down hills. Intentionality includes representation as a special case,
but intentional relationships are not necessarily mediated by representa-
tions. From a computational point of view, embodiment has four crucial
(and conceptually interdependent) aspects: physical realization, causal
interaction with the world, the possession of sensory and motor appa-
ratus, and the necessity of making choices about action (one cannot, for
example, travel both north and south, or both raise and lower one's
hand). More obvious but less fundamental issues include the contingent
attributes of various specific kinds of bodies: motility, facing in a particu-
lar direction, anatomical organization, and so forth. Though abstraction
and intentionality play analogous theoretical roles, they differ in that
abstract computations are specifically removable from any concrete cir-
cumstances whereas intentionality is defined in relation to an agent's
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activities in the world. Likewise, implementation and embodiment both
refer to the physical realizations of a computation, but they correspond to
different understandings oiwhat is being realized: an abstract process or
a concrete form of activity.

The principal significance of this proposed shift from a mentalist to an
interactionist conception of computation is that intentionality and em-
bodiment do not imply the Cartesian mind-body opposition that lies
latent in the relationship between abstraction and implementation. This
is not to say that hard problems become easy, only that the project of
resolving them ought to suffer from different contradictions. The next
chapter plows some necessary ground: it reviews the ideas and tech-
niques that underlie contemporary computational practices, with a view
toward their systematic renovation within an interactionist framework.



The digital abstraction

Digital logic
My goal in this chapter, as in much of this book, depends on who

you are. If you have little technical background, my purpose is to help
prepare you for the next few chapters by familiarizing you with the
building blocks from which computers are made, together with the whole
style of reasoning that goes with them. If you are comfortable with this
technology and style of thinking, my goal is to help ^familiarize these
things, as part of the general project of rethinking computer science in
general and AI in particular (cf. Bolter 1984: 66-79).

Modern computers are made of digital logic circuits (Clements 1991).
The technical term "logic" can refer either to the abstract set of logical
formulas that specify a computer's function or to the physical circuitry
that implements those formulas. In each case, logic is a matter of binary
arithmetic. The numerical values of binary arithmetic, conventionally
written with the numerals 1 and 0, are frequently glossed using the
semantic notions of "true" and "false." In practice, this terminology has
a shifting set of entailments. Sometimes "true" and "false" refer to
nothing more than the arithmetic of 1 and 0. Sometimes they are part of
the designer's metaphorical use of intentional vocabulary in describing
the workings of computers. And sometimes they are part of a substantive
psychological theory whose origin is Boole's nineteenth-century account
of human reasoning as the calculation of the truth values of logical
propositions (Boole 1854). It will be helpful to distinguish two forms of
this substantive theory: a weak form, on which reasoning proceeds by
assigning truth values to various propositions; and a strong form, on
which these assignments are entirely governed by a definite list of rules of
inference, such as those of the mathematical system known as two-valued
propositional logic. As often with computational vocabulary, it can be
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hard to tell which of these connotations is intended in a given sample of
technical prose. With the technical schemes I will describe in the next
several chapters, I intend only the weak form of the Boolean scheme, and
that only provisionally. The idea that people reason exclusively by ma-
nipulating binary truth values is surely too simple. In particular, an
individual's beliefs surely cannot be specified by means of a list of the
propositions to which they have assigned a value of 1. Still, I have to start
somewhere, and digital logic is what computers these days are made of.

Digital circuitry is made of physical materials chosen for their me-
chanical and electrical properties and their cost. But this is curious, since
the laws of physics that govern these materials are formulated not in
terms of discrete Is and 0s but rather in terms of continuously varying
quantities such as spatial distance, electric currents, innumerable proper-
ties of the materials themselves, and the passage of time. The solid-state
physicists who build circuits have devised a variety of ways of implement-
ing the digital abstraction. Each of them depends on defining two physi-
cal states that a piece of matter might occupy, which we can call " 1 " and
"0." Since nature does not have many naturally discrete states that obey
deterministic laws, these two discrete states will need to be defined in
terms of ranges in the values of some physical quantities. In a typical
contemporary circuit technology, these quantities are electrical voltages;
let us say, arbitrarily, that these values are 0 volts above ground for "0"
and 2.5 volts above ground for " 1 . "

No laws of physics will force an electrical device to sit still at precisely
0 or 2.5 volts for very long. Real circuits are constantly being disrupted in
small ways by cosmic rays, power fluctuations, imperfections in the phys-
ical structure of the circuitry, quantum effects, and a variety of other,
more obscure nuisances. It is necessary for the two extreme values, 0 and
2.5 volts, to be far enough apart that uncontrolled fluctuations will not
accidentally turn a 1 into a 0 or vice versa. The space between the
extreme values is a buffer zone, a logical neutral zone providing a high
confidence that Is will stay 1 and 0s will stay 0. The price of this policy is
that, in order to switch a 1 value to a 0 (or vice versa) intentionally, the
circuit must expend the time and energy to drag the voltage level of the
relevant piece of electrical material through the entire voltage range
between 0 and 2.5. This is the fundamental trade-off inherent in the
implementation of the digital abstraction, and technical progress in
building digital circuitry tends to reduce this voltage gap. (It is also why
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Figure 5.1. An AND gate.

the internal circuitry of memory chips does not employ the digital ab-
straction.) As the device physicists look for smaller and faster ways of
implementing the digital abstraction, the detailed physics and chemistry
define the field on which the dialectic of abstraction and implementation
is played out.

Given a physical technology that supports the digital abstraction in
this way, it becomes possible to build enormous abstractly specified
structures out of a small number of elementary components. Digital
logic - the actual physical circuitry - is made mostly of three sorts of
things: wires, gates, and latches. Or so it is said, though even this state-
ment is ambiguous because, as with "logic," it is common practice to use
these terms to refer both to the various units of abstract functionality and
the various discrete physical components that implement them. As such,
wires, gates, and latches occupy a curiously ambiguous place at the
boundary between mathematical abstraction and physical implementa-
tion. The purpose of a wire is to establish a logical equivalence among a
series of physically distant points in the circuit; the purpose of a gate is to
perform one of the elementary operations of binary arithmetic that is
necessary to build up larger circuits. (I will return to latches later.)

The dual nature of a gate, as abstraction and as implementation, is
critical to all of the architectural reasoning that goes into computational
design. Consider a common type of gate, the AND gate, which is typically
drawn with the symbol depicted in Figure 5.1. On an abstract level, an
AND gate computes a certain mathematical function of two binary num-
bers. This function has a value of 1 if both of these two numbers have the
value of 1; otherwise the function has the value of 0. On the level of
implementation, one describes the function of AND in a way that sounds
similar but has many different properties. An AND gate, on this account,
takes two "inputs" and produces an "output" whose value is 1 if the two
inputs are 1, and 0 otherwise. The difference between the two ways of
describing the function of an AND gate is that, whereas the abstract
description makes no mention of temporality, the implementation level
refers to the actual physical process of computing the output given the
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inputs. This process takes time, albeit on the order of nanoseconds, and
consists of the gate working to drive its output wire to the correct value.

The mechanism whereby a gate drives its output to the correct value
operates continuously. Suppose that, at a given moment, both of the
inputs to a given AND gate are Is and the gate is happily driving its output
to a 1 as well. And suppose that, in the next moment, one of those inputs,
for whatever reason, falls from 1 to 0. Then, just for a brief moment, this
little one-gate circuit will be in an inconsistent state, driving its output to
the wrong value, until the gate manages to drive its output down to 0.
Once the gate has "settled down," logical consistency will have returned
and the physical circuit will properly implement its governing ab-
straction. A gate, then, has a directionality both in space (listening to its
inputs, driving its outputs) and in time (always moving toward a logically
consistent relation between these inputs and outputs).

The meaning of circuitry

A single gate is not very useful on its own. But as we begin to
assemble gates and wires into a compound circuit, the relationship be-
tween talk of abstraction and talk of implementation becomes more
complex. Consider the circuit diagrammed in Figure 5.2, in which the
output from one AND gate serves as one of the inputs to another. It is
useful and common to regard this whole assemblage of gates and wires as
a functional unit, whose effect is to produce a 1 on its output if its three
inputs are all 1, and otherwise to produce a 0. As with the single-gate
circuit diagrammed in Figure 5.1, this two-gate circuit is a physical
structure whose operation has a directionality and takes time. Suppose,
by analogy, that at some moment all three of the inputs have values of 1. If
one of the inputs to the first AND gate should suddenly fall to 0, a
complicated sequence of events will take place. The first AND gate will,
after a moment, begin driving its output to 0. The wire in the middle,
joining the two gates together, will do its job of establishing a logical
equivalence between its two endpoints, but a moment will pass before the
new value of 0 can travel the wire's full length. If we think of the wire as a
pool of electrons, the AND gate drives the wire to 0 by draining the pool
as quickly as it can.1 How long this takes will depend on the size of the
pool and the diameter of the drain. We cannot know these things about
our hypothetical circuit, however, since the diagram is suppressing some
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Figure 5.2. Two AND gates combined into a circuit.

important information: the distance between these two gates might be 2
microns or 2 miles. At last, however, the second AND gate's input will fall
to 0, whereupon it will begin to drive its output to 0 as well, thereby
restoring the logical consistency of the whole circuit. It is said that the
changed input has "propagated" through the circuit, leading the circuit
to settle back down to a consistent state.

In addition to AND gates, the average circuit also contains NOT gates,
usually known as "inverters." An inverter takes a single input and pro-
duces a single output. Its purpose is to drive its output to the opposite
value from its input. Thus, if the input to an inverter is 0 the inverter will
drive its output to 1; and if the input is 1 the output will be driven to 0.
An inverter often appears in a circuit directly before the input of another
gate. In this case, it is customary to speak of the gate as having an
"inverted input." Figure 5.3 diagrams an AND gate, one of whose inputs
is inverted. This combined gate, an AND gate plus an inverter, might be
referred to as an AND-NOT gate, since its output will be 1 provided that
its first input is 1 and its second input is not.

Putting these ideas together, consider the circuit that is diagrammed in
Figure 5.4. It has three inputs and two outputs and contains two gates, an
AND gate and an AND-NOT gate. The wire leading out from the AND gate
branches, taking the same value to two destinations: the first output of
the whole circuit and the first input of the AND-NOT gate. This diagram,
like the others, does not give us much information about how this circuit
is implemented, but it does suffice to determine the circuit's abstract
functionality and the inventory and connectivity of components that
implement it. Unlike the other diagrams, however, this one provides
some extra annotations, in the form of English words associated with the
various wires: enabled, tripped, overridden, light, and buzzer. These words
do not play any role in determining the mathematical function that the
circuit computes. Instead, they represent "meanings" ascribed to the
various wires by the circuit's designer. Let us say that the circuit is part of
a burglar alarm. The enabled input is attached to a switch in the basement
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Figure 5.3. An AND-NOT gate.

light

enabled

tripped

• buzzer
overridden

Figure 5.4. A circuit for a burglar alarm.

indicating that the alarm system should operate; the tripped input is
attached to whatever sensors might be installed on the doors and win-
dows; the light output leads to a light on the alarm unit that turns on
whenever the system is enabled and the sensors are registering motion;
the overridden input is attached to a switch on the alarm unit that pre-
vents the alarm from sounding while the system is being tested; and the
buzzer output is attached to a buzzer that makes a loud noise whenever
enabled and tripped are 1 and overridden is 0. Many real digital devices are
no more complex than this one.

Now, the description I just provided of this circuit's operation is
different in kind from the more mathematical descriptions I provided
earlier. The circuit has been endowed with a "semantics." The people
who design circuits like this one routinely apply meaningful labels to the
various components of a circuit. Specifications of the circuit's function
that employ these labels are abstractions in their own right, but they
stand in a complex relationship to the binary-arithmetic abstractions that
specify the circuit's binary input-output behavior. On one hand, one has
not finished specifying this circuit's functionality until some mention has
been made of the switches, sensors, and indicators and the useful purpose
they serve. On the other hand, it is necessary to treat all the words in
special ways: if we label a certain wire overridden and that wire carries a
value of 1, it does not necessarily follow that it was anybody's intention to
override the alarm system. It is, after all, possible that the person who
threw the switch was confused or was trying to determine what the
switch did, or that the circuit malfunctioned or was sabotaged. Likewise,
a value of 1 on a wire called tripped is certainly not a guarantee that the
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sensors have actually been tripped, much less that a burglar is present.
The wires, after all, might have been accidentally connected to the main
electrical system instead of to the sensors. Or perhaps they were installed
poorly and do not make a proper connection. It is thus necessary to adopt
a narrow construal of each of these terms.

Yet this is not satisfactory either, since one presumably purchases a
burglar alarm not to assign values to wires but to detect burglars. The
burglar alarm suffers from a gap between the promise implicit in the
phrase "burglar alarm" and the conditions under which, according of the
physics of the thing, the buzzer actually goes off. This gap is particularly
obvious in the case of burglar alarms, which are notorious for their false
alarms. But all artifacts have such gaps, as a result of the margins of their
designers' abstract models. As Smith (1993 [1985]) points out, all ab-
stract models exhibit margins. Sometimes, as with burglar alarms and
ballistic missile detection systems, the margin is exacerbated by the ad-
versarial nature of the activity, in which someone is actively trying to
defeat the system by occupying those margins. But in any system, the
margin reflects the whole network of explicit and implicit assumptions
that went into the design process, as in Smith's example of the sensor-
based traffic signals which can detect cars but not bicycles. An indicator
lamp marked "fasten seat belts" or "missile alert" or "THC positive" is
only as good as the margins of the computations that back them up.

Are the labels on the wires, then, part of the circuit? Computer people
often refer to such labels as "mnemonics" because they help the designer
to remember what the labeled wire is supposed to mean. The idea is that
they are only mnemonics and do not constitute the narrowly mathemati-
cal function of the circuit. But if we define the circuit in terms of its
narrative affordances - the ways in which the circuit fits into the stories
that people tell about houses and robbers and flashing lights and false
alarms - then they clearly do constitute, in some portion, the circuit's
functioning. Derrida (1967: 141-152) would refer to the labels as "sup-
plements": they are supposed to be inessential to the technical artifact
and yet they are necessary to insert the artifact into the order of human
meanings. The labels are signifiers, and their materiality comes to the
fore on those occasions when the margins of the burglar alarm's design
become problematic. Yet the designers of AI systems place enormous
weight on these signifiers, since they provide the raw material for any
narration of the system's operation.

Do these practices for designing and using logic circuits, then, presup-
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pose a philosophy of mentalism? Modern formal logic emerged in the
sixteenth century in an intellectual shift that Ong (1983 [1958]), in his
study of Ramus, called "the decay of dialogue": the movement from
reason as a form of interaction within a human relationship to reason as a
formal system. Platonic and psychologistic conceptions of logic have
coexisted ever since. In casting formal logic as a mathematical system,
Boole (1854) believed that he was doing psychology; in elaborating
Boolean logic as a theory of neurophysiology in the early days of the
cognitivist movement, W. McCulloch and Pitts (1965 [1943]; cf. Edwards
1996: 187-193) believed that they were placing psychiatry on a scientific
basis. On the other hand, as Newell (1983: 195) observes, "[L]ogic did
not enter AI at all as the logic of thought. . . . In fact, it was precisely the
split of logic from thought that set logic on the path to becoming a
science of meaningless tokens manipulated according to formal rules,
which, in turn, permitted the full mechanization of logic."2 The tokens
of mechanized logic are not exactly meaningless, since they are useless
without the meanings that they are routinely treated as carrying. But the
formal structures of logic have taken on a life of their own; they promise,
in their self-sufficient simplicity, a generative principle that can be used
to reconstruct and systematize the whole of reason. Thus, Leith (1987)
observes that the movement to provide logical foundations for computer
programming (Kowalski 1974) bears a strong resemblance to the ambi-
tions of Ramist logic. All the while, it has becomes steadily more difficult
to conceive logic as an embodied social practice; the gap between logical
reason and lived experience has grown far too great (Nye 1990). Coulter's
(1991) empirical investigations of logic in conversation, for example, are
almost completely unintelligible within the frameworks that four cen-
turies of research on formal logic have produced. Yet the hegemony of
formalism is so complete that observations such as Coulter's cannot
provoke a crisis, or even very much of a dialogue.3 The logic circuits
themselves may not encode any philosophical commitments, but the
narrative practices that render them meaningful certainly do.

The temporality of computation
In describing the mechanics of digital logic circuits, I have been

using the vocabulary of abstractions and implementations that I have
earlier tarred with the historical connection to mentalism. And, indeed, I
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have been describing my example circuits in a mentalistic sort of way, or
at least with an intentionalistic vocabulary. Look again at Figure 5.4:
where do those input wires come from and where do those output wires
go? The functional specification of the circuit is defined at its boundaries,
in terms of the intended meanings of the various input and output wires.
These wires, of course, are attached to the "sensory" and "motor" appa-
ratus of a burglar alarm: switches, sensors, and indicators. In such a
trivial example, of course, the philosophical burden of mentalism and its
metaphors weighs lightly; little theoretical apparatus is required to wire
up a burglar alarm. But when one is considering much larger artifacts or
contemplating the use of digital circuitry in the construction of models of
human beings and their lives, the deeper meaning of taken-for-granted
design practices becomes a more difficult matter. I will return to this in
the next section.

For the moment, imagine a large circuit made of gates and wires. It
might have several hundred gates and a few dozen inputs and outputs. If
built in a compact way, it might occupy a cubic millimeter of space and
possibly much less, though the contacts by which the circuit is attached
through wires to other devices may be many times larger. This hypotheti-
cal device is a marvelous thing in many ways. While it is operating, it
continuously enforces a certain logical relationship between its inputs
and outputs. When one of its inputs changes value, changes propagate
quickly throughout the circuit, until the outputs settle at their new
values. How exactly this propagation unfolds will depend on the struc-
ture of the circuit. In particular, the amount of time it will take for the
whole circuit to settle down to a new consistent set of values can be
determined by finding the longest path through the circuit from a newly
changed input to an output. If the circuit is relatively "shallow," then the
propagation will occur quickly. But if the circuit is relatively "deep," even
if it has only one long chain of gates between its inputs and outputs, then
the propagation will occur relatively slowly, though still in a minute
quantity of time. All of the hustle and bustle in the circuit is highly
parallel, in the sense that every gate will react instantly to any change in
its inputs. The whole circuit is alive, constantly monitoring its inputs and
adjusting its outputs as changes propagate through it. This situation is
the very ideal of parallelism that I described in Chapter 4: a collection of
simple, uniform computing elements distributed in three-dimensional
space, each of them doing useful work all the time. A computation that
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can be implemented this way is, other things being equal, highly prefer-
able to one that cannot. Circuitry built within this framework is called
combinational logic.

In the actual design of computers, things are not this simple, because
of a phenomenon known as a race condition. Recall that a change to the
input of a combinational logic circuit will cause the circuit to enter a
logically inconsistent state until it finally manages to drive all of its
outputs to their correct values. A small window of inconsistency opens
up between the moment an input changes and the moment the last
output assumes its correct value. While this window is open, it is impor-
tant that nobody trust the output values, which are unreliable as long as
the circuit is still settling down. Consider, for example, a circuit that has
two paths from its inputs to its outputs, where one of the outputs controls
some device that takes an irreversible action, such as a spot welder. One
path is a simple circuit that decides that it is time to take some action.
The second path, however, is a long and complicated chain of reasoning
that detects certain subtle exceptional conditions that make this action
inadvisable. An AND-NOT gate provides for the possibility that these
exceptional conditions can override the decision to take the action. But,
as Figure 5.5 demonstrates, these two lines of reasoning are engaged in a
sort of race. If an exceptional condition actually arises, the arrival of the
propagation on the shorter path will cause the output to rise briefly to 1
before the other line of reasoning arrives and forces the output back down
to 0. As a result, it is important for a digital circuit to have settled down
and attained a consistent state before any irreversible actions are taken on
the basis of its outputs.

A race condition is the electrical manifestation of the difference be-
tween the timeless abstract specification of a combinational logic circuit
and the causal workings of its implementation. To restore the accurate
implementation of the abstraction, it becomes necessary to impose the
same kind of artificially discrete structure on time that the digital ab-
straction imposes on numerical values. This is the purpose of latches,
which I mentioned in the preceding section, and a regime of clocking. The
purpose of a latch is to hold a digital value in a definite place until it is
needed for a future calculation.4 A latch sits on a wire, serving as a kind of
valve. In the most usual case, the latch will divide the wire into two
segments, one of which is being driven to some value while the other
serves as the input to another circuit. When the latch is closed (i.e., when
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Figure 5.5. A circuit with a race condition.

it is not blocking the wire), the whole wire will be driven to the same
value. When the latch is open, it effectively severs the wire in two. The
half of the wire that is being driven will continue being driven as before.
The other half of the wire, the one that is not driven to any particular
value, will now become an isolated pool of electrical charge. This isolated
segment of wire will retain its logical value, either 0 or 1, until the latch is
closed again or until its charge dissipates. As long as this logical value
remains in effect, the other circuits that look at it will continue to see its
stored value rather than whatever values might be coming and going on
the far, driven side of the latch. Although designers play it safe by
assuming that the isolated charge dissipates quickly, in most cases it will
retain its value for much longer, depending on the properties of the
implementation technology.

A clocking regime employs latches within a rigorous discipline for syn-
chronizing complicated computations by means of a clock. The purpose
of a clock is to establish periodic moments at which all of the combina-
tional logic circuitry in an entire machine is in a consistent state. Clock-
ing schemes can become arbitrarily complicated, but the simplest one is
called a "two-phase nonoverlapping clock"; it signals tick, tock, tick, tock,
tick, tock, . . . for as long as the circuit is running, where tick means "Let
us give the circuits some new values on their inputs" and tock means "Let
us assume that the circuits have had sufficient time to settle down and
that, consequently, their outputs are now consistent with their inputs." In
the race-condition circuit diagrammed in Figure 5.5, one might avoid
tragedies by installing latches on both the inputs and the outputs, with
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the input latches keyed to tick and the output latches keyed to tock. With
this two-phase clocking regime in place, the circuit will appear from the
outside to implement a perfect realization of its abstraction, since its
outputs will be "visible" only at moments when they stand in the correct
logical relationship to the inputs.

Clocking is an excellent example of the trade-offs required to imple-
ment the digital abstraction. In order to make sure that no mistaken
values slip out of a circuit, the designer must establish a pause between
tick and tock that is long enough to allow all of the circuitry to settle
down. Since an entire computer will generally run on the same clock, the
clock speed is determined by the slowest circuit in the whole machine.
Moreover, the designer must find some way to make sure that the tick
signals (and, likewise, the tock signals) arrive at all parts of the machine at
nearly the same time. This requires careful attention to the lengths of the
wires that distribute the clock signals.

The combinational logic circuits I have described are intimately in-
volved with their "environments," continually watching their inputs and
updating their outputs in response to any changes. Latches and clocks,
though, make it possible to endow a computer with its own abstractly
specified internal space and time, separate from that of the outside world.
With latches and clocks, one can assemble a circuit in such a way that
some of its inputs derive from its own outputs. Without a proper clocking
regime, such a circuit might thrash back and forth between Is and 0s
without even reaching a consistent state. But with a clock, one can ensure
that the circuit will inspect its own outputs only when they are consistent
with its inputs. Thus, the outputs take on a series of consistent sets of
values, one for each tock. Such a device is called a state machine and a
designated subset of each of these successive consistent sets of outputs is
called a state (Figure 5.6).5 A modern computer is made of a large
number of small state machines. A bit of memory, for example, is a tiny
state machine whose state is simply 1 or 0. As the clock runs, the compu-
ter moves from state to state, constantly feeding the outputs of each
operation back to form the inputs for the next. Here, in the techniques
for endowing computers with memory (also known more technically as
"internal state"), lies the compelling analogy between the abstract inter-
nal space of the computer and the abstract internal space of the mind,
and thus the metaphor of computation as thought.

The introduction of clocking endows a computer's operation with a
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Figure 5.6. A state machine.

curiously unreal temporality. The tick tock tick tock of the clock defines an
entirely abstract time course that has no necessary relationship to the
passage of time outside, provided only that the time between tick and tock
is long enough for the circuits to settle (anywhere above perhaps 20
nanoseconds) and that the time between tock and tick is short enough that
the latched values do not dissipate (anywhere below perhaps 2 seconds).
In a serial computer, the execution of a given instruction might require a
dozen clock cycles (tick-tock pairs). In describing the workings of a
computer program, the narrative ("First it does this, then it does this,
then it does that") is set in abstract time, not the "real time" of the
outside world. Thus, a computer might be executing an enormously
complex program that employs a vast amount of data, yet it is possible to
vary the speed of its clock across a wide range without affecting the
logical correctness of the computation.

Despite this decoupling between abstract time and real time, real time
still proceeds outside, possibly including a human being waiting for an
answer or a mechanical device waiting for its parameters to be adjusted.
Considerable ingenuity goes into maintaining the right kinds of synchro-
nization between the abstract time of a computation and the real time of
the outside world. For the most part, the outside world must simply wait.



102 Computation and human experience

When the outside world cannot wait, it is necessary to engage in real-time
programming (Joseph 1996). This means nothing more fancy than
discovering enough about the real-time properties of a computation (i.e.,
a particular abstract process implemented on a particular model of ma-
chine) to ensure that its answers will be available when they are needed.
The problem is that the whole development of computers has assumed a
strong temporal distinction between abstraction and implementation.
For example, computers regularly interrupt the running of a given pro-
gram in order to attend to other business. Time stops, in the sense that
real time passes while abstract time stands still, and then the program is
allowed to carry on as if nothing happened. If the program in question is
controlling a robot whose motors need their torques adjusted every hun-
dredth of a second, this kind of interruption must obviously be sup-
pressed. Serious real-time programming often means circumventing or
disabling most of the advanced features of a given computer, resisting the
historical trend toward abstraction to restore a rough temporal corre-
spondence between the abstract process and its implementation.

I have emphasized the difficulty of real-time programming because it
is an especially clear symptom of the mentalist framework that governs
the conceptual distinction between abstraction and implementation.
Computation, on this account, occurs in its own space (i.e., the internal
state of the computer) and its own time (i.e., the abstract temporality of
clocked circuitry). The space and time of computation are entirely ab-
stract: a set of metaphors made into mathematics that is capable of being
implemented in an infinite variety of ways. Indeed, since abstract time is
simply a mathematical construct, it is only a matter of convenience if this
"time" stands in any consistent proportional relationship to "real time,"
that is, the time of implementation. It is entirely possible to embed the
mathematics of a given abstractly specified computation within another,
more complicated layer of mathematics, one that permits abstract time to
break into pieces, run backward, repeat itself, or be shuffled into some
alternative ordering (Abelson and Sussman 1984; Bolter 1984: 100-123).
Computational abstraction thus gives engineers the freedom to create
phenomena that have little necessary relationship to the space and time of
ordinary corporeal things. It is in this (very specific) sense that the inside
of a computer, like the inside of the mind, figures in the worldview of
mentalism as a realm of absolute imaginative freedom.



The digital abstraction 103

Embodied computation

The internal space of computation, then, like the Cartesian soul,
is a not simply partitioned off from the outside world but actually
different in kind. As the mediating term between the mind and the world,
the body has played a curious role in the history of mentalist philosophy.
The three pivotal figures in this history, Augustine, Descartes, and Tur-
ing, lived in different times and wrote in different philosophical registers,
but each of them developed in his own way the theme of opposition
between the transcendence of the soul and the finitude of the body. Each
man's cultural milieu provided fresh meaning for this opposition: Au-
gustine struggled to maintain his ideals of Christian asceticism, Des-
cartes described the soldier's soul overcoming his body's fear as the
Thirty Years' War raged, and Turing idealized disembodied thought as
he suffered homophobic oppression in modern England. As physics
changed and explanatory metaphors multiplied, the soul's identity as a
realm of pure thought evolved and grew sharper. Yet the lines of descent
are broad and clearly drawn.6 Contemporary computational practice,
with its dialectical tension between the imperatives of abstraction and
implementation, is the inheritor of this tradition, the modern incarnation
of a philosophy so confident that it has forgotten its intellectual con-
tingency and recast itself as pure technique. The first step in getting
beyond mentalism is simply to restore, by means of critical and historical
inquiry, a sense that it might be possible to hold other views.

Exhibiting the contingency of mentalism does not mean throwing
everything away and starting over. Mentalism is a system of metaphors,
not a deductive premise. Changing the metaphors will change every-
thing, but in a coherent way. Mentalist rhetoric has absorbed a wide
variety of intellectual and technical materials, assimilating them to men-
talistic themes in ways that can be teased apart only with great effort.
Must combinational logic be understood within the mentalistic frame-
work of abstraction and implementation? The happy answer of no can be
sustained only by cultivating an awareness of the choices that lie implicit
within day-to-day technical practice.

Conventional technical practice is not a seamless whole to be accepted
or rejected en masse. Yet its internal fault lines are far from obvious.
They reside in aspects of technical practice that are not normally counted
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among its defining features. One of these is the figurative nature of its
language, for example in the philosophically laden metaphors of internal
space to which the rhetoric of state machines lends itself. In order to
formulate an alternative, let us start by speaking about digital circuitry in
a different way, rescuing it from the discourse of abstraction and imple-
mentation and reappropriating it within the alternative discourse of in-
tentionality and embodiment.

Recall from Figure 5.6, then, that a state machine has two classes of
inputs and outputs: some that travel to and from the circuit's environ-
ment (which may include various other circuits and ultimately the en-
vironment of the entire device) and others that pass immediately from
the circuit's outputs back to its inputs. Both sets of wires close causal
loops; the only difference in these loops is, so to speak, their diameters.
Mentalist discourse draws a firm distinction among the various causal
loops. In particular it places primary emphasis on the smallest ones,
which it defines as the state of the circuit. The larger loops, the ones that
pass through the outside of the circuit, are often not visible on the
diagrams, either because they are obscured in a maze of circuitry or
because the lines simply dangle off the edge of the page. (Figure 5.6 itself
is a case in point.) Interactionist technical practice would treat all causal
loops - whether in memory circuits, thermostat controllers, cats chasing
rabbits, or drivers steering cars - in the same way, according no privilege
to the special case in which the outputs of a device connect directly back
to the inputs.

This redirection of rhetorical emphasis is, in its own small way, a
different fork in the road. Simply talking about the same machinery
using different language will not cause any revolutions, of course. The
idea, however, is not simply to relabel things but to aim the research
process in a different direction. If the traditional machinery of AI is
inherently mentalist, someone trying to do interactionist AI with that
machinery is likely to reach some instructive technical impasses. And it is
only through impasses that a critical technical practice can learn anything
really new. The next few chapters will try to put this alternative, critical
design project into practice.
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Critical technical practice
Having prepared some background, let us now consider a tech-

nical exercise. Since readers from different disciplinary backgrounds will
bring contrasting expectations to an account of technical work, I will
begin by reviewing the critical spirit in which the technical exercises in
this book are intended.

Reflexively, the point is not to start over from scratch, throwing out the
whole history of technical work and replacing it with new mechanisms
and methods. Such a clean break would be impossible. The inherited
practices of computational work form a massive network in which each
practice tends to reinforce the others. Moreover, a designer who wishes to
break with these practices must first become conscious of them, and
nobody can expect to become conscious of a whole network of inherited
habits and customs without considerable effort and many false starts. A
primary goal of critical technical work, then, is to cultivate awareness of
the assumptions that lie implicit in inherited technical practices. To this
end, it is best to start by applying the most fundamental and familiar
technical methods to substantively new ends. Such an effort is bound to
encounter a world of difficulties, and the most valuable intellectual work
consists in critical reflection upon the reductio ad absurdum of conven-
tional methods. Ideally this reflexive work will make previously unre-
flected aspects of the practices visible, thus raising the question of what
alternatives might be available.

Substantively, the goal is to see what happens in the course of design-
ing a device that interacts with its surroundings. Following the tenets of
interactionist methodology, the focus is not on complex new machinery
but on the dynamics of a relatively simple architecture's engagement with
an environment. Those accustomed to reckoning research contributions

105
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in terms of new mechanisms may be disappointed. Instead, the principal
substantive contribution is a way of thinking about the relationship be-
tween machinery and dynamics for certain purposes. To get the process
started, I will describe the observations about the dynamics of ordinary
activities that originally motivated this research. This description will not
provide the kind of proof that laboratory psychology promises or the
kind of descriptive robustness that ethnographic fieldwork seeks. Rather,
it is intended as a stimulus to the esoteric practice of technical reflection.

Technically, I want to explore the automatic construction of complex
combinational logic circuits for an agent interacting with a simple world.
At the outset, the specifically technical questions concern the suitability
and limits of logic circuits for this purpose, as well as the means by which
these circuits might be efficiently and incrementally constructed by an
automated device negotiating set tasks. By the end of the story, though,
deeper technical issues about representation and learning will have arisen
through reflection on difficulties encountered along the way.

In addition to the perhaps unfamiliar expectations I hope to have
created here, the reader will observe that the second half of this chapter,
as well as the remaining chapters of technical exposition in the book
(Chapters 7, 10, and 13, and the second half of Chapter 9), are written in
a voice distinct from that of the rest of the book. The voice in these
chapters is approximately that of conventional AI, in which the primary
goal is to describe the operation of machinery in intentional terms. In
presenting and motivating the various mechanisms I have built, I will
present a series of cartoon stories. Scraps of computer code, likewise, will
employ cartoon examples of various degrees of silliness. This practice
can seem bizarre to readers without substantial technical background,
and especially to readers with strong views about suitable methods for
describing human experience. Inasmuch as the various features of the
machinery must be explained individually before being assembled into
larger wholes, cartoon examples are an expedient means for providing a
rough, tentative orientation to the technical function of a given mecha-
nism and the narrative structures that go with it. At the same time, the
whole point of a critical technical practice is to work from the inside,
driving the customary premises and procedures of technical work toward
their logical conclusions. Some of those conclusions will be problematic,
and the whole complex process of reaching them will then provide the
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horizon against which critical reflection can identify fallacies and moti-
vate alternatives.

About routines

The theoretical work reported in this book was originally moti-
vated by an empirical interest in the organization of ordinary routine
activities in everyday life; a brief account of this work may convey some
of the intuitions behind the technical proposals to follow. As Heidegger
argues in Being and Time (1961 [1927]), Western cultural and philosophi-
cal traditions have left us ill equipped to observe, describe, or pay atten-
tion to the most ordinary aspects of our lives. Activities such as making
breakfast, driving to work, and writing a letter are largely terra
incognita - except, perhaps, when one is first learning them, when some-
thing exceptional happens to render them problematic, or when they are
turned into objects of rational manipulation. Dreyfus (1972) has pointed
out that this is a particularly serious situation for AI, whose practitioners
must constantly tell stories about ordinary human activities. The plan-
ning view of human action, outlined in Chapter 1, is one such story. If
computational explanation has any value, then planning is either a good
way to talk about both people and computers or else a bad way to talk
about both. In either case the reasons ought to be instructive. Therefore I
wanted to look closely at ordinary activities to determine if planning was
a reasonable story.

It would take another book to fully explain and defend my methods in
studying ordinary activities.1 Briefly, I kept a notebook of detailed
descriptions of my own activities. When I noticed that a particular epi-
sode of activity had features that were relevant to the questions that
interested me, I would write out the episode from memory in as much
detail as possible.2 Later I would try to check my memory in various
ways, sometimes through videotape or through the various evidences that
the activity left behind, but most often by simply being aware of the same
sort of activity again on future occasions. (Having written detailed
descriptions in my notebook would cause me to spontaneously notice
similiar phenomena afterward.) Of course, this cultivated awareness of an
activity would often cause the activity itself to change, but I regarded this
as simply one more dynamic phenomenon to investigate. This method of
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investigation, of course, is prone to selection bias, the rational reordering
of memory (Bartlett 1932), and the difficulty of drawing definite conclu-
sions from single cases (March, Sproull, and Tamuz 1991). But its pur-
pose is not to compel assent but to help stimulate consciousness of the
usually overlooked mundane features of daily life, with the aim of
defamiliarizing the conventional assumptions that lie behind computa-
tional design reasoning.

I was particularly interested in routines. A routine is a frequently
repeated pattern of interaction between an agent and its familiar environ-
ment. A routine is a dynamic. The difference between the nouns "rou-
tine" and "dynamic" is that a routine involves a particular individual (it
is, for example, "my routine" or "your routine") whereas a given dynamic
might occur in the lives of many individuals. For example, one might
have a routine for picking up a fork, preparing a bowl of cereal, measur-
ing out two cups of flour, putting on one's heavy backpack, selecting a
toll booth at the San Francisco Bay Bridge, putting one's watch on,
washing the dishes in one's kitchen after a large dinner, tossing a wad of
paper into the trash can in the far corner of the office, or writing the word
"the." One might speak of a routine "for" some task, but a routine is
defined by what happens rather than by any endpoint or overall inten-
tion. One need not have a set routine "for" any given purpose, since the
relevant circumstances of the task and its environment may differ suffi-
ciently from occasion to occasion that no stable routine emerges. Like-
wise, one may have a dozen different routines "for" some purpose if that
purpose arises in a dozen different contexts.

Routines have all of the properties of dynamics that Chapter 2 has
discussed. A routine, like any dynamic phenomenon, is purely a descrip-
tive construct, not a thing in the head, not a plan or procedure. It need
not correspond to an ingrained habit or rigid custom. No specific knowl-
edge or competence or cognitive machinery is required to engage in
routines.3 Doing something the same way every time, in other words,
need not result from a specific intention to do it the same way every time.
An agent can engage in routines without knowing it. A routine might
involve a series of actions, each a response to the situation resulting from
the previous action, without a specific prior intention to perform that
series of actions. One version of this idea is the behaviorist notion of
stimulus chaining, whereby a stimulus provokes a response that causes
another stimulus and so forth. But the general point is that, except in the
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simplest or most heavily controlled environments, agents necessarily act
without complete foreknowledge of the consequences of their actions.
The world is a complex terrain, and each step may change the terrain or
reveal further information about it. The agent's path will inevitably be a
joint product of its own intentions and the topography of the terrain.
When the same agent traces the same path repeatedly, it is a routine. A
driver, for example, might weave down a potholed street in the same way
every day, without any specific intention to do so, just because the same
potholes are always there.

The actions comprising a routine are not dictated by the routine; they
are simply the individual's chosen actions in particular situations. For
example, an agent might simply improvise the same response to a recur-
ring situation. Perhaps that response is the only sensible one. You might
switch your umbrella from your right hand to your left hand so you can
use your right hand to get your house keys out of your pocket on every
rainy day without ever having made a deliberate policy of it. Further-
more, a routine is not a law of nature; you might have poured your
morning coffee the same way a thousand mornings straight, but tomor-
row morning your routine might be altered by any of an endless variety of
contingencies small or large, such as a momentary shift in your posture to
glance at something out the window, a knock at the door, a worn-out
coffee pot, or the onset of an ulcer.

Different individuals might engage in different routines for the same
task. Not everyone has a routine for every task. It happens that I make an
omelette in my kitchen in pretty much the same way every time. This
routine varies so little not because I am deliberately unvarying but be-
cause my kitchen has a fairly stable order and because I have had no
occasion to change any of the opinions that motivate the choices that go
into making an omelette. In fact, I have thought many of these opinions
through by exploring alternatives, reading cookbooks, and comparing
notes with other cooks. But thinking things through is not a necessary
condition for an activity becoming routine. It would really need explain-
ing if I made a series of omelettes and did it differently every time. I can
think of five ways this might happen:

1. I am new to making omelettes and am still making mistakes.
2. I am deliberately exploring different ways of making omelettes.
3. I am thinking up gratuitous variations for the sake of variation.
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4. I am subject to uncoordinated patterns of distraction from other
sources. Perhaps I have other concurrent obligations (like mind-
ing a two-year-old) or am persecuted by interferences (like ring-
ing telephones).

5. I am always making omelettes in different circumstances. Per-
haps I am always moving to new quarters, or someone or some-
thing keeps rearranging my kitchen, or the omelette-making
activity itself always leaves the kitchen arranged in some rele-
vantly different way.

In short, the existence of routines requires no more explanation than
physical determinism. Put the exact same individual in the exact same
situation on several occasions and the exact same things will happen. An
appeal to determinism, of course, is a rough sort of explanation. No
routine for pouring coffee is going to come off the same way every
morning down to the last muscle twitch and molecule. The larger point is
that routines exist because people bring a relatively stable set of practices
to a relatively stable set of circumstances, and because the routines them-
selves tend to reproduce the relevant aspects of those circumstances.4

Everyday life exhibits routines at all scales. A routine for driving to
work will probably have a hundred smaller routines as parts - buckling
up, signaling a left turn, looking for speed traps, keeping distance behind
the cars in front - many of which arise within other routines as well. Even
the most innovative improvised activity will be composed of already-
routine parts. Aside from being practically inevitable, this property of
routines is fortunate as a computational matter, since nobody could im-
provise adaptive responses to unprecedented situations on all levels of
organization at once.

In practice, routines vary from occasion to occasion in numerous small
ways. Traffic patterns will vary slightly, utensils will find different resting
places on countertops between steps of a recipe, source materials will
vary in small ways, and so on. More important, routines evolve (Agre
1985a; Agre 1985b; Agre and Shrager 1990). In observing the complexity
of any given episode of real activity, no matter how small, it helps to think
of an agent's actions as the result of a long process of routine evolution. A
new routine might arise in the course of ordinary activity, but then it
generally evolves to more complex forms. Just as one can engage in
routines without knowing it, one's routines can - and regularly do -
evolve without one's knowing it. As long as the relationship between
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individual and environment is relatively stable, most of this undeliberate
evolution takes the form of a series of discrete mutations to the routine.
Routines can change because the individual changes (perhaps by learning
something) or because the environment changes (perhaps by getting
rearranged in a more convenient fashion). In either case, the fundamental
reason for routine evolution is that the relationship between the individual
and the environment changes, and the study of routine evolution is
precisely the study of these changing relationships.5 This theory should
be distinguished from theories, such as Van Lehn's repair theory (1990),
that explain changes in action through changes in procedures that gener-
ate that action. A procedure, like a plan, is a mental entity that directly
and systematically determines an individual's actions; a routine, by con-
trast, is an emergent pattern of interaction whose evolution might be
influenced either by changes in an individual or by changes in the indi-
vidual's environment. A change in a routine might be caused by a change
in a plan or procedure, but it need not be.

An evolving routine, as a general matter, will tend to take account of
more and more detailed aspects of the environment. Actions and pro-
cesses that had occurred serially may begin occurring in parallel (e.g., you
might get out the tea bag while the water is heating rather than before
putting the kettle on the stove). Warning signs become noticed as if
expected (e.g., when the bread starts to snag in the toaster as you push it
down), and precautions are taken without missing a beat. Sometimes a
routine will evolve in several distinct directions in response to variations
of circumstance, whether new or previously ignored (e.g., when you back
the car out of the driveway differently at home, where children or their
toys might be around). Sometimes a routine's evolution will stall in some
comfortable pattern, only to resume at some provocation or chance
discovery (e.g., when driving on a road for an errand reveals a new route
to work). Actions that began as improvisations or afterthoughts become
regular occurrences, and the boundaries among artificial phases of ac-
tivity (like preparation, execution, and cleaning up) fade as actions rear-
range and recombine. Workplaces and dwellings begin to bear the marks
of one's routines, through both accumulated side effects (trails [Batali
1993], wear patterns [W. Hill and Hollan 1994], built-up piles of stuff,
tools always left in the same places) and deliberate conventions (getting a
clothes hamper to reduce clutter, dedicating a certain space to medita-
tion); and the marks left by each routine prod mutations of the others.

Watching routines evolve, I have been impressed by the steady back-
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ground of small changes, each of which makes sense singly but whose
accumulated effects can be formidably complicated. A particularly strik-
ing pattern of mutations to routines is backward transfer.6 In a cyclical
activity, or an activity that takes place in the same circumstances repeat-
edly, elements of the routine will often move countercyclical^ - that is,
toward the beginning of the routine. This will often cause the cycle to
change in subtle or complex ways. The effect is evident in the story about
my coat that I told in Chapter 3, and in these two stories:

I had a stack of records propped up against a box and I was
alphabetizing it according to the artist's name, forming a second,
sorted stack propped up next to the first. I would take a record
from the top of the first stack with my left hand, find and hold
open the right place for it in the second stack with my right
hand, place the record in its space, let the stack close over it, and
repeat the cycle. After a while I found I was doing something
different: whereas before my eyes stayed on the new record until
I had picked it up, now I would read the artist's name as soon as I
was done with the last record. Then as I picked it up with my left
hand, my eyes were already helping my right hand find the right
place in the second stack.
I was trying to get a long C program to compile. I was working
on a Sun workstation and had divided the screen between two
Unix shell windows so I would not have to exit the editor to run
the compiler. I would run the compiler and it would produce
error messages, for example "syntax error near { on line 173," so
I would go back to the editor window. The only way I knew to get
to line 173 was to go to the top of the buffer and go down 172
lines. This got to be a cycle, fixing errors and recompiling. After
a while, I found that I would move the editor to the top line
before the compiler had even starting generating error messages.
(Finally the compiler completed without errors and half of me
had to skid to a confused halt.)

In each case, fragments of the routine (reading the artist's name, moving
my eyes to the second record stack, moving the cursor to the top of the
editor) drifted to an earlier point in the cycle. Various actions took place
as soon as they could instead of in the more logical order in which they
first assembled themselves as I improvised my way through my dealings
with each record or syntax error.
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What is happening, intuitively, is that an improvised form of activity is
rearranging itself by increments, with various elements of my own think-
ing moving from the place in the cycle where I first formulated them to
the place where they were first applicable. Chapters 8 and 9 will return to
the larger issue of how to think computationally about routine activity.
But for the moment, I would like to introduce some technical ideas for
thinking about this kind of incremental evolution of routine forms of
activity.

Main ideas of dependency maintenance

Dependency maintenance is a technical method from AI re-
search for keeping track of the logical structure of an agent's symbolic
reasoning.7 It makes several presuppositions about the agent's archi-
tecture:

• Some symbolic mechanism, call it the reasoned constructs
discrete thoughts that the agent decides to believe or disbelieve.

• With the exception of logical axioms and sense data, which are
treated as veridical, the agent's reasons to believe or disbelieve a
thought can be represented as a small, finite list of other
thoughts.

• These thoughts are the means by which the agent decides what is
happening and what actions to take.

• Occasions to believe or disbelieve thoughts come packaged into
discrete situations.

• The agent frequently employs the same thoughts on different
occasions.

Although these presuppositions obviously carry a great deal of philo-
sophical baggage, virtually all symbolic models of action share most of
them. In the spirit of reductio ad absurdum, I wish to adopt them here as
leading assumptions; Chapters 8 through 12 will reexamine some of
them. The most highly developed example of these presuppositions is
formal logic, for which the thoughts are logical propositions and the
reasons to believe them are dictated by syllogisms. But many schemes for
modeling thoughts do not employ formal logic, and I will take no posi-
tion here about the virtues of formal logic for modeling human action.

As an intuitive design matter, dependency maintenance starts from
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two premises: first, that thinking new thoughts is difficult; and second,
that if a thought has been useful once it is likely to be useful again. New
thoughts might arise through analogy, induction, storytelling, advertis-
ing, or exhaustive testing of hypotheses; for present purposes it does not
matter where they come from, it being taken for granted that novel
thoughts are relatively unusual. By performing the bookkeeping work
that is required to reapply the old thoughts when they are needed, the
dependency system makes it unnecessary for the reasoner to reinvent old
thoughts on new occasions.8 The dependency system has a simple inter-
face that makes no presuppositions about what might possibly count as a
"thought."

First a blizzard of technical definitions, then some examples. On any
moment the reasoner can hand the dependency system a conclusion and a
set of reasons. The conclusion and the reasons are all propositions. There
are two kinds of reasons, positive and negative. Every proposition has, at
any given time, a value of either IN or OUT, meaning roughly "believed"
or "not believed." (If a proposition has an OUT value, that does not mean
that the agent regards it as false; it only means that the agent does not
have enough reason to regard it as true.) Given a conclusion and some
reasons, the dependency system constructs and stores a justification. This
new justification declares that henceforth the conclusion is to be IN
whenever all the positive reasons are IN and all the negative reasons are
OUT. (Sometimes justifications are also called "dependencies," since the
conclusion is said to depend on its reasons.) A proposition might have
several justifications; it is IN if any one of them satisfies this condition and
OUT otherwise. A proposition with no justifications is called a premise;
propositions are thus divided into premises and conclusions. The value
of a premise might be wired IN. Or it might be determined by some other
piece of machinery, like a sensor. If so, it is called an input. A proposition
might also directly drive some other piece of machinery, such as a motor
command. If so, it is called an output (Figure 6.1).

The entire collection of propositions and justifications is called a
dependency network. Think of a dependency network as a binary logic
circuit (regardless of how it happens to be implemented in a given in-
stance). Each proposition is a wire - technically, a node - which carries a
value of 1 if it is IN and 0 if it is OUT. (The values of 1 and 0, then, do not
mean "true" and "false" but rather IN and OUT.) Each justification is an
«-input AND-NOT gate joining some reasons to some conclusions. A
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inputs -

reasoner

ft 4
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network
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Figure 6.1. A dependency system maintains a dependency network that con-
sists of propositions, modeled as electrical nodes, which are joined by justifica-
tions, modeled as logic gates. Some of the propositions correspond to inputs
and others to outputs. The system occasionally adds new circuitry when its
reasoner does something new.

network is said to be settled if all the IN conclusions are justified and vice
versa, and consistent if there exists some valid assignment of IN and OUT
to conclusions to which the network can settle. Whenever a premise
changes value or a new justification is added to the network, the depen-
dency system somehow finds a new assignment of IN and OUT to the
conclusions that settles the network. Whether settling the network is easy
and whether the outcome is unique depend on the network, as I will
explain later.

The vocabulary of dependency maintenance is suggestive, but few of
its connotations are actually intended. Propositions have no internal
structure (nouns and verbs, connectives and parentheses, or whatever) as
far as the dependency system is concerned. The reasoner may construct
propositions that contain quantifiers, negations, probabilities, or magic
words, but the dependency system only knows whether two propositions
are exactly the same or not. Likewise, the reasoner may justify a given
conclusion deductively, heuristically, or numerologically, but the depen-
dency system only has access to the positive and negative reasons it has
been given to justify a conclusion. If new conclusions might be drawn
among the existing premises and conclusions, the dependency system
will not draw them automatically.

I will illustrate the idea of dependency maintenance using some car-
toon examples. Let a justification be specified in this way, using a stan-
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dard sort of notation scheme derived from the Lisp programming
language:

(<= conclusion
(in positive-reasonl positive-reason2 . . .)
(out negative-reasonl negative-reason2 . . .))

The italics describe what sort of thing is found in each "slot."
To record an ordinary monotonic deduction, use only positive reasons:

[Example 1]
(<= (mortal Socrates)

(in (for-allx (implies (human x) (mortal x)))
(human Socrates))

(out))

"As long as all humans are mortal and Socrates is human, So-
crates is mortal."

This justification is modeled after the classical syllogism. It will be im-
plemented by a single 2-input AND gate, joining the two reasons - namely
( fo r -a l l x . . .) and (human Socrates) - to the conclusion - namely
(mortal Socrates) (Figure 6.2).

For the reasoner, the three propositions in Example 1 have an internal
structure - evidently one modeled on first-order logic and implemented
using linked lists. The dependency system sees none of this. As far as it is
concerned, the reasoner said,

[Example 2]
(<= mortal-Socrates

(in for-all-x-implies-human-x-mortal-x
human-Socrates)

(out))

"As long as allhumansaremortal and Socratesishuman, Socrates-
ismortal."

where the propositions have no internal structure at all, so that they
appear simply as arbitrary distinct symbols. (The hyphens are another
notational convention drawn from Lisp. Symbols such as human and
f o r - a l l and mortal-Socrates have no internal structure as far as the
programming language qua formal system is concerned.) For that matter,
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(for-all x
(implies (human x)

(mortal x))) • r> • (mortal Socrates)
(human Socrates)

Figure 6.2. A justification with only positive reasons creates an AND gate that
ensures that its conclusion will be IN whenever both its reasons are IN.

the dependency system would be indifferent if the reasoner delivered it a
justification that makes no sense on logical grounds, for example,

[Example 3]
(<= (immortal Plato)

(in (for-allx (implies (human x) (mortal x)))
(human Socrates))

(out))

"As long as all humans are mortal and Socrates is human, Plato
is immortal."

The dependency system, in short, makes few assumptions about the
workings of the reasoner. In particular, it does not require the reasoner to
be correct or optimal or logical or efficient, as long as it delivers a series of
syntactically well-formed justifications. Thus, for present purposes, the
words "thinking" and "reasoning" are inherently imprecise. They will
attain a more satisfactory formal definition in Chapter 7, but I will not
adopt any definite philosophical explanation of them.

A proposition with an empty justification will always be IN:

[Example 4]
(<= ( l i f e i s short)

(in)
(out))

"Life is short, no matter what."
The propositions in a dependency network do not have to be examples

from formal logic texts. They are, in fact, more likely to be conclusions
about what to do.

[Example 5]
(<= (intend (become philosopher))
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(in (want truth))
(out (want money)))

"As long as I want truth and do not want money, I intend to
become a philosopher."

The system records its dependencies using digital logic gates, but this
does not restrict its reasoning to any particular rules of inference. Heuris-
tic justifications, for example, are easily accommodated:

[Example 6]
(<= (incomprehensible Derrida)

(in (philosopher Derrida)
(French Derrida))

(out))

"As long as Derrida is French and a philosopher, he is incom-
prehensible."

A proposition might have several justifications. If the reasoner also says,

[Example 7]
(<= (incomprehensible Derrida)

(in (thinks Derrida (too-easy Heidegger))
(writes-in Derrida French-puns))

(out))

"As long as Derrida thinks that Heidegger is too easy, and as
long as he writes in French puns, he is incomprehensible."

then the resulting network will comprise two AND gates with their out-
puts wired together, so that the node corresponding to (incomprehen-
s ib le Derrida) will be IN if either of its two justifications is satisfied
(Figure 6.3).

A justification cannot contain variables. That is, the dependency sys-
tem does not recognize or reason with any variables that the reasoner
might include in a proposition. If the reasoner, mimicking the syntax of
quantification in first-order logic, issues a justification that reads

[Example 8a]
(<= (incomprehensible x)

(in (philosopher x)
(French x))

(out))
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(philosopher Derrida)

(French Derrida)

(incomprehensible Derrida)
(thinks Derrida

(too-easy Heidegger)) •

(writes-in Derrida
French-puns)

Figure 6.3. When a proposition has more than one justification, any of its
justifications can support it.

"As long as X is a philosopher and French, X is incom-
prehensible."
not
"For all x, if x is a philosopher and French, x is incomprehen-
sible."

then the dependency system will not interpret this as a universal state-
ment that all French philosophers are incomprehensible. If the reasoner
surmises that several French philosophers are incomprehensible, it needs
to issue a separate justification for each one:

[Example 8b]
(<= (incomprehensible Barthes)

(in (philosopher Bar thes)
(French Bar thes))

(out))
(<= (incomprehensible Foucault)

(in (philosopher Foucault)
(French Foucault))

(out))
(<= (incomprehensible Deleuze)

(in (philosopher Deleuze)
(French Deleuze))

(out))
"As long as Barthes is a philosopher and French, Barthes is
incomprehensible."
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"As long as Foucault is a philosopher and French, Foucault is
incomprehensible."
"As long as Deleuze is a philosopher and French, Deleuze is
incomprehensible."

I will refer to a connected subnetwork as a patch of the whole network.
As this example makes clear, traditional sorts of representation lead to
replicated structure in dependency networks; each French philosopher
gets his own patch of network. It would be nice if the propositions that
are connected by dependencies could include variables, so that one small
circuit could deduce the incomprehensibility of all French philosophers,
without the necessity of naming them all individually. But this is not how
combinational logic circuits work; moreover, it appears that no simple
scheme can make them work that way. Chapters 10 through 13 will dwell
on this fact.

Negative reasons provide a way to express heuristic lines of reasoning
whose assumptions are to be made explicit. One technique is to establish
a default:

[Example 9a]
(<= daytime

(in at-work)
(out nighttime))

That is, if the agent is at work, it should assume it is daytime unless
convinced that it is nighttime. This justification is said to be non-
monotonic. It would be implemented as an AND-NOT gate (Figure 6.4).

Let us elaborate the example:

[Example 9b]
(<= daytime

(in out-of-doors bright)
(out))

(<= nighttime
(in out-of-doors dark)
(out))

Joining 9a and 9b produces the network depicted in Figure 6.5. This
network contains six propositions and three justifications. Four of the
propositions - that is, at-work, out-of-doors, bright, and dark - are
premises because they have no justifications. Imagine that the values
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• daytime
at-work

nighttime

Figure 6.4. Sometimes a justification will have negative reasons, indicating that
it should support its conclusion only if all its positive reasons are IN and there is
no reason to believe in any of its negative reasons.

bright

at-work

out-of-doors

dark-

- daytime

nighttime

Figure 6.5. In this diagram, the agent will accept certain information as evi-
dence of its being daytime and other evidence of its being nighttime. If no
relevant evidence is available, the agent will assume that it is daytime.

of at-work and out-of-doors are determined by other justifications
not shown. Imagine as well that the whole network is located in the head
of an agent named Thomas and that br ight and dark are inputs con-
nected to Thomas's visual system. Their values are continually updated
according to how bright it is.

Now suppose that Thomas is at work and indoors. At-work is IN and
out-of-doors is OUT. Probably br ight will be IN, but since out-of-
doors is OUT neither br ight nor dark will influence the conclusions at
all. Nighttime is OUT because out-of-doors is OUT. And daytime is
IN because at-work is IN and nighttime is OUT.

Now suppose Thomas gets off work and walks outside. When Thomas
notices the clock hitting 5:00, at-work will go OUT and so daytime will
go OUT too. At this point both daytime and nighttime will be OUT,
assuming that Thomas has no other justifications for these propositions.
Once he gets out the door, though, it being winter in Boston, dark will
be IN. Thus nighttime will be IN and daytime will be OUT.

Thomas's reasoning thus far has some holes. Starting at about 4:30
p.m. it will be dark outside. But he, still hard at work, will assume it is
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daytime. Suppose that Thomas, longing for a beer as 5:00 approaches,
looks out the window toward the parking lot and is startled to find it dark.
He might then formulate a new justification for nighttime:

[Example 9c]
(<= nighttime

(in looking-out-window dark)
(out))

This new insight, while not spectacular, was no doubt hard work, just
because thinking anything new is hard work. Fortunately, dependencies
never go away. As soon as tomorrow's approaching beer leads Thomas to
look out the window again, this bit of thinking (if one is willing to call it
that) will happen automatically. The same thing will happen with next
week's approaching beers, and next year's. With successive new insights,
his network will grow larger and larger.

Now suppose Thomas also thought something like

[Example 9d]
(<= nighttime

(in winter-time late-afternoon)
(out))

The values of propositions like late-afternoon do not get updated by
magic. If Thomas has no sixth sense for wall-clock time, l a te -
afternoon will stay OUT, regardless of the time, until some other circui-
try drives it IN. But one has many occasions to try guessing a rough time
of day, and these ways of guessing will accumulate in one's dependency
network, applying themselves whenever they get a chance.

Not all lapses of reasoning can be repaired by adding new justifica-
tions. A solar eclipse might make it dark in the daytime and a baseball
stadium might make it light in the nighttime. But it would have taken
impossible foresight to have phrased Example 9b as

[Example 9e]
(<= daytime

(in out-of-doors bright)
(out at-baseball-game))

(<= nighttime
(in out-of-doors dark)
(out solar-ecl ipse))
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Any conclusion about a real-life situation is true only ceteris paribus. One
never stops discovering exceptions to general rules. Consequently, it
must be possible to add new negative reasons to some of the existing
justifications. When Chapter 7 describes how a particular program uses
dependencies, these justifications will be the ones created by "UNLESS
rules."

A dependency network can in principle be circular. This happens, for
instance, when propositions entail one another. To take a standard philo-
sophical example:

[Example 10]
(<= looking-at-the-Morning-Star

(in looking-at-the-Evening-Star)
(out))

(<= looking-at-the-Evening-Star
(in looking-at-the-Morning-Star)
(out))

Thus, the agent concludes it is looking at the Morning Star whenever it
believes it is looking at the Evening Star, and vice versa. Unfortunately,
when the Morning/Evening Star goes away, the propositions will con-
tinue to justify each other. In general, circularities can arise when there
are several propositions, any few of which justify the rest.

[Example 11]
(<= games=7 (inwins=3 losses=4) (out))
(<= wins=3 (in games=7 losses=4) (out))
(<= losses=4 (in games=7 wins=3) (out))

Circular dependencies cause immense technical problems because it is
impossible in general to determine a consistent assignment of IN and
OUT values to the various propositions. They will, however, play no role
in the mechanisms I will describe.

By now I have enumerated everything that can happen in a depen-
dency network: gates propagate binary values and new justifications and
connections are made. Dependency networks, in other words, are not
general-purpose data structures that algorithms can inspect, search
through, rearrange, measure, or prove things about. Instead, they resem-
ble the neural networks described by Feldman (1982) and Marr (1970), in
which new elements are added through gradual, incremental recruitment
over a long period.
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Using dependencies in a rule system
This chapter discusses one use of dependencies, a programming

language called Life. Although the demonstrations of Chapter 9 and 10
will use Life to make some points about improvised activity, this chapter
describes Life programming as a technical matter with little reference to
theoretical context. Readers who find these descriptions too involved
ought to be able to skip ahead without coming to harm.

Life is a rule language, a simplified version of the Amord language (de
Kleer, Doyle, Rich, Steele, and Sussman 1978). This means that a Life
"program" consists of a set of rules. Each rule continually monitors the
contents of a database of propositions, and sometimes the rules place new
propositions in the database. The program that does all of the bookkeep-
ing for this process is called the rule system. The rule system functions as
the reasoner for a dependency system. The rule system and dependency
system both employ the same database, and most of the propositions in
the database have a value of IN or OUT. Roughly speaking, when an IN
proposition (the trigger) matches the pattern of an IN rule, the rule fires
and the appropriate consequence is assigned the value of IN. If necessary,
the system first builds the consequent proposition and inserts it in the
database. This might cause other rules to fire in turn, until the whole
system settles down. In computer science terms, this is a forward-chaining
rule system. The role of dependencies is to accelerate this settling down
without changing its outcome. The technical challenge is to get the rule
system to mesh smoothly with the dependency maintenance system
underneath.

One might take two views of the Life rule system in operation. On one
view, dependencies are accelerating the operation of rules. But on an-
other view, a dependency network is being incrementally built from
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convenient but theoretically uninteresting parameterized specifications.
It is the second view that will become important in the next two chapters.
I do not believe that people have rule systems in their heads. Instead, the
purpose of the rule system is to provide some source of new thoughts so
that the dependency system can build a network. The question of the-
oretical interest is how an accumulated network will lead its owner to
interact with the world.

The machinery underlying the Life rule language is designed on the
assumption that most rule firings have happened before. Though many
applications exist in which this assumption would not hold, it seems
plausible for the purpose of simulating human activity because life is
more or less routine. Intuitively, most things that happen have happened
before, so that the dependency system can do most of the work. When-
ever a rule fires, the rule system constructs a justification declaring that
the rule and the trigger are reasons for believing the conclusion. That
rule need not fire again on that trigger. Consequently, unlike advanced
production systems such as OPS5 (see later), the Life rule system has not
been optimized for the speed of running a large number of rules. Instead,
it has been optimized for the speed of determining which rules, if any,
should run when a proposition in the database changes from IN to OUT or
OUT to IN.

A cartoon example may convey some idea of what the rule system does.
Here is a rule:

R13: (if (sees the-shepherd the-wolf)
(rings the-shepherd warning-bells))

One sunny Monday, the first wolf appears (either as the consequence of a
rule or as a premise):

A27: (sees the-shepherd the-wolf)
Then rule R13 fires on proposition A27. The rule has not fired on this
trigger before, so the system builds a new proposition,

A28: (rings the-shepherd warning-bells)
and a new justification,

J41 : (<=A28 (inR13A27) (out))

which would be drawn as an AND gate connecting R13 and A27 to A28.
Once the wolf goes away, A27 will go OUT. Assuming A28 has acquired
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no other justifications, A28 itself will go OUT as well. Now Tuesday
comes and the wolf appears again, so that A27 comes IN again. Assuming
that rule R13 is still IN as well, A28 will also come IN, due to the
justification J41. Whereas on Monday the system had to do some pattern
matching and assemble a new proposition and a new justification, on
Tuesday it only had to propagate a changed value through a gate. If the
wolf visits the shepherd's flock every day, A27 and A28 will cycle be-
tween IN and OUT. This effect is impressive on a large scale; the system
accelerates as everything that happens often, happens once.

Rule language semantics

The Life rule language is neither procedural nor declarative
(Fodor 1981a; Johnson-Laird 1977). That is, a set of Life rules is neither
a step-by-step computer program nor a catalog of knowledge. Each prop-
osition in the database is a Lisp list structure composed of list cells,
symbols, and variables. Variables are notated with question marks, for
example ?x. Most of the propositions, again, have a value, either IN or
OUT, meaning roughly "currently believed" or "not currently believed."
A proposition is always OUT unless the rule system discovers some
definite reason for it to be IN. Here are some possible (though hardly
exemplary) propositions:

(forgets moose ( f l i e s squirrel))
(language i s the house of being)
(for-al l ?x (implies (human ?x) (mortal ?x)))
(((?x mortal) (?x human) implies) ?x for-al l)
(plan put-on (?x ?y)

(preconditions (clear-top ?x) (clear-top ?y))
(actions (pick-up ?x) (move-to ?y) (put-down))
(results (cleartop ?x) (on ?x ?y)))

For technical reasons, two propositions are considered identical if they
are the same except for the names of variables. Thus, (loves ?x ?x) is
the same as (loves ?y ?y) but different from (loves ?x ?y).

Some of the propositions are rules. There exist two kinds of rules, IF
rules and UNLESS rules. Rules are the only propositions with a prescribed
syntax. Their syntax and informal semantics are as follows:
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(if pattern consequence-1 . . . consequence-n)

"As long as pattern is IN, make each consequeuee-i IN as well."
(unless pattern consequence-1 . . . consequence-n)
"As long as pattern is OUT, make each consequence-i IN."

Each pattern and consequence is a proposition. These propositions are
likely to contain variables. The critical phrase is "as long as." Let us
consider some examples.

The example considered earlier,

(if (sees the-shepherd the-wolf)
(rings the-shepherd warning-bells))

should be read

"As long as the shepherd sees the wolf, the shepherd rings warn-
ing bells."

When the rule's pattern comes IN, the consequences come IN as well.
(This rule, like most, has only one consequence.) When the pattern goes
back OUT, each consequence goes OUT as well, assuming it is not being
justified by another rule.

Rules can include variables. Variables are interpreted differently in the
two kinds of rules. We might write

(if (sees ?anyone the-wolf)
(rings ? anyone warning-bells))

"Whoever sees the wolf rings warning bells."

In general, an IF rule fires when (a) the rule is IN and (b) some proposi-
tion matching the rule's pattern is IN.

Thus, if we assert (meaning, establish as a premise),

(sees the-farmer the-wolf)

then the new proposition

(rings the-farmer warning-bells)

will come IN as well. If forty people see the wolf, the rule will fire forty
times and all forty people will ring warning bells. If the wolf passes out of
sight of ten of those people, those ten will stop ringing their bells even if
the other thirty continue.
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In general, an UNLESS rule fires when (a) the rule is IN and (b) no
proposition matching the rule's pattern is IN. We might write

(unless (rings ? someone warning-bells)
(sneaks-toward the-wolf the-sheep))

"As long as nobody rings warning bells, the wolf sneaks toward
the sheep."

If this rule is asserted and nobody is ringing warning bells, the rule's
consequence will be IN. AS soon as someone starts ringing warning bells,
it will go OUT again. As soon as everyone stops ringing warning bells, it
will come IN again.

Since rules are propositions, a rule's consequences might include
other rules. We might write

(if (owns-sheep ?person)
(if (hears ?person warning-bells)

(runs-to ?person the-meadow)))

"Anyone who owns sheep and hears the warning bells runs to the
meadow."

(if (sneaks-toward the-wolf ?sheep)
(if ( i s -a ?sheep sheep)

(unless (shoots-at ?person the-wolf)
(grabs the-wolf ?sheep))))

"If the wolf is sneaking toward a sheep, then unless somebody
shoots at the wolf it will grab the sheep."

When rules fire, they create circuitry in the dependency network. An
IF rule defines an AND gate each time it fires. If an IF rule's pattern has no
variables, it will define a single gate. If it does have variables, it will define
a separate AND gate for each matching proposition (Figure 7.1). An
UNLESS rule defines a single AND-NOT gate; each proposition matching
its pattern will be assigned an inverted input to that gate (Figure 7.2). As
a result, a complex rule defines a sort of template; every binding of its
variables will produce a new patch of dependency network.

The Life rule system differs from a production system (Forgy 1981,
1982; Newell and Simon 1972) in several ways:
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(if (human ?x)
(mortal ?x)) •

( h u m a n M a r y ) (•

( h u m a n John)

(human Chris)

• (mortal Mary)

(mortal John)

(mortal Chris)

Figure 7.1. If an IF rule has a variable in its pattern, many propositions might
match it. Each one of the resulting rule firings will generate its own AND gate.

(unless (asleep ?x)
everyone-awake)"

(asleep Mary)—r"7==3] ) everyone-awake

(asleep John)

(asleep Chris)
Figure 7.2. If an UNLESS rule has a variable in its pattern, many propositions
might match it. Each one of those propositions will get its own inverted input
into the rule's AND-NOT gate.

All rules fire whenever they can. The architecture neither
defines a notion of conflict between rules nor provides mecha-
nisms for conflict resolution.
A rule is not an imperative. It does not say "when" but "as long
as." It does not simply make its consequence IN; it also arranges
(through the justification it creates) for the consequence to go
OUT again when it is no longer justified.
There is no working memory as distinguished from the database
as a whole. All IN rules can fire and all IN propositions can trigger
rules. (This is true in practice for many users of production
systems.)
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• The speed of the system does not depend on the speed of the
rule-firing machinery. Most of the work is done in the depen-
dency network, which is easy to implement in parallel
machinery.

• Life's rule-firing machinery is not part of any proposed cognitive
architecture. Where a production-system theory might propose
that human brains implement production systems, a dependency
theory would propose that human brains implement combina-
tional logic circuits without taking a position on the nature of the
reasoner.

The Life rule system shares much of the motivation and spirit of produc-
tion systems, and I will return to the relation between them.

Life programming is more similar to logic programming languages
(Kowalski 1974; van Caneghem and Warren 1986), particularly in the
semantics of variables. Also, UNLESS rules differ from logical negation in
the same way as negation in logic programming; each means "not (yet)
derived" instead of "not derivable" or "not true." However, there are
some differences:

• The Life language defines no notion of predicates or functions.
Propositions do not need to follow any syntactic rules unless they
begin with if or unless.

• Patterns are not matched by unification; in order for a proposi-
tion to trigger a rule it must match the rule's pattern, that is,
there must be some assignment to the pattern's variables that
produces the triggering proposition.

• Whereas standard logic programming languages are backward-
chaining, the Life machinery is forward-chaining. Also, whereas
a logic program would not normally derive all its logical conse-
quences, Life continues firing rules as long as there are rules that
can fire.

• The efficiency of a Life rule set does not depend on the speed of
pattern matching. Once the system gets going, the dependency
network does most of the work.

How it works
The rule system operates inside a loop. The loop is driven by the

type of clock described in Chapter 5. On every tick of the clock, the rule
system begins firing rules and the dependency system begins assessing
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justifications and moving propositions IN and OUT, and this process
proceeds until no more rules can fire and the dependency system has
settled. On every tock of the clock, any outside programs inspect the
values of any propositions that concern them and change the values of
any premises that they wish to change. (The nature of these outside
programs will become clear in Chapters 9 and 10.) On the first few cycles
of the clock, the rule system is slow to settle because many rules are firing
for the first time. If no premises change their values on a given tock,
nothing need happen in the rule system or dependency system. If the
exact set of premises has been encountered before, only the dependency
system should have any work to do. And with time, novel sets of premises
should become less frequent.

As a design matter, the rule system's interface to the dependency
system should have the following properties:

1. A rule fires only once on a given trigger.
2. It takes almost no time to determine which, if any, rules need to

fire.

The first condition is easy enough. Every rule has a list of triggers on
which it has fired in the past. Given a candidate rule and trigger, the rule
system first checks this list and proceeds only if the trigger is not on it.
The second condition is harder, and the rest of the section explains how it
is achieved.1 The database is organized as a lattice (Birkhoff 1967) of
propositions under generalization - a subsumption lattice. Given two dis-
tinct propositions PI and P2, PI generalizes P2 if there is some assign-
ment to Pi's variables that produces P2. Here are some examples:

(rings ?x warning-bells)
generalizes

(rings the-farmer warning-bells)

(eats ?x ?y)
generalizes

(eats wolf sheep)

(eats ?x ?x)
generalizes

(eats f i sh fish)
but does not generalize

(eats cat fish)
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(eats ?x ?y)
generalizes

(eats ?x ?x)
(knows ?p ?x)

generalizes
(knows ?p (sees ?q ?p))

which in turn generalizes
(knows the-wolf (sees ?q the-wolf))

which in turn generalizes
(knows the-wolf (sees the-shepherd the-wolf))

A proposition without variables generalizes nothing and the proposition
?x generalizes everything. A proposition does not generalize itself. Gen-
eralization is a partial order because it has no cycles. But it is not a total
order because it is common for a proposition PI to generalize both P2
and P3, neither of which generalizes the other. For example,

PI: (knows ?p ?x)
P2 : (knows the-wolf ?x)
P3: (knows ?p (sees ?q ?p))

Often the propositions P2 and P3 will both generalize some further
proposition P4:

P4: (knows the-wolf (sees ?q the-wolf))
This is called reconvergence and it causes difficulties for parallel imple-
mentation of a large class of symbolic indexing schemes, including the
lattice technique.

Figure 7.3 depicts a sample lattice. The rule system's data structures
record only immediate generalization relationships - in technical terms
the minimal generalizations or the cover of the relation. The algorithm that
indexes new propositions into the lattice is subtle and tolerably fast.
(Unfortunately, propositions cannot be indexed in parallel.) In the
demonstrations of Chapter 10, a typical lattice has a few thousand
elements.

The rule system's algorithm uses the proposition lattice. The lattice
includes every proposition that has been made a premise or derived by
firing a rule. In particular, it includes the rules themselves. It also in-
cludes some propositions that have no values. Among these are the
patterns of all the rules. Thus, if the rule
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(hungry John) (awake John) (awake Mary)

Figure 7.3. The patterns in the rule system's database are stored in a lattice.

(if (sees ?anyone the-wolf)

(rings ?anyone warning-bells))

is in the lattice, so is the proposition
(sees ?anyone the-wolf)

even though this proposition makes no sense by itself and is presumably
not IN. As Figure 7.4 illustrates, the proposition lattice has a useful
property. If P is the pattern of rule R and 7" is another proposition, Tis a
potential trigger for R just in case P is above T in the lattice. This
suggests a simple algorithm for the rule system. (I will describe the actual
algorithm afterward.) For IF rules, the algorithm is

1. Whenever a proposition T comes IN, climb up the lattice from it.
Whenever you encounter a proposition P that is an IF rule i?'s
pattern, if R is IN then fire R on T (unless R has already fired on
T).

2. Whenever an IF rule R comes IN, climb down the lattice from its
pattern P. Whenever you encounter a proposition T that is IN,
fire R on T (unless R has already fired on 7).

To fire an IF rule R on proposition T:
1. Match i?'s pattern to Ty obtaining a list of variable assignments.
2. Perform these assignments on each of 7?'s consequences, pro-

ducing a list of new propositions C\ . . . Cn (typically there is
only one of them).
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(?x John) (awake ?x)

(hungry John) (awake John) (awake Mary)

Figure 7.4 To find the patterns of all the rules that a given proposition might
possibly fire, one need only move upward in the lattice starting from that
proposition.

3. Index each of the new propositions into the lattice. (Some of
them might already be there.)

4. For each Q, construct a new justification: (<= Ci ( in R T) (out)).
The algorithm for UNLESS rules is not as intuitive. An UNLESS rule

"fires" as soon as it first comes IN. From then on, whenever a new
proposition matches the rule's pattern, it "unfires," meaning that the new
trigger is added to the OUT list of the justification the rule created for its
consequence. The algorithm for an UNLESS rule of the form (unless P
Cx . . . Cn) is

1. Whenever a proposition T comes IN, climb up the lattice from it.
Whenever you encounter a proposition P that is an UNLESS rule
pattern, unfire R on T (unless R has already unfired on T).

2. Whenever an UNLESS rule R comes IN for the first time, climb
down the lattice from its pattern P. Along the way, accumulate a
list of every proposition Ti that has ever been IN. Finally, make a
justification for each of the rules' consequences: (<= C- (in R)
(out Tx . . . Tk)) .

To unfire an UNLESS rule R on proposition T:
1. For each C7, find the justification that mentions R. (In practice

they will all share a single AND-NOT gate.)
2. Add T to its OUT list so that it reads (<= C7 (in i?) (out 7\ . . .

TL. T)) .
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Note that no lattice climbing occurs when a proposition goes OUT. If
the ouT-going proposition enters into the justification of any other
propositions, the dependency system will take them OUT too if necessary.

If it seems expensive to climb around in the lattice, remember that
every proposition one encounters while climbing down is a potential
trigger and every proposition one encounters while climbing up is a
potential rule pattern. Little effort is wasted.

In reality, although the scheme just described would work correctly,
the system is actually more complicated. Recall that the goal is to permit
the system to decide rapidly which, if any, rules need to be fired. The
system just described does not achieve this goal, because the system must
perform a search in the lattice every time a proposition goes IN. I will
describe the true algorithm only for IF rules because the algorithm for
UNLESS rules cannot be stated simply but is still easy enough to rederive.

At a small expense of memory space, the system can avoid searching
the lattice except the first time a given proposition comes IN. Every
proposition maintains a bit indicating whether it has ever been IN. When
a proposition comes IN for the first time, it searches upward in the lat-
tice; when a rule comes IN for the first time, its left-hand side searches
downward in the lattice. While searching, it looks for rules that might
be able to fire now. But it also looks for potential rule firings. When a
trigger is searching upward for patterns, it looks for rules that are not
currently IN but have been IN at some point in the past. Likewise, when a
rule's left-hand side is searching downward for triggers, it looks for
propositions that are not currently IN but have been IN at some point in
the past. All of this information is stored with the proposition doing the
searching.

Thus, every proposition has a list of potential rules and every rule has
a list of potential triggers. Whenever a proposition comes IN or goes OUT,
it checks all of its potential rules to see if they are IN. If SO, the rules fire
and are removed from the proposition's list of potential rules. Whenever
a rule comes IN or goes OUT, it checks all of its potential triggers to see if
they are OUT. If any are, the rule fires on them and they are removed
from the rule's list of potential triggers.

This algorithm works well in practice, because the lists of potential
rules and triggers are always short. One could write pathological rule sets
in which the lists were choked with rules and triggers that could lead to
useful work in principle but never will in practice, but this has never
happened with any actual rule set.
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Finally, note that although the generalization relation does form a
lattice once we go through technicalities like defining a unique minimal
proposition, the algorithm requires generalization to be only a partial
order. Not all partial orders form lattices; in particular, the generalization
relation probably does not form a lattice when restricted to the set of
propositions that has actually been indexed at a given moment.

Incremental updating

We can now leave the microscopic details of the Life rule system
machinery and begin considering what the system does on a large scale in
practice. Rather than present a full-scale example of the system in action,
I will demonstrate the benefits of dependency maintenance indirectly by
discussing the process of writing and debugging Life rule sets. Normally
when fixing a bug in a program, a programmer must run the program
over from the beginning to the point when the problem arose. With
dependency maintenance, though, the program is rerun incrementally.
The system does only the work that needs to be done differently. If you
rewrite a rule, take the old version OUT and make the new version IN. If a
rule set starts going awry, poke around in the dependencies.

Suppose we wished to implement a set of rules to generate the action
in the story of "The Boy Who Cried Wolf." Here are some cartoon
premises:

R12: (if (sees ?anyone the-wolf)
(rings ?anyone warning-bells))

R37: (if (in-town ?person)
(if (rings ? anyone warning-bells)

(hears ?person warning-bells)))
A46: (owns-sheep Katya)
R47: (if (owns-sheep ?person)

(if (hears ?person warning-bells)
(runs-to ?person the-meadow)))

(The system assigns labels like R12 and A46 to provide short names for
the propositions.)

Now the system is running. The story reaches its climax. The wolf
appears and sneaks up on the sheep. The shepherd sees the wolf and rings
the warning bells. The townspeople hear the bells and go running, even
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though the story requires them to ignore the bells, having been inconve-
nienced by a series of false alarms. Something is wrong, so stop the
system. Among the IN propositions is

A63: (runs-to Katya the-meadow)

We can inspect the dependencies behind A63:

(why? A63)
A63 is in because R51 ran on trigger A39 :

R51: (if (hears Katya warning-bells)
(runs-to Katya the-meadow))

R51 is in because R47 ran on trigger A46:
R47: (if (owns-sheep ?person)

(if (hears ?person warning-bells)
(runs-to ?person the-meadow)))

R47 is a premise.
A46: (owns-sheep Katya)

A46 is a premise.
A39 : (hears Katya warning-bells)

A39 is in because R49 ran on trigger A28:
R49: (if (rings ?anyone warning-bells)

(hears Katya warning-bells))
R49 is in because R37 ran on A40

R37: (if (in-town ?person)
(if (rings ?anyone warning-bells)

(hears ?person warning-bells)))
R37 is a premise.

A40: (in-town Katya)
A40 is a premise.
A28: (rings the-shepherd warning-bells)

A28 is in because R12 ran on A27:
R12: (if (sees ?anyone the-wolf)

(rings ?anyone warning-bells))
R12 is a premise.

A27: (sees the-shepherd the-wolf)
A27 is in because . . .

and so on through the reasons for the wolf being in the meadow and the
shepherd seeing it. Even if the premises include a hundred rules, this
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display presents only the ones that entered into the troublesome conclu-
sion. Reading them, we find that the townspeople are too gullible. We
have written rules that lead them to conclude that the shepherd is a liar,
but we have not made them act on that conclusion. So let us rewrite R47
to make it more general:

R68: (if (owns-sheep ?person)
(if (believes ?person (at the-wolf the-meadow))

(runs-to ?person the-meadow)))
R69: (if (rings ?anyone warning-bells)

(if (hears ?person warning-bells)
(unless (believes ?person ( l i a r ?anyone))

(believes Pperson (at the-wolf the-meadow)))))

(Those with experience in formalizing such things will recognize the
deficiencies of these rules, as well as the instructive difficulty of writing
completely general rules for such purposes. When I gave up trying to
write rules to completely capture the "real reasons" behind the events in
the wolf story, I was long past a hundred rules with no end in sight.)

When we retract R47, both R51 and A63 go OUT but everything else
stays unchanged. When we now assert R68 and R69, they both run,
deriving

R70: (if (believes Katya (at the-wolf the-meadow))
(runs-to Katya the-meadow))

R71: (if (hears ?person warning-bells)
(unless (believes ?person ( l i a r the-shepherd))

(believes ?person (at the-wolf the-meadow))))
R72: (unless (believes Katya ( l i a r the-shepherd))

(believes Katya (at the-wolf the-meadow)))

The system has already derived

A54: (believes Katya ( l i a r the-shepherd))

so rule R72 does not license the conclusion that Katya believes the wolf to
be in the meadow. Finally we let the simulation proceed. Katya does not
go to the meadow (nor does anybody else), the wolf eats the sheep, and
the shepherd feels bad.
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Advanced rule writing

This section contains technical details that will help explain
some of the code fragments in Chapter 9. It can be safely skipped by most
readers.

Life is a simple language, but it is still perfectly general. It is Turing
universal, for whatever that is worth, in two senses. One can write
a Lisp interpreter in Life rules alone, though the result is terribly
slow. On the other hand, if a Life system is connected to a world that be-
haves like the tape of a Turing machine, one can write Life rules for a uni-
versal Turing machine. These rules can be written without variables,
so the size of the resulting dependency network has a definite upper
limit.

Unlike many rule-based programming languages, Life makes no ex-
plicit provision for Boolean combinations of rule patterns. For example,
one might like to rewrite rule R37:

old: (if (in-town ?person)
(if (rings ?anyone warning-bells)
(hears ?person warning-bells)))

new: (if (and (in-town ?person)
(rings ?anyone warning-bells))

(hears ?person warning-bells))

To allow such rules, one can write rules that convert rules with Boolean
triggers into equivalent forms that use only the facilities provided
directly by the language:

(if (if (and ?p ?q) ?c)
(if ?p (if ?q?c)) )

(if (if (or ?p ?q) ?c)
(if ?p ?c)
(if ?q?c))

(if (if (not ?p) ?c)
(unless ?p ?c))

(These are simplified versions of the rules. The actual rules are consider-
ably more complicated for purposes of generality and efficiency.)
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One could even write rules that support backward chaining:

(if (if-shown ?p . ?q)
(try-to-show ?p)
(if ?p . ?q))

(if (unless-shown ?p . ?q)
(try-to-show ?p)
(unless ?p . ?q))

(if (can-show ?p)
(if (try-to-show ?p)

(These rules descend from de Kleer, Doyle, Steele, and Sussman 1977.)
For example, it is often necessary to constrain two variables to have
different bindings. To express the idea of two different people seeing the
wolf, one might say,

(if (and (sees ?a the-wolf) (sees ?b the-wolf))
(if-shown (neq ?a ?b)

. . . ))
(The predicate neq means "not equal.") We can now write rules for
demonstrating equalities and inequalities:

(can-show (eq ?x ?x))
(if (try-to-show (neq ?x ?y))

(try-to-show (eq ?x ?y))
(unless (eq ?x ?y)

(neq ?x ?y)))

Given these rules, if both Katya and Anna see the wolf, the following
series of propositions would get asserted by these rules:

(if-shown (neq Katya Anna)
. . . )

(try-to-show (neq Katya Anna))
(if (neq Katya Anna)
. . . )

(try-to-show (eq Katya Anna))
(unless (eq Katya Anna)

(neq Katya Anna))
(neq Katya Anna)
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In practice the system does not use backward chaining in more complex
ways than this.

Rules like these raise a serious question of what is fair in Life program-
ming. If my psychological theory allows me to write arbitrarily sophisti-
cated Life programs, it has little content. The general constraint is that
the rules I write must lead to the construction of dependency networks
that could plausibly be acquired through learning in the real world. This
constraint is hard to make operational, but a few principles are clear
enough. One should not write rules that must fire regularly (i.e., with
different variable bindings) in situations that ought to be routine. It is
also a good policy not to write rules that fire on other rules except as a
notational convenience. Above all, keep in mind that our topics are
routine activity and the interactions between an already existing depen-
dency network and its world. Life rule sets are not psychological theories
but specifications for networks.



8 Planning and improvisation

The idea of planning
For the past thirty years or so, computational theorizing about

action has generally been conducted under the rubric of "planning."
Whereas other computational terms such as "knowledge" and "action"
and "truth" come to us burdened with complex intellectual histories, the
provenance of "plan" and "planning" as technical terms is easy to trace.
Doing so will not provide a clear definition of the word "planning" as it is
used in AI discourse, for none exists. It will, however, permit us to sort
the issues and prepare the ground for new ideas. My exposition will not
follow a simple chronological path, because the technical history itself
contains significant contradictions; these derive from tensions within the
notion of planning.

In reconstructing the history of "plan" and "planning" as computa-
tional terms, the most important road passes through Lashley's "serial
order" paper (1951) and then through Newell and Simon's earliest pa-
pers about GPS (e.g., 1963). Lashley argued, in the face of behaviorist
orthodoxy, that the chaining of stimuli and responses could not account
for complex human behavioral phenomena such as fluent speech. In-
stead, he argued, it was necessary to postulate some kind of centralized
processing, which he pictured as a holistic combination of analog signals
in a tightly interconnected network of neurons. The seeds of the subse-
quent computational idea of plans lay in Lashley's contention that the
serial order of complex behavioral sequences was predetermined by this
centralized neural activity and not by the triggering effects of successive
stimuli.1 At a deeper level, Lashley's paper established a pattern for later
cognitivist research in its tendency to resist behaviorism by shifting to an
opposite extreme. Whereas the behaviorists portrayed behavior as driven
entirely by successive stimuli, Lashley placed his principal emphasis on

142
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the predetermination of action by mental processing. While certainly not
denying that this processing had inputs, Lashley gave these inputs no
clear role in his story.

Newell and Simon kept the notion of centralized mental processing
but offered a different account of its workings. As Chapter 3 has ex-
plained, they characterized human thinking as a matter of mental search
in a problem space through the application of "operators" to "objects."
Solving a problem meant discovering a series of operators that could be
applied to the initial state to yield the goal state. GPS was a theory of
cognition and not a theory of action. It did employ a technique that
Newell and Simon referred to as "planning," but this was a way of
reducing the effective size of large search spaces and was only tangen-
tially connected with more recent uses of the term. Yet GPS has had an
enormous influence in subsequent computational theorizing about ac-
tion. Why? Recall that the mentalist tradition, while founded in a firm
separation between the mind and the world, tends to conflate them in
practice. One aspect of this phenomenon is that mentalism generally
blurs the difference between thought (in the head) and action (in the
world). This is not because mentalist theorists consciously believe that
thought and action can reasonably be conflated; instead, the conflation is
a largely covert yet powerfully driven consequence of the practical logic
of technical model-building within a mentalist discourse. As Chapter 3
demonstrated, the theories of Newell and Simon tended to elide the
phenomenon of action by formulating instances of problem solving ac-
tivity in mental terms. Thus, they interpreted activities that actually take
place through complex interactions with scratch paper and chalkboards
as manipulations of working memory (Agre 1993a, 1993b).

In Plans and the Structure of Behavior, Miller, Galanter, and Pribram
interpreted the implications of GPS differently.2 They made three pro-
posals: that the behavior of organisms has a structure, that this structure
is hierarchical, and that structured behavior results from the execution of
Plans that have the same structure. The idea that structured action could
be predetermined by mental processing, as we have seen, had been pro-
posed by Lashley. The notion that mental structures could be hierarchi-
cal came from Newell and Simon's discussion of the organization of large
problem spaces. Miller, Galanter, and Pribram combined these two ideas
and developed a systematic set of speculations based on the resulting
theory of Plans.3
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Central to Miller, Galanter, and Pribram's procedure was the pre-
sumed interchangeability of two different structured descriptions of be-
havior. The first was the retrospective, external description that a theorist
might use to record an organism's behavior. The second was the prospec-
tive, internal description that an organism might execute to give rise to
that behavior. Without saying so explicitly, Miller, Galanter, and Pribram
constantly move back and forth between these two perspectives. The
Plan (the organism's internal description) gave rise to the observable
behavior (as recorded in the theorist's external description) through ex-
ecution, yet the concept of execution remains largely unexplicated. The
assumption throughout is that execution is a simple, unproblematic mat-
ter, so that to exhibit some behavior one need simply decide to exhibit it.
The actual performance of the action is, as it were, an afterthought.4 Nor
do Miller, Galanter, and Pribram offer a complete account of how the
Plans themselves arise.

In the course of their mobile robot project of the early 1970s, Fikes,
Hart, and Nilsson (1972a) drew together the GPS conception of problem
solving and the Miller, Galanter, and Pribram conception of Plans into a
powerful synthesis that defined planning research until the late 1980s.5 In
a technical tour de force, Fikes, Hart, and Nilsson programmed their
robot to predict the consequences of various potential sequences of ac-
tions using automatic symbolic theorem proving. Using the vocabulary of
GPS, they viewed this process as a matter of problem-space search: the
problem space corresponded to the possible states of affairs in the robot's
world; every operator corresponded to an action the robot might take; an
operator had its effect by transforming one state into another state; and a
problem was solved when a series of operators had been found that would
transform the initial state to the goal state.6 Then, once the problem
solver found a sequence of operators that led from the initial state to the
goal state, it gathered up these operators and, interpreting each as an
action it could perform in the real physical environment, assembled them
into a plan. A separate program could now "execute" this plan, thus
carrying the problem solver's envisioned series of actions into effect.

For Fikes, Hart, and Nilsson, thought and action were closely related:
not identical but isomorphic. Every structure and process had a foot in
each realm: operators in the realm of thought corresponded to possible
plan steps in the realm of action; logical deduction in the realm of
thought corresponded to causal entailment in the realm of action; and so
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forth. The processes of thought and action followed parallel courses and
produced analogous outcomes.

Thought and action were parallel in structure, but they were not equal
in status. The device that did the thinking, the problem solver (called
STRIPS), had a great deal more latitude to explore options and work out
their consequences. The device that did the acting, the executor (called
PLANEX), could omit steps that proved unnecessary or repeat steps that
proved unsuccessful, but it could go beyond the plan itself only by giving
up and restoring control to the problem solver, which would then begin
its reasoning again from scratch.7 (This mechanism will be discussed in
the next section.) Though the executor could accommodate certain kinds
of trouble, the assumption was that thought could be converted to action
in fairly large hunks, large enough to encompass the solution of an entire
problem posed to the robot. The role of the plan was to mediate this
conversion.

Troubles with planning

The picture that emerges from this history portrays thought as
simulated action and action as realized thought. On such a view, the idea
that action results from the execution of plans is almost a tautology. An
ambiguity has consequently grown up among the uses of the word "plan-
ning," which can refer either broadly to any reasoning about action or
narrowly to the construction of a plan with the intent of executing it. In
practice, the word (both the gerund "planning" and the verb "to plan")
shifts freely between these two meanings. Of course, it is possible in
principle that an agent might pursue goals, anticipate the future, learn
from experience, and engage in complex forms of symbolic reasoning
without constructing and executing plans. Yet within current AI
discourse it is impossible to discuss alternatives to planning (i.e., nar-
rowly construed as a doctrine) without keeping track of some subtle
distinctions. The verb "to plan" has become so ambiguous that it is
probably unsalvageable. And I will use the word "planning" in the most
specific fashion, to refer to the process of constructing a plan with the
intention of executing it. Used this way, the word is meaningful only
within a large set of assumptions that it will be my purpose to question
and replace.8
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A further difficulty is that the noun "plan" itself takes on a number of
meanings. In everyday life it refers to business plans and dinner plans, as
part of a culture's ways of using representations of action as aids in
organizing and coordinating activity. But uses of the term "plan" in AI
discourse have been constrained by the necessity of providing some
technical specification for the notion of execution. It is thus that "plan"
has come by default to mean "computer program" and "execution" has
come to be modeled on the operation of a programmed computer, even
though few authors have explicitly embraced this understanding of the
terms. Miller, Galanter, and Pribram offered the assimilation of plans to
computer programs only as a conjecture. But they also denied that their
version of the word "plan" was meant to correspond to the word's
vernacular meaning, even though theirs was (like Newell and Simon's) a
psychological theory and not (like Fikes, Hart, and Nilsson's) an engi-
neering proposal. At the same time, other authors have asserted that
recipes and other everyday plans are best viewed as defective computer
programs.9

Critical discussion of the issues related to planning as a view of human
action, then, demands a certain tolerance of ambiguity. Nonetheless, we
should not overlook one point of considerable agreement among these
authors and their successors: that the purpose of a plan is that its execu-
tion should achieve some preset goal. A particular instrumentalism is
central to the project: the adoption of goals is distinguished from the
construction and execution of plans to achieve them. The selection of
goals has been a topic of AI research only insofar as those goals are
instrumental to the achievement of some previously existing goal.10

Newell and Simon establish goals for their experimental subjects in their
capacity as scientists; Miller, Galanter, and Pribram, who emphasize
goals less than the other authors, posit goals ad hoc in the course of their
fictional scenarios; and Fikes, Hart, and Nilsson assign goals to the
robots they have built.

The simplest interpretation of the distinction between planning and
execution is to think of them as subserved by different mechanisms: a
planner that takes a goal and produces a plan and an executor that carries
that plan into effect, thereby achieving the goal. The division of labor is
such that the planner is a relatively cerebral device, whereas the executor
is capable only of managing the details of the execution process. The
most straightforward elaboration of this story occurs when the executor



Planning and improvisation 147

runs into trouble or when another goal comes along, in which case the
planner and executor alternate, with each sleeping while the other runs.
This idea is called interleaved planning (Chien and Weissman 1975;
Giralt, Chatila, and Vaisset 1984; McDermott 1978; Wilkins 1988).

An agent executing a plan runs obvious risks because of the likelihood
that reality will not turn out exactly the way the planner imagined it
would. The environment might change, actions might have unintended
effects, margins for error might be exceeded, or other agents might fail to
cooperate. Actions that seemed reasonable at planning time, in short,
may not turn out to be advisable at execution time. The executor, there-
fore, must detect such conditions and return control to the planner. The
only scheme in general use for this purpose is to abort execution if one of
the plan's prescribed actions turns out to be detectably inapplicable, an
idea called execution monitoring (Fikes 1971, 1982; Ghallab 1985; Mun-
son 1971). But monitoring is only a mechanism for failing safely when
things go wrong; it does not anticipate these contingencies or prepare for
them. Indeed, such advance preparation will frequently be impracticable.
When future states of the world are genuinely uncertain, detailed plan
construction is probably a waste of time.11

The original exposition of planning by Miller, Galanter, and Pribram
anticipated these issues, after a fashion. I have described these authors as
asserting that behavior derives its structure from the execution of pre-
viously constructed Plans that have that same structure. But they also
present a second account of the origins of action. This second account is
conflated with the first, but the two accounts are different and represent
distinct partial resolutions of an internal tension in their theory. On the
second account there exists, instead of or in addition to the stored Plans, a
mental structure called "the Plan." It can be difficult to distinguish the
two notions, "Plans" and "the Plan." Both of them are hierarchical
formal representations of action that possess the same structure as the
behavior they cause. The difference is that a Plan is drawn from a library
of Plans and executed as a whole, whereas the Plan is constructed as one
goes along. For example, some of the higher levels of the hierarchy might
be sketched out for days in advance, with the details at the lower levels left
to be filled in as the time approaches. The Plan might be constructed as a
sort of patchwork, with fragments of Plans being drawn from the library
and stitched together into the Plan as it becomes possible to commit to
executing them. The whole process is subject to the constraint that, at
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any given moment, the Plan must specify in concrete detail what the
agent is to do next. If we assume that the agent does not throw away or
recycle the portions of the Plan that it has already executed, we can
imagine the agent trailing behind itself a complete hierarchical specifica-
tion of all the behavior it has ever exhibited. As a retrospective document
of the agent's behavior, the hierarchical Plan will bear no traces of the
incremental process by which it had been assembled.12

Whether Miller, Galanter, and Pribram's two accounts of planning are
compatible depends on what the theory is supposed to explain. Observe
that the second account (incremental assembly of the Plan) is consistent
with a mechanism that is never certain what it is going to do until the
very moment on which it acts; this is the extreme case on which none of
the hierarchy gets filled in until the last second. To the extent that the
Plan is assembled incrementally and not selected from the canned Plans
in a library, the explanation for the structured nature of the organism's
behavior lies in the assembly process, which Miller, Galanter, and Pri-
bram left almost entirely unexplicated. Yet throughout their book they
offer hypotheses, following the first account, that the structure of a given
form of behavior is explained by the execution of Plans that are plotted
out in advance. Despite this logical instability, their work has been a
powerful inspiration for planning research - exactly because, in its at-
tempt to have things both ways, it provides the materials to assemble a
plausible account of any particular phenomenon considered in isolation.
Once one has begun a technical project along the lines of one account or
the other, the text has many suggestions to offer, some of which can be
assimilated immediately and others of which cannot. The result is a long
tradition of projects that intelligently work out certain facets of Miller,
Galanter, and Pribram's research program while also inadvertently
displaying its internal tensions.

Let us briefly consider an example. In a justly influential paper, Hayes-
Roth and Hayes-Roth (1979) report an empirical study of plan construc-
tion. They begin with the premise that activity is organized through the
construction and execution of plans, and they propose to investigate the
first of these two stages of processing. They provided experimental sub-
jects with a map of a town and a list of chores to be performed, and they
asked the subjects to explain their thinking as they assembled a plan for
running errands around town. They observed that the people con-
structed their plans in an opportunistic and incremental way: their work
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was systematic in part, but it was also informed by chance observations
that such-and-such an errand could be fitted into the schedule at such-
and-such a place. Hayes-Roth and Hayes-Roth contrast their observa-
tions with the more common view that plan construction proceeds by
filling out successive hierarchical levels, and they suggest some factors
that might influence plan-construction strategies, with the opportunistic
and hierarchical approaches regarded as extreme cases. What is striking
about this study is the contradiction between its opening premise, that
people act by constructing and executing plans, and the analysis they
provide of the particular activity they investigate, namely talking through
a hypothetical shopping plan when presented with a list of chores and a
map of an unfamiliar town. The people are engaged in a complex activity,
but this activity's organization is not well accounted for in terms of the
planning model. What is more, Hayes-Roth and Hayes-Roth repeatedly
describe their subjects as performing "mental simulation" even though
the subjects are interacting with the instructions and the map - and even,
at one point, receiving unsolicited help from the experimenter. As with
Newell and Simon's early studies of theorem proving and cryptarithme-
tic, it is as though the stereotypically "cognitive" nature of this activity
prevents it from being recognized as an embodied activity in the world.
In reading the paper, it is hard to get any concrete sense of this activity;
although the authors provide a detailed protocol of one subject con-
structing a complicated itinerary that he calculates down to five-minute
intervals, they never say whether he writes this plan anywhere - much
less where his gaze is directed at each step, whether he uses his hands to
keep track of where he is, or how he relates the list of chores to the map.
Instead, the whole protocol is narrated in the theoretical vocabulary (e.g.,
"level of abstraction") that will shortly be embodied in a computer
model. And in that model, everything that the subject encountered as a
paper artifact becomes an internal data structure.

The ambivalence within Miller, Galanter, and Pribram's theory of
action reflects their failure to address adequately a central question: How
is it that human activity can take account of the boundless variety of large
and small contingencies that affect our everyday undertakings while still
exhibiting an overall orderliness and coherence and remaining generally
routine? In other words, how can flexible adaptation to specific situations
be reconciled with the routine organization of activity? Each of Miller,
Galanter, and Pribram's two theories addressed one term of this ques-
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tion: the incremental assembly of the Plan accounted for flexibility in the
face of contingencies and the execution of preconstructed Plans ac-
counted for routine organization. Neither theory accounts for both.

Planning and execution

The "planning view" of action, then, is not so much a definite
doctrine as a discursive formation: a network of figurative associations
and subtle ambiguities whose dissection has required sustained effort. Its
practical logic lies below the surface of the page and is best understood in
historical perspective. The work of Fikes, Hart, and Nilsson makes an
excellent case study in the practical logic of technical work because they
took the best original ideas of the cognitivist movement, tried to build
robots that instantiated them, and employed good sense in interpreting
their experiences.

The practical logic of Fikes, Hart, and Nilsson's experiences, as I have
remarked, has its roots in an overt partition and a covert conflation
between thought and action. The distinction between thought and ac-
tion, of course, has deep historical roots. The scientific management
movement, for example, projected these distinctions onto the structure
of organizations: planning was the responsibility of an engineering
department and execution was the responsibility of the line employees,
who were provided with detailed instructions specifying every movement
necessary for the performance of their jobs (Gilbreth 1921; Holmes 1938;
F. Taylor 1911; cf. Montgomery 1984). Though the cognitivists inherited
aspects of their technical orientation toward action from this tradition,
their goal was not to attack or defend social ideas as such but rather to
make psychological models or design robots that are capable of perform-
ing actual tasks. Although the strengths and weaknesses of the mentalist
framework manifested themselves in their attempts to build things, these
authors exhibited only a partial understanding of the problems they
encountered and did not manage to transcend the intellectual framework
within which these problems arose. One particularly striking moment in
this history is found in one of the papers on PLANEX:

One of the novel elements introduced into artificial intelligence research by work
on robots is the study of execution strategies and how they interact with plan-
ning activities. Since robot plans must ultimately be executed in the real world
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by a mechanical device, as opposed to being carried out in a mathematical space
or by a simulator, consideration must be given by the executor to the possibility
that operations in the plan may not accomplish what they were intended to, that
data obtained from sensory devices may be inaccurate, and that mechanical
tolerances may introduce errors as the plan is executed.

Many of these problems of plan execution would disappear if our system generated a
whole new plan after each execution step. Obviously, such a strategy would be too
costly, so we instead seek a plan execution scheme with the following properties:

1. When new information obtained during plan execution implies that some
remaining portion of the plan need not be executed, the executor should recog-
nize such information and omit the unneeded plan steps.

2. When execution of some portion of the plan fails to achieve the intended
results, the executor should recognize the failure and either direct reexecution of
some portion of the plan or, as a default, call for a replanning activity. (Fikes,
Hart, and Nilsson 1972a: 268; emphasis added)

The untenability of mentalism emerges at this point in the STRIPS
project as a technical difficulty. It is as if thought and action wished to
intertwine themselves and were attempting to tear down the barriers that
keep them apart - not to merge into one another, but to engage in a dance
of give-and-take. The anthropomorphism of this analysis may seem over-
blown, yet its logic is clear: mentalism is not simply an inadequate
description of people, but an untenable way of life for any creature in a
world of any complexity. As the quotation demonstrates, these authors
were aware of the form that an alternative might take, but they did not
have any technology that was capable of implementing it. As a technical
problem it is not a trivial matter. The STRIPS plan-construction al-
gorithm involves a great deal of complicated symbolic reasoning. Yet an
agent in the real world must take action frequently, ideally many times a
second - even supposing that action should be conceived as a series of
discrete "actions." Consequently, the designers of STRIPS (which built
the plans) and PLANEX (which executed them) partitioned the neces-
sary computational work between the two programs in a special way,
maximizing the flexibility with which PLANEX acted while also permit-
ting actions to be issued with sufficient frequency. In other words,
PLANEX was the most intelligent mechanism its authors could devise
that could choose its actions at a rapid pace.

The precise way in which the authors of STRIPS and PLANEX tried
to reconcile the competing demands of intelligence and flexibility was
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extremely clever. In addition to supplying PLANEX with a plan,
STRIPS also supplied it with a summary rationale for the plan, in the
form of a triangle table. The triangle table records certain information
about the relationships between the steps of the plan. Suppose the plan in
question consists of three steps: A, B, and C. Each of these three steps
has both preconditions and effects. The various actions produce their
intended effects only when their preconditions are satisfied. In prescrib-
ing steps A, B, and C, STRIPS has performed some subtle analysis,
satisfying itself that each action's preconditions will obtain when its turn
comes to be executed. Some of these preconditions - the initial
conditions - will simply be properties of the world as STRIPS has found
it. Others will arise through the effects of previous actions. Since step A
comes first, all of its preconditions must be initial conditions. Step B's
preconditions can have two sources: the initial conditions and the effects
of step A. Step C's preconditions, analogously, can have three sources:
the initial conditions and the effects of both step A and step B. The
robot's overall goal, finally, can be composed of conditions from four
sources: the initial conditions and the effects of all three steps of the plan.
Following J. S. Anderson and Farley (1988), we can think of each condi-
tion as having a producer and consumers: the producer of a condition is the
plan step that causes that condition to become true (more precisely, the
step whose execution allows us to be certain that the condition is true,
regardless of whether it was true before); and the consumers of a condi-
tion are the plan steps whose execution requires that condition to be
true.13 (If the condition is true in the initial state, the producer is defined
to be that initial state. Likewise, if a given condition is part of the goal
state, that goal state is defined as one of its consumers.)

The producer-consumer relations behind a plan contain enough in-
formation to construct a formal proof that the plan will work, provided
that the world really corresponds to the initial conditions and nothing
goes wrong in executing the various steps. The purpose of the triangle
table is to summarize these producer—consumer relations in a handy
form. Let us consider an example. If one is in London and one's goal is to
be in San Francisco, the plan might involve taking a train to Heathrow, a
plane to Oakland, and a bus to San Francisco. Several conditions figure
among the producer-consumer relations within this plan. For example,
the condition of being at Heathrow is produced by the train trip and
consumed by the plane flight; the condition of being in San Francisco is
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Figure 8.1. A triangle table for a trip from London to San Francisco.

produced by the bus trip and consumed by the goal state; and the condi-
tion of having one's wallet along is produced by the initial state and
consumed by all three plan steps but not by the goal state. The plan's
triangle table would record these facts and several more, as Figure 8.1
shows.

In a perfectly well-behaved world, the triangle table would be unneces-
sary; PLANEX could simply execute each plan step in sequence without
paying any attention to the outside world. The world, though, has a
tendency to depart from the ideal course that STRIPS predicts as it
constructs its plans. PLANEX thus uses the triangle table to choose its
next action in a way that is sensitive to the actual state of the world, as
opposed to the state that STRIPS predicted. As the earlier quote indi-
cates, this scheme permits PLANEX to omit some unnecessary actions
(ones whose intended effects already happen to obtain) or repeat actions
that did not manage to achieve their intended effects. PLANEX in effect
rapidly recapitulates some of the reasoning that led STRIPS to construct
the plan in the first place. But PLANEX does not recapitulate all of
STRIPS's reasoning, since STRIPS has explored and discarded many
possible courses of action that do not appear in the triangle table. If
reality fails to correspond to STRIPS's predictions in any crucial way,
PLANEX will find itself unable to justify any of the steps in its plan. In
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this case, it will simply give up and return control to STRIPS, which will
start over again and make an entirely new plan.

The uncertainty and unpredictability of the robot's environment en-
couraged Fikes, Hart, and Nilsson to move as much of the robot's reason-
ing as possible into the executor. As a result, their understanding of the
planner-executor relationship resembled in some interesting ways
Descartes's understanding of the soul-body relationship. Descartes, like
the Aristotelian philosophers before him, held that it was the soul that
distinguished human beings from animals. What Descartes added was a
radical distinction between body and soul wherein the body is governed
by deterministic physical law and the soul possesses an acausal free will.
Human bodies, roughly speaking, could do the things that animals could:
breathe, digest, perceive (though not in a conscious way), exhibit fear and
desire, engage in instinctual or reflex action, and so forth.14 Both
PLANEX and the Cartesian body, then, had a certain degree of auton-
omy, in whatever sense clockwork can have autonomy. The difference
between PLANEX and the Cartesian body is that PLANEX is much
more pliable: whereas the Cartesian body is a more or less fixed structure
and even engages in sharp struggles against the commands of the soul,
STRIPS simply programs a new triangle table into PLANEX every time
a new policy seems indicated. Perhaps a more appropriate Cartesian
metaphor would be to think of STRIPS as a toy designer and PLANEX
as an assembly kit for windup animals. The important point is that the
logic of mentalist technical practice led Fikes, Hart, and Nilsson, for
technical reasons, to reproduce a partition of responsibilities broadly
congruent with that envisioned by Descartes.

In calling for its plans to be executed, then, STRIPS entrusts the
robot's well-being to a device that is capable of performing only a fraction
of the reasoning that went into creating the plan. In particular it trusts
this device to determine when STRIPS itself ought to resume operation.
As I mentioned, this occurs when PLANEX encounters a situation for
which its triangle table makes no provision. The ideal policy would be to
cease execution any time the next prescribed action turns out to be
irrational or suboptimal (as opposed to merely inapplicable) when the
time comes. In practice, this might mean that the action in question is
simply different from the action the planner would suggest were it to be
run again. It follows that the ideal executor would be qualitatively as
smart as its planner. Or, as we have seen, one might interleave planning
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and execution very rapidly, so that the executor returns control to the
planner after every single action. It seems likely that many activities
would require such extreme measures. Schemes that rely on the con-
struction of plans for execution will operate poorly in a complicated or
unpredictable world such as the world of everyday life. In such a world it
will not be feasible to construct plans very far in advance; moreover, it
will routinely be necessary to abort the execution of plans that begin to go
awry. If contingency really is a central feature of the world of everyday
life, computational ideas about action will need to be rethought.

The ultimate difficulty here is the mentalistic metaphor system of
inside and outside. The exact nature of the difficulties with mentalist
technical ideas provides evidence for this diagnosis. These difficulties
cluster around the issue of contingency: a rigorous separation between
inside and outside will be natural only if inside and outside have a strong
tendency to remain coordinated. Whether inside and outside remain
coordinated depends on the particular world and the particular activities
within it: certain highly controlled worlds, like a factory floor or the
simulated microworlds of most research on planning, are designed to
facilitate strong forms of coordination between model and reality. The
world of everyday life is not an utter chaos, of course, but neither does it
resemble the simple mathematical ideals that mentalistically designed
agents require. Contingency, in other words, is a ubiquitous phenomenon
of everyday activities, even routine ones.

The contingency that prevails in ordinary environments does not
defeat classical planning schemes in a straightforward, formally conclu-
sive sense. Since the problem is one of inappropriate metaphors, trouble
manifests not through specific technical impossibilities but rather
through patterns of trouble. Further technical work can probably patch
any given instance of trouble, but further troubles will always arise,
perhaps unrelated formally but unified by the underlying system of
metaphors.

As a result, the theorist faces a trade-off: an agent will be able to
construct plans to the extent that someone (the agent itself or its
designer) imposes constraints on the world itself. Chapman (1987) has
formalized this trade-off in a theorem that relates the degree of expres-
sive power in an agent's models of its world to the inherent computa-
tional difficulty of constructing plans to achieve goals in that world. The
technical details of the theorem do not matter here, but the upshot is that
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plan construction is technically tractable in simple, deterministic worlds,
but any nontrivial form of complexity or uncertainty in the world will
require an impractical search. Results like this one are valuable, provided
that they are interpreted at the level of underlying metaphors. The
theorem itself presupposes the mentalist distinction between the con-
struction and execution of plans, and it does not exhaust the enormous
range of specific trade-offs that might be possible in worlds with particu-
lar kinds of beneficial structure.15 Like any theorem, Chapman's result
does not logically require the field of AI to doubt its metaphors or choose
new ones.16 It does, however, articulate a pattern of difficulty that is
intrinsic to any mentalist project.

Improvisation

For these reasons, I propose that activity in worlds of realistic
complexity is inherently a matter of improvisation. By "inherently" I
mean that this is a necessary result, a property of the universe and not
simply of a particular species of organism or a particular type of device.
In particular, it is a computational result, one inherent in the physical
realization of complex things. In vernacular usage, the word "improvisa-
tion" tends to imply a lack of concern for the future, but I mean to draw
out a different implication of the word, namely, the continual dependence
of action upon its circumstances. My contribution is not this idea itself,
which is common enough in the social sciences,17 but rather some sug-
gestions about how it might be rendered in computational terms.

The cognitivist tradition tends to associate the theme of interaction
with behaviorism. This is in part because, as we have seen, the cognitivist
movement's founding documents argued against the complete deter-
mination of behavior by stimuli, shifting instead toward the opposite
extreme of behavior as the execution of mental plans. If the behaviorist
and cognitivist tendencies are viewed as thesis and antithesis, an oppos-
ing pair defined within the mentalist logic of inside and outside, the
interactionist view might be viewed as their synthesis. As I have already
explained, this synthesis arises by a particular reversal of priorities, tran-
scending the mentalistic metaphors by taking as central what they treat as
marginal (i.e., contingency and interaction) and taking as problematic
what they treat as given (i.e., the idea that people have insides). The agent
and the world, on this view, are understood not as radically separate but



Planning and improvisation 157

as dialectically interrelated and therefore difficult to understand except
in terms of their interactions with one another.

Several authors in the social sciences have described important fea-
tures of improvised action.18 The idea that activity is improvised is
implicit, for example, in the notion of a dialectical relationship between
people and their environments. Lave (1988) has elaborated this idea in a
study of everyday arithmetic practices. Observing ordinary people as they
shopped in supermarkets or cooked dinner according to diet plans, Lave
was led to oppose the view that cognition proceeds through the cycle
envisioned by Newell and Simon: formalization of an abstract problem,
solving the problem by reasoning within formal models, and interpreting
the resulting solution in concrete terms. Instead, Lave found that the
people in her study leaned heavily on their environments in conducting
their reasoning. Moreover, both the problem and its solution were subject
to continual reinterpretation as the process unfolded. The conventional
distinctions did not bear any natural correspondence to these data.

Since the activity she observed consisted of the interaction of people
with their environments, and since the people and their environments
had both been deeply influenced by the surrounding culture, Lave ar-
gued that it was necessary to understand the activity on several levels. On
the most microscopic level, each episode of activity arose through the
mutual shaping of particular people and a particular environment.19 On
an intermediate level, grocery shopping and cooking take place in partic-
ular arenas which arise through large-scale social processes and serve in
turn to shape individuals' actions. And on the highest level, a particular
social structure both manifests and perpetuates itself through these orga-
nized interactions. Lave's dialectical view of activity is an instance of the
overall theme of interactionism. In particular, a dialectical theory of
activity will take care to distinguish between the theorist's objective view
of a society's workings from individuals' subjective view.20

Suchman (1987) has investigated empirically the nature of plans and
their role in situated action. Following the Wittgensteinian and eth-
nomethodological critique of representation (Garfinkel 1984 [1967];
Wittgenstein 1968 [1953]), Suchman observes that plans and actions are
different sorts of things, that plans require interpretation in situ, and that
the use of plans is a form of improvised action like any other. In particu-
lar, she insists that plans are not control structures that generate action;
rather, they are resources for the fashioning and recounting of actions.
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This view can seem only paradoxical from within the planning tradition,
given the terminological ambiguities and slippages that I have outlined. If
the execution of plans is a simple, mechanical process, plans and action
correspond in a simple, systematic way. But in reality, the use of plans
entails a considerable degree of preunderstanding of the activities and
situations in question. The notion of following a plan, Suchman argues,
is itself embedded in the local social setting. For example, when a plan
actually regulates an activity, as in the case of formal office procedures,
the role of the plan is not to generate the activity but rather to aid in
organizing an account of the work as having been conducted according to
plan. Anyone who actually followed the plan literalistically would not be
doing their job (Suchman 1983).

Though these theoretical projects differ on many points, they are
united in their goal of describing human activity in a post-Cartesian way.
They give priority not to thought but to action; and they attempt to
locate its meaning not solely in individuals but also in an encompassing
yet contingent social order that individual episodes of action both pre-
suppose and (usually) reproduce. In particular, these projects are critical
of the attempt to mark out matters like planning and execution as modu-
lar faculties. This critique has a moral component, which arose in large
part from the conflicts in the United States over scientific management.
But this moral critique converges with the technical critique of the
practical logic of planning research. The immense effort that STRIPS
and PLANEX invested in manipulating plans provides a clue to the
deeper shortcoming of the planning-execution distinction. A plan-
construction device will necessarily be complicated, since it must engage
in reasoning that anticipates a large space of possible futures and con-
struct a plan that succeeds (or fails safely) in all of them. The plan itself,
though, bears few marks of the process by which it was constructed. Even
a fairly subtle change of circumstances (say, relative prices of com-
modities or the willingness of collaborators) can change a planner's out-
put in ways that are difficult if not impossible to read off the plan itself.
The plan is thus a precipitate of something much more complex.21 A
module boundary, such as the boundary between planning and execu-
tion, is always defined by the small amount of standardized information
that passes across it, relative to the mass of possibly more heterogeneous
processing that goes on within the modules. As an engineering practice,
modularity has a robust practical logic whose workings are readily ob-
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served in the planning literature. Simply put, modularity trades off
against efficiency: as a system is pressed to become more efficient, its
modularity boundaries begin to break down; it will seem necessary for
greater amounts of information to pass over the boundaries between
modules, so that each module can be informed by more of the reasoning
behind the information produced by the other. STRIPS and PLANEX
reflected this tendency by recording certain components of the planner's
reasoning, namely a summary of the producer-consumer relations that
provides a correctness proof for the plan itself and for a certain space of
variations (those involving repeated and omitted steps, as explained ear-
lier). Any change in the world whose consequences are not captured by
this summary will pose a specific danger to the agent: the plan will seem
perfectly applicable even though it does not correspond to what the
planner would produce, given the chance. The boundary between the
construction and execution of plans is thus a hazard in environments in
which contingency is the rule. A plan, on the conventional account, is
nothing but the structure that is exchanged across this modularity bound-
ary in a conventional planning system. Yet, as Suchman has demons-
trated in her case studies, the plans that people use in everyday life play
an entirely different role in organizing human activities.

A theory of activity, then, should give a central place to contingency
and interaction. The role of computational theorizing is to account for
the individual as a physically realized agent in contingently organized
interactions with an environment, but conventional notions of computa-
tion make such an analysis difficult. The Cartesian roots of contempo-
rary computational ideas obstruct the project of reconceiving "computa-
tion" in interactionist terms. Even more formidable is the disciplinary
requirement that computational ideas actually be realized in working
artifacts - computational models of activity. From this point of view,
Cartesianism has the methodological virtue that individuals, be they
people or insects or robots, are conceived in isolation. An artifact can
exemplify Cartesian computational ideas without leaving the laboratory,
without being socialized into a position in a social order, and indeed
without taking on a bodily form at all.22 But if activity is organized
through engagement with a suitably structured environment, it will be
necessary to supply computational models with such an environment, or
at least with an adequate simulacrum.



9 Running arguments

From plans to arguments
Critical analysis is necessary and valuable, but the progress of

intellectual work always turns out to be underlain by deep continuities.
Technical work in particular will always pick up again where it left off,
hopefully the wiser but nonetheless constrained by the great mass of
established technique. Critics interrogating the existing techniques may
discover a whole maze of questionable assumptions underneath them,
but that discovery in itself does not make the techniques any easier to
replace. I will not try to throw the existing techniques of AI out the
window and start over; that would be impossible. Instead, I want to work
through the practical logic of planning research, continuing to force its
internal tensions to the surface as a means of clearing space for alterna-
tives. My starting place is Fikes, Hart, and Nilsson's suggestion (quoted
in Chapter 8) that the construction and execution of plans occur in rapid
alternation. This suggestion is the reductio ad absurdum of the view that
activity is organized through the construction and execution of plans.
The absurdity has two levels. On a substantive level, the distinction
between planning and execution becomes problematic; "planning" and
"execution" become fancy names for "thinking" and "doing," which in
turn become two dynamically interrelated aspects of the same process.
On a technical level, the immense costs involved in constructing new
plans are no longer amortized across a relatively long period of execution.
Even without going to the extreme of constant alternation between plan-
ning and execution, Fikes, Hart, and Nilsson still felt the necessity of
heroic measures for amortizing the costs of plan construction. These
took the form of complex "editing" procedures that annotated and gener-
alized plans, stored them in libraries, and facilitated their retrieval in
future situations. Fikes, Hart, and Nilsson came to the brink of a discov-
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ery: thought and action do not occur in alternating stretches of time;
instead, each is continual and intertwined with the other.

As thinking and acting intertwine, improvisation becomes a matter of
continually redeciding what to do. This is the formulation of improvisation
that I will assume here. The intuition behind it derives from Sartre, who
holds in Being and Nothingness (1956) that the entirety of one's self must
be viewed as a continual positive choice. Any other view, Sartre argues,
would imply an innate, unchangeable human nature and would thus
constitute an ethical abdication. This account is still Cartesian in the
sense that each moment's action is brought about by an individual's
discrete, deliberate choice, but this is still the only principled account of
the relation between thought and action of which anyone can currently
make any computational sense.1 At the same time, it is an interactionist
view in one important respect: individuals continually choose among
options presented by the world around them. Action is not realized
fantasy but engagement with reality. In particular, thought and action are
not alternated in great dollops as on the planning view but are bound into
a single, continuous phenomenon.

Further, I propose to understand improvisation as a running argument
in which an agent decides what to do by conducting a continually up-
dated argument among various alternatives. This is an engineering pro-
posal in the case of robots and a scientific proposal in the case of human
beings. It is surely not a final answer; instead, its value will lie in the
process of pursuing its practical logic to a new and instructive reductio ad
absurdum. Subsequent sections will explain running arguments in more
detail. The argument that agents conduct with themselves will consider
issues and options on several levels, from strategic matters in relation-
ships and careers to the minute details of motor control. The argument
might make reference to plans, maps, mnemonic devices, precedents
from the actions of others, or anything else. Unanticipated issues can
arise at any time, leading to new patterns of argument and possibly to
changed courses of action. At any given moment, the complex of argu-
ments leading to an agent's current actions is called its argument structure.
As the agent interacts with its world, the argument structure will evolve.
Its most fundamental aspects will remain relatively stable: wholesale
shifts in one's personal identity and long-term strategies do occur, and
sometimes abruptly, but they are rare. On the other hand, the detailed
arguments that drive moment-to-moment interactions with the world
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will generally undergo constant change as a course of activity unfolds.
The patterns of stability and change are not driven from some explicit
principle, though, but are dynamic phenomena, that is, epiphenomena of
the organized interactions between the agent (which is continually con-
ducting a fresh argument about what it should be doing) and its world
(whose states and relations to the agent may continually change).

Running arguments are altogether more flexible than conventional
planning techniques. The handoff from a planner to its executor reduces
the agent to a simple automaton, cognizant of only a few issues of local
and literal relevance to the particular plan being executed. For a running
argument, by contrast, everything is at issue all the time. An agent using
running arguments improvises, taking advantage of opportunities and
responding sensibly to contingencies. Fikes, Hart, and Nilsson rejected
this approach on computational grounds. But the continual reassessment
of the reasoning behind one's actions might indeed be computationally
practical, provided that the agent maintains dependencies on all of its
reasoning. If the agent and its environment are such that everyday life is
nearly routine, new arguments will spontaneously assemble themselves
from moment to moment, built up from fragments of reasoning that were
novel at one time or another.

The value of improvisation becomes clearest in those situations when a
system like Fikes, Hart, and Nilsson's pulls up short, unable to carry on
executing its constructed plan. When trouble arises, it is critical to know
what you are doing. When an executor runs into trouble, it can only hand
control back to the planner. Imagine, though, the plight of a planner
suddenly awakened to discover spilled milk, skidding tires, burned fin-
gers, or angry people. Having little idea how any of this came about, it
must reconstruct what it was trying to do, interpret the newfound
damage or danger, assess its consequences for the ongoing project, and
make a new plan that resolves the trouble and gets the project back under
way. This would be much easier if it had been awake all along. When the
executor carried out the first step in the plan, the planner's rationale was
fairly likely to have corresponded to reality. But as the executor did its
work, simulation and reality drifted apart, until finally some symptom of
this divergence came to the executor's attention. If every single action
could have been produced by its own fresh reasoning-through of the
issues and options, the agent would have been less likely to lose its
synchronization with reality. Perfect correspondence is impossible, of
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course, but an agent constantly engaged with its world will be able to
make a continual reassessment of its course of action, steering whenever
possible by reality as experienced and not just as imagined.

On this account, the dynamics of an agent's interactions with its
environment will have two intertwined components: the evolving con-
figuration of the agent's argument structure and the evolving relation-
ship between the agent and its world. Though the metaphors of mental-
ism might suggest investigating each of these dynamic phenomena in
isolation from the other, little can be gained in this way. One might, for
example, record patterns of activity in a dependency network, as if
through a brain scan, thereby yielding a temporal record of "active
regions." Likewise, one might record the serial order of an agent's ac-
tions, thereby yielding a temporal record of "behavior." Both of these
records would be interesting, and of some value, but neither of them is of
much use on its own. The dialectical relation between agents and their
worlds does not require us to stop speaking of "agents" and "environ-
ments," but it does require us to consider them in terms of their interac-
tions with one another. Furthermore, when the agents and worlds in
question are at all complex, it will probably be equally useless for empiri-
cal study to "control" one term or the other (e.g., by placing subjects in
laboratory environments), inasmuch as these agents and worlds have
arisen through a complex process of mutual adaptation. A fish out of
water makes little sense.

It is important to distinguish two kinds of reasons, negative and posi-
tive, for preferring my own proposal to any based on the construction and
execution of plans. The negative reasons concern all of the negatively
defined properties of the world of everyday life - uncertainty, unpredic-
tability, complexity, change, resource limitations, and so on - that frus-
trate the design of algorithms for constructing correct plans. During the
1980s, AI research attempted to frame such negative phenomena as
problems seeking technical solutions - for example, "planning in uncer-
tain, unpredictable, or changing environments" (Hendler 1990).2 It turns
out, however, that these negative concepts are hard to analyze in the
abstract; they are broad families of phenomena that become manifest in
different ways within each technical project. Reifying such negative phe-
nomena as technical problems in their own right tends to reinforce the
Cartesian standoff between a tractable mental Inside and an untrustwor-
thy Outside. The world of everyday life does, of course, include dangers.
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But a technical characterization of the world in negative terms has the
effect of giving danger an ontological status that it does not deserve. To
make explanatory accounts of human psychology, or principled meth-
odologies for the design of robots, we need positive characterizations of
why everyday life ought to be possible. Some of these might include our
socialization into cultures, the tendency of physical things to sit still
when nobody is disturbing them, and the useful properties of artifacts. In
short, an account of machinery must be correlated with an account of the
dynamics of everyday life.

The point is worth recapitulating in relation to the theme of anticipa-
tion. Plans are constructed, on the classical account, by searching
through a space of possible futures, and the correctness of the resulting
plans is founded on the accuracy with which this search anticipates the
future. If the future unfolds along a line that mistakenly went unex-
plored, or if something was amiss with one's whole model of the world,
then the nearly blind execution of the resulting plan may result in disas-
ter. It is often observed, though, that such thorough anticipation of the
future is quite impossible. The world, after all, is a complicated place; all
manner of unanticipated contingencies can intervene in our activities at
any moment. The problem is particularly severe when things happen in
the world that are not entirely under our own control.3 An ordinary
conversation, for instance, has a branching factor beyond calculation.
What is the proper response to this negative observation? One might
maintain the planning framework and accept the inevitability of some
errors. Or one might continue to explore the space of trade-offs that
arises as various sources of knowledge are taken into account. Perhaps the
right balance can be found after all, at least for particular applications.
But the approach I would suggest is investigating why the success of
action is not entirely conditional on the accuracy of anticipation. Let the
world simulate itself, and view the organization and coherence of activity
as an emergent property of interactions between individuals and worlds
that are (for various reasons, from heredity to culture to idiosyncratic
habit) adapted to one another.

Some examples might make the point more intuitive. Here are some
things it would rarely be worth trying to anticipate:

• Where the chalk is located on the blackboard's chalk tray
• How the aspirin tablets are arranged in the aspirin bottle
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• Whether any mail has come today
• Where a free seat can be found in the subway
• How all the dirty dishes in the kitchen will be arranged when it is

time to wash up
• How many bottles will accumulate in the recycling bin this

month
• Which side of a record will be up when you remove it from its

sleeve
• Whether the record will need cleaning before you play it
• How the spatula will be tangled among the gadgets in the gadget

drawer
• In what order the shirts are hung in your closet
• Whether you will have to open another box of cereal this

morning
• How many pennies you have in your pocket
• How the other pedestrians will be distributed along the sidewalk
• Which slots in a half-full egg carton have the eggs in them
• When your watch battery will start running down

Here are some observations on this list, including some dynamic phe-
nomena deserving further description and explanation:

• These things might be worth anticipating in another culture:
perhaps a penny is a great deal of money, family consensus is
needed to open another food package, or shirts are worn in a
certain order.

• For every entry on this list, one can plausibly imagine circum-
stances under which it would be worth trying to anticipating it in
any culture.

• In particular, whens and how-manys are often worth anticipating
if they are going to be grossly outside their usual range. We have
a good sense of normal ranges even though they are often hard to
define.

• Some of these can be anticipated by taking the effort to "keep
track." Keeping track of things is usually difficult.

• Things that are not worth anticipating are often hard to remem-
ber afterward. Most of them matter so briefly and are accommo-
dated so easily that they make little impression.
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• We are rarely aware of explicitly declining to anticipate some-
thing. More likely we try to anticipate only what we think we
have to.

• Equipment that nobody else uses will be easier to anticipate.
People who live alone often know exactly how the cereal boxes in
their cupboards are arranged.

• Sometimes you will find yourself anticipating things like these
after using the same item of equipment for the same purpose
under the same conditions many times.

• Little is lost in trying to anticipate these things. Many regular
subway riders have superstitious beliefs about where free seats
will be found.

In short, "anticipation" is not a unitary phenomenon. Difficulties of
anticipation are always difficulties of anticipating something, some partic-
ular complicated circumstance of everyday life.

Argument and centralization

In speaking of a "running argument," I am obviously using the
word "argument" in some special way. My use of the word has only a
loose and metaphorical relationship to its vernacular uses. I do not intend
these arguments to model everyday quarrels or philosophical disputes. I
will provide no formal definition of arguments.4 Instead, I will work out
the ideas in the context of the system I described in Chapters 6 and 7, in
the form of a discipline for writing rules to build systems that fit with
certain dynamic ideas.

The preceding section has already sketched a few ideas about argu-
ments. From moment to moment, it suggested, an agent conducts an
argument with itself. On each next moment, this arguing arrives at some
conclusion about what actions to take. The structure of this agent's
argument evolves by incremental changes. These changes ought to be
small when the agent's situation is changing slowly; they should be large
only in the relatively rare moments when the situation changes drastically
in its implications for the agent's reasoning, whether through the agent's
own actions or for some other reason. Argument structures might look
like the diagrams logicians draw to trace how some conclusion might be
justified from certain premises, but nothing about the agent's depen-
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dency network itself will enforce any of the local, formal standards of
admissible inference found in systems of formal logic.

My ideas about arguments descend from those of Doyle (1980).
Doyle's concern, unlike mine, was to make a model of reflective thought,
that is, the sort of thing you do when you struggle with a big decision.
Doyle views thought as a species of action, so that deciding what to think
is like deciding what to do.5 Decisions about action arise through argu-
ments. Within one of these arguments, any active component of the
agent's machinery can offer suggestions about what to do and adduce
arguments about why. When disagreements arise, choosing among the
arguments is itself a decision to be made by argumentation, recursively:
once again, each component may adduce arguments as to why its argu-
ments are better than the others.6 Concretely, "argumentation" names a
style of rule-language programming. This style of programming de-
pends on the other-things-being-equal control structure found in the
Life rule language described in Chapter 7. Recall that this scheme con-
trasts with the deductive semantics of logic programming languages like
Prolog, in which the right-hand side of a rule is a proposition to be
unconditionally believed as soon as the rule manages to fire. It also
contrasts with an imperative semantics, whereby the right-hand side is an
action to be unconditionally taken as soon as the rule manages to fire.
Before I go into detail, consider the following cartoon example:

(propose (hold-up main-st-bank))

Contradictory arguments are put forward:

(propose (support (hold-up main-st-bank) money-in-it))
(propose (object (hold-up main-st-bank) it-would-be-wrong))

The first argument encounters no objections, so it is accepted:

(take (support (hold-up main-st-bank) money-in-it))

But some part of the system considers the second argument inferior and
proposes that it be considered so:

(propose (object (object (hold-up main-st-bank)
it-would-be-wrong)

prefer-practical- to-moral-arguments))

There being no objections to that line of argument, it is accepted:



168 Computation and human experience

(take (object (object (hold-up main-st-bank)
it-would-be-wrong)

prefer-practical- to-moral-arguments))

Consequently, the moral argument against robbing the bank is rejected:

(blocked (object (hold-up main-st-bank)
it-would-be-wrong))

Since no other objections are outstanding, the motion stands:

(take (hold-up main-st-bank))

Argumentation, then, involves the adducing of arguments and count-
erarguments concerning a proposal for action. Because each argument
and counterargument is itself an action, the argumentation process itself
is a topic for argumentation. The system approaches the problem of
deciding between conflicting arguments in just the same way that it
approaches any problem in the world. The method has some useful
properties:

• Any reason for action is  defeasible, meaning that it might be
overridden if there are good reasons to do so.

• The decision process is  additive, meaning that all rules can con-
tribute to the reasoning in a uniform way, by contributing
arguments.

• Individual decision processes are automatically converted into
dependency networks. Thus a complex argument structure can
be used many times a second. In particular, an argument's con-
clusions will stay IN as long as its premises stay IN.

• Because an argument recorded in the dependency network will
be recapitulated whenever its premises are satisfied, it will auto-
matically be carried over to analogous future situations.

• An agent's patterns of reasoning can be modified without rear-
ranging any of its existing dependency-network circuitry. Given
a new argument explaining why a given action is a mistake in a
given circumstance, objections will be raised to that action in
appropriate situations forever afterward.

All of the subsequent rules will refer to a version of blocks world in
which a simulated agent moves blocks around with its hand. Blocks world
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originated in early AI projects at MIT (Winston 1975). At first it was
intended for computational vision research - the blocks were actually
made of wood and digital video cameras were aimed at them - but the
wooden blocks soon gave way to formal abstractions. Among the earliest
blocks-world projects was Sussman's ambitious model of procedural
learning (1975). The one project that attempted to simulate in software
the physical properties of actual wooden blocks was that of Fahlman
(1974). Through these projects, the blocks world became for many years
the benchmark for research on automatic plan construction. Although
this line of research has led to some valuable understandings of the
process of plan construction, Chapter 10 will conclude with some critical
comments about the lingering influence of blocks world on computa-
tional research on action.

The rules in a running argument do not prescribe actions. Instead,
they simply submit proposals for action, subject to the subsequent argu-
ing back and forth. One rule might propose that the agent lift its hand.
Another might propose placing its hand on block B. Another might
propose moving left. As all of this arguing gets converted to circuitry, we
can imagine various regions of the network arguing with one another.
One region might have proposed moving left and another might have
proposed moving right. Since these proposals conflict, the one region
might raise an objection to moving left, perhaps on the grounds that
doing so would knock over the tower. The other might respond, object-
ing that it would be unwise to move right because getting to the objective
by moving right would take too long. A third region of the network might
then step in and object to the latter objection on the grounds that it is
weaker than the former. In general, rules can propose objections to
objections to objections to an arbitrary depth. It is up to the programmer
to ensure that the system neither deadlocks (by rejecting all possible
actions) nor spins out of control (by generating an infinite regress of
arguments about arguments) nor attempts to perform conflicting actions.
(It is also up to the programmer to formulate a consistent ontology of
actions, reasons, etc., and to express these in a real representation. All of
the examples in this chapter use cartoon representations for expository
purposes, though none of the representations in the system I have actu-
ally built are very convincing either.)

Despite the anthropomorphism, all of this proposing and objecting is
implemented by ordinary rules. The rule system itself does not have any
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special knowledge of proposals and objections; they are just list struc-
tures in a database. To propose an action, assert

(propose action)

To object to an action, propose objecting to the action on some grounds:

(propose (object action reason))

An objection, then, is actually the proposal of an objection. The whole
process pivots around a rule that says that any proposed action is taken
unless some objection is sustained against it:

Rl: (if (propose ?action)
(unless (take (object ?action ?reason))

(take ?action)))

Observe that the UNLESS rule here has an unbound variable, namely
?reason. Even if Rl fires once for a given binding of ?action, and even
if that action actually gets taken, someday some new objection might
come along to defeat the proposal. If this happens, the action will no
longer be taken. If the action is currently under way, it will stop. If the
proposal to perform the action is asserted again and the objection is still
in force, the proposal will not be adopted. The new objection will amend
the AND-NOT gate in the dependency network corresponding to this
UNLESS rule, adding a new inverted input to the gate.

Here are some examples of argument in the blocks world. Suppose a
rule proposes that the agent move its hand to the left:

A2: (propose (move hand le f t ) )

When this proposition comes IN, Rl will fire, producing the following:

R3: (unless (take (object (move hand lef t ) ?reason))
(take (move hand l e f t ) ) )

In other words, move the hand left unless some argument to the contrary
is accepted. The UNLESS rule, R3, will generate a nonmonotonic depen-
dency, an AND-NOT gate. For the moment, this gate will have no inverted
inputs since no objections have ever been raised to that proposal. The
output of that gate will be

A4: (take (move hand lef t ) )

But suppose that some rule files an objection:
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A5: (propose (object (move hand lef t )
(would bump tower)))

Now something more complicated happens. As it is a proposal like any
other, rule Rl fires a second time, producing a rule that will accept this
objection unless some objection is sustained against it in turn:

R6: (unless
(take (object (object (move hand lef t )

(would bump tower))
?reason))

(take (object (move hand lef t )
(would bump tower))))

This new UNLESS rule, R6, now checks for second-order objections. If
none are present, then the UNLESS rule will license its conclusion:

A7: (take (object (move hand lef t )
(would bump tower)))

This sustained objection will now attract the attention of the original
UNLESS rule of a moment ago, R3. Thus the proposal of moving the hand
left will not be adopted. Once again, R3 has most likely already fired,
creating an AND-NOT gate whose output is A4. If so, this gate will now
receive an additional inverted input, namely A7. And the agent will not
move its hand to the left.

The proposed action in this example, moving the hand left, happens to
be one of the system's primitive actions. At the end of every clock cycle,
the motor system decides whether to move left by checking whether A4 is
IN or OUT. These conventions about proposals and objections apply
equally well to compound or abstract actions. In each case, when the
system adopts some proposal, that adoption is good only for the current
clock cycle. If some compound action covers many clock cycles, it must
be proposed, argued for, and adopted on every one of those cycles. This
is not a great computational burden as long as all of this arguing, at least
after the first cycle, takes place through the propagation of binary values
through the dependency network and not through the firing of new rules.
In other words, the system takes its actions only so long as they are
supported by argument.

Rule Rl is special in that it explicitly relates proposals and objections
to actions. All the other rules propose actions, raise objections, and
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adduce reasons pro and con. In practice one programs with a collection
of rules for expressing complex ideas about priorities, weighing of argu-
ments, decomposing compound actions, and proposing alternative and
interpolated actions. The details of these methods of argumentation are
not especially original or general, nor do they bear on the theoretical
issues at hand.

The notion of argumentation could potentially be construed in two
different ways, according to who has the burden of proof in putting
forward their argument. A system could have an outer loop that says,
"Decide what to do then do it." That method poses the positive task of
choosing some particular action to take, one action at a time. The run-
ning argument system takes a different, decentralized view. Any patch of
dependency network can make proposals and the proposed actions are
taken by default. Rather than having to argue positively for an action, a
rule might just propose jumping off a cliff, and if no other rule offers any
objections then the conclusion will simply be to jump. All through the
network, proposals are being made, arguments are being conducted, and
objections and supporting evidence are being offered.

The point of this decentralized style of programming is that rules do
not have to offer guarantees. If a rule proposes an action without ironclad
guarantees that it is the best thing to do, that information can be embod-
ied in separate rules that raise objections in appropriate situations (Min-
sky 1980, 1985). As a result, the rules can address prototypical cases and
leave the endless enumeration of exceptional cases for later. As a practical
engineering matter, new rules get written when the designer observes the
system making a mistake, going into a loop, floating off into space, or
seizing up. After looking at its arguments, one can formulate a new rule
objecting to the erroneous proposal and perhaps proposing an alterna-
tive. The particular system I implemented grew to employ several dozen
forms of argument about blocks world over a period of several months.
The system is still clumsy about circumventing obstacles and working in
tight spaces. But it does engage in interactions of some complexity, as the
next chapter demonstrates.

Here is an example rule from this system:

(if (and (propose (try (grasp ?x)))
(on hand ?x)
(on hand ?y))
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(if-shown (neq ?x ?y)
(suggest (prefer-option

(try (center-on hand ?x))
(try (grasp ?x)))

(avoid-unnecessary-grabbing ?y))))

This rule uses the and and if-shown constructs described in Chapter 7.
In English it says, "If we have proposed grasping x and the hand is on
two different objects x and y then propose postponing the grasping
operation until we have had a chance to center the hand on x." The
suggest form combines making a proposal with proposing a reason to
support it:

(if (suggest ?action ?reason)
(propose ?action)
(propose (support ?action Treason)))

If nobody raises any objections to preferring centering to grabbing, the
system will adopt that preference. Taking this action will then offer
support for centering and raise a concomitant objection to grabbing:

(if (take (prefer-option ?better-action ?worse-action))
(propose (object ?worse-action

(preferable ?better-action)))
(suggest ?better-action

(pref erable-to ?worse-action)))

This rule is part of the system's domain-independent knowledge about
arguments. Observe how the argument about whether to take the action
of grabbing x has spawned another argument about whether to prefer
another action instead. Only once the system has resolved this second,
inner argument can it resolve the first, outer argument.

Centering the hand is sometimes a bad idea, though. If block x already
has a block on it, the system should not push it all the way off of x
without a good reason:

(if (propose (support
(prefer-option

(try (center-on hand ?x))
(try (grasp ?x)))

(avoid-unnecessary-grabbing ?y)))
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(if-shown (and (on ?z ?x) (neq ?z hand))
(propose (object (prefer-option

(try (center-on hand ?x))
(try (grasp ?x)))

(centering-would-shove ?z)))))

This rule is simpler than it looks. It reacts to the proposal made by the
suggest form a couple rules back, checks whether something besides
the hand is resting on x, and if so, it objects to the proposal of preferring
centering the hand on x to grasping it immediately. If no other arguments
are put forward, this objection will cause the system to decline to prefer
centering to grabbing. Lacking any other arguments, the system will go
ahead with its original proposal of grabbing x.

Both Doyle's argumentation scheme and the one I have described have
much in common with Laird and NewelPs notion of universal subgoaling
(1983). Laird, Rosenbloom, and Newell have demonstrated universal
subgoaling in the context of the SOAR architecture (1986). Universal
subgoaling is roughly the idea that any decision an agent makes can
become the topic of general reasoning. In the context of the SOAR
architecture, this general reasoning takes the form of search in a problem
space; uncertainties about where the search should proceed lead to the
creation of a subgoal. This new subgoal itself becomes the object of a
problem space, as if the system had called itself recursively. Indeed, the
system maintains a stack of active goals and only considers a single goal at
a time. This is not a severe restriction since SOAR has a scheme analo-
gous to dependency maintenance, called chunking, for summarizing
problem solutions (see Chapter 10). One difference between SOAR's
universal subgoaling and the running argument system's argumentation
scheme is that the former is an explicit part of the architecture whereas
the latter is a programming convention, instances of which are converted
into dependency network structure.

How running arguments work
Having described how arguments work, it is finally possible to

describe the architecture of running arguments. I have built a computer
program, RA, that employs this architecture. On its coarsest level, the
RA agent architecture is wholly consistent with conventional proposals
from cognitive science. (Subsequent chapters will complicate this pic-
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ture.) Using the vocabulary of Fodor (1983), this architecture consists of
a central system and a set ofmodular peripheral systems (collectively called
the periphery), comprising input systems such as the visual modules
described by Marr (1982) and output systems for low-level motor control.7
A rule system and dependency system working together in the manner
described in Chapter 7 form RA's central system. RA interacts with a
blocks world. This interaction is simulated: some of the propositions in
the database serve as inputs from the periphery and others serve as
outputs to the periphery. RA proceeds through a cycle, as follows:

1. The world simulation updates itself.
2. The periphery computes new values for the central system's

inputs, which represent perceptual information.
3. The periphery compares the new input values with the old ones.

Any newly IN input is declared a premise; any newly OUT input
is declared no longer a premise.

4. The central system propagates dependency values and runs
rules. Both the dependency system and rule system continue to
run until they have both settled.

5. The periphery inspects the values of the central system's out-
puts, which represent motor commands.

6. The periphery and world simulation together arrive at a set of
proprioceptive propositions (judgments about the success or
failure of the agent's primitive actions) and a set of motor effects
(the immediate physical consequences of the agent's actions).

7. The world simulation updates itself again, and so on ad infi-
nitum.

Since this "world" is simulated, the peripheral systems do not manip-
ulate actual images or mechanical limbs. Instead, the various modules
work together to simulate the effect of an agent getting about in a world.8

This is a common practice in computational modeling because of the
great difficulty of building real visual and motor control systems.

The overall picture, then, is that an agent is interacting moment by
moment with an environment, and its responses to successive situations
are determined by a large, complex symbolic reasoning system. At the
beginning of its operation, and as it encounters any qualitatively new
situation, it must perform a considerable amount of novel reasoning. But
as it encounters a range of situations, it builds up a combinational logic
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circuit that obtains the same effect as the symbolic reasoner but with
much greater efficiency. Eventually, this circuit will do the vast majority
of the work, with the reasoner being invoked only for those bits and
pieces that are truly novel.

This picture has some obvious shortcomings. It says nothing about
memory, for example, inasmuch as a combinational logic circuit has no
internal state. (The peripheral systems may have internal state, though.)
Nor does it include language, social interaction, or a variety of other
things. Instead, as I explained at the outset of this chapter, it is a means
for discovering what happens when some conventional technology is
applied to a computational model of improvised activity.

Before proceeding to some demonstrations, let me summarize, trying
to make the picture intuitive. A running argument, once again, is a
continually evolving argument structure. Proposals, objections, and rea-
sons come and go over time. The argument structure "evolves" in the
sense that little of it typically changes from one clock cycle to the next. A
new objection might arise as the agent encounters an unexpected condi-
tion, but then it might be overruled, leaving the agent to carry on as
before. An opportunity might arise to pursue some task in a straightfor-
ward way, leading to a proposal that is adopted and acted upon and that
then evaporates once the task has been completed. Every once in a while
there comes a big change, such as in an emergency or when the agent
finishes with one large task and moves on to another. But usually nothing
at all changes past the finest details of perception and motor control. In
general, the argument structure changes to the extent that something
meaningfully different is happening. That, at least, is the idea.

The combinational logic that eventually implements these arguments
is not a glamorous technology, and its virtues are easily forgotten. Imag-
ine a large sheet of circuitry, with inputs on the left and outputs on the
right. All of this circuitry will operate continually, working to maintain
some relationship between its inputs and its outputs. Every gate is always
ready to change its state if its output ought to have a different value. An
extraordinary amount of computation is effectively happening all the
time, and the agent's actions are always based on a fresh analysis of what
it ought to be doing. An executor running a plan, by contrast, takes a
given action because it has reached step n in its current plan. Suppose, for
example, the executor is moving the agent's hand to the left. The agent
once understood why it should be moving its hand left just now, back
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when it was constructing the plan, but that understanding is located in
another module if it was saved at all. If those reasons no longer apply, the
executor will proceed anyway unless it is impossible to do so. But a
system based on combinational logic will take unexpected conditions in
stride, meeting the world's contingency halfway. If the agent has adopted
some subgoal, it knows why. If a given subgoal is no longer a useful means
to an end, the reasoning behind it will become invalid and the agent will
take some other tack instead. The use of dependencies means that only
the obsolete portion of the agent's reasoning will have to be redone.
Simmons (1992) has described the use of dependencies in reconstructing
plans to accommodate new information about the environment. But
running arguments dispense with the distinction between planning and
execution altogether. The agent reasons about what to do now and then
does it. This reasoning might involve the construction of plans or it
might not. The important point is that it is this reasoning itself that is
directly driving the agent's actions, not a plan structure that summarizes
some of the conclusions of that reasoning.

The RA architecture offers a technical account of the notion of con-
tinually redeciding what to do. The system accepts a new set of percep-
tual inputs and delivers a new set of perceptual outputs on a rapid clock.
A rapid clock is not literally "continual," but it is a reasonable approx-
imation. The system sometimes needs to run some rules and thereby
create some new circuitry, but only what is both novel and necessary for
the argument of the moment. If the agent's activity, once it has settled
into a pattern, is almost entirely routine, then it should require few new
rules to be run. The scheme has its faults, which the next chapter will
discuss, but at least it provides one technical rendering of the notion of
improvisation.

Running arguments are part of an account of routine activity. They are
not an account of the origins of new lines of reasoning. From the point of
view of existing computational research on action, this focus on routine
activity can be hard to accept because of the emphasis on novelty in AI,
whether through plan construction, problem solving, or learning. This
emphasis on novelty is ingrained in technical language. If, for example,
one proposes an AI research project on "making breakfast," one will be
understood to mean something like, "making breakfast, never having
made breakfast before, doing it without any help, and getting it right the
first time," rather than "making breakfast, given that you have done it
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enough that you can do it routinely." Given the customary distinction
between (elaborate, interesting) plan construction and (simple, mechani-
cal) plan execution, it is hard to imagine how this can be an interesting
topic for study. If no new cognition is going on, it must simply be
executing a compiled plan. This argument offers a choice between
equally unworkable alternatives. The point here, however, is not to
choose among the existing positions but to get beyond them.



10 Experiments with running arguments

Motivation

This chapter demonstrates RA, the computer program intro-
duced in Chapter 9 that illustrates the concept of running arguments. RA
has three motivations, which might be reduced to slogans as follows:

1. It is best to know what you're doing. Plan execution - in the conven-
tional sense, where plans are similar to computer programs and execution
is a simple, mechanical process - is inflexible because individual actions
are derived from the symbols in a plan, not from an understanding of the
current situation. The device that constructed the plan once had a hypo-
thetical understanding of why the prescribed action might turn out to be
the right one, but that understanding is long gone. Flexible action in a
world of contingency relies on an understanding of the current situation
and its consequences.

2. You're continually redeciding what to do. Decisions about action
typically depend on a large number of implicit or explicit premises about
both the world and yourself. Since any one of those premises might
change, it is important to keep your reasoning up to date. Each moment's
actions should be based, to the greatest extent possible, on a fresh
reasoning-through of the current situation.

3. All activity is mostly routine. Almost everything you do during the
day is something you have done before. This is not to say that you switch
back and forth between two modes, one for routine situations and one for
the occasional novel situation. Even when something novel is happening,
the vast majority of what you are doing is routine.

As a matter of computational modeling, all of this is more easily said
than done. This chapter explains how RA instantiates these three ideals.
In what way does the system know what it is doing? The phrase "deciding
what to do" usually suggests a process that takes time, so how can the
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system be redoing it continually? How can the system determine which
small portion of its reasoning needs to be conducted by nonroutine
mechanisms?

Let us briefly review RA's design. RA engages in a rapid interaction
with its simulated world. From the outside, RA is a fairly standard kind of
rule system, already described in detail in Chapter 7. When the left-hand
side of a rule matches something in the database, the right-hand side is
instantiated with the appropriate variable bindings and the resulting
proposition is asserted in the database, perhaps causing other rules to fire
in turn. The rules themselves are specified by perhaps forty pages of
code. Some of the rules effectively extend the Life rule language in
various ways. Some encode domain-independent ideas about actions,
plans, evidence, issues, and arguments. Some encode stereotyped forms
of domain-specific inference, such as the transitivity of "above" (if x is
above y and y is above z then x is above z). The most interesting rules
concern domain-specific strategies and tactics and the arguments by
which the system selects the applicable ones and chooses among them in
particular situations.

The system behaves as if the entire set of rules ran to completion,
forward-chaining until nothing was left to run, on every clock cycle.
After the rules run, certain propositions in the database indicate which
actions the agent intends to take on this cycle. Running all of those rules
on every cycle, however, would be far too slow. Consequently, the system
accelerates its operation by accumulating dependencies. Dependencies
are helpful because life is mostly routine. Storing dependencies is a good
investment because so much of what you do is something you are likely to
do again. Furthermore, dependencies permit even a fairly general deci-
sion mechanism to operate in real time because so much of what you are
doing at any given time is something you have done before. When a rule
fires, the system builds a dependency record stating that a certain rule
and a certain trigger lead to a certain conclusion. That rule need never
fire on that trigger again. As Chapters 6 and 7 have explained, a depen-
dency network can be realized in a combinational logic circuit. Each
proposition and rule corresponds to an electrical node in this circuit, and
each dependency record corresponds to a logic gate: an AND gate for IF
rules and an AND-NOT gate for UNLESS rules.

This scheme offers technical accounts of the three slogans presented
earlier. As the system runs, it accumulates a dependency network. If the
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system gets into a routine way of life, it should be able to run almost
entirely out of this network. The system knows what it is doing in the
sense that it effectively reasons from scratch rather than following a
prespecified plan. Combinational circuitry is parallel and fast, so this
reasoning takes little effort. The system is continually redeciding what to
do in the sense that it produces a fresh set of decisions about action many
times a second. Finally, due to the algorithms described in Chapter 7, the
system can rapidly identify the novel aspects of each situation, so that the
necessary rules can begin running immediately. Even if a given cycle's
decision is effectively based on hundreds of rules, the system pays the
price only of these few novel rule firings.

Whether RA actually does justice to its motivating slogans is an em-
pirical question. Since no two situations in life are identical, the system's
success will turn on whether the dependency system really transfers the
agent's lines of reasoning to appropriate future situations. Intuitively, if
the current situation is 95 percent similar to something we have seen
before, the system ought to be reusing 95 percent of what it figured out
before. As a detailed technical matter, does the system satisfy this ideal?
That is what this chapter's demonstrations are about.

Successive sections present these demonstrations in three groups of
two. The first group illustrates dependency maintenance in action and
shows the dependency network growing through experience. As an un-
surprising result, the dependencies can accelerate the system in a situa-
tion that is precisely identical to one it has already been through.

The next section's demonstrations concern whether and when the
dependencies will transfer to other tasks. In this the system achieves a
mixed success that offers clues for later analyses.

The final section's demonstrations involve a more complex task in-
volving a compound goal. The system goes through some instructive
gyrations to perform the task. Many issues arise along the way. The
system then repeats the task with the benefit of the additional depen-
dency network circuitry.

Demonstration

Figure 10.1(a) is a snapshot of the system before it has been
asked to do anything. The horizontal line of bold dots is a table. The
vertical line simply indicates the y axis and has no physical significance.



(progn (send *current-world* :start-runn1ng)
(Instali-worid-state *standard-blocks*)
(select-agent-database)
(take-suggestions))

-Xpiease (on b c))
-> •

Figure 10.1(a). The user asks the system to put block B on block C.
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The squares with letters A-B-C-D in them are blocks. The square with
stylized fingers is the hand. The "physics" of this blocks world is very
simple. On a given clock cycle, the agent can move the hand one unit
horizontally or one unit vertically (or both). Thus, single-unit diagonal
motions are allowed. If the bottom surface of the hand is touching the top
surface of a block, the agent can grasp the block. The hand has no state,
so if the agent wishes to keep grasping the block, it must continue
asserting the grasping action. The world has gravity, so unsupported
blocks fall. It has no momentum, however, so a moving hand stops
immediately when the agent stops telling it to move. Blocks cannot rotate.
They obey velcro physics: one block will stay stacked on another as long
as the bottom of the upper block is in contact with the top of the lower
block, regardless of where the upper block's center of gravity is located.
All of this will become clearer as the demonstrations proceed.

In the first demonstration, the user has asked the hand to put block B
on block C. The hand starts above and a little to the right of center of B.
After five cycles it has moved down and landed on B (Figure 10.1(b)).

On the left side of the frame are some statistics to measure the system's
effort. Each line presents the statistics for one clock cycle. Only the
rough comparative magnitudes of these numbers are significant. On the
first cycle the number in the "rules" column is 229, meaning that the
system performed 229 rule firings. This is the largest number of rules the
system will run on any one cycle during these demonstrations. The
number is so large because this is the first time the system had ever been
asked to do anything, and so a large number of basic, functional rules are
running for the first time.

On the first cycle, the system made two decisions: one to go left to get
the hand centered on B and another to go down. As a result, it went left
and down on that first tick. The reasoning that led to this step involved
successively decomposing the goal into subgoals and thinking ahead. Its
first step was to get the hand on B; then it was going to have to grab B. All
of the arguing this required took 229 rules.

The particular rule set employed in these demonstrations implements
a simple plan-construction scheme using ordinary ideas about subgoal
decomposition, preconditions, and the like. Despite this, the system has
no executor: its reasoning leads it to take a single incremental action,
whereupon it effectively throws out all of its reasoning and starts over on
the next cycle. The decision to move the hand down and to the left, then,
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Figure 10.1(b). Never having picked up a block, the system has to run some rules to figure out how.
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was the result of a fairly complex chain of reasoning. This chain of
reasoning led to two results: an incremental hand motion and a tangle of
newly constructed combinational logic gates. On the subsequent cycle,
the system effectively starts over, conducting an equally elaborate process
of reasoning to decide on its next action. The system will decompose
goals, evaluate preconditions of actions, and so forth, just as it did during
the first cycle. But this time, the newly constructed dependency network
will carry most of the burden.

The outcome of the second cycle is slightly different from that of the
first: since the hand is now directly over block B, the hand moves straight
down. But no new arguments apply, so the second cycle's reasoning is
conducted almost entirely through the dependencies accumulated on the
first cycle. (The system runs some rules on the second cycle because it
has just received proprioceptive feedback from the hand for the first
time.) The hand moves down in this way for five cycles. Each cycle
effectively recapitulates the 200-odd rule firings that would be required
to make the decision from scratch. Yet no qualitative changes occur in the
system's relationship to its "world," so no actual rule firings are required
past the second cycle. (A qualitative change is one that causes the system
to engage in a different pattern of reasoning, whether through rules or
dependencies or both.) Figure 10.1(b) depicts the situation just before
the system has noticed that the hand has arrived on the top of block B.

Figure 10.1(c) shows the scene exactly one cycle later. The system's
senses have observed the hand touching block B, and this has caused 89
rules to run, a large number. But other things happen on this cycle as
well. As the number for cycle 6 in the "activity" column indicates, 152
nodes in the dependency network changed their state.1 Much of that
change reflects the newly run rules; the system has never before found its
hand on something it is trying to pick up. But much of it also reflects the
lines of reasoning that have gone OUT now that one of the reasons to keep
moving downward, namely that the hand did not touch B, is now false. A
wire that once carried a 0 now carries a 1. The effects of that 1 have
propagated through the network, removing the support formerly enjoyed
by the arguments for moving down. As these arguments went OUT, OS
propagated through large parts of the network. The system stopped
moving its hand because the argument leading it to keep moving was no
longer justified.

On cycle 7 the system requires 116 rule firings to decide to move B
toward its destination. As before, the system must run a large number of



(progn (send *current-world*
(Install-world-state

:start-runn1ng)
*standard-b1ocksx!

(se1ect-agent-database)
(take-suggestions))

->(please (on b c ) )
->go

tick
1
2
3
4
6
7
8

natches rules activity depth
17414 229

536 8
0 0
0 0
0 04119 89

4429 116
920 4

336
38
4
0
0

152
142
38

47
6
3
0
0

24
29
5

ie

Figure 10.1(c). Never having moved a block anywhere, the system has to run some rules to figure out how,
after which it runs smoothly until it strikes an obstacle.
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rules since it has never moved a block toward its destination before. Once
it gets moving, however, all the arguments that take place in those 116
rules continue to apply, so the hand moves along without the system
having to run any more rules.

Figure 10.1(d) shows the system after four more cycles. The hand has
picked up B and has moved off toward C. The system knows little about
trajectories. It has chosen its motions serviceably, but nonetheless it has
bumped into C. What happens now, on cycle 11? There had been an
argument for going up, which was that B was below C and needs to be
above C and the hand is holding B. There was also an argument for
moving left, which is that B needs to be overlapping horizontally with C,
and B is all the way to the right of C. This argument for moving left is
still good since B is still to the right of C. But now the side of B is
touching C. That fact is causing some rules to fire that had never been
involved before. These rules object to moving left on the grounds that it
is not a good idea to push the destination block without cause. This
objection, like all objections, is offered ceteris paribus. But since no rule
objects to it in turn, it is accepted and the proposal to move left is
defeated. All this action requires 124 rules to fire. But the argument for
going up is still uncontroversial, so the hand continues moving upward.

When it gets up far enough that B clears C, the argument against
moving left no longer holds, so there is a great deal of activity in the
network as that objection goes OUT. Henceforth the hand is free to move
left. The proposal of moving left has been active all the while, but it has
not been adopted because of the objection overriding it.

On the final cycle, B is now on top of C. The system runs 38 rules that
recognize its achievement of a goal; these rules have never run before,
since this is the first time it has ever finished a job. The network is
extremely active on this final cycle, with 287 nodes changing state, a large
portion of the whole network. Those 287 nodes represent the whole
apparatus of inference and argument behind the top-level goal, its
decomposition into subgoals, and the idea of having the hand on some-
thing and moving it along. Now that B is on C, the goal has been
achieved, so the support for all of that apparatus has gone OUT. Where
once there was a 1, there now is a 0; so 0s propagate through the network,
which then finally settles into its rest state. Large sections of the network
that turned on during the first cycle now turn off during the last cycle.

Patterns in these numbers indicate some of the important dynamics of
the system's interaction with its world. Most of the patterns concern the
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Figure 10.1(d). Never having hit an obstacle, the system has to run some rules to figure out how to
circumvent it. Some more rules are required right at the end.
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levels of activity in the network. Observe that on the first three cycles an
initial burst trails off to zero: 336 to 38 to 4 to 0. Then a second burst
starts on cycle 6. That burst lasts for two cycles, one for grabbing B and
one for getting moving, but then as with the initial burst it fades to zero.
Then a third burst starts on cycle 11 as B hits C and begins sliding up
along it. At the end are two bursts on adjacent cycles, for clearing C and
then for finishing the job. This burst-decay pattern will be ubiquitous
throughout the demonstrations.

To understand the burst-decay pattern, think of the dependency net-
work as moving through an enormous phase space with a dimension for
each node. As the system works on its task, it describes a trajectory
through this space. When nothing is qualitatively changing, the net-
work's state remains unchanged. When the network crosses a boundary
into a qualitatively different region, such as when it encounters an unex-
pected situation or moves from one subgoal to another, the network will
change its configuration to reflect the change in the agent's relationship
to its world. Patches of the network that had been active will turn off and
other patches that had been quiet will become active in their place. Each
burst of activity reflects this sort of change. The burst takes an extra cycle
to decay to zero because of proprioception; the system receives a signal
from its "body" indicating that an attempt to move the hand or to grab
something is actually succeeding. Observe that the burst-decay pattern
concerns only the amount of activity in the network, not the number of
rules that fire. In later demonstrations, the activity number will repeat-
edly burst and decay without any rules at all being fired.

A second pattern concerns the relative magnitudes of the activity
numbers. The network is most active at the very beginning and the very
end. At the beginning it decomposes a top-level goal into subgoals. That
top-level goal and its associated structure remain IN during the whole
process. In other words, a region of network configures itself for putting
B on C and it stays in that configuration until the end. The other peaks of
activity occur when the system switches from one major subgoal to the
next. Another peak occurs when the system must pull up short and
reason about an unexpected condition, B's hitting C, and then again to
retract that reasoning when the unexpected condition goes away.

This pattern is even clearer in the "depth" numbers, which indicate
the longest chain of nodes in the network that changed state - that is, the
longest causal chain within the network on this cycle. This number tends
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Figure 10.2. The user has restored the blocks to their original positions and set the system running again
with the same goal. After running a single rule to recover from the discontinuity, the system can run entirely
out of its dependency network.
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to measure the depth of the system's patterns of reasoning. The depth is
very high when the system is decomposing its top-level goal on the first
cycle and when it retracts all the reasoning behind the decomposition on
the last cycle. In more complex examples that pattern will appear
recursively.

The system has now finished performing its first task. In doing so, it
has had to run several hundred rules, but it has also built up several
hundred gates worth of dependency network. If the system is working
well, those dependencies ought to permit the system to run fewer rules in
the future. Later sections will assess whether the system's experience
putting B on C transfers to other activities. For the moment, though, let
us consider the simplest case. Do the dependencies permit the system to
perform exactly the same task in exactly the same situation without
running a significant number of rules?

The second demonstration begins after the blocks and the hand have
been restored to their original positions. (This will slightly confuse the
system for a moment because the discontinuous change will disrupt the
proprioceptive information.) The same goal, putting B on C, is still in
effect. The system is then set running. It runs a single rule on the first
cycle (to recover from the discontinuous change), but after that it runs no
rules at all (Figure 10.2). It makes the same moves it made before,
including bumping into the side of C. The system is not learning in the
sense of adaptively changing its behavior; it is just doing the same thing
more efficiently. The system is firing no rules and performing no pattern
matches, but the numbers for the activity in the network are qualitatively
the same. As in the first time through, the activity is very high at the
beginning and end, with peaks at significant transitions and a recurring
pattern of bursts and decays. Likewise, the depths are the largest at the
beginning and end, with intermediate values when the system changes
subgoals or when something exceptional happens. From the outside, the
system appears to be running all of the hundreds of rules it ran before.
But from the inside, no rules are firing because the dependency network
covers every case that comes up.

Patterns of transfer

The remaining demonstrations address the question of whether
and when dependency maintenance accelerates the system. Each
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demonstration except the last picks up where the original demonstration
left off, with the system just having been asked to put block B on block C.
In having performed this task, the system has built several hundred gates
worth of dependency network. The question is, what can the system now
do automatically, running out of its dependencies instead of rules, in
virtue of having had that experience? The preceding section demons-
trated that the system can now do precisely the same thing without
running any new rules. But what can it do that is not precisely the same?
What makes a new situation sufficiently similar for the old reasoning to
transfer?

The third demonstration is a success story. The user has backed the
system up to just after the completion of the first demonstration; the four
blocks and the hand are back in their original positions. This time,
instead of asking it to put B on C, the user asks it to put B on D. It is a
different task, but both tasks involve picking up B.

On the first cycle, number 19, the system runs 34 rules (Figure 10.3).
That is not bad given the 229 rules it ran on the first cycle during its first
task; many of those rules must have carried over to this second task.
Those 34 rules concern the different destination.

On cycle 24 the hand stops upon reaching B and the program decides
it should grab B. The first time out, during the task of putting B on D,
that took 89 rules. This time it takes one rule. The activity number is still
high, 152 as compared with 160 before, reflecting the network's change
in configuration as one region of the network goes OUT and another
comes IN.

On the next cycle, number 25, the system decides to pick up B and
move it to the right toward D. That takes 85 rules, as compared with the
116 rules it took to decide to move B to the left toward C during the first
demonstration. Evidently little has transferred from the first task to the
second, but it is hard to say how much ought to have transferred. Cer-
tainly moving left toward C and right toward D are different activities.

The system completes its task without further incident on cycle 35.
The final cycle, on which it realizes it is done, takes 29 rules, as compared
with the 38 rules it took to complete the first task. The activity number is
high and approximately the same in both cases, 262 as compared with 287
before, reflecting all of the apparatus that has gone OUT once the system
has achieved its goal. Again, little appears to have transferred from the
completion of the first task to the completion of the second.
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Figure 10.3. The system has already picked up B in the previous task, so that portion of the dependency
network transfers to the new task. The rest of the task requires somewhat fewer rules than before, but the
dependencies do not transfer to putting something on D.
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Despite the uncertainties, this demonstration offers two clear in-
stances of dependencies constructed on the first task carrying over to the
second. On the very first cycle, much of the apparatus of decomposing
the goal and initiating action appears to have been independent of the
particulars of the two tasks. And when the hand found itself on B and
decided to grab it, the apparatus associated with that subgoal was inde-
pendent of the larger goals of which it was a part.

The fourth demonstration also begins after the system has completed
its first task of putting B on C. The initial situation is the same except
that all of the blocks have different names now, E - F - G - H instead of A-
B-C-D (Figure 10.4(a)). The task now is putting F on G. Thus, the
situation and goal are identical to the originals except for the names of the
blocks. Are the situation and task the "same" as before? Not precisely, but
ideally most of the dependency structure from the first task ought to
carry over here. The system's actions and the reasoning behind them,
after all, will have exactly the same form as before.

Unfortunately the degree of transfer is only moderate (Figure
10.4(b)). The number of rule firings at major transitions ranges from half
to three-quarters of the corresponding number in the first demonstra-
tion. It takes 159 rules to get moving. When the hand lands on F, the
system takes 45 rules to grab it and 64 rules to get it moving. Hitting an
obstacle causes 96 rules to run. The decay portion of the burst-decay
pattern, corresponding to the system's reactions to proprioceptive infor-
mation, has transferred. In general, those parts of the reasoning that were
independent of particular individuals have transferred. For example, the
system has already unfolded some relatively domain-independent appa-
ratus having to do with arguments and plans. Yet nothing that relates to
these particular blocks has carried over. If the system runs a rule like

(if (and (trying (grasp ?x))
(on hand ?x))

(propose (grasp)))

then this rule will have to run again for every block that the system ever
tries to grasp. During the first demonstration the rule ran with x bound
to B. During the second and third demonstrations the rule did not have
to run because the system did not ever try to grasp any block except B.
During this fourth demonstration, however, it tried to grab F. As far as
the system's representation scheme is concerned, F is a wholly different
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Figure 10.4(a). Here the original blocks have been removed and replaced with identical blocks that occupy
the identical locations but have different names.
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block from B, so all the rules that originally mentioned B must now be
fired again with x bound to F, thus creating a duplicate, analogous depen-
dency structure. None of this makes the dependency network any deeper,
but it does make it bulkier. This proliferation of circuitry has no limits.
So long as new blocks appear, the system will have to build more
circuitry.

The situation is even worse in the case of a rule that mentions two
blocks. Consider the following rule:

(if (and (propose (move hand ?direct ion))
(horizontal ?direction)
(grasping ?x)
(sides-touch ?x ?y)
( in-d i rec t ion ?direct ion ?y ?x))

(propose (object (move hand ?direction)
(dont-push ?pushed))))

This rule, or actually a more general version of it, posted an objection in
the first demonstration when B accidentally bumped into C. It also
posted an objection on the fourth demonstration when F accidentally
bumped into G. Each time, the system had to build a new patch of
network structure. The system might have to build an amount of circui-
try proportional to the square of the number of blocks it encounters. This
is physically possible, but it is not very satisfying.

RA might be at its worst on an assembly line. Asked to perform
analogous tasks in an endless stream of analogous situations comprising
different individuals, the system will generate a vast number of analogous
circuits, none of which it will ever use again. Imagine passing a thousand
cars on a long car trip, turning the knobs on a thousand doors over the
course of a year, turning a thousand pages while reading comic books on
the beach, or eating a thousand spoonfuls of cereal over successive break-
fasts. Each series involves interactions, each perhaps subtly different,
with a thousand different individuals whose individuality per se has little
effect on what actions are indicated. The knowledge embodied in RA's
rules is abstracted away from the particulars of a thousand situations with
the use of variables. But dependencies do not support variables, nor can
dependencies be generalized to support variables without losing most of
the virtues of dependencies.

In short, reasoning that involves the same individuals will transfer,
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even into different contexts, but no transfer will take place between one
set of individuals and another. The system decomposes its reasoning
automatically but it does not make analogies automatically.

Transfer and goal structure

The fifth demonstration is longer and, having been chosen for its
twists and turns, illustrates some additional dynamic effects. Once again
the system has just put B on C and the blocks and hand have been
restored to their original positions. The task now is a sequence of two
subtasks, putting D on C and then putting A on B (Figure 10.5(a)).

The and in the task description is not a logical conjunction but rather
an instruction to perform the subtasks in sequence. Originally and meant
"do them all in any order," but I was unable to implement the conjunctive
semantics in a satisfactory way. When the system faced two tasks, it
needed rules to determine which one to perform first. As with all its
decisions, the system conducted an argument with itself, putting forward
proposals and weighing the arguments for and against them. In many
situations the decision was straightforward. For example, the hand might
already be perched on the block that would have to be moved first in
order to perform one of the subtasks. Or the blocks might need to be
stacked in a particular order. Rules for cases like these were easy enough
to write. The rules were harder to write when there existed no reason at
all for choosing one task rather than another. The rule language, unfortu-
nately, had no way of expressing an arbitrary choice. I considered extend-
ing the rule language with a mechanism for performing arbitrary choices,
but none of the obvious schemes were sufficiently principled and general.
I tried writing rules that implemented utterly arbitrary decision schemes,
but no one criterion sufficed to discriminate in all cases, so the criteria
had to argue among themselves. This did work, but nothing was gained
in waiting for all the necessary rules to fire. The issue is deeper than it
seems; I will return to it after the demonstrations.

On the first cycle, number 19, the system has a good amount of work to
do. It has never been asked to perform a sequence of tasks, so it must run
many rules to decompose the compound task, assign itself the subtask of
putting D on C, and figure out how to head toward D. All of this action
takes 251 rules. Once it gets moving, it puts D on C without incident.
The burst-decay pattern occurs throughout. Deciding to grab D takes
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Figure 10.5(a). The blocks have been restored to their original arrangement and the system has been
assigned a complex task.
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46 rules; deciding to move D upward and leftward toward C takes 72
rules. Both of these numbers are excessive, given that the system has
already put B on C, a fairly analogous task.

Figure 10.5(b) shows the system after cycle 47, immediately after the
system has put D on C and is about to discover that it has finished with
the first subgoal, so that it can get started on the second. A great deal
takes place in the next few cycles.

Something complicated happens on cycle 48 (Figure 10.5(c)). Having
finished with its first subtask, the system is pursuing the task of putting A
on B. Its first subsubtask is to get its hand on A. A is below the hand so
the system proposes moving downward. But then the objection arises
that the hand cannot move down because a stack of blocks is directly
below it. Another rule then offers the alternative of going around and
proposes moving left. There are no objections, so the hand moves left.
This required 250 rules - quite a complex process. The level of activity
in the network is high, 799, reflecting both this reasoning coming IN and
the reasoning behind the first subtask going OUT.

Something unfortunate happens on cycle 49 (Figure 10.5(d)). The
proposal of moving down to get on top of A, having been made on the
previous cycle, still applies. And the objection against it, that the stack of
blocks is in the way, no longer applies, so the hand moves down. Another
rule points out the virtue, other things being equal, of centering the hand
over the block, and thus proposes moving to the right. No rule objects to
the combination of proposals, so the system adopts both and the hand
moves downward and to the right, pushing D to the right off of C. All of
this took only 5 rules, since almost all of this reasoning had taken place in
other contexts. It did involve an activity of 165 in the dependency net-
work, most of which was due to objections from the previous cycle that
no longer applied and so went OUT.

Cycle 50 is the most interesting. Since D is no longer on C, the first
subgoal does not hold true, so one of the justifications for pursuing the
second subtask has been removed. The activity is very high, 582, as the
network changes configuration, sending the second subtask's apparatus
OUT and bringing the first subtask's apparatus back IN. The process takes
61 rules, many of which reflect D's top surface being above the bottom
surface of the hand, leading the system to conclude that it must move the
hand upward. Some of them also reflect the hand being in side-to-side
contact with D, leading the system to defeat the proposal of moving to
the right.
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Figure 10.5(b). The system places D on C without incident.
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Figure 10.5(c). The system prepares to move the hand around D on its way to pick up A.
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204 Computation and human experience

Starting on cycle 51, D falls and the hand begins chasing it rightward
and downward. The hand's transition from upward to downward motion
occurs mostly through the network, having transferred from the first
time it fetched D. Finally the hand lands on D on cycle 55 (Figure
10.5(e)). On cycle 56 it decides to grasp D, which reasoning carries over
entirely from the first time it grasped D, except for one stray rule. On
cycle 57 the hand lifts D straight up, having run some rules to defeat the
proposal of moving leftward as well. When B bumped into C during the
first demonstration, it took 124 rule firings, many of which have trans-
ferred over to this case despite the different individuals. Much of this
transfer does not concern bumping-into per se; cycle 11 was the first
argument of any difficulty that the system had conducted with itself on
any topic. From cycles 58 to 62 the system moves D back up onto C with
no rule firings at all (Figure 10.5(f)).

On cycle 63 the activity number is very high again, 715, reflecting
another large swap as the first subtask's apparatus goes back OUT and the
second subtask's apparatus comes back IN (Figure 10.5(g)). The system
does run 49 rules on cycle 63; these concern the old problem of getting
the hand around the stack of blocks and onto A. This time, the hand is
right of center instead of left, so a rule proposes moving to the right
around the blocks. The system adopts this proposal and moves right. As
before, objections defeat a proposal to move downward.

The rest of the trip is comparatively uneventful. The hand clears the
right edge of D on cycle 67. On cycle 68 it begins moving downward and
to the left toward A, inadvertently pushing D to the left as it goes.
Fortunately it does not push D off of C again. (If it had, it would probably
have gone into an endless cycle.) Instead it lands on C on cycle 72 and
repeats the same sequence, moving to the right one step and then chang-
ing course again to move downward and to the left. This motion pushes
D to the left as well (Figure 10.5(h)).

The hand moves to the left all the while in order to get itself centered
on A. An extended argument concludes that it is all right to push the
blocks out of the way. Although the line of reasoning for circumventing C
was closely analogous to that for D, little transfer occurs because D and C
are different individuals. Some general-purpose reasoning about getting
around things did transfer, but not very much.

Finally the hand lands on A on cycle 78, just in time to push D and C
completely off of A (Figure 10.5(i)). Some rules fire on cycles 79 and 80
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Figure 10.5(e). Shifting back to its pursuit of the first subgoal, the hand chases D as it falls.
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Figure 10.5(f). Having caught D again, the hand puts it back on C.
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Figure 10.5(g). This time the hand decides to go around to the right.
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Figure 10.5(h). Heading for A, the hand strikes C.
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because the system has never picked up A or moved a block to the right
before. (Left and right, like the block names, are individuals across which
transfer also fails.) Some additional rules navigate A over top of B; this
reasoning exhibits little transfer from previous such cases. Finally the
system completes its task on cycle 86 (Figure 10.5(j)).

Before looking at the numbers in more detail, let us consider a sixth
and final demonstration. This demonstration picks up from the fifth.
The system has just finished with the compound task of putting D on C
and A on B. The user has restored the blocks to their original positions
and set the system running again. The same compound goal is in effect,
so the system marches through precisely the same actions as before
(Figures 10.6(a) and 10.6(b)). It takes a couple of rules to get moving.
The activity numbers exhibit the usual burst-decay pattern. The system
has not gotten any smarter about performing this task but it has gotten
faster.

In both the second and sixth demonstrations, the system was running
through a task it had already performed. In each case, the system went
through the same reasoning and the same motions and ended up with the
same results. Yet in each demonstration some stray rules were run at
various points. In no case did the newly run rules change the system's
behavior on that cycle. Instead, these rule firings resulted from a pecu-
liarity of the relationship between the perceptual system, the dependency
network, and the rule firing mechanism. On each new cycle the percep-
tual system assigns new values, either IN or OUT, to the proposition
corresponding to each of the primitive percepts. The blocks do not move
very much, so the new cycle's value is usually the same as the old cycle's
value. When the value changes, the consequences of that change ripple
through the dependency network. This network activity sometimes
causes new rules to fire.

While the perceptual propositions are still being updated, the central
system is effectively being told a false, or even inconsistent, story about
the state of the outside world. As long as some of the perceptual proposi-
tions have been updated and others have not, rules will fire in an attempt
to pursue the current goal in the improperly specified world state. The
central system will restore itself to a consistent state once the perceptual
propositions have all been updated, but only after a certain amount of
extraneous activity.

It is impossible to avoid this problem completely. Since I do not believe
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Figure 10.5(j). Finally the system places A on B without incident.
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Figure lO.6(a). After the system completes its two-part task, the blocks are restored to their original
positions and the system is set running on the same task.
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Figure 10.6(b). This time the task requires only a trivial number of rules. The levels of activity in the
dependency network still have a complex structure.
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that people have rule systems in their heads, any attempt at alleviating the
problem would be only an engineering curiosity. Some important issues
would, however, arise in such a project. One is that it is unrealistic to hold
the system still on cycles when hundreds of rules need to run. The whole
system would be more honest if the dependency system ran at a fixed
real-time rate, occasionally letting the rule system fall behind. Unless the
goal is plain engineering, however, research into such matters should wait
until their connection to dynamic issues is clarified.

Let us look once again at the depth numbers for the fifth and sixth
demonstrations. Recall that the "depth" measures the longest causal
chain in the just-completed cycle's modifications to the dependency
network. These numbers are particularly large when the system is either
switching from one subgoal to another or performing a complicated
argument in a difficult situation. The deeper the change in the goal
hierarchy, the deeper the network activity is likely to be. The reason for
this is simple. The top-level reasoning about breaking the compound
goal (and (ondc) (onab)) into two subgoals (ondc) and (onab) ,
comes IN on the first cycle and remains IN through the entire process,
finally going OUT on the final cycle once the compound goal is finally
achieved. The reasoning for each goal in the hierarchy forms part of the
support for the reasoning for its subgoals. The depth numbers are partic-
ularly high on the first and last cycles because the reasoning for the entire
goal hierarchy is going IN and OUT. In general, when the system moves
from one subgoal to another, the depth numbers will be proportional to
the depth of those subgoals in the system's current goal hierarchy. Thus,
on cycles 48, 50, and 63, when the system switches back and forth
between its first and second major subtasks, the depths are 62, 62, and 48.
(The two 62s are a coincidence.) As the intermediate goals switch back
and forth the depth numbers assume intermediate values.

Analysis

As I explained at the beginning of the chapter, the goal of RA is
to do technical justice to three slogans: that activity necessitates "know-
ing what you're doing," that it is a matter of "continually redeciding what
to do," and that it is "mostly routine." For the system to approximate
these ideals, it somehow had to produce the effect of a complex decision
process on every cycle of a fairly rapid clock. The system proposed to
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achieve this effect by maintaining dependencies on all of its novel items
of reasoning (rule firings). As a narrow technical matter, this technique is
certainly a success.

Maintaining dependencies, though, is sufficient only if two conditions
hold. First, it must turn out that almost everything you do is something
you have done before. Although it is difficult to evaluate such a broad
proposition in such a narrow and artificial domain as blocks world, I have
posited that this first condition is a property of the everyday activity of
human beings.

Second, dependency records must transfer to a sufficiently broad
range of future situations. This second condition has been the principal
focus of the analyses in this chapter. The results have been equivocal. On
one hand, a dependency record generated in one situation cannot help
but transfer to a broad class of other situations, for all the reasons
discussed in Chapter 6. The exact patterns of transfer will depend on the
kinds of arguments and goals that drive the system and on the properties
of particular domains. Unfortunately, the system I have described does
not exhibit nearly enough transfer among situations involving different
individuals. It may not be clear exactly which analogies the system ought
to exhibit, but it does fail in some clear-cut cases.

Although I have not dwelled on the point, the system also fails to
exhibit any transfer dynamics that involve genuine learning. New insights
about block stacking or cooking or driving depend on fortuitous circum-
stances, but once one has encapsulated an insight into a dependency
record, it will be available whenever it is observed to apply. An insight
might transfer to a different activity or to a different place in subsequent
instances of the same activity. If a system's performance on a task has
room for improvement, the dependencies ought to pick up any insights
into the difficulty and transfer them to the moment when the system can
use them to act differently. RA was intended only as a model of routine
activity and was not designed to explain anything about learning. Still, it
is striking that, even though the dependencies are working correctly, the
system always performs the same actions no matter how many times it is
assigned a given task.

Yet another failure, already noted in the context of the fifth
demonstration of this chapter, is that the system requires too much
laborious rule writing to make arbitrary choices. I changed the meaning
of conjunctive goals in order to avoid writing these rules and I expect that
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such constrictions would plague a rule writer in any domain where the
system was not so clearly focused on a single task as in blocks world.

I see these three problems - failure of transfer by analogy, failure of
transfer learning, and the difficulty of making arbitrary choices - as
symptoms of a mistake I made in building the system. Something is
wrong with the system's perceptual apparatus and the way goals are
specified. Perception works in this system in the traditional AI fashion.
On every cycle the system is given a full specification of the current world
situation in terms of a set of propositions such as

(on a table)
(onb a)
( lef t -of be)
(above hand table)
(touching hand c)
(moving hand le f t )
(moving c l e f t )

In particular, the system is given a situation (i.e., a situation description)
in which all the individuals have names. But it is unrealistic to think that
actual perceptual systems should be able to provide such information.
For one thing, there will be a large amount of it. All the individuals and
their spatial relationships in the room in front of me right now, for
example, add up to a great deal of information. And it is odd that the
situation description contains such constant symbols as A, B, C, HAND,
and TABLE. What perceptual system knows what the objects it senses
are called? Yet it has been standard AI practice for the input and output
representations of plan-construction systems to employ such names.2

What really must be explained is why this practice has never seemed
odd. One big part of the problem, I believe, can be discovered in the
nature of blocks world. The use of blocks world has also been a common
practice in the planning literature. A goal presented to a computational
agent might read, (put-on B C). One does not present the goal by aiming
a TV camera at some blocks on the table, reaching one's hand into the
scene, pointing, and saying, "Put this block on that block." As implaus-
ible as the (put-on B C) style of goal specification might be for much of
everyday life, in blocks world it does not seem so intolerable, since
children's toy blocks very often have large letters written on them. The
diagrams in the literature depict the blocks in just this way. The block's
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name is not drawn outside the block and connected to it with an arrow.
Instead, the diagrams put the name inside the block, as if one could read
the names of things off of them. The names are effaced, and the effort of
connecting names to things is elided. This convention would seem to
suppress some hard work.

One might argue, however, as follows: "All of that is someone else's
problem. We are simplifying the problem for ourselves by assuming that
we are being given all this information. We aren't doing perception
research; we are doing planning research." This line of argument, I
believe, is critically misleading. Referring to the objects in an input
representation through names is a simplification that actually makes
things harder. One symptom of this trap is the failure of dependencies to
make some reasonable transfers. Dependencies support transfer in a very
simple way, whereas many programs have used much more complex
machinery, such as pattern matchers and subgraph isomorphism al-
gorithms, either to actually construct an analogy between two situations
or to abstract away from the individuals of one situation to get a structure
with variables in it that can then be instantiated in future situations.

Another approach is the mechanism of chunking (Rosenbloom 1983)
used in the SOAR production system architecture (Laird, Newell, and
Rosenbloom 1986; Laird, Newell, and Rosenbloom 1987).3 Chunking is a
technique for summarizing the consequences of a collection of produc-
tion firings that have collaborated to solve some problem by locating a
successful path through a problem space. The summary takes the form of
a single large production rule, or "chunk," that collects the productions'
initial premises and asserts their final consequences. Chunking is not
intended to enable the system to solve any new problems, only to save it
effort - often a considerable amount of effort - when it faces similar
problems in the future.

Chunking and dependency maintenance are related concepts. The
process of building the chunk is similar to tracing the dependencies of
the productions' consequences. Like dependency maintenance, it is a
learning scheme that works in the background without requiring the
agent to deliberately go out and learn things. The goal in each case is to
produce transfer effects (Laird, Newell, and Rosenbloom 1984). Whereas
a simple dependency system such as that of RA need only record the
dependencies in the form of digital circuitry (whether actual or simu-
lated), the chunking mechanism actually inspects the dependency net-
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work, traversing a region of it to collect its premises. A chunk effectively
connects these premises directly to their consequences, skipping the
intermediate layers of network structure.

A system that relies on its dependency network to recapitulate old
lines of reasoning, by contrast, need not short-circuit these intermediate
layers, because the processing in each layer requires only a single gate
delay. Chunking is necessary in a production-system architecture be-
cause the system must invest a great deal of effort to fire the productions:
matching the patterns, selecting the correct productions, calculating
their consequences, and asserting them. Since the productions in SOAR
guide a symbolic search, summarizing their operation is all the more
important since the productions may have been numerous and because
many of them may have had no useful consequences as the system ex-
plored false paths in the search space.

Chunking faces a number of difficulties. One is that it is not always safe
to collapse the internal structure of nonmonotonic reasoning, lest some
novel assertion come along to invalidate an intermediate deduction. The
system must somehow recover from the resulting over generalization. A
second problem is that the chunks themselves tend to be too large. A
chunk may summarize dozens of productions into one, but the savings
will not be proportional, since that one may be expensive to use (Tambe
and Newell 1988). Because it can be computationally complex to match
productions with many clauses against a database, the SOAR project has
explored schemes for restricting the expressive power of the production
language. The most prominent approach is to require that a variable only
appear once in the left-hand side of any given production. Although this
constraint is restrictive for programmers, it appears difficult to improve
upon (Tambe and Rosenbloom 1994). A third problem is a tension be-
tween chunking and the agent's real-time interaction with the world; the
agent's reasoning may take place over a stretch of time, but the resulting
chunk presupposes that all of its premises must hold true simultaneously
(Agre 1993b: 443-447).

Chapter 11 will argue that a better solution lies in an account of
representation that is more suitable for an embodied, situated agent.
Instead of starting from a notion of objective individuals, it starts from a
notion of focus and of the causal relationships between an agent and
objects in its environment. The agent represents the objects not in terms
of their objective identities but in terms of their indexical and functional
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relationships to the agent's body and ongoing projects. Such an account
of representation has many virtues compared with conventional objective
accounts. In particular, it does not involve variables and is thus far more
compatible with simple central system machinery and with dependency
maintenance.

RA keeps track of the objects in its environment by maintaining an
exhaustive representation of them - a world model of the traditional sort.
World models have advantages and disadvantages. Their principal advan-
tage is that they are complete. Their most obvious disadvantage is that
this completeness is difficult to obtain, both epistemologically and com-
putationally, in an environment of any real complexity. But a more subtle
disadvantage is that a world model suppresses the natural relationship of
focus between an agent and its environment. Whereas a person can face
in only one direction and focalize only one part of the resulting visual
display at a time, a world model gives equal billing to everything that
exists in the known world. The world model supports a kind of homoge-
neity in which everything is represented independently of the agent's
current goals, its current practicalities of perception and motion, and
indeed even of its existence. As far as the process of maintaining the
model is concerned, the system as a whole is always involved equally with
every individual in the world, every property of these objects, and every
relation among them. Inasmuch as computational effort is a resource to
be distributed, however, the agent's architecture must provide mecha-
nisms that focus computational resources on the parts of the world model
that correspond to the currently relevant parts of the world itself. In
standard technical practice, this internal focusing mechanism is imple-
mented with the aid of variables and constants. An alternative, I will
argue, is to deny world models a central architectural role and to give
greater weight to the natural relationship of focus that the world-model
scheme suppresses.

The necessity of focus has substantial consequences for architecture.
In particular, it suggests a resolution to the problem of arbitration. There
are usually many things you could be doing. Often a major reason you
choose one of them is that it is the first one you laid eyes on. Or perhaps it
was the one that was ready to hand. When it does not matter very much
what you choose, these arbitration schemes are as good as any. Usually
you need not even become aware of the existence of a choice.

The theme of focus also helps in understanding RA's failure to alter its



220 Computation and human experience

behavior through the learning. The point is subtle. People sometimes
arrive at understandings on Tuesday that would have changed their
actions on Monday, if only they had known of them. For example, some-
one might water a garden on Monday by running a hose from a spigot a
hundred feet away, only to discover a much closer spigot during a stroll
on Tuesday. When it is time to water the garden again, the new informa-
tion might lead to different and simpler methods. Alternatively, the
routine for watering the garden might evolve in a more complex fashion,
along the lines I described in Chapter 6. Such things, however, never
happen to RA. They could happen - nothing about RA's architecture
prevents them from happening. One problem is that RA, courtesy of its
always-updated world model, has complete knowledge of its world. It
cannot discover anything because it already magically knows everything.4

Blocks world also tends to reinforce mistaken views of representation
because all blocks look alike. The blocks on a blocks-world table, unlike
the tools and materials of most concrete activities, do not lend themselves
to readily perceptible functional distinctions. A spatula plainly affords
pancake flipping, a pancake plainly affords being flipped with spatulas, a
hammer plainly affords nail pounding, a nail plainly affords being
pounded with a hammer, and your hand plainly affords all manner of
things once it is suitably cupped or flattened or clenched. Each of these
things carries more than enough information on it to deduce its relevance
to a given activity. Blocks-world blocks, by contrast, are simple, bleak
squares with letters in them. All blocks look alike, regardless of the
functional roles they might play in particular activities. Blocks do afford
grabbing and stacking. But if someone says, "Please stack block A on
block B," nothing about either block will signal its role as the-block-to-
stack or the-block-to-stack-it-onto. Lacking meaningful cues, one has no
choice but to memorize arbitrary names.

There is a valuable lesson here. AI people normally choose to demons-
trate their new technological ideas in those domains that made the under-
lying ideas look most obvious. This practice is reasonable enough,
whether for its heuristic value, or for ease of exposition, or because one's
intention is to solve engineering problems one at a time rather than
produce a theory that explains everything all at once. The people who
invented the blocks world did so because it was a simple place to demons-
trate some complex and poorly understood forms of reasoning about
subtask ordering.5 Once blocks world was written into textbooks and
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taught to students, however, many of its assumptions became invisible.
One of these invisible assumptions was the availability of a world model
in which objects are automatically labeled with their names. It is helpful
to "read" a domain critically and ask what biases it has and how it is
atypical of human activities. It also helps to experience the domain your-
self and compare it with the task being posed to programs. All too often, a
program runs into trouble in precisely those areas in which the program's
task fails to correspond to any real task. I interpret the technical complex-
ities of pattern matching, for example, as a symptom of ways in which
domains have been accidentally falsified. Perhaps the skill of making and
testing such interpretations can help get at the essence of activity in the
world.



11 Representation and indexicality

World models

As an agent gets along in the world, its actions are plainly about
the world in some sense. In picking up a cup, I am not just extending my
forearm and adjusting my fingers: those movements can be par-
simoniously described only in relation to the cup and the ways that cups
are used. A conversation about a malfunctioning refrigerator, likewise,
really is about that refrigerator; it is not just a series of noises or gram-
matical constructions. When someone is studying maps and contemplat-
ing which road to take, it is probably impossible to provide any coherent
account of what that person is doing except in relation to those roads.

AI researchers have understood these phenomena in terms of repre-
sentations: actions, discussions, and thoughts are held to relate to partic-
ular things in the world because they involve mental representations of
those things.1 It can hardly be denied that people do employ representa-
tions of various sorts, from cookbooks and billboards to internalized
speech and the retinotopic maps of early vision. But the mentalist com-
putational theory of representation has been simultaneously broader and
more specific. In this chapter I will discuss the nature and origins of this
theory, as well as some reasons to doubt its utility as part of a theory of
activity. Chapter 12 will suggest that the primordial forms of representa-
tion are best understood as facets of particular time-extended patterns of
interaction with the physical and social world. Later sections of the
present chapter will prepare some background for this idea by discussing
indexicality (the dependence of reference on time and place) and the
more fundamental phenomenon of intentionality (the "aboutness" of
actions, discussions, and thoughts). A detailed survey of AI theories of
representation would be impossible in a small space, since these theories
do not constitute a unified doctrine but a family relationship among

222
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numerous variants. By painting the big picture, I hope to make this
extended family of theories comprehensible as a series of attempts to
work through the practical logic of mentalist AI research.

AI vocabulary mixes visual and linguistic metaphors for representa-
tion; in linguistic terms, the purpose of representation is to "express"
states of affairs. This conception of representation has a long history and
entails some strong assumptions about the broader phenomena of which
representation is a part. Important assumptions are encoded in the no-
tions of world models and expressive power, both of which reflect a view of
knowledge as a picture, copy, reflection, linguistic translation, or physical
simulacrum of the world. This conception of knowledge is found in many
contexts (G. McCulloch 1995; Rorty 1979). Discourses and practices of
representation in AI have developed through two main lines of intellec-
tual descent. One of these, which later sections of this chapter will
discuss in detail, is modern formal logic, particularly model theory.

In areas such as planning, automatic diagnosis, and machine vision,
however, the elaborate mathematical and rhetorical machinery of model
theory is generally replaced by, or overlaid with, the looser and less
systematic notion of a world model. The notion of a world model has
already been discussed in Chapter 10. It has no consistent definition, but
in each case it refers to some structure within the mind or machine that
represents the outside world by standing in a systematic correspondence
with it. Rough though it is, the notion of a world model has a clear history
whose roots lie in the metaphor of knowledge as an inner reflection of the
outer world.2 According to the modern computational notion of the idea,
reasoning is a matter of using one's world model to perform, by means of
mental inference, a simulation of the outside world. This form of the
world-model theory first appeared in its full-blown form in Kenneth
Craik's 1945 book, The Nature of Explanation, and his explanation is
worth quoting at length:

One of the most fundamental properties of thought is its power of predicting
events. This gives it immense adaptive and constructive significance as noted by
Dewey and other pragmatists. It enables us, for instance, to design bridges with a
sufficient factor of safety instead of building them haphazard and waiting to see
whether they collapse, and to predict consequences of recondite physical or
chemical processes whose value may often be more theoretical than practical. In
all these cases the process of thought, reduced to its simplest terms, is as follows:
a man observes some external event or process and arrives at some "conclusion"
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or "prediction" expressed in words or numbers that "mean" or refer to or
describe some external event or process which comes to pass if the man's reason-
ing was correct. During the process of reasoning, he may also have availed
himself of words or numbers. Here there are three essential processes:
1. "Translation" of external processes into words, numbers or other symbols.
2. Arrival at other symbols by a process of "reasoning," deduction, inference,

etc., and
3. "Retranslation" of these symbols into external processes (as in building a

bridge to a design) or at least recognition of the correspondence between
these symbols and external events (as in realizing that a prediction is
fulfilled).

One other point is clear; this process of reasoning has produced a final result
similar to that which might have been reached by causing the actual physical
processes to occur (e.g. building the bridge haphazard and measuring its
strength or compounding certain chemicals and seeing what happened); but it is
also clear that this is not what has happened; the man's mind does not contain a
material bridge or the required chemicals. Surely, however, this process of pre-
diction is not unique to minds, though no doubt it is hard to imitate the
flexibility and versatility of mental prediction. A calculating machine, an anti-
aircraft "predictor," and Kelvin's tidal predictor all show the same ability. In all
these latter cases, the physical process which it is desired to predict is imitated by
some mechanical device or model which is cheaper, or quicker, or more conve-
nient in operation. Here we have a very close parallel to our three stages of
reasoning - the "translation" of the external processes into their representatives
(positions of gears, etc.) in the model; the arrival of other positions of gears, etc.,
by mechanical processes in the instrument; and finally, the retranslation of these
into physical processes of the original type.

By a model we thus mean any physical or chemical system which has a similar
relation-structure to that of the process it imitates. By "relation-structure" I do
not mean some obscure non-physical entity which attends the model, but the
fact that it is a physical working model which works in the same way as the
process it parallels, in the aspects under consideration at any moment. Thus, the
model need not resemble the real object pictorially; Kelvin's tide-predictor,
which consists of a number of pulleys on levers, does not resemble a tide in
appearance, but it works in the same way in certain essential respects - it
combines oscillations of various frequencies so as to produce an oscillation which
closely resembles in amplitude at each moment the variation in tide level at any
place. (50-52; emphasis in the original)

For Craik, then, reasoning meant internal manipulation of models of the
external world. The prototype for this manipulation is the simulation of a
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physical system (in Craik's terms, predicting it through imitation),
though other kinds of manipulation are possible. Perception supports
this process by translating outside reality into internal representations.

Although the vocabulary has changed, this conception has organized
nearly all subsequent work. For Newell (1990), for example, it takes the
form of the "Great Move":

Instead of moving toward more and more specialized materials with specialized
dynamics to support an increasingly great variety and intricacy of representa-
tional demands, an entirely different turn is possible. This is the move to using a
neutral, stable medium that is capable of registering variety and then composing
whatever transformations are needed to satisfy the requisite representational
laws. (61, emphasis in original)

Newell describes the use of this generalized medium for building world
models in terms analogous to those of Craik. Instead of "translation" and
"retranslation," Newell uses "encoding" and "decoding." The transfor-
mations that these representations can undergo need not amount to
simulations of the world, and nothing about NewelFs architecture re-
quires that they be treated as simulations (Agre 1993b: 421-423), but in
practice the paradigm cases are simulations nonetheless: inferences about
what the world will be like if a given action is taken, or a given operation
is applied, in a given situation.

Likewise, in computer vision research it is often said that the purpose
of human visual machinery is to reconstruct a model of the visual world
from the information available in retinal images (e.g., Marr 1982: 295—
328). As mentioned in Chapter 3, this process is known metaphorically as
"inverse optics" because the computations effectively invert the physical
processes that produced the image in the first place. The intuition behind
this approach is clear enough: real images include extraordinarily com-
plex patterns of light intensities, and their interpretation will inevitably
be ad hoc without an understanding of the processes that created them
(Horn 1986).

World models are the epitome of mentalism. On its face, the idea
seems implausible: a model of the whole world inside your head. The
technical difficulties that arise are obvious enough on an intuitive level.
First and most obviously, world models are cumbersome. They require a
great deal of storage, regardless of what implementation technology
might be used. Second, it is necessary to keep the model up to date as the
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world changes; this takes effort and, it would seem, requires the agent to
be everywhere at once so that changes do not go undetected. Third, it is
computationally expensive to perform computations with world models.
This computational expense can sometimes be quantified; when the
model represents three-dimensional geometry, for example, the neces-
sary calculations can be provably intractable (Hopcroft and Kraft 1987).

The problems with world models have taken particular forms in plan-
ning research. World models have been intimately connected with plan-
ning ever since Miller, Galanter, and Pribram (1960) introduced Plans as
a complement to Boulding's (1956) concept of an Image. Boulding's
concept was not at all technical; it relied heavily on the vernacular mean-
ing of the word "image" to suggest that we organize our lives by building
and inspecting mental images of relevant parts of the world. In the
planning literature, the world model permits an agent to anticipate the
effects of its actions - in other words, again, to simulate the world. This
task immediately gives rise to the frame problem: the problem of deter-
mining which (few) parts of the world will be affected by an action and
which (many) parts will not (Ford and Hayes 1991; Pylyshyn 1987; Toth
1995).

Planning researchers, of course, are well aware of the difficulty of
building and maintaining world models. The issues are rarely addressed
in a general way, and most theories simply assume that the world model is
automatically kept up to date.3 Although the issues are not secret, neither
are they regarded as a crisis for the research program. As long as underly-
ing metaphors of mentalism remain unquestioned, the technical
difficulties that arise in building world models can only be interpreted as
inescapable. Human planning, after all, seems to provide an existence
proof, and therefore, it seems, future technological progress must be
capable of closing the gap between the systems' current performance and
their potential. The difficulties, moreover, do not become manifest as
brick walls that stop the research in its tracks. Rather, they produce an
endless maze of trade-offs that new research can explore and character-
ize. A given research project might have its agent create plans in a
simplified microworld that can be easily represented. It can explore tech-
niques for storing only those aspects of the world model that are relevant.
Or it can employ representation schemes that ensure that the necessary
inferences follow easily. The resulting technical methods might find
practical application in suitably structured environments, and it is im-
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possible to demonstrate that further research can never find its way
through the maze of trade-offs to a satisfactory theory of human activity.
It is possible, though, to cultivate alternative intuitions about activity that
make these trade-offs seem more explicable and more daunting - not as
limits of computation per se, but as limits of mentalism.

Knowledge representation

Computational theories of representation, as I mentioned earlier,
descend historically along two lines. One of these lines is mentalistic; it is
concerned with world models. The other line, which begins with Frege,
is Platonic. Frege's (1960 [1892], 1968 [1918]) central concept is Sinn,
normally translated as "sense." Frege's theory of sense is peculiar, and its
peculiarity explains a great deal about subsequent intellectual history.

A sense is an abstract entity that, roughly speaking, captures those
aspects of a representation that determine whether it is true. A sense is
thus not itself a representation or a symbol or a component of a psycho-
logical mechanism; it is, rather, the content that those things might
express. For example, if I notice that my car is idling badly one morning,
the sense of that observation includes the day and time, the car itself, and
the condition of idling badly. In other words, in Frege's famous dictum,
sense determines reference. If I notice that my car is idling badly again
tomorrow, that will be a different sense. If several people simultaneously
notice that their respective cars are idling badly, those will be different
senses as well. But if several people simultaneously notice that my car is
idling badly, each of those observations will have the same sense. And if I
happen to remember tomorrow that my car had been idling badly today,
that memory will have the same sense as my observation about my car
today. Even though they encode particular objects and times, senses are
eternal; they are never created or destroyed or modified, and they have no
location. That is why many different people can say things that express
the same sense, and the same person can say many different things that
express the same sense.

In this way, a sense seems like a Platonic object, completely indepen-
dent of any person's life. But it is a strange Platonic object, since it
incorporates - or at least is capable of uniquely determining - specific
concrete objects, such as my car, in specific places and times. And on top
of all this, Frege also wishes to say that senses are essentially the same as
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thoughts (Gedanken); the theory of sense is also a theory of cognitive
content (Burge 1979; Perry 1977). Frege would not wish to locate my
thoughts inside my head, so his theory is not mentalistic. But he does
wish to say that the thoughts are my thoughts, and not necessarily yours.

By this point, we should be able to discern the underlying drama: the
frantic and contradictory attempt to close a gap between the world of
abstractions and the world of concrete activity (Nye 1990). Yet Frege's
theory has had tremendous influence because it provides a precise foun-
dation for formal logic. The central idea here is compositional semantics.
As a representation, a sentence of logic differs from a photograph in
being assembled from a standardized set of discrete elements according
to fixed rules. But a sentence of logic and a photograph are analogous in
that each represents its object through a point-by-point correspondence.
In logic, each discrete element of the logical sentence corresponds to an
element of reality, with the sentence's logical structure corresponding to
the relationships among these elements. In the philosopher's standard
example of a sentence, "ON(CAT,MAT)," the symbol CAT corresponds
to some actual cat, the symbol MAT corresponds to some actual mat, and
the predication of ON corresponds to a physical relationship between the
cat and the mat. The logical expression "ON(CAT,MAT)" is intended as
a precise reformulation of an English sentence such as "The cat is on the
mat," although Frege insisted that natural language semantics was simply
one application of his theory of sense.

This kind of semantic scheme, which also grew from the work of
Russell and Wittgenstein, is called a compositional semantics because the
sense (or, for other theorists, the meaning) of the whole sentence is
composed from the senses (or meanings) of the individual symbols.
Model theory (Chang and Keisler 1973) is a mathematical formalization
of compositional semantics, starting with Tar ski in the 1940s. A model of
a given set of logical sentences is a mathematical structure within which
every one of the sentences (and every one of their deductive conse-
quences) can be assigned an interpretation that makes it true. The the-
orems of model theory provide a precise account of the intuition that the
more one knows, the less uncertainty remains as to the structure and
properties of the world. If a set of logical sentences has no models at all, it
is logically inconsistent; if it has numerous models, model theorists inves-
tigate the relationships among them. For model theory, the model is
neither a mental representation nor the everyday world of cats and mats,
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but rather a mathematical "world" constructed using set theory. More
complex forms of model theory, based on the semantics of modal logics
proposed by Kripke (1963), envision not a single such model but a whole
network of models. Once one has accepted the premises underlying the
logical theory of representation, model theory is a useful tool for ensur-
ing the formal coherence of a logical scheme. Still, since model theory
speaks only of mathematical structures, it has no direct bearing on the
question of how an agent might interact competently with the actual,
concrete world of its routine activities.

This background helps explain the criteria that guide computational
research on representation. If the purpose of representation is to express
states of affairs in the world, the principal criterion on representational
languages is "expressive power."4 For example, one might invent a new
representation language to express temporal and causal relationships,
certainty and uncertainty of beliefs, default assumptions when definite
knowledge is lacking, or beliefs about the mental states of other people.
One demonstrates the power of these languages by exhibiting their
capacity to express certain scenarios that previous languages cannot.
Having formulated a mathematical semantics for one's new language, one
may proceed to realize it inside a computer, probably using conventional
data structures and pointers, and presumably building computational
facilities that perform deduction within the new language.

This is the paradigm for AI research on knowledge representation. As
this research has developed, its focus has shifted steadily from implemen-
tation to abstraction. The earliest work on semantic networks (Quillian
1968) involved cognitive models based on associational theories of mem-
ory. In the early 1970s, this concern with mechanisms was displaced by a
concern with formal semantics, largely due to Woods (1975). With this
paper and the subsequent work on such ambitious representation lan-
guages as KRL (Bobrow and Winograd 1977) and KL-ONE (Brachman
and Schmolze 1984), the term "network" began to refer to a notation and
not an implementation scheme. For this reason and others, the architec-
tural concerns that are central to the work of Minsky (1985) and the
connectionists (e.g., Feldman 1986; Rumelhart and McClelland 1986)
largely disappear from research on knowledge representation. With the
publication of Hayes (1977) it became a commonplace that a semantic
network is at best a notational variation of an extended first-order logic.
Although issues of computational efficiency have remained current
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topics of representational research, efficiency has been understood not in
the architectural terms of parallel realization but in terms of the com-
putational complexity of basic problems in logical deduction (Brachman
and Levesque 1981).

Throughout this history, the principal motor of technical evolution
has been the demand for mathematical formalization of representational
ideas. This demand, despite its virtues, has been a conservative force,
favoring formally precise elaborations of conventional ideas about repre-
sentation over critical examination of their premises. In retrospect, theo-
rists such as Quillian were trying to pull a theory of disembodied repre-
sentation into the causal order of a working brain, if not exactly an
embodied agent. Later theorists, driven by the traditional imperatives of
semantical research, moved back toward Fregean Platonism. To get be-
yond these imperatives, it will be necessary to trace more precisely how
philosophers, linguists, and sociologists have negotiated the difficulties
with the conventional view of representation. This investigation will call
in turn for some reexamination of the purpose of representation, and
specifically its relationship to the more fundamental phenomenon of
intentionality.

Indexicality

A representation is indexical when its truth depends on the
occasions of its use. The canonical examples of indexicality are the words
"I," "here," and "now," since the person, place, and time referred to by
an utterance of the sentence "I am here now" will usually depend on the
circumstances in which it is uttered. Verb tense is indexical as well; "I am
eating" might be true at one time and false at another. The great virtue of
indexical language, and of indexical representations generally, is the qual-
ity Barwise and Perry (1983: 5-6) call efficiency. This has nothing
directly to do with engineering notions of efficiency, in the sense of the
quantifiable efficacy of a technical method. Instead, it refers to the
capacity of an indexical representation to refer to different individuals on
different occasions. For example, the utterance "Can I help you?" or a
sign reading "Back in five minutes" will pick out different individuals in
different circumstances. In these cases, the same representational token
seems to be doing a variety of jobs, adapting itself in an agile fashion to
the demands of the situation. The theoretical challenge is to account
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satisfactorily for the relative contribution of these linguistic forms and of
the circumstances of their use to the determination of what they express.

The phenomenon of indexicality is a significant challenge to conven-
tional theories of representation because it ties the workings of language
to the circumstances of language use much more intimately than the
Fregean and Tarskian theories would seem to allow. Over the past twenty
years, indexicality has become a topic of extensive research. This re-
search takes place in the fields of philosophy, linguistics, and sociology,
each of which has found the phenomena of indexicality unavoidable in its
particular inquiries. Briefly tracing the issues as they have emerged in
these fields will illuminate the critical question of the role of representa-
tion in situated activity.

Frege was aware of the problem posed by indexicals.5 He held that an
utterance such as "I am eating" has a different sense when produced by
different people, or by the same person on different occasions. (This, as
Burge [1979] points out, is why sense is different from meaning; that
utterance surely has the same meaning regardless of the circumstances of
utterance.) Furthermore, an utterance such as "The weather is hot to-
day," produced today, might be regarded as having the same sense as
"The weather was hot yesterday," produced tomorrow. (These two utter-
ances surely have different meanings.) But Frege's theory immediately
breaks down at this point. Burge explains why:
The problem is that it seems intuitively implausible that a person who uses
proper names and indexical constructions always has or grasps abstract thought
components (I shall call them "concepts") that are sufficiently complete to
determine uniquely and in a context-free way the things he refers to. (1979: 425)
For example, people routinely employ the present tense (or say "now")
without having any way of knowing what time it is. Likewise, people
routinely say "here" without knowing where they are. That, after all, is
part of the purpose of indexicals: since their reference is relative to the
speaker, the speaker does not need to know what the reference is in
absolute terms. Thus, Burge concludes:
Frege appears to be caught between two objectives that he had for his notion of
sense. He wanted the notion to function as conceptual representation for a
thinker (though in principle accessible to various thinkers, except in special
cases). And he wanted it uniquely to determine the referents of linguistic expres-
sions and mental or linguistic acts. The problem is that people have thoughts
about individuals that they do not individuate conceptually. (426)
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Frege's theory fails because it attempts to blur the Platonic realm of
abstract ideals with the concrete realm of epistemically situated represen-
tation use. It fails, in short, because Frege wants to eliminate the body
from his theory of thought.

In fact, Frege tries to eliminate much more from his theory. Whereas
sense is eternal and unlocalized, reference pertains to the concrete, his-
torical relationships between particular representational contents and
particular things. After many false starts, philosophical work on refer-
ence has established that reference is regularly achieved by means of
complex, indirect, and contingent social processes by which utterances
and thoughts are causally connected to their referents (Donnellan 1966;
Kripke 1980; Putnam 1975a).

In their attempt to rescue compositional semantics from this impasse,
Barwise and Perry (1983) retained the model-theoretic framework and
broadened the notion of sense. Following Kaplan (1989 [1977]), they
observe that facts about the world determine the truth value of an utter-
ance in two ways: (1) by assigning an interpretation to the utterance (e.g.,
the meaning of "You got home late last night" depends on who is speak-
ing, who is being addressed, the current time, etc.) and (2) by determin-
ing whether that interpretation is actually true (i.e., whether the ad-
dressee actually got home late). More formally, the meaning of a sentence
is a relation between two situations: the situation in which the sentence is
uttered and the situation that the utterance is about. This is a substantial
advance over the traditional theory because it gives a central place to a
range of indexical phenomena long marginalized by the philosophy of
language (Evans 1982; Smith 1986). Barwise and Perry effectively re-
verse the hierarchical opposition in Frege's theory: whereas Frege treats
context-independent meaning as central and indexicality as marginal,
Barwise and Perry treat efficient expressions as the paradigm of mean-
ingful language.

Nonetheless, the purpose of Barwise and Perry's theory is not to
account for the connections between representation use and actual, con-
crete activities. Instead its purpose is to provide a framework that reflects
in formal terms the systematic differences in meaning among various
utterances. Barwise and Perry's semantics thus entails a metaphysical
realism, according to which it is possible for a semantic theorist to enu-
merate in some objective way the ontology of a concrete situation of
representation use, before the event (Winograd 1985). In this sense, their
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position is even stronger than that of the main Fregean tradition (Barwise
and Perry 1985).

The most important limitation of Barwise and Perry's semantic theory
is not their realism as such, but rather the unfinished work that their
realism obscures. When a speaker uses an indexical term such as "I,"
"you," "here," "there," "now," or "then" to pick out a specific referent,
this picking out is determined by relations between situations; it is not an
act on the speaker's part. Consider, for example, a farmer who tells a
farmhand, "No, put it there" while nodding vaguely off to the right. The
farmhand will probably be quite capable of interpreting the "it" as refer-
ring to the bale that the farmhand is carrying, and "there" to refer to a
region in the yard that the farmer had used for stacking bales during the
preceding harvest. More generally, as W. Hanks (1990) observes, the
language and customs of every culture have their own supply of potential
referents for "I," "you," "here," "there," "now," and "then." When the
participants in a linguistic interaction manage to refer to the same people,
places, and times, this is a complex, shared achievement of the partici-
pants (Kronfeld 1990; Silverstein 1976). It is also, as Garfmkel (1984
[1967]) would insist, an achievement that is only good enough for practi-
cal purposes; individuals may well have different views of the precise
boundaries of the "there," "then," or "them" being referred to, but if the
discrepancy causes no trouble, it will most likely pass unremarked. A
model-theoretic account of this achievement such as Barwise and Perry's
can posit the potential and actual referents of indexical terms by con-
structing the appropriate situations, but it cannot explain the actions by
which particular people picked out those particular referents. It is only
through study of the actual practices people employ to achieve reference
in situ that indexicality begins to emerge not merely as a passive phenom-
enon of context dependence but as an active phenomenon of context
construction.

This conclusion is strikingly analogous to the development of plan-
ning research that I traced in Chapters 8 and 9. In each case, research
began with a distinction between an abstract realm (the planner's simula-
tions of the world, the world model, the Platonic realm of meaning) and a
concrete realm (the executor carrying out the plans, the world being
modeled, the objects being referred to). And in each case, the research
evolved historically, seemingly driven against its will toward conceiving
its opposed terms as intertwined. Although obvious in retrospect, this
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intertwining - between inside and outside, between abstract and
concrete - has rarely been acknowledged. Instead, it has taken place in
obscure corners of a theory, or in unreasonable assumptions that later
theorists must struggle to iron out, or in technical complexities that
remain on the agenda for future research. These are the margins of
mentalism. More precisely, they are the margins of particular proposals
within the sprawling family tree of mentalism. Mentalism deconstructs
itself in these margins, and so it is understandable that mentalist re-
searchers have kept reworking their theories until those margins have
become invisible. In the end, though, the accumulated experience of the
research community - the "feeling for the organism" that arises and
evolves through attempts to get things working - creates the conditions
in which the margins can be seen for what they are. Attempts to build
minds have finally made clear, in the irreducibly intuitive way in which
technical people can possibly know such things, that human beings are
not minds that control bodies. It is therefore worth exploring the inverse
proposition: that interaction is central, both to human life and to the life
of any agent of any great complexity. Doing so, however, requires a
different vocabulary - a vocabulary that does not define all issues in terms
of the relationships among a mind, a body, and an outside world. It also
requires that we reckon with a kind of vacuum - the vacuum that opens
up when we can no longer use the technical schemata of mentalism to
build new mechanisms or explain how they work.

Intentionality
The preceding section has described the tension that the phe-

nomenon of linguistic indexicality has introduced into accounts of repre-
sentation, and the resulting movement toward a view of human beings as
active subjects deeply embedded in their familiar environments. My
topic here is not linguistic indexicality as such but this deeper phenome-
non of embedding. How are human activities structured and what role do
representations play in them?

To investigate these questions we must turn to the European phenom-
enological tradition, which developed an account of representation as
complex and derivative in relation to the originary phenomenon of inten-
tionality. Intentionality is a broader concept than representation. It
covers all types of "aboutness" or "towardness" that might be exhibited
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within any exercise of agency in relation to things in the world. Some
examples might include talking about a house for sale, picking up a cup to
drink from it, avoiding an obstacle in the street, remembering an incident
at work, or playing a song on a guitar. In each case, one's actions are
oriented toward certain things (a house, a cup, an obstacle, the partici-
pants in some incident, a song, a guitar), and no useful description of the
events in question could fail to mention these things. That is, one might
describe a cyclist's avoidance of an obstacle in terms of the maneuver's
precise spatial trajectory and without any reference to the obstacle itself,
but this description would not be particularly useful as an account of
what happened, much less of why. In general, human activities must be
described in intentional terms, as being about things and toward things,
and not as meaningless displacements of matter. Physical and intentional
description are not incompatible, but they are incommensurable.

The relationship between intentionality and representation is a subtle
matter. One theory, the representational theory of intentionality (Cummins
1989: 14; cf. Boden 1970; Fodor 1987), holds that beneath every instance
of intentionality there lies some representation, so that the avoidance of
an obstacle necessarily entails the representation of an obstacle.6 And
many cases of intentionality indisputably involve the use of representa-
tions. But in asking about the nature of intentionality, it is important not
to presuppose that representation exhausts the phenomena of "about"
and "toward." What alternatives to the representational theory of inten-
tionality might be possible? This question has become urgent over the
past several years as phenomenologically motivated critiques of the rep-
resentational theory of intentionality have been employed in disputing
the premises of AI. In this section I will review some of the history of
ideas about intentionality, with the goal of motivating some computa-
tional alternatives.

The term "intentionality" originates with Brentano, but for present
purposes the first important treatment of intentionality was that of Hus-
serl (1960 [1929]; cf. Dreyfus 1982). Husserl's theory of intentionality is
part of his overall project of completing Descartes's attempt to place
human knowledge on a firm basis by working outward from the indubita-
ble bases of human experience. More precisely, Descartes wished to
reconstruct the inferential basis of knowledge from indubitable premises,
and Husserl wished to reconstruct the structure of experience from an
irreducible core of what he called acts of consciousness. He argued that to
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take up an intentional relationship to anything, whether mental or
worldly, was a positive act of conferral - a matter of actively placing an
interpretation on one's experience. More generally, he asserted that expe-
rience has an elaborate architecture that normally goes unremarked on
within the natural attitude of unreflectively relating to things. Through
his investigation of the structures of experience, Husserl hoped to place
everyday activities and scientific research alike on a firm philosophical
basis. Husserl did not intend his project to derive a mechanistic account
of the human perceptual and cognitive apparatus, since he regarded
intentionality as an irreducible phenomenon. Instead he sought to
describe in detail the structure of human experience, exhibiting the
natural attitude not as a transparent whole but as a certain complex
phenomenon.

Heidegger (1961 [1927]) took another approach to the phenomenolog-
ical description of experience. Like Husserl, Heidegger understood his
project not as the logical rederivation of difficult conclusions but as the
step-by-step recovery of a primordial experience of reality that successive
generations of philosophy had obfuscated in their obsession with meta-
physical speculation. But Heidegger began by rejecting the Cartesian
starting point of Husserl's analysis of intentionality. HusserPs wariness of
the uncritical form of awareness characteristic of the everyday natural
attitude had led him to begin his analysis from within an artificial form of
awareness, the so-called reduction of experience to what is indubitably
given in it. In particular, Husserl shared Descartes's intuition that the
outside world, other people, and culture in general are far away from
individual experience, entailing elaborate construction from the basic
acts of consciousness. For Heidegger, though, those aspects of experience
are far only from the thought of philosophers, not from the ordinary
experience of everyday life. Heidegger thus was led to give concrete
activity and the social world a fundamental place in his account of human
experience.

Heidegger's account of intentionality in Being and Time reflects this
suspicion of detached observation.7 He proposed a distinction between
two ways of relating to things: the routine and unreflective mode of the
ready-to-hand and the exceptional and deliberate mode of the present-at-
hand.s This distinction is not mechanistic or psychological but phenome-
nological: a description of the structure of everyday experience. In our
everyday routine activities, according to Heidegger, we have no positive
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awareness of engaging in acts of interpreting pieces of matter as cups,
doors, or packages. The point is not that we carry on our activities
unconsciously, but that we encounter objects through the roles they play
in our activities and not as objective individuals in their own right.
Sometimes, as in scientific work and traditional philosophical reflection,
we do relate to objects in this entirely neutral fashion, but Heidegger
regards this phenomenon as exceptional, and as something that takes
place against the background of ordinary practical activity and its ready-
to-hand way of encountering things.

In her account of the issues involved in bringing phenomenological
arguments to bear on computational issues, Preston (1988, 1993) ex-
plores the consequences of identifying Heidegger's distinction between
the ready-to-hand and the present-at-hand with the distinction between
nonrepresentational and representational intentionality. This view has its
phenomenological basis in the observation that, in the ready-to-hand way
of encountering things, we have no awareness of manipulating represen-
tations. In other words, in routine activity we encounter things within
their relationship to ourselves and to our activities and not in virtue of
their being the denotata of representations. Even when we do use repre-
sentations, as in conversation or writing, these representations do not
exhaust our experience of the things represented; instead they play a
more complex and derivative role, articulating experiences that have
already taken form in advance of them, or else providing a resource in
forming an understanding that goes beyond them. Still, great analytical
delicacy is required. As Preston points out, it is doubtful whether the
whole ideology of representation entailed in the representational theory
of intentionality is compatible with the secondary role that Heidegger
wishes to assign to the use of representations. Heidegger, moreover,
would probably not wish to rule out unconscious representation use. And
the case of ordinary conversation shows that the use of representational
media such as natural language is consistent with a routine mode of
activity and an entirely ready-to-hand way of encountering things. Cer-
tainly representation exists and participates in at least some instances of
intentionality. The issue, rather, is what kinds of representation exist and
what roles they play in real activities.

Heidegger's radicalization of the question of intentionality reflects an
important shift in philosophical values. Whereas the empiricist and ra-
tionalist traditions had tended to regard scientific activity and objective



238 Computation and human experience

knowledge as the prototypes for all human existence, Heidegger insisted
that these special phenomena have their basis in the very different and
more fundamental phenomena of routine, concrete activity in the famil-
iar environments of everyday life. He observed that none of us has chosen
or invented the world of everyday life. Quite the contrary, we have
inherited the overwhelming majority of it, piece by piece, in the course of
our socialization into our culture's ways of doing things. We carry on
with daily activities of extraordinary complexity without ever requiring
or attaining more than a very rough explicit understanding of how any of
them work. The grounds for confidence in our ways of doing things, on
this view, lies not in our intellectual analyses but in our habitual and
generally unreflective participation in the tried-and-true practices of our
culture. As a result, everyday activities have an aspect of anonymity, in
that prior to their being things that "I do," they are things that "one
does" (Heidegger 1961 [1927]: 163-168).

The fundamental point concerns the intentional structure of everyday
activity. Whereas Husserl and others before him had viewed everyday
activities as inheriting their intentionality from creative acts of con-
sciousness, Heidegger insisted that everyday activities had an intentional
structure of their own. If I steer around a pothole or eat with a knife and
fork, these actions derive their intentionality from the network of cul-
tural practices that I embody as a result of my socialization. I might
superimpose some modifications of my own against this background of
cultural practices, but these must be understood as modifications to a
much broader and deeper preexisting structure. Intentionality is thus, in
this sense, "public."

Merleau-Ponty's phenomenological analysis in Phenomenology of Per-
ception (1962 [1945]) also begins from an implicit critique of Husserl and
takes concrete activity as its central phenomenon (cf. McClamrock 1995:
187-193). More than Heidegger, Merleau-Ponty developed the theme
that our activities are those of embodied agents. He construed very
broadly the traditional notion of the "body" as the residence of habit and
desire. In doing so, he tried to break down the conventional opposition
between consciousness and the world, replacing it with a positive account
of the body as a site of convergence and overlap between them (see Leder
1990). Intentionality for Merleau-Ponty is the intentionality of one's
bodily ways of relating oneself to things in the course of one's activities.
Like Heidegger, Merleau-Ponty wishes to distinguish between the unre-
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flective intentionality of routine embodied activity and the more delibe-
rate type of intentionality that encounters objects as existing in them-
selves and not through their roles in one's purposive activities.

A number of authors have used these phenomenological analyses as
the basis for a critique of AI. The first and most forceful of these was
Hubert Dreyfus, who took AI to be the inheritor of the metaphysical
tradition against which Heidegger wrote. Dreyfus drew clear sides, iden-
tifying Husserl and AI research with an uncritical objectivism and em-
phasizing the place in Heidegger and Wittgenstein's work of the pre-
representational realm of culturally constituted embodied activity. For
example, Dreyfus (1982) argues in some detail that the troubles that
Husserl encountered in working out his theory of intentionality parallel
similar troubles in AI; in each case, the project starts out with a promis-
ing enumeration of rules that then cannot be brought to any satisfying
closure. He suggests that, following Heidegger, we "change the subject
altogether, and ask about the intelligibility, unity, and order of public
behavior rather than private experience" (1982: 26, italics in the original).

The debate is difficult to resolve, due to the near incommensurability
of the phenomenological and technical discourses. The philosophy that
informs AI research has a distinctly impoverished phenomenological
vocabulary, going no further than to distinguish between conscious and
unconscious mental states. By rendering unintelligible any substantive
conception of the individual's involvement in the world, this vocabulary
encourages a purely representational theory of intentionality and makes
it difficult to comprehend any other account. Within such a framework,
and given the requirement that all concepts be given technical realiza-
tion, the idea of nonrepresentational intentionality is liable to sound like
mysticism, as if intentionality were an occult force connecting mental
states to their referents.

Such perceptions of philosophical ideas have led many AI people to
feel antipathy toward the broader intellectual world - including the intel-
lectual background from which computational ideas derive. I have heard
expressed many versions of the propositions that philosophy and tech-
nology are dichotomous, that philosophy is a matter of mere thinking
whereas technology is a matter of real doing, and that philosophy conse-
quently can be understood only as deficient in comparison and as a
distraction from the real work of design and implementation (Agre
1995c). As a result of such views, computational ideas are no longer
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understood as ideas but as techniques, to be evaluated on the technical
results they produce in practice. While this practical criterion has its
place, it cannot replace critical reflection on the intellectual inheritances
of the field and systemic difficulties to which these give rise. Alternative
ideas will stand or fall on technical grounds, but only after a suitably
critical understanding of technical work has been put in place. Technol-
ogy at present is covert philosophy; the point is to make it openly
philosophical.



12 Deictic representation

Deictic intentionality

As the intellectual history sketched in Chapter 11 makes clear,
AI research has been based on definite but only partly articulated views
about the nature and purpose of representation. Representations in an
agent's mind have been understood as models that correspond to the
outside world through a systematic mapping. As a result, the meanings
of an agent's representations can be determined independently of its
zcurrent location, attitudes, or goals. Reference has been a marginal
concern within this picture, either assimilated to sense or simply posited
through the operation of simulated worlds in which symbols automat-
ically connect to their referents. One consequence of this picture is that
indexicality has been almost entirely absent from AI research. And the
model-theoretic understanding of representational semantics has made it
unclear how we might understand the concrete relationships between a
representation-owning agent and the environment in which it conducts
its activities.

In making such complaints, one should not confuse the articulated
conceptions that inform technical practice with the reality of that prac-
tice. As Smith (1987) has pointed out, any device that engages in any sort
of interaction with its environment will exhibit some kind of index-
icality.1 For example, a thermometer's reading does not indicate ab-
stractly "the temperature," since it is the temperature somewhere, nor
does it indicate concretely "the temperature in room 11," since if we
moved it to room 23 it would soon indicate the temperature in room 23
instead. Instead, we need to understand the thermometer as indicating
"the temperature here" - regardless of whether the thermometer's
designers thought in those terms.

As with thermometers, so it has been with the design of computational
241
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devices. Many parts of AI and computer science in general have felt no
need for worked-out ideas about representation and have carried on by
haphazardly adapting intentional language from the general culture.2 As
computational artifacts have grown more complex, though, the need for
principled ways of talking about their intentionality has become more
urgent. And as previous chapters have suggested, the representational
ideas that have been made explicit lead to technical inefficiencies and
conceptual muddles when attempts are made to put them into practice.
AI research needs an account of intentionality that affords clear thinking
about the ways in which artifacts can be involved in concrete activities in
the world.

In reviewing the state of technical practice here, I have been speaking
in the engineering register of "artifacts" and "efficiency." My own inter-
est is in using computational ideas to help understand human beings,
who are not artifacts and who do not live their lives for the sake of
efficiency. And, indeed, it has long been hard to understand how it might
be possible, in any principled fashion, to ascribe intentionality to an
artifact. If intentional states are necessarily subserved by mental repre-
sentations, it becomes difficult to say that a thermometer "measures the
temperature" or that a robot "welds cars" without importing some heavy
philosophical baggage. It is an interesting fact that this kind of speech
assists engineers in building thermometers and robots, but that does not
imply that a coherent philosophical theory could be reconstructed from
it. One attractive approach is to say that intentionality is relative to a
beholder's suppositions about the rationale behind the artifact's design
(Dennett 1981). Many other people resist the intuition that mechanical
devices can have intentional states, since this seems to confer on them a
vitality or consciousness that they really do not have.3

The intuition that denies intentionality to current-day thermometers
and robots speaks to an aspect of intentionality that Heidegger and
Merleau-Ponty spell out: its basis in the individual's socialization into the
everyday practices of his or her culture (Dreyfus 1972). Artifacts cur-
rently do not participate in this kind of culturally constituted activity,
and it is an open question whether they ever could and whether such
participation is a prerequisite of anything we might want to call intelli-
gence. And it is hard to say which aspects of human embodiment and
acculturation are necessary, either by definition or as a practical matter,
for the human forms of intentionality. I will not resolve the question
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here. I will, however, develop an alternative to the representational theory
of intentionality, beginning with the phenomenological intuition that
everyday routine activities are founded in habitual, embodied ways of
interacting with people, places, and things in the world. In so doing, I
will speak of intentionality in a sufficiently broad way that artifacts might
be said to exhibit it.4

Every form of intentionality implies an ontology. Let us distinguish
between two kinds of intentionality and thus two kinds of ontology,
objective and deictic. An objective ontology holds that individuals can be
defined without reference to any agent's activities or intentional states. If
an agent has an objective form of intentionality toward some individuals
- that is, if it has intentional relationships to some things in virtue of
their objective identities - those individuals can be considered to exist
independently of the agent. A deictic ontology, by contrast, can be
defined only in indexical and functional terms, that is, in relation to an
agent's spatial location, social position, or current or typical goals or
projects. If an agent has an intentional relationship to an entity then as far
as the agent is concerned the latter is defined entirely in terms of the role
it plays in the agent's activities.5 In the notation to be explained shortly,
some examples of deictic entities are the-door-I-am-opening, the-stop-
light-I-am-approaching, the-envelope-I-am-opening, and the-page-I-am-
turning. Each of these entities is indexical, because it relates specifically to
me, and functional because it plays a specific role in some activity I am
engaged in; they are not objective, because they refer to different doors,
stop lights, envelopes, and pages on different occasions.6

Deictic intentionality is the predominant form of intentionality in the
everyday activities of human beings. As an example of deictic inten-
tionality, consider one's relationship to the utensils at a restaurant table.
One's table generally comes equipped with a fork, a knife, a spoon, a glass
of water, a napkin, and so forth, arranged in a customary pattern in
relation to the table and chairs. In eating dinner, if all goes as usual, one
adopts a deictic form of intentionality to these objects. That is, one treats
them in just the same way in which one has treated all of the other forks,
knives, spoons, glasses, napkins, tables, and chairs at all of the other
restaurants at which one has eaten. Each of these entities plays its own
role in a stable system of practices, and its objective identity does not
normally arise as an issue. Just as the thermometer measures the tem-
perature "here" and not "in room 11," so one eats with "this fork," or
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perhaps "the fork at my place at the table here," and not with "fork
number 271403" in some cosmic registry of forks. Deictic intentionality
is a prominent feature of everyday routine activity because everyday
routine activity consists for the most part of embodied cultural practices
that bring us into familiar relationships with familiar types of objects.

A deictic ontology, then, is not objective, because entities are con-
stituted in relation to an agent's habitual forms of activity. But neither is
it subjective. These forms of activity are not arbitrary; they are organized
by a culture and fit together with a cultural way of organizing the material
world. Individuals might have their own distinctive repertoires of ar-
tifacts and habits, but each repertoire will be assembled from, and orga-
nized against the background of, an encompassing cultural "vocabulary."
A deictic ontology, then, does not entail a skeptical or solipsistic stance
toward the world, nor does it assume that individuals can capriciously
reorganize the world simply by confabulating a new set of entities in their
minds. The contrast between objective and deictic ontologies is not
invidious; neither is inherently preferable, both have their place, and
transitional or borderline cases between them may well be found.

One task for research on the two types of intentionality - engineering
research in the case of artifacts or psychological research in the case of
human activities - is to understand their respective roles and the rela-
tionship between them. My leading principle will be the phenomenologi-
cal intuition that deictic intentionality is more fundamental than objec-
tive intentionality. This intuition has two parts. Consider some activity
that brings an agent into an objective relationship with something, for
example a particular hammer that has its own history and quirks. First,
although that hammer will be in some sense focalized as an object of
contemplation or action, most of what is going on in that situation
(staying balanced, keeping materials straight, figuring where the nails go,
etc.) will still take the form of comportment toward deictically con-
stituted things (Heidegger 1962 [1927]: 91-107; Merleau-Ponty 1962
[1945]: 136-147). Second, even an object whose distinctive status (in a
particular situation) requires the special treatment of objective inten-
tionality is still, for most purposes (picking up, putting down, aiming,
adjusting grip - things one does with any hammer), a generic entity that
stands as the object of one's routine cultural practices. Objective inten-
tionality, then, is not an entirely separate phenomenon. Instead, it is built
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on top of deictic intentionality as a further complication or refinement.
Learning a person's name, for example, is a practice that facilitates relat-
ing to him or her as a particular objective individual. Yet most of the
mechanics of interpersonal interaction are generic within a given culture.
They function perfectly well before someone has emerged for us as a
distinctive individual, and even with close acquaintances they function in
a largely generic way (Atkinson and Heritage 1984; Moerman 1988).

Further instances of deictic intentionality can be enumerated easily by
considering the objects we encounter within the whole range of our
everyday practices. In the normal course of things, we do not relate to
particular cereal boxes, oil cans, forest paths, postage stamps, ham-
burgers, and test tubes in terms of their objective identities but in terms
of the roles they play in our activities. The point is not that all objects
playing a given role are indistinguishable but rather that they are all
assimilable to customary ways of interacting with them. On the special
occasion when one of these things takes on a distinctive significance for
us (perhaps through a defect or sentimental association), it takes on that
additional importance over and above its generic role in our normal
comportment toward such things. If its distinctive quality is not readily
perceptible, it will probably have to be specially marked or segregated so
that it will not be confused with other objects that resemble it. In fact,
examples of indistinguishable objects that are not functionally inter-
changeable are hard to come by. One example occurs in the practice of
buying rounds in a bar, in which it becomes necessary to keep straight the
visually identical beer glasses to avoid spreading illness.

Recall that indexical reference is "efficient": an indexical term can
refer to different objects in different contexts. Deictic intentionality is
efficient in the same way, and this points toward an important property of
embodied practices: their portability. People comport themselves in their
customary manner toward whatever circumstances they encounter, in
virtue of the indexical and functional significances these circumstances
might hold. What remains more or less constant across these circum-
stances are the cultural practices that individuals embody. Various prop-
erties of environments remain relatively invariant as well, largely as a
consequence of these very practices. Nonetheless, a great deal of con-
tingency attends the details of particular interactions between people and
their environments. Whatever recurring structure we theorists might
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find in the dynamics of everyday life is an emergent phenomenon. This
recurring structure is both the central phenomenon of human life and
the principal datum for computational research.

Causal relationships
The phenomenon of deictic intentionality thus has conse-

quences for computational research, regardless of whether we intend to
build artifacts or to understand people. It is critical to distinguish be-
tween an agent's machinery and the dynamics of its interactions with its
environment. An individual embodies the repertoire of habitual practices
that characterize a culture, but the coherent organization of activity arises
only through individuals' interactions with their familiar world. We as
theorists might construct elaborate theories of the dynamics of individ-
uals' activities within the encompassing dynamics of society and history,
but it would be bad sociology and bad engineering to presuppose that the
individuals themselves possess any explicit representations of these theo-
ries. As a matter of sociology, ordinary people would probably conduct
their lives differently if they had a better understanding of the actual
workings of society. And as a matter of engineering, it is pointless to
endow an artifact with any more elaborate theory-using abilities than it
requires to perform its assigned task. In each case, the leading principle is
that of machinery parsimony: choosing the simplest machinery that is
consistent with known dynamics. This view contrasts with the emphasis
on expressive and explicit representation that is currently a central AI
design value.

Instead, this alternative view suggests some different design values.
The starting point, once again, is the distinction between machinery and
dynamics. A designer moves back and forth between two activities: syn-
thesis of machinery and analysis of dynamics. The question of inten-
tionality arises when it comes time to understand how one's artifact will
interact with the people, places, and things that will populate its environ-
ment. The artifact will most likely interact with a given object in virtue of
the object's role in the artifact's activities, not through the object's objec-
tive identity. The designer might plot out the typical life histories of
objects, assigning the artifact particular parts in the story while leaving
the other parts to natural processes, other agents, and assorted factors of
happenstance. It might conceivably be necessary for the artifact to repre-
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sent this whole life history to itself, but closer analysis will probably
reveal that some more parsimonious design strategy will suffice. This
kind of analysis, of course, has analogs in the study of human life as well.
Objects have life histories in the social world (Kopytoff 1986), in which
particular people play only particular roles according to their locations in
the overall organization of society. A complete analysis of society will
map out the ways in which people and things come together in ordinary
activities without necessarily attributing omniscience to anyone.

In general, of course, our relationships to objects are not merely epi-
sodic but have some time-extended structure. I need not maintain per-
ceptual contact with the object throughout the course of my relationship
with it, provided that my interactions with it have a sufficient degree of
reliably invariant structure. For example, I might buy a white Oxford-
cloth shirt and wear it intermittently until it becomes unpresentably
worn, keeping it in my closet or hanging it over a chair in my bedroom on
days when I wear other shirts. Or my wallet might trace a definite
trajectory through my environment, from nightstand to pocket to gym
locker and back again, being taken out momentarily on those occasions
when business is being done. Or I might buy a carton of orange juice and
carry it from supermarket to car to kitchen shelf to refrigerator to kitchen
table to refrigerator to kitchen table to trash can to curbside. In each case,
the object and I live interwoven lives for a while, tracing our respective
paths through the world according to a stable set of habits and customs
that a theory of activity might hope to describe.

Conventional design practice in AI understands this phenomenon of
time-extended relationships between agents and objects in terms of the
problem of "keeping track" of an objective individual. An agent might
have in its head a symbol such as SHIRT32 that serves three purposes:
(1) to name a certain shirt, (2) to participate in the logical sentences that
express knowledge of that shirt, and (3) to mediate concrete interactions
with that shirt on particular occasions of buying it, wearing it, washing it,
ironing it, and finally packing it off to a charitable organization. In some
research this process of keeping track is simply stipulated, as if symbols
stayed magically connected to their referents. This assumption is actually
valid in certain situations, as when the agent is a computer program that
interacts only with other computer programs and not with the world
outside the computer. Normally, though, simply expressing the continu-
ing identity of an object does not suffice to keep track of the object in a
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causal sense. Sometimes it is imagined, somewhat more reasonably, that
the agent stores a set of spatial coordinates for each such object, updating
the stored values each time any fresh knowledge about the object's where-
abouts becomes available, as part of the general process of maintaining an
objective world model. In each case, the agent conducts all of interactions
with the object via the symbol that names it and maintains a correspon-
dence with it as time goes along.

The notion of deictic intentionality suggests a different approach to
the question. First of all, it is inherently easier to deal with a deictic entity
than with an objective individual, because several objects may be capable
of playing a given role in an agent's activities. From this point of view,
what matters is the agent's ability to get ahold of something that can serve
the entity's defining purpose. One might have three white shirts, six
dinner-table chairs, a stack of fresh envelopes, and a pound of nails, and
when one is dressing for work it may matter only that one select a white
shirt to put on and not a chair, envelope, or nail. As long as the objects in
a given category remain indexically and functionally indistinguishable, it
is not necessary to keep track of a particular individual; instead one must
simply maintain access to some instance of a category.

Second, and more important, the theorist can usually deduce interac-
tional invariants that make it unnecessary to keep explicit track of the
locations of objects. Most of these invariants are entirely mundane: they
result from the cultural practices of putting things back in their places,
replenishing supplies when they are running low, carrying things around
in one's pockets, getting things fixed when they break, making notes to
oneself, locking doors, refrigerating perishables, and organizing one's
house in pretty much the same way as everyone else in the culture.

Other interactional invariants arise in ways that are partly evolved and
partly deliberate. For example, at any given time I own perhaps two
dozen pens, most of them brought home from hotels or acquired in
periodic binges at art supply stores, and I keep them in several places,
including my desks at home and work, my computer terminal, my car, my
laptop computer's carrying case, and my backpack. The ebb and flow of
life frequently cause pens to move from one of these locations to another,
for example when I grab a pen from my desk on my way to the library and
then toss it in my car on the way home. As a result, I sometimes notice
that many pens have accumulated in one place. When this happens, I put
the excess pens in my backpack. And when I need a pen in one of those
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places and discover that I have none, I grab some pens from my backpack
and put them there. Although I sometimes pay attention to the disposi-
tion of red and green pens when I am marking students' papers, I rarely
attempt to keep track of specific pens. I never have a panoptic sense of
which locations are well and poorly stocked with pens at a given moment,
and I pay no attention to my supply of pens except when I notice a surfeit
or when I need a pen and none is handy. Of course, the efficacy of these
practices depends on a wide variety of factors that I did not create - such
as the willingness of hotels to give away pens and the social arrangements
that generally prevent other people from taking my stuff. And although
this whole dynamic is particular to my own life, it is assembled from
numerous elements provided by a cultural way of life that I did not
choose.

My prescription, then, is a design practice that employs dynamic
analysis of time-extended patterns of causal interaction between agents
and objects to minimize the mechanical complexity of designed artifacts.
Central to this revised design practice is a clear distinction between two
points of view: that of the theorist and that of the agents being theorized
about. Regardless of our ontological commitments as theorists, the ques-
tion remains: what kind of ontology might be employed by the agents
under study? And even if we as theorists are immensely knowledgeable
about the structure of the world and the dynamics of activities, the
question remains: how much of this knowledge should we ascribe to the
people we study or incorporate in the artifacts we build? In each case, the
principle of machinery parsimony suggests endowing agents with the
minimum of knowledge required to account for the dynamics of its
activity.7 Most people get along well in the world with a relatively super-
ficial understanding of physics and sociology, and most people can use
thermostats without book learning about temperature (cf. Kempton
1986). In each case it might be preferable if people knew more than they
do, but it is pointless to build artifacts that reason from first principles
when tenth principles will suffice.

It might be objected, perhaps, that this is a formula for the design of
special-purpose devices (called "hacks" or "toys" in the lexicon of con-
ventional AI design values) and thus a violation of the spirit of AI, which
always seeks greater explicitness of representation and broader generality
of function. But the conventional conception of general-purpose func-
tionality is misguided: the kind of generality projected by current AI
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practice (representation as expression, thought as search, planning as
simulation) simply cannot be realized. Every artifact or organism of any
complexity relies heavily, by computational necessity, on the regularity
and coherence of its familiar world. Sometimes this reliance is hidden, as
in the case of the simplifying and regularizing assumptions that are built
into computer systems and enforced in their operating environments.
Human intelligence in particular is not a matter of lone geniuses rein-
venting culture from scratch but of ordinary people socialized into orga-
nized forms of life. And our design practice must give a central place to
this interdependency of sensible agents and orderly environments.

Entities and aspects

Previous sections have contrasted objective and deictic inten-
tionality and have sketched the consequences for design practice of tak-
ing the latter to be the principal way in which agents relate to things. This
discussion has avoided the concept of representation, for two reasons.
First, the question of intentionality is logically prior to the question of
representation. Second, once intentionality is understood in a suitably
sophisticated way, the notion of representation must undergo painful
surgery to be of continued use. It will be evident by now that the conven-
tional AI understanding of representation involves some questionable
presuppositions. But no simple alternative is available because represen-
tation is not a unitary phenomenon. Photographs, epic poems, visual
images, operating-system queues, rituals, recipes, echoic memories, po-
lice records, arrangements of marching bands on football fields, and
Saturday morning cartoons are all representations in various ways. Each
form of representation has its own ways of referring to things, its own
dynamics of creation and use, its own complex social life, and its own
varieties of historical and cultural specificity.

The concept of representation often threatens to break down alto-
gether. Must we say that thermostats employ representations? Ants?
Apes? The questions are futile because no definite distinction is at stake.
The matter is particularly delicate in relation to the most ordinary phe-
nomena of human activity, the sort I have offered as examples of deictic
intentionality. When I do something as routine as sitting down, changing
lanes, sipping coffee, flipping pancakes, or turning a key in a lock, am I
using representations? It is an empirical question, but it is an empirical
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question only once "representation" is defined. Rather than attempt to
sort the issues, I will use the term objective representation to name any
technical method, such as the use of first-order logic to express stored
knowledge, that produces artifacts which employ an objective ontology,
whether or not it involves constructs that would normally be called repre-
sentations. The term deictic representation will likewise name any techni-
cal method that produces artifacts which employ a deictic ontology -
again, whether or not conventional representations are involved.8 A given
agent might employ both objective and deictic ontology in various com-
binations, but I will not consider in any systematic way how this might
work. Nor will I present a mathematical account of the "meaning" of
deictic representations (cf. Subramanian and Woodfill 1989a, 1989b).

Some terminology will be useful. An agent using a deictic representa-
tion scheme might, as already mentioned, take up an indexical and func-
tional relationship to some deictic entity. I will name deictic entities with
hyphenated noun phrases such as the-car-I-am-passing or the-coffee-cup-
from-which-I-am-drinking or the-spinach-I-am-washing. These names are
conveniences for the theorist, not mental symbols of any sort. Although
they seem like definite descriptions, they are not descriptions that agents
represent to themselves as linguistic structures. They designate, not a
particular object in the world, but rather a role that an object might play
in a certain time-extended pattern of interaction between an agent and its
environment. Different objects might occupy this role at different times,
but the agent will treat all of them in the same way. Thus, if I am driving
down Route 2 in Montana, I will pass a dozen cars an hour, each of which
will be the-car-I-am-passing in turn. Passing cars on Route 2 is a tedious
and routine matter - a recurring and stable pattern of interaction among
myself, my car, the other driver, his or her car, the road, and the rest of
the landscape. In each case of passing cars on the road, the name the-car-
I-am-passing is said to refer to whatever car is being passed right now. The
concept is not that of linguistic reference, since symbolic representations
are not necessarily involved. If an entity refers to a certain object on some
occasion, then that object is said to be assigned to that entity. This as-
sumes, of course, that we as theorists are willing to say that the object in
question actually exists and is not, for example, an optical illusion of
some sort. In general, theoretical use of a name like the-car-I-am-passing
does not guarantee that the-car-I-am-passing will necessarily refer to a
car, since a driver might mistakenly try to pass a haystack or an optical
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illusion. The name designates a role, not a set of semantical conditions of
satisfaction. Theorists may sometimes wish to define entities in terms of
other entities, such as the-space-bar-on-the-keyboard-on-rphich-I-am-
typing.

More vocabulary: an aspect of some entity predicates something of that
entity, for example the-car-I-am-passing-is-a-police-car or the-coffee-cup-
I-am-drinking-from-is-empty or the-spinach-I-am-washing-is-clean-nom
An aspect can mention more than one entity, as in the-cup-from-which-
I-am-drinking-is-sitting-on-the-newspaper-I-am-reading. Under suitable
circumstances, an agent can be said to register at a given moment, the
value of such an aspect. It is up to the designer, of course, to specify the
actual causal events that make this registration possible, whether through
perception or memory or surmise or some combination of these.

Despite this vocabulary, many of the classically difficult technical
problems of representation remain. For example, the question will still
arise of what entities and aspects to represent. As a technical matter, a
designer must make choices as to degrees of abstraction, complexity of
inferential schemes, and the like. As a psychological matter, some account
must be provided of what entities and aspects people relate to and why. In
practice, most entities and aspects derive from one's culture through
language and through socialization into the routine practices of everyday
life. Representational innovation is possible, of course, but it is not a
prominent feature of ordinary activities.

It may be objected that deictic representation is just an obscure nota-
tion for concepts better expressed in conventional representation
schemes, or perhaps in relatively novel schemes, such as McCarthy and
Hayes's (1969; cf. Hayes 1979b; Sandewall 1994) notion of fluents, for
expressing various kinds of context dependence. One might, for example,
attempt to write the-cup-from-which-I-am-drinking with some such logi-
cal term as ixxup{x) A drinking(I,x), where the quantifier "i" expresses
the definite article (it is read "the x such that . . .") and the constant
symbol " / " stands for me. For this to make sense as logic, however, one
would have to provide a semantic scheme according to which / manages
to pick out the appropriate individual based on the context in which it is
used. (Likewise, the implicit now in drinking must pick out the correct
time based on the context of use.) Even if one does provide a consistent
logical semantics for this kind of expression, perhaps using situation
semantics, the entire exercise is beside the point. Deictic representation
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is not a means of expressing states of affairs but of participating in them.
Conventional AI ideas about representation presuppose that the purpose
of representation is to express something, but this is not what a deictic
representation does. Instead, a deictic representation underwrites a mode
of relationship with things and only makes sense in connection with
activity involving those things.

Every representation scheme must provide some account of non-
specificity, so that some item of knowledge might be equally applicable to
the particular objects encountered in different situations. Objective rep-
resentation schemes use quantified variables for this purpose. Although it
is possible to imagine an objective representation scheme that does not
use any constant symbols, perhaps through heavy use of the i quantifier, a
nontrivial objective representation scheme must express nonspecificity
by means of quantified variables or their expressive equivalent. Quan-
tified variables generalize across objective individuals.

A deictic representation scheme, by contrast, does not require special
expressive means for implementing knowledge that is independent of
situation particulars. Since a deictic entity is defined not objectively but
in relation to the agent and its activities, deictic representation is, to use
Perry's term, efficient. An entity like the-car-I-am-passing can refer to
dozens of different cars at different times. As long as these cars acquire
no significance beyond being cars-to-pass, the agent will not have to
invent distinct means of representing them. A deictic representation
scheme thus does not make a distinction between the specific and the
general. As a result, any newly learned knowledge will transfer to new
situations passively, without the necessity of an explicit substitution of
variables for constants and back again. If you know something about what
to do when the-car-I-am-passing-is-a-police-car, it will apply whenever
you discover yourself passing a police car in the future. If two such cars
have no salient differences, then the representation scheme will not
distinguish them. The agent will simply be unable to tell them apart,
since what matters is not their objective identities as such, but their
indexical and functional relationship to the agent. These are not things
that representations express but that agents participate in during their
routine activities.

In previous chapters I have sketched the problematic space of technical
trade-offs that ensue when variables are used routinely for nonspecific
reasoning and action. I should emphasize that, in doing so, I am using the
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word "variable" in a particular sense, one that figures in a certain story
about representation, namely, quantification over objective individuals.
Though most AI representation schemes have not had any especially
clear semantics, the objective approach to ontology and nonspecificity
has remained clear to the extent that anything has. I do not mean to imply
that absolutely any stored state entails objective representation, nor that
any implementation scheme that employs a notion of "variable" in some
programming language entails objective representation. I refer only to
variables whose values are symbols, names, data structures, or other
technical constructs that represent things by means of objective de-
scriptions.

Certain features of deictic representation have been anticipated by
earlier AI research on representation. The idea of referring to things in
terms of their functions, for example, is present in Minsky's (1977)
notion of frames and in Schank and Abelson's (1977) notion of a script.
These two schemes were motivated by issues of architecture and reason-
ing about stories, respectively, and do not have any particularly system-
atic semantics.9 As such, it is hard to determine whether they should be
understood as objective or as deictic representations. Still, in practice
they have been treated as organized sets of variables that can be "filled"
by constant symbols that name individuals in the relevant (often fic-
tional) world. The theme of functionality also resembles the concept of
egocentricity in Piaget's theory of object permanence - the ability to treat
objects as permanent and independent of one's own perspective (Singer
and Revenson 1978; Tanz 1980). Piaget observes that this ability grows
out of the child's experience with the invariant properties maintained by
an object when the child interacts with it in the course of various
different activities. Some other related dynamic themes appear in
Drescher's (1991) computational model of the stages of sensorimotor
development described by Piaget. He focuses on certain kinds of interac-
tion that present the child with measurable correlations that reflect reg-
ularities in the dynamics of the child's interactions with things in its
environment. He also describes the concept of a canonical perspective, a
dynamic effect that facilitates the discovery of deictic regularities by
modifying the child's relationship to the world in recurring ways, for
example the habit of bringing interesting objects into the middle of the
visual field at a standard distance.
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Using deictic representation

Deictic representation is compatible with a wide variety of im-
plementation techniques. A wide variety of artifacts employ clearly deic-
tic forms of intentionality, since they monitor whatever surroundings
they are installed in. As such, they are readily reanalyzed as using deictic
representation. No such intention may have guided the design process,
although the designers probably did employ definite descriptions when
explaining to themselves and others what the artifacts do and how they
do it.

Be this as it may, AI design practice can benefit from sustained reflec-
tion on the inevitable indexicality of situated artifacts and on the conse-
quences of taking systematic account of the causal relationships between
agents and things (Dixon 1991). When agents can relate to objects in
deictic terms by maintaining suitable causal relationships to them, many
design problems become easier, for several reasons. One reason is that the
objective identities of things are rarely perceptible, whereas the indexical
and functional relationships that things bear to agents usually are. All
forks look pretty much alike, as do all pencils, carrots, door knobs, gym
socks, and parking meters. The objective identities of particular forks,
pencils, and carrots are usually difficult to determine unless they are
physically distinctive or bear unique markings. But although it is easy to
mistake one fork for another, it is much harder to mistake a fork for a
pencil or a carrot or any other functionally distinct object. Functionally
distinct objects usually look different.

As a general matter, objects with a shared function are likely to have
important perceptual similarities. These similarities are not arbitrary but
rather tend to correspond directly to the function that the objects have in
common. In AI research on analogical reasoning, this idea is known as the
"correspondence between structure and function" (Winston et al. 1983).
Forks are readily recognized by their handles and tines, pencils by their
graspable shape and point, and so forth. This is not to say that agents
must routinely rederive the purposes of objects from first principles
given only their visible appearance, or that the functionality of objects is
inherent in the light they reflect (as in Gibson's [1986] notion of an
affordance as an invariant quantity in an organism's optical ecology), but
simply that the agents' knowledgeable interactions with things are facili-
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tated by their functionally significant perceptual properties. How this
works is largely unknown, though it would certainly be a mistake to posit
any simple, context-independent mapping between functions and per-
ceptual features, especially when the function is something as broad as
"thing for sitting down on" or "thing for drinking from."

But an agent must recognize not only the functional properties of
objects but also their indexical properties. In other words, the agent must
detect not simply the abstract "functionality" of objects but the role they
play in the particular activities in which the agent is currently engaged. A
car is a car in a wide variety of circumstances, but it is the-car-I-am-
passing only when one is actually in a certain complex relationship to it.
Complex as this relation is, though, it is readily perceptible because it
places the car-being-passed in a standardized location in one's visual
field, where its relevant properties (relative speed, police insignia, etc.)
can be registered in standardized ways. Similarly, a formal dinner table is
covered with indistinguishable forks, knives, napkins, and water glasses,
but one's own equipment is readily distinguished from one's neighbors
once one takes up a bodily position at one's seat.

The relationships with things that we take up in concrete activity arise
equally through our intentions and through our bodily involvement in a
physical situation. If the kitchen looks different according to whether we
are making breakfast or looking for the cat, Merleau-Ponty would say, the
kitchen is displaying itself not to a disembodied intelligence but to some-
one who has been launched into a physical relationship with the kitchen
as a meaningful space. The integrated involvements of perception and
action that constitute these relationships are neither magical nor innate,
but arise through socialization into the practices of one's culture. Percep-
tion and action are, in this sense, not automatic attunements but complex
patterns of organized habit. The task of AI is to determine what kind of
machinery can best support this kind of habitual interaction with the
customarily arranged materials of familiar environments.

This conception of the role of perception in activity makes strong
claims on accounts of visual architecture. The principal purpose of vi-
sion, on this view, is not to deliver a world model; nor is it to identify the
objective identities of things; nor is it even to recognize and enumerate
the categories into which visible objects might be classified. Instead, the
principal purpose of vision is, starting from the agent's intentions and the
changing visual field, to register the indexically and functionally signifi-
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cant aspects of the entities in the agent's environment. The work of
registering these aspects frequently requires the agent to engage in com-
plex interactions with the environment, and this work is indissociable
from the rest of the agent's interactions. Vision is in this sense an active
process, not the passive reconstruction of the world as it is projected onto
the retina.10

The extent to which vision should be understood as an active process
has been a subject of great controversy in both psychology and engineer-
ing. It has been customary to contrast two general approaches to the
computational study of vision, bottom-up and top-down. At issue is the
role of domain-specific knowledge and intentions in vision. A top-down
approach to vision emphasizes the ways in which this domain-specific
information might guide the processes of visual perception. A bottom-up
approach, by contrast, portrays the visual system as an innate architec-
ture in which information flows entirely "upward" from the retinal image
to the visual system's output, a process that since the 1970s has generally
been understood (but need not be in principle) through the inverse-
optics metaphor of constructing a model of the visible world. It is evident
that top-down processes do exist in human vision, inasmuch as people
often consciously and deliberately redirect their gaze or their focal depth
in order to see something. And it is probable that early vision operates in
a largely bottom-up fashion, given the existence of optical illusions that
are not cognitively penetrable (Pylyshyn 1984: 130-145; cf. Fodor 1983:
64-86). The question, technical and empirical, concerns the interrela-
tionship between these two elements of visual perception.

The next chapter will describe one current proposal for reconciling
the top-down and bottom-up theories of vision. For the moment, I
simply want to specify what such a synthesis must achieve. Given the
intricate dynamic relationship between perception and action, the visual
system must be co-designed with the rest of the machinery with which it
continually interacts in routine activity. The visual system must support
the registration of numerous aspects of the entities that are found in
culturally organized human activities. Finally, it must support the inte-
gration of task-specific vision with the more generic monitoring of the
visual environment that a sentient agent requires. Almost all of this
perceptual activity will be habitual. Some portion of the machinery
underlying these habits will undoubtedly be innate, but the vast majority
will have accumulated through the agent's history of interactions with its
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familiar environment. As a result, the visual system must combine gener-
ality and specificity in a particular way: it must be general enough to
support a wide variety of specific visual processes and to deploy them in a
smoothly orchestrated fashion during the agent's interactions with a
contingent environment.

The system I will describe in Chapter 13 will provide an existence
proof, illustrating some of the issues that arise in building an agent that
uses a nontrivial visual system to engage in organized goal-directed
improvisations in a contingent world. But an account of the machinery
and dynamics of human life must also explain how new forms of activity
arise and how deictic representations might be acquired. Let me sketch a
general orientation toward the question. Learning is a highly social mat-
ter. Much learning occurs within organized interactions among people,
some of which are called "teaching/learning" and others of which are
not. Research in the Vygotskian tradition has identified some of the
dynamics of this process (Newman, Griffin, and Cole 1989; Rogoff and
Wertsch 1984; Rogoff 1989; cf. Lave and Wenger 1991). According to
these theorists, interactions among people have dynamics that, often as a
side effect of more directly instrumental aims, provide auspicious cir-
cumstances for learning. Much of this learning is mediated symbolically
through the situated use of language. I imagine that many instances of
deictic representations have their origins in language and that the linguis-
tic appearance of such names as the-car-I-am-passing is not entirely
misleading.11

The social dimensions of learning are not restricted to social interac-
tions, since the physical settings within which people learn (houses,
yards, streets, etc.) themselves result from intensive socialization. These
socially organized spaces lend themselves to certain interactional pat-
terns and not to others. They tend to channel activity in certain direc-
tions, principally those of activity in that particular culture. This social
structuring of the physical environment is broadly consistent and highly
redundant, so that the resulting patterns of activity tend to reinforce one
another within the unarticulated framework of the society. People learn
by actively appropriating the interactional resources of their environ-
ments and not by passively absorbing them, but these resources and the
customary routines for using them are structured so as to give a prac-
tically inevitable shape to the habitual practices that this process gener-
ates. Such a view is common enough in developmental psychology
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(Leont'ev 1981), education (J. S. Brown, Collins, and Duguid 1988), and
anthropology (Bourdieu 1977 [1972]), but much work remains to give it a
detailed computational interpretation (cf. Agre and Horswill 1992).

Among the virtues of this view is an alternative account of representa-
tion. Vygotsky (1978 [1934]) suggests that children learn to think by
internalizing activities that involve representations. Having employed
concrete symbolic forms, such as drawings or egocentric speech, to orga-
nize their activities, they learn to organize their future activities as
though the concrete symbols were still present. A tremendous amount
has been learned in recent years about social practices for using represen-
tations (Comaroff and Roberts 1981; Goody 1986; Hutchins 1995; John-
Steiner 1985; Latour 1986; Lynch 1988; Wertsch 1985), and each of
these theories can provide suggestions about the kinds of activities that
are internalized (at any age) to produce symbolic thought.12



13 Pengi

Argument

This chapter describes a computer program that illustrates some
of the themes I have been developing. Before I discuss this program in
detail, let me summarize the argument so far. Recalling the scheme laid
out in Chapter 2, this argument has three levels: reflexive, substantive,
and technical.

The reflexive argument has prescribed an awareness of the role of
metaphor in technical work. As long as an underlying metaphor system
goes unrecognized, all manifestations of trouble in technical work will be
interpreted as technical difficulties and not as symptoms of a deeper,
substantive problem. Critical technical work continually reflects on its
substantive commitments, choosing research problems that might help
bring unarticulated assumptions into the open. The technical exercises in
this book are intended as examples of this process, and Chapter 14 will
attempt to draw some lessons from them.

The substantive argument has four steps:
1. Chapter 2 described two contrasting metaphor systems for AI.

Mentalist metaphors divide individual human beings into an inside and
outside, with the attendant imagery of contents, boundaries, and move-
ment into and out of the internal mental space. Interactionist metaphors,
by contrast, focus on an individual's involvement in a world of familiar
activities.

2. As Chapters 1 and 4 explained, mentalist metaphors have orga-
nized the vocabularies of both philosophical and computational theories
of human nature for a long time, particularly under the influence of
Descartes. This bias is only natural. Our daily activities have a vast
background of unproblematic routine, but this background does its job
precisely by not drawing attention to itself. The phenomena that stand
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out and recommend themselves for abstract theorization are the disrup-
tions of routine interaction that show up as problems.

3. Attempts to build machines based on this view have encountered a
large space of hard technical trade-offs. Chapter 8 has argued that the
precise nature of this space points to the need for a different, interaction-
ist perspective. Interactionism would restore a central place to routine
activity, understanding the organization of activity not as something
mapped out in advance but as an emergent phenomenon located in the
interaction itself. This interaction has two parties, an agent and a world,
that are fitted to one another, whether through socialization or adaptation
or design.

4. This view of the relationship between agent and environment,
Chapters 10 and 11 argued, calls for novel understandings of inten-
tionality. The mentalist tradition has founded intentionality on represen-
tation; it also understands representation as some kind of systematic
correspondence between inside and outside. In AI work, this view takes
the form of model-theoretic semantics or the manipulation of world
models. Interactionism, by contrast, suggests founding intentionality in
conventional forms of activity. Agents relate to objects primarily in terms
of the roles they play in activities, not in terms of their resemblance to
mental models of them.

Each step of the substantive argument points at patterns of technical
difficulty that arise in the attempt to work out a mentalist AI, arguing
that the nature of these patterns motivates a shift to an interactionist
approach. The technical argument traverses different territory, but
winds up in a similar place. It too has four steps:

1. AI has understood activity as the construction and execution of
plans. This proposal is unreasonable, given the extent to which our
actions must be sensitive to the detailed state of our environments. An
alternative proposal is that activity is improvised, and in particular that
the organization of activity is an emergent phenomenon. This proposal
about the dynamics of activity places constraints on the machinery of
embodied agents. Combinational logic recommends itself as the basis of
this machinery since it is the fundamental stuff out of which digital
computers' processors are made: fast, simple, and continually sensitive to
the states of both the agent and its environment.

2. Any combinational logic network that could participate in the
dynamics of human activity would certainly be enormous and highly
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complex. Some portions ot this network might be innate, but most of it
would be laid down through experience. Chapters 6 through 10 have
suggested that this might occur through the incremental accumulation of
lines of reasoning that have arisen in the course of ordinary activity. This
proposal makes few assertions about where novel lines of reasoning come
from; the particular rule system I have described is psychologically im-
plausible in numerous respects and simply illustrates some general
points. Among these points is the need for activity to be almost routine.

3. A great difficulty with this proposal is that combinational logic has
difficulty supporting the conventional mechanism by which AI systems
express knowledge without regard to particular individuals, namely vari-
ables. Though various schemes have been proposed to ameliorate this
problem, it is better understood as reflecting something deeper. A repre-
sentation scheme that expresses the world in terms of symbolic relations
among namelike mental symbols offers no particular account of the
actual, causal connections between those symbols and their referents.

4. An alternative proposal regards symbols as a secondary means of
intentional relationship to things. The central, primary form of inten-
tionality is the culturally organized system of interactional patterns that
comprises much of everyday life. These patterns of activity constitute
their objects in indexical and functional terms, as for example in the-cup-
from-which-I-am-drinking. By not representing objects in terms of their
objective identities, deictic representation supports a wholly passive form
of nonspecificity, namely indexical efficiency. Taking this idea seriously,
however, requires a more sophisticated understanding of perception and
its role in activity.

Taken as a whole, this argument exemplifies the principle articulated
in Chapter 3, that close attention to the dynamics of activity leads to
simplified forms of machinery. The substantive and technical arguments
approach the phenomena in different ways - the substantive argument
through philosophical considerations on metaphors for describing ac-
tivity, the technical argument through engineering considerations on
machinery for engaging in activity - yet the two arguments converge on a
common set of proposals. It remains to explain what this convergence
amounts to in particular cases. This is a substantial, indeed open-ended,
task. The remainder of this chapter presents a case study in the relation-
ship between machinery and dynamics in the construction of a particular
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computer program. Though unsatisfactory in numerous ways, this ex-
ercise opens up new issues and suggests directions for further research.

Pengo and Pengi

Pengi is a program that David Chapman and I designed to
illustrate the notion of deictic representation (Agre and Chapman 1987).
Chapman worked out the detailed architecture and wrote most of the
code. Pengi's domain is a reimplementation on the Lisp Machine of a
commercial video game called Pengo (Figure 13.1). Pengo is a fairly
difficult game. It does not call for much physical dexterity, but it does call
for the complex, rapid, and artful use of one's visual system. It also calls
for a great deal of goal-directed improvisation.

In this game, the player watches a video monitor that portrays a
number of discrete cartoon figures: a penguin, some bees, and several
dozen ice cubes. The player has a joystick and a button that control the
penguin. The bees are constantly in motion, as are some portion of the
ice cubes. The rules are as follows. If a bee gets too close to the penguin,
the penguin suffers a fatal bee sting and the game starts over. If a bee or
penguin kicks an ice cube, the ice cube slides in the direction it has been
kicked, horizontally or vertically. The player causes the penguin to kick
an ice cube by pressing the button; this is a large black button on the
arcade game and the K key on the Lisp Machine implementation. If a
sliding ice cube should happen to hit a bee, that bee dies and disappears
from the board. If all of the bees die, the player wins the game. A sliding
ice cube can also kill the penguin. Thus, the bees can kill the penguin in
two ways, by stinging it or kicking ice cubes at it. The penguin can kill
the bees in only one way, by kicking ice cubes at them. The penguin,
though, is presumably more intelligent than the bees, which operate by a
simple random process. The bees always move at the same speed. They
tend to move in the general direction of the penguin, but they randomly
change their headings every few seconds. If a bee finds itself able to kick
an ice cube at the penguin then it does so, but it will not go out of its way
to position itself behind an appropriate ice cube. The point of this do-
main is not to emphasize the element of opposition or antagonism be-
tween malevolent equals. The bees' randomness and hostility are a source
of uncertainty in the domain.
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DO Q Q @
Figure 13.1. A Pengo game in progress.

As a domain, Pengo is an improvement on the blocks world. Things
move, the geometry is more complicated, the arrangement of objects in
space is more meaningful, and the individual tasks relate in a clear way to
an overall goal (winning the game). Although it obviously fails to capture
numerous elements of human activity, the combination of goal-
directedness and improvisation involved in the game of Pengo is a basic
aspect of routine activity about which we can hope to learn some com-
putational lessons.

Playing Pengo is not a matter of executing plans. A plan to sneak
around behind a certain ice cube and kick it at a certain bee will not
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usually work. The bee will fly away, other bees will fly into range, or the
ice cube will be kicked out of the way. Things go wrong in these ways all
the time. But playing Pengo is not simply a matter of reacting to things
that go wrong. You need some notion of what you are trying to accom-
plish. You might want to get around behind an ice cube, or to run away
between some rows of ice cubes, or to kick an ice cube out of the way.
Your activity must be organized toward goals, but you have to stay on
your toes.

Pengi plays a pretty decent game of Pengo. In its present state it is a
little better than I am, which is to say that it wins from time to time and
usually puts up a good fight. Our design was based on our understanding,
as players, of the dynamics of competent Pengo-playing. Although we
believe that Pengi's architecture is capable of supporting all of the Pengo-
playing dynamics we feel we understand, we did not attempt to imple-
ment everything we knew about the game. In any case, my argument
depends not on any qualitative measures or comparisons of Pengi's per-
formance, but on qualitative aspects of our experience in trying to get the
system working.

Pengi constantly interacts with the game, looking at the video screen
and generating actions. Its architecture is divided into a periphery and a
central system. The periphery is fixed, innate, domain-independent ma-
chinery for early vision and low-level motor control. The central system
conducts a running argument about strategy and tactics, thereby decid-
ing at each moment what to do next. The central system is made entirely
of combinational logic: gates and wires clocked in the normal manner, as
described in Chapter 5. It thus has no memory, software, pattern-
matching facilities, dynamic storage allocation, or pointers. Its circuitry
can be regarded as a snapshot of a process of dependency accumulation,
but Pengi itself does not learn anything or augment its own circuitry (cf.
Dreyfus 1992: xxxiii). Our modeling of motor control is trivial, since
playing Pengo does not require elaborate motor control. Our modeling of
vision, on the other hand, is fairly sophisticated. A later section will
describe the architecture in more detail.

Pengi exemplifies the principle of machinery parsimony. As Chapters
8 and 11 have explained, conventional mentalist technology would ad-
dress a task like Pengi's by means of a "planner," that is, a complicated set
of machinery for building and maintaining world models and for con-
structing and executing plans. We were able to build a much simpler
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device to play Pengo because we could understand something about the
dynamics of the activity. That is not to say that Pengi's architecture
provides a complete model of human activity as a whole. Certainly not,
since many important interactional phenomena do not arise in playing
this game. Pengi, for example, can always see the whole game board, so it
never has its back turned on anything. Nonetheless, that Pengi's central
system can be built with a reasonably compact combinational logic circuit
is a substantial claim. Briefly, this feat is possible for two reasons. One
reason is that Pengi embodies an account of representation, namely deic-
tic representation, that does not involve variables and can thus be readily
implemented with combinational logic. The other reason is that Pengi
can engage in an orderly, flexible, goal-directed interaction with its world
without maintaining a plan or world model, so the central system does
not need to keep any state. The next few sections explain these points in
more detail.

Entities and aspects in Pengi
On just about any conventional account, an agent that played

Pengo would maintain a world model of the evolving game board. This
model would assign symbolic names such as BEE-34, BEE-35, ICE-
CUBE-61, and ICE-CUBE-62 to all the objective individuals that the
agent incorporates in its model of the world. The world model would be
maintained by a process, presumably involving perception, that kept
track of changes in the world and updated the world model to reflect
them. Decisions about what to do next would involve, in one way or
another, the simulation of various courses of action within the world
model. This is an objective style of representation insofar as its elements
correspond to objects in the world, each of which is identified without
regard to the agent's location or goals. Maintaining a world model in
Pengo would require a great deal of redundant computation, given the
amount of constant change on the board and the small proportion of the
board that has functional significance on any given moment.

Deictic representation is well suited to an activity such as playing
Pengo. Here are some of the entities with which Pengi interacts at various
times:

• the-ice-cube-I-am-kicking. This is simple enough. The "I" is a
metonymic shorthand; a more accurate name would be the-ice-
cube-which-the-penguin-I-am-controlling-is-kicking.
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• the-bee-I-am-attacking. If Pengi is attacking a bee over some
period, it might maneuver to get behind an ice cube to kick at the
bee. The whole time, in virtue of participating in that pattern of
interaction, that bee will be the-bee-I-am-attacking.

• the-bee-on-the-other-side-of-this-ice-cube-next-to-me. If the pen-
guin is aligned with an ice cube and a bee, it is important to keep
an eye on the bee since it could kick the ice cube. Or perhaps
Pengi can kick the ice cube at it.

• the-bee-headed-along-the-wall-that-I-am-on-the-other-side-of. It
is good to lurk behind a wall of ice cubes because the wall
provides a supply of ice cubes to kick at bees. Pengi might dance
around behind the wall and if a bee comes into range then Pengi
can find the ice cube that lines up with it and kick it. This dy-
namic involves many entities: the-wall-I-am-lurking-behind, the-
bee-I-would-like-to-killy the-ice-cube-in-the-wall-I-am-lurking-
behind-that-aligns-with-the-bee-I-would-like-to-killy and so forth.

Pengi's entities will tend to refer to the objects in the general vicinity of
the penguin. Objects and events at the other end of the board will
probably have no functional significance. But it is functional significance,
not proximity, that leads Pengi to focus on particular objects. If a bee is
kicking an ice cube at the penguin from halfway across the board, Pengi
ought to spot the cube soon enough to evade it gracefully. Likewise, most
of the ice cubes near the penguin will have no special significance. (Ice
cubes are rarely important obstacles since they can readily be kicked out
of the way. An ice cube that cannot be moved, perhaps because it is up
against the wall, will disintegrate and disappear once it is kicked a few
times.)

Pengi's central system can get along without a pattern matcher or
other complex variable-binding facilities because deictic representation
permits it to generalize across indexically and functionally equivalent
situations. If Pengi attacks BEE-34 at one moment and BEE-35 the next,
an objective representation scheme would represent those two episodes
differently. But all that matters to Pengi is that it is engaged in a certain
routine pattern of interaction with the-bee-I-am-attacking. If Pengi knows
what to do about the-bee-I-am-attacking, it will do it in each case without
bothering to distinguish different objective individuals.

As Pengi actually decides what to do, it reasons in terms of aspects of
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the various entities. A typical aspect that Pengi registers is the-bee-I-am-
attacking-is-running-away-from-me. (Again, "/"and ''me"are metonymic
shorthand. The bee is running away from the penguin, which the player
is controlling.) It is an urgent situation when the-bee-on-the-other-side-of-
this-ice-cube-next-to-me-is-closer-to-the-ice-cube-than-I-amy since the bee
could fly up to the ice cube and kick it at the penguin before the penguin
could run up to the ice cube and kick it at the bee. Consequently, Pengi
must get the penguin out of the way. The situation is less urgent if the-
bee-on-the-other-side-of-this-ice-cube-next-to-me-is-moving-avpay-from-
the-ice-cube, though. The next section provides a sketch of how Pengi
actually makes use of this knowledge in deciding what to do. Subsequent
sections describe the program's architecture, show the program in opera-
tion, and offer some evaluation.

How Pengi decides what to do

Figure 13.2 is a diagram of Pengi's best trick. In the diagram is a
bee that is not lined up with any ice cube. Lacking any direct way to kill
the bee, Pengi takes an indirect approach: moving an ice cube so that it
aligns with the bee. This is a common technique in Pengo-playing; it is
probably impossible to win the game without it. In the example in the
diagram, Pengi can kick the ice cube on the left so that it hits the ice cube
on the right. (Momentum is not conserved. The moving ice cube stops
dead when it strikes the stationary one.) Now that the ice cube is aligned
with the bee, the penguin can move around behind it and kick it.

One might be tempted to refer to this trick as a plan. Yet Pengi neither
makes nor uses plans. The two-ice-cube trick is one of the routine pat-
terns of activity that we foresaw when building Pengi's central system
circuitry. Pengi engages in the routine because it can figure out some-
thing reasonable to do in each successive type of situation, not because it
refers to a plan or other representation of the routine. Let us contrast the
way Pengi performs this trick with the way a conventional planner-and-
executor might perform it, on three counts.

One count is, why would each type of agent kick the ice cube in the
first place? How does it know that this is a good move? A plan-
construction device would conduct a simulation in its world model.
Through inference over some logical codification of the game board's
geometry, it would deduce that this ice cube can be moved from there to
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the-projectile-cube the-stop-cube

the-penguin the-enemy-bee

Figure 13.2. Pengi's best trick is to move one ice cube into position by kicking
it up against another one.

there to there. Pengi does something different. Instead of performing
inference from a world model, it visualizes potential movements. As
subsequent sections will explain, Pengi's visual system provides a set of
visual operations: "coloring" regions, finding out whether things are lined
up, finding something of a given shape or color or type of motion in a
given vicinity, telling whether anything is located between two designated
points, marking a spot in the visual field for future reference, and several
others. These visual operations are combined into visual routines by
means of which the central system uses the visual system to register the
current values of various aspects of its environment. The actual situation
will contain all kinds of visual clutter not shown in the figure, but by
running these visual operations Pengi will be able to visualize that these
two channels are clear and that the second ice cube is in position to stop
the first one.

We designed the circuitry for Pengi's visual routines ourselves. But a
growing expertise at any activity, from cooking to mathematics, includes
acquiring a set of visual routines and learning to use the visual operators
more efficiently, more sparingly, and more accurately. Beginners use their
visual operators in crude, generic, safe, redundant ways; as they become
skilled, their visual routines evolve to more efficient and adaptive forms.
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o
Figure 13.3. Pengi visualizes where the ice cube the penguin has just kicked
will end up by using its visual operators. The polygons are visual markers.

Further work is needed to describe how visual routines evolve in the
context of larger activities.l

A later section will explain Pengi's visual operators in detail, but here
is an example. Figure 13.3 shows how Pengi finds the-ice-cube-that-the-
ice-cube-I-just-kicked-will-collide-with. Pengi has just kicked this ice cube
and has visually marked it. It also knows the direction the ice cube is
moving. It now wants to know where the moving ice cube is going to end
up. So it uses an operator that projects the ice cube's path and drops a
second marker on the first thing it hits. Once this operation is finished,
Pengi can use further visual operations to register particular aspects of
the-ice-aibe-that-the-ice-cube-I-just-kicked-will-collide-with.

The second count on which we might contrast Pengi with a conven-
tional planner-and-executor concerns the reason why each of them would
kick the ice cube the second time. An agent executing a plan would take
that step because the program counter in its executor is equal to two.
That is, the executor chooses its next action by following a pointer to a
planlike structure such as (kick a). Pengi, by contrast, kicks the-projectile-
cube because it is lined up with the bee. It sees a clear channel, an ice cube,
a bee, and a penguin in the right spatial relationships, so it moves the
penguin behind the ice cube and kicks it at the bee. Pengi does not realize
that the ice cube got there through the penguin's previous actions, al-
though these actions are liable to have left the player's visual system
focused on that ice cube and therefore likely to notice its functional
significance. In this sense Pengi is, at each next moment, deciding what to
do in the world as it is then.

Among AI people, the proposition that Pengi does not employ plans is
regularly met with incredulity. It is a common view, for example, that
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Pengi's combinational logic circuit constitutes a large, highly condi-
tionalized plan, with the operation of this circuit constituting the plan's
execution. Even though I find this view odd, many intelligent people
claim to find it obvious. The circuit, I would argue, has few if any of the
conventional attributes of a plan. It is not a text or any other kind of
symbolic structure. Even if it were, it is not "written" in anything resem-
bling a conventional programming language. (Subsequent sections will
describe a Lisp-embedded language for specifying Pengi's circuitry, but
this is a language for constructing a simulation, not a language of thought
whose structures can be manipulated by Pengi itself.) It does not partici-
pate in any architectural distinction between construction (or selection)
and execution. It is unlikely that any plan-construction device could
automatically analyze the dynamics of Pengo-playing sufficiently to con-
struct such a "plan"; the construction of highly conditional plans is a
difficult technical problem (but see Schoppers 1995). These arguments,
unfortunately, do not convince many AI people. A plan for them, as for
Miller, Galanter, and Pribram (1960: 16), is whatever is responsible for
structured behavior. At this point the issue may seem to turn on nothing
more profound than our chosen definition of the word "plan" and
whether Miller, Galanter, and Pribram's definition is broad or simply
vacuous. But in fact the issue is deeper. A plan, however defined, is
responsible only for the structure of an agent's behavior in the broadest
and most misleading sense. The structure of behavior - or, in my pre-
ferred idiom, the organization of activity - does not arise from the agent
alone, or from its environment alone, but from the interaction between
them. Even if it were granted that Pengi's individual actions are caused
by planlike internal machinery, the organization of Pengi's activity is not
caused, in any useful sense, by anything located inside of Pengi itself.
Plans or no, the organization of activity is an emergent attribute of the
player's continual interaction with the game, best understood in interac-
tionist terms.

Pengi's ability to rederive its course of action from the evolving game
situation makes it more flexible than the planner-and-executor in the face
of unexpected situations. The target bee might fly out of range. Or
another bee might fly dangerously close or kick the-stop-cube out of the
way. As Chapter 8 has already argued in detail, an agent that decided
what to do next by consulting a plan would be unable to recognize the
relevance of these circumstances. Execution monitoring can prescribe a
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fixed list of relevant conditions, any of which would cause control to be
returned to the planner, but applying execution monitoring to Pengo
would require such a long list that new plans would still be required every
few moments. Pengi's improvisatory approach, by contrast, takes con-
tinual account of the entire background of relevant circumstances - that
is, all of the circumstances that would be taken into account in devising a
plan. In particular, Pengi regularly abandons one of its routines when a
better opportunity arises. Having pursued the opportunity, it might re-
turn to the original routine if that seems like its best option when the time
comes.

The third count is machinery parsimony. Both Pengi and the conven-
tional planner-and-executor can perform the two-ice-cube trick, but
Pengi does so with simpler machinery. Pengi has no need of plans or
symbolic structures. All Pengi needs is the ability to look at the world and
decide what to do, something any situated agent needs. Pengi has just
enough state to keep a finger on a few important aspects of the world, but
it does not have a model of the world. An understanding of dynamics
leads to simpler machinery.

It can help to think of Pengi's strategy as a dynamic version of the GPS
technique oi difference reduction (Newell, Shaw, and Simon 1960; see also
Chapter 8). Difference reduction was originally a technique for searching
problem spaces. Given a state known to be reachable from the initial state,
the problem solver computes a set oi differences between that state and the
goal state. It then indexes those differences into a table to discover which
ones it can reduce by applying an operator. The operator will produce a
new state. If that new state is the goal state then, in Newell, Shaw, and
Simon's vocabulary, the problem is considered solved. If not, difference
reduction can be applied to the new state. This method can be repeated
until the problem is solved. All of this happens in the mind, not in the
world. To "apply" an "operator" does not involve taking an action, only
simulating the action's effect.

Dynamic difference reduction, by contrast, happens in the world. The
agent alternates between finding something to do and doing it. In the case
of the two-ice-cube trick, each of the player's actions reduces a
difference: kicking the ice cube once it is lined up with a bee, and kicking
it again kills a bee. One could imagine an agent making an omelette the
same way, repeatedly looking for things that need doing and then doing
them (Agre and Horswill 1992). Using this method requires some knowl-
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edge of what steps will have to be taken, but it requires no explicit
representation of serial order. The agent might take the actions in
different orders on different occasions, according to the happenstances of
noticing. But as long as it understands the preconditions of its actions -
almost all of which are readily visible and furthermore enforce them-
selves by rendering the actions impossible by their absence - it will get
the job done each time. Since these actions take place in the real world
and not in a mental search space, they cannot always be retracted ("back-
tracked") by simply moving to a different location in the space. The
agent engaging in dynamic difference reduction thus needs to be more
careful, choosing difference reductions judiciously, whether through cus-
tom or experience or the benign construction of the environment.

Pengi certainly has limitations. It is hard to be precise about where the
capabilities of Pengi's architecture leave off, since such machinery might
have the capacity to participate in dynamics we have not yet considered.
Nonetheless, Pengi was designed to participate only in a certain activity,
not in the whole of everyday life. Other domains might require Pengi to
have other capabilities. For example, if Pengo got harder, Pengi might
sometimes have to refer to a plan. The plan might explain how to deal
with some tricky situation, or perhaps what strategic issues bear on the
matter of which bees to attack when. Since Pengi would still be choosing
its actions from moment to moment, the plan would not be a computer
program; instead, it might consist of natural language or something like
it (Agre and Chapman 1990; Chapman 1991). Other activities will re-
quire a central system to maintain state, to use its visualization abilities
without any domain materials being present, and so forth. Precise specifi-
cation of this additional machinery should be guided by descriptions of
the relevant dynamics.

Architecture

Figure 13.4 shows the top-level modularity of the system, drawn
in the conventional manner with boxes and arrows. The player consists of
a central system and a periphery, which in turn consists of a visual system
and a motor system, each of which is connected to the game itself. The
visual input from the game is updated on a fairly rapid clock, and the
player generates a fresh set of commands to the game on that same clock.
The various boxes and arrows must be described on two levels. One level
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Figure 13.4. Pengi is composed of a central system made of combinational
logic, a moderately realistic visual system, and a trivial motor system. It inter-
acts with its simulated world on a fairly fast clock.

is the ideal of a real video game from which an actual video cable leads
into a parallel computer, which performs early visual processing and
connects to the parallel central system hardware. In reality, though, large
parts of this are simulated. The player's implementation employs no early
visual processing, because the technology of early vision is not yet ready
for routine use. Instead, the visual system simulates its early vision by
inspecting the game's internal data structures and figuring out what
answers the various visual operators ought to return. Many important
issues are certainly ignored in this way. The operation of the central
system's circuitry is simulated as well, but fewer important issues are
suppressed there, since the simulation is conducted at the wire-and-gate
level. But for expository purposes, I will proceed as if the system were
organized according to the ideal.

Motor control in Pengi is very simple. In the arcade, one's left hand is
on a joystick that can move left-right-up-down and one's right hand is
on a button for kicking. Pengi does not model the relevant motor skills in
any detail. Its three action wires encode the possible values passing from
the central system to the game simulation.

Computationally speaking, the visual system and the central system
differ in their use of parallelism. Both systems perform a tremendous
amount of computation all the time, but they distribute their parallelism
differently. The visual system's computation is parallel across the image.
As Chapter 4 has described, it performs locally connected parallel com-
putation among a sequence of flat arrays of simple elements, one array
per stage of visual processing. These flat arrays generate a series of



Pengi 275

transformed versions of the visual field. Certain kinds of global informa-
tion might be collected or distributed, but these are relatively few; and
certainly the visual system builds no elaborate symbolic structures. Once
computed, these representations are all available to the central system.
The central system's parallelism, by contrast, is distributed across con-
siderations. A wide variety of matters might enter into determining the
best next action. Many different details might become relevant with little
warning. The player might consider taking several different actions.
Time is short and it must continually decide. Thus, the central system
must be able to consider its options, the reasons for and against them, and
the issues that bear on its decisions - all in parallel. Ultimately, of course,
at the point where motor commands are issued, all that parallelism has to
result in some decision - left or right, up or down, kick or not kick - so all
of the logic circuitry converges eventually. Nonetheless, a great deal of
parallelism is possible.

Pengi's account of the boundary between the visual system and the
central system roughly follows Ullman's (1984) theory of visual routines.
Though we agree with Ullman's conception of visual routines as employ-
ing a set of primitive visual operators (Ullman refers to these as elemental
operations or basic operations), we differ from Ullman in how we imagine
the routines themselves to be implemented. For Ullman, a routine re-
sembles a computer program that might be either compiled on the fly or
retrieved from a library. For us, by contrast, a visual routine is merely a
theorist's abstraction for a common pattern of interaction between an
agent's central system, its visual system, and its environment. The player
decides on each next moment what operations to invoke based on its
current understanding of its situation and options.

The boundary between the visual system and the central system is like
a horizontal microinstruction set.2 The visual system presents to the
central system a set of visual operators that the central system can invoke
at any time. The central system uses familiar methods from digital logic
design. A typical visual operator might follow a line, shade in a region,
pick out the red patch and put a marker on it, or tell whether the red
patch is moving. Figure 13.5 is a diagram of the general case of a visual
operator's interaction with the central system. (Few of the operators are
this complicated.) Operators can take arguments, all of which are simple
one- to three-bit quantities, not pointers or symbolic names or structured
information. (The arguments may or may not be necessary, as we will
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Figure 13.5. Pengi's central system interacts with its visual system through its
visual operators. Many visual operators provide a constant readout of some
aspect of the visual image, but others have more complex interfaces. Some of
them take arguments, all of which are carried on one- to three-bit buses. Others
cause side effects and are governed by a control line that indicates when they
should take place.

see.) Most operators take one or two arguments, though a couple take
more. Once the arguments are available, the circuitry can assert an enable
line to actually perform the operation. A result is produced. There might
be a number of results, but only a few operators have more than a single
bit of result. Another bit, the mirror image of the enable bit, indicates
that the result is ready. The operation might also cause side effects within
the visual system.

The results that come back from a visual operator, in addition to being
immediately available to the central system's circuitry, also go through
delay lines. Thus, the central system can use the results from both this
clock cycle and the preceding one. The reason for this, briefly, is that the
central system has no state. It is combinational logic that is clocked on its
inputs and its outputs. It has no place to remember things like what it was
doing, or what large goal it is pursuing right now, or what use it is making
of a given operator right now - whether the operator, for example, is
referring to a bee or to spaces between ice cubes. Thus, the operator
values that motivated the last cycle's queries are kept around long enough
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for the system to determine what use to make of the answers. The
solution of providing delay lines on operator results may not seem very
general, but it is in accord with the principle of machinery parsimony:
only postulate the minimum amount of machinery necessary to explain
the dynamic phenomena cleanly. One could implement the idea of "re-
membering what you were doing" with a full-blown state machine. But if
a simpler scheme can, without unworkable complexity, limit the state to
just a delay and corner it in one part of the system, it is better to adopt the
simpler scheme until evidence or experience dictates something more
general.

Roughly speaking, the system uses a standard two-phase clock. The
central system has inputs and outputs and gates in-between. (Our con-
vention is to reckon inputs and outputs from the point of view of the
central system, not the visual system.) When the inputs change, the clock
lines on the outputs must wait until the circuitry has settled down before
admitting the outputs into the visual system. And once these commands
to the visual system are ready, they must be driven long enough for the
visual system to run. Since the wires leading from the central system to
the visual system are clocked in this way, the wires going the other way —
that is, the inputs to the central system from the visual system - do not
have to be clocked, though in the current implementation they are any-
way for clarity. Thus, one two-phase clock controls the inputs to the
central system and the other two-phase clock controls the outputs from
the central system. The motor outputs are clocked together with the
other outputs. The input clock lines also govern the delay lines.

Visual system

Conceptually, Pengi's visual system has two components, early
vision and intermediate vision. Each component is characterized by its
form of computation. Early vision performs spatially uniform, bottom-
up, locally based operations on the retinal image to produce a set of two-
dimensional base representations of the visual scene. Its various modules
find edges, calculate depth from stereo disparity cues where possible,
infer surface normals from shading cues where possible, and so forth.
(Again, in Pengi this is all simulated.) Intermediate vision includes the
machinery implementing the visual operators. The visual operators per-
form hierarchical aggregations of the information available in the base
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representations in order to individuate objects, mark patches with certain
specified properties, calculate spatial relationships among the marked
patches, and so forth. Pengi performs all of these computations in
simulation.3

Pengi's visual system provides about twenty visual operators. The
design of these operators is governed by the principle of machinery
parsimony: postulate only the minimally necessary operators and use the
simplest operators that will cleanly do the job. Beyond that, the set of
visual operators should have several other properties:

1. The operators should permit Pengi to play a competent game of
Pengo.

2. Each operator should plausibly be computable by the sort of
visual system architecture we have envisioned.

3. The operators should not strike our engineering judgment as
poorly designed.

4. The operators should be domain-independent, in the sense that
specifying or computing them should not invoke Pengo-specific
knowledge.

5. Each operator's existence and behavior should be consistent with
the results of psychophysical experimentation.

6. The set of operators should be sufficient and convenient for a
broad range of activities, ideally including the whole of human
life.

Later in this section I will consider Pengi's visual system against these
considerations in detail. For the moment, I should mention that whereas
the first three properties are nearly satisfied, some serious deficiencies
remain: the operator set is very incomplete, arbitrarily specifies several
underconstrained design issues, needs far more psychophysical verifica-
tion, and (as we will shortly see) contains some Pengi-specific operators
in areas where the current state of research did not offer us enough
guidance to formulate a serious theory.

The fourth criterion is that the operators have to be domain-
independent. This domain independence has two aspects. The relatively
easy aspect is that the operators should not depend on domain-specific
facts to perform their operations. The operators should not be defined in
terms of domain-specific concepts and categories. The current operator
set violates this rule in a couple of places, but the violations are not
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important. They could easily be repaired, but the available evidence
didn't sufficiently constrain them.

The second aspect of domain independence is more subtle: the visual
operator set should not be biased or restricted to some domain or some
kind of domain. This condition can be hard to judge. Ideally someone
should implement a set of visual operators that satisfies at least the first
three criteria in some completely different domain. One could try imple-
menting visual operators for a device that picks up industrial parts or
makes breakfast or drives around a small town. One could then compare
the results for the various activities, try to make them compatible, and
combine them to make a set of visual operators that is sufficient for each
individual activity and eventually for all human activity.

The fifth criterion is that the operators' existence be verified by psy-
chophysical experimentation. This criterion could conceivably conflict
with the third and fourth criteria. That is, people might have some
operators that strike us as inelegant or domain-specific. But until we are
faced with convincing evidence, the principle of machinery parsimony
will recommend resisting such hypotheses.

The visual operators are defined in terms of three concepts:

Objects. The visual system individuates visual objects. A visual
object is not a three-dimensional articulated object and Pengi's
visual system does not perform any kind of "object recognition."
Instead, the visual system marks off as an object, purely on visual
evidence, a patch of relatively uniform qualities that is relatively
localized (in other words, not complicatedly distended), moves
as a coherent whole, and has delineable boundaries. Several of
the operators are defined in terms of these objects. The Pengo
world, conveniently, has exactly three types of objects: penguins,
bees, and ice cubes. The three object types are readily
distinguishable, largely because the video game's designer has
worked to make them so. It is up to the central system to invoke
the operators that distinguish the various object types.
Indexing operations. Pengi has operators that permit it to pick
out the odd man out (Ullman's phrase) in a visual scene. The
indexed feature might be the only red patch in the image, or the
only curved patch, or the only moving patch. The properties the
visual system can pick out are called indexable properties. Typ-
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ically only simple properties are indexable. For more complex
properties, one must use a number of operators or even resort to
serial scanning of the visual scene.
Markers. Many visual operations are predicated on a focusing
mechanism, suggested by Ullman, involving markers. Markers
implement a certain sense of focus. Using a marker, one can
mark a location in the visual field for future reference. Suppose
you have gone to the work of locating a place on the image where
something interesting is going on. If you then go off and focus
somewhere else, under certain conditions you can jump quickly
back to your previous location. Many operators are defined in
terms of markers, especially operators for determining the spa-
tial relationships among the locations they mark. A marker rest-
ing on a moving object moves along with it; this is called tracking.
Pengi has six markers.

(We have defined our versions of the indexing and marker concepts
broadly enough that they subsume the functionality that Ullman refers to
as shifting the processing focus. Pengi has no operators for what Ullman
calls boundary tracing.)

Before listing the operators, let us describe how the central system uses
the visual operators. Each operator has a protocol of a sort that follows
standard logic design practice. Most operators have both inputs and
outputs.

Inputs. Many operators have arguments, which are usually
three-bit buses specifying markers, directions, or distances.4

Each operator that has side effects has a single-bit activation
input wire that tells the visual system to perform the operator.
The operators with no side effects run on every cycle.
Outputs. Almost all outputs are binary signals that answer spe-
cific queries. Some operators are guaranteed to produce an accu-
rate answer on their output wires by the next clock cycle. Other
operators each supply a ready output wire that indicates when
the output wires have been assigned a new set of values.

All the output wires are clocked so that their values remain available to
the central system until they are revised with new values, usually on the
next clock cycle. The input wires are clocked so that the visual system
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only sees their values once the central system's circuitry has had a chance
to settle down after the last change of the output wires' values.

Operations on markers fall into five groups.

Indexing operators

index-thing!(m,t)\ Cause marker m to move to some t (either
bee, penguin, or cube), if one is visible. If it is already on one,
choose a different one.
index-thing-near!(m,«,f): Cause marker m to move to some t
(either bee, penguin, or cube) in the vicinity of the object marked
n, if one exists. If it is already on one, choose a different one.
index-moving-thing-near!(m,w,r): Cause marker m to move to a
moving object within distance r of marker n. r is one of a small
number of roughly exponentially increasing distances.

Marker assignment operators

warp-marker!(m,w): Move marker m to the same location as
marker n. If marker n is tracking an object, then marker m will
commence tracking that object as well. (There are actually two
instances of this operator, called warp-marker! 1 and warp-
marker!2. I will explain this and several other odd facts later.)
warp-freespace!(m,w,^/): Move marker m onto whatever object
you find, if any, by starting at marker m and moving over the
empty space in direction d. d is one of north, south, east, west.
unassign-marker!(w): Remove marker m, so that it no longer has
any location.

Marker inspection operators

marker-m-assigned?: Is marker m assigned? (There is one such
operator for each marker that ever needs it. Each operator is
always running.)
marks-bee? (m), marks-penguin?(m), marks-cube?(m): Is marker
m resting on a bee/penguin/cube?
marker-m-moving?: Is marker m moving? (If so, it follows that
marker m is tracking a moving object.) (There is one such opera-
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tor for each marker that ever needs it. Each operator is always
running.)

Marker comparison operators

toward?(myn): Is marker m moving toward marker n?
near?(m,«,r): Is marker m within a distance r of marker n? r is
one of a small number of roughly exponentially increasing
distances.
nearer? (n,p,q): Is the distance between marker n and marker^
greater than the distance between marker n and marker q? (Pengi
has two copies of this operator, named nearer? 1 and nearer?2.)
direction-from-m-to-w: Returns a code indicating the direction
from marker m to marker n. This code consists of two two-bit
outputs, representing the major and minor axes (out of the four
compass directions) of the vector from m to n. This operator is
replicated across several pairs oimyn. All these replicated opera-
tors are running all the time.
aligned?(m,w): Are markers n and m aligned (within some fixed,
small tolerance) along either axis? If so, an output line encodes
which axis. (Pengi has two copies of this operator, named
aligned? 1 and aligned?2.)

Object comparison operators

adjacent?(m,«): Are the objects under markers  n and m adjacent?
wholly-beside?(w,w): Is the object under marker n wholly in
direction d from the object under marker m?
freespace-between?(m,«): Is there nothing but empty space be-
tween the objects under markers n and m?

This list of operators reflects a series of design choices. Lacking enough
empirical information, we had to make many of these choices arbitrarily.

It is an unresolved empirical issue how many markers people have -
probably two or three. It is also not clear whether all markers track
moving objects. (In Ullman's version of the theory they cannot.) Perhaps
only one of them can, or only a few. Pengi rarely needs to track more than
two, one of which is the penguin.
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Most of the operators take particular markers as arguments. The
aligned? operator, for example, consults two three-bit input buses, each
of which encodes one of the markers whose locations it should compare. I
am not sure if this is reasonable. What is the engineering trade-off? The
circuitry for implementing the argument scheme, while not baroque, is a
little complicated. One might choose, instead, to provide a separate oper-
ator for every pair of markers. But this alternative scheme would seem to
require many more operators than the evidence currently warrants. A
compromise proposal would be to provide operators only for the markers
that need them. One would like to make this assignment in a principled
fashion. Perhaps some heavily used markers have many operators,
whereas others are used only in special circumstances. This seems like a
reasonable proposal, but evaluating it will require some experience in
assembling suitable operator sets for other domains.

The indexing operators take types of objects as arguments; Pengi's
visual system can primitively distinguish bees from penguins from cubes.
At first sight this might seem intolerably domain-specific. But in the
video-arcade version of Pengo, the various types of objects are readily
distinguishable by properties that might be expected to be indexable:
their colors, rough shapes, and characteristic forms of motion. Pengi's
visual system can distinguish the various types primitively, but we could
just as easily have arbitrarily assigned distinct colors to the different
types of objects and provided an index-color! operator.

We chose to make the index! operators take the object type as an
argument rather than providing separate operators for each type out of
simple parsimony. The question of whether the indexing property is a
parameter or whether each one has a separate operator will have to be
investigated in domains in which one uses a greater variety of indexable
properties.

Some of the operators neither take arguments nor cause side effects.
Pengi maintains a convention that such operators require no activation
inputs and continually update their values. They might be thought of as
providing a readout of a continually computed parameter of the image.
This convention seems fairly reasonable for the particular operators in
this set, but it need not be reasonable in general, depending on the
practicalities of the machinery implementing the architecture. Two sets
of always-running operators, marker-assigned? and marker-moving?, are
replicated across all the markers.
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A third set of always-running operators, direction-from, is replicated
across certain pairs of markers - about half a dozen pairs. This is because
Pengi often needs to keep track of the spatial relations among several
moving objects at once. We have no principled reason to believe that this
particular set of marker pairs should be sufficient across all tasks. But
Pengo-playing, with all its incompletely predictable moving objects, re-
quires an enormous amount of continual analysis of spatial relations
compared with most activities. It is an empirical question whether Pengi
can judge more spatial relations at one time than people can. Most likely
it can. The machinery hypothesized for shifts in selective attention by
Koch and Ullman (1985) is also more strongly focused than Pengi.

As a general matter, it seems more necessary to replicate operators
across their possible arguments when different lines of reasoning have
frequent, conflicting needs for the same operator. Often we find a trade-
off between complexity of arbitration schemes in the central system and
proliferation of operators. We have tried to call each trade-off according
to our engineering judgment, but more experience with other domains
will be required to make these choices in a more principled fashion.

A few operators have multiple copies in cases where it seems necessary
for Pengi to use the operator in multiple ways, with different arguments,
during the same cycle. We are unsure how reasonable this is, but we
expect that the necessity is specific to time-pressured domains like Pengo.
In any event, I suspect that much of the skill of playing Pengo lies in
developing complex schemes for sharing operators across the various
purposes to which they continually must be put. I also suspect that some
of these schemes are more complex than we can comfortably wire up by
hand in building Pengi's central system.

Some of the indexing operators start "near" some already marked
location. (They are related to what Koch and Ullman call proximity
preference in shifting operations.) These operators offer no strict contract
about which object they will pick out or whether it will be the very
nearest, except that if they are activated often enough the operators will
eventually pick out each of the objects in turn. Experimental evidence on
return inhibition (Klein 1988) suggests that we would be justified in
making Pengi's indexing operators cycle through all the nearby indexable
objects rather than always choosing new ones randomly. This would
improve Pengi's performance since it would be able to focus on newly
dangerous ice cubes and bees more quickly.

Likewise, the comparison operators that determine "nearness" and
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comparative "distance" are not guaranteed to be very accurate, and the
central system should not depend on any great accuracy. Some applica-
tions would probably benefit from a more carefully specified qualitative
contract, however.

Some of the operators take a "distance" argument. The argument can
take only a small number of values that correspond roughly to the various
scales on which the visual system operates. Pengi's visual system reflects
no worked-out conception of multiple-scale vision, but I suspect that
many operators are replicated across scales. Another possibility is that the
whole operator set employs one scale at a time and the central system can
change this scale whenever it wants. In any event, Pengi uses only one of
the legal values for distance, a value corresponding to about a quarter of
the width of the game board.

Some of the operators suggested by Ullman employ a notion of
bounded activation or coloring. Ullman suggests that some visual operators
"color in" certain distinctive regions of the visual field. (This idea is
unrelated to the perception of colored light, as in red, yellow, and blue.)
This can help, for example, to determine whether something is inside or
outside a curve, or to sweep out certain significant regions of the scene. It
is also useful in separating figure from ground. Still, although coloring
must play an important role in other domains, it has not yet found a use
in Pengi. I suspect that, in playing Pengo, coloring is necessary only for
some advanced navigation amid mazes of ice cubes.

It is evident that the design of these visual operators is under-
constrained. What is more, Pengi's visual operators fail to address many
issues that do not arise in playing Pengo. Examples include texture, scale,
shading, and depth. In a more realistic set of operators, the individual
operators would have to be more general and there would have to be more
operators for all of those concepts. Perhaps a hundred different operators
are necessary, but it is far too early to tell. In the end, it is an empirical
matter what operators human beings have and whether those operators
would be ideal for robots. Psychophysical experiments can help resolve
such questions. Ullman (1984) describes a number of such experiments.

Central system

Recall that the central system is made of combinational logic.
Inputs arrive from the visual system for both the current clock cycle and
the previous one; the circuitry generates the outputs. Some of the out-
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puts are operator requests to the visual system; others are commands to
the motor system. The central system consists of several hundred gates,
most of them specified individually in a simple language.

The hardest part of building the central system, particularly in this
domain, concerns contention for visual operators. Often Pengi will have
three different uses for an operator at once. Consider, for example, the
operator that determines whether two objects are close together. Pengi
might want to know if the bee is close to the obstacle and if the penguin is
close to the projectile at the same time. Thus arises the difficult technical
question, already mentioned in the discussion of the visual operators, of
how to arbitrate among competing claims on an operator. This question
has a number of answers. In building Pengi's circuitry we used some
conventional patterns of gates for representing conflicts and priorities
among various claims on an operator. When this does not suffice, it can
become necessary to replicate the visual operators. There is a trade-off
between complex forms of arbitration and operator replication, but this is
not the best domain to explore the trade-off. The real experts in the game
clearly use their visual operators in very sophisticated ways. They may
depend on properties of their circuitry and operators that Pengi does not
model, such as the slow propagation time of brain circuitry.

To understand the remainder of this section and most of the next
section, the reader will have to be comfortable with Lisp programming
and digital logic design.

We built the circuitry with Lisp procedures; the simulator calls this
code before starting the game. To build an AND gate we call andg. The
andg function's arguments are the gate's input wires; its output is the
gate's output wire. The org function builds OR gates; the inver t func-
tion builds inverters. We can nest these calls, making an AND gate whose
inputs are taken from the outputs of OR gates whose inputs are taken
from the outputs of inverters. The wires can be assigned to global vari-
ables or passed around as arguments. Constants include the various
directions and scales that are sent to the operators; typically they are one
to three bits worth of information. Another set of functions generates
simple circuitry for manipulating these buses. For example, if-bus takes
a condition wire and two buses and returns an output bus that is driven
by one of the two input buses according to the condition; this is a simple
matter of logic design, two gates for every bus line. (This simple scheme
for specifying circuitry is not novel. It resembles Kaelbling's Rex lan-
guage [1987].)
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The code that builds the central system's circuitry revolves largely
around the problem of deciding which values to place on the operators'
input wires. Much depends on whether a given operator has more than
one use. When an operator has only a single use, one can use the se t -
inputs! form to permanently set its inputs. For example,

(set-inputs! marks-penguin? marker penguin-marker)

says to set the marker argument to the marks-penguin? operator to the
value of the global variable penguin-marker, which is 0. Thus, the
marks-penguin? operator's result will always indicate whether marker 0 is
resting on the penguin.

Canned arbitration circuitry is necessary in the more complicated
cases. This circuitry is generated by a set of functions - condition,
overrides-action, and several others - that expand into calls on basic
circuit-construction functions like andg and invert. These functions
implement much the same argumentation scheme first discussed in
Chapter 9 and used in the rules in RA. As in RA, the metaphor is that
various patches of circuitry in the network conduct an argument. A patch
of circuitry can propose an action, either a primitive action (such as
kicking or moving a marker) or a compound action (like engaging in a
certain bee-hunting tactic). Another patch of circuitry might make its
own proposal or else raise an objection to the first proposal. A proposed
action is taken provided no objection against it is sustained. The condi-
tion function declares a condition under which some objection should
be posted against an action. The overrides-action declares that the
taking of one action constitutes an objection to some other action. Each
function defines appropriate circuitry in a straightforward fashion.

For example, the following code arranges for marker 0 to index the
penguin as soon as the game begins:

(action index-to-penguin index-thing!
marker penguin-marker
object-type (constant 'penguin 'object-type)
doit? *t*)

The action function defines an action named index-to-penguin. In
Pengi's terminology, an action is an assignment of values to an operator's
inputs. The action function creates circuitry that gates these values
onto the operator's inputs on those cycles when Pengi decides to take that
action. In this case the operator is index-thing!, which has three inputs:
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the marker to be moved (i.e., marker), the indexable property to be
employed (i.e., object-type), and the operator's activation line (i.e.,
doit?).

This next bit of code ensures that Pengi performs only the index-to-
penguin action on the very first cycle of the game. Once Pengi does
perform index-to-penguin, marker 0 will rest on the penguin for the
remainder of the game. As a result, the marks-penguin? operator, whose
marker input we set to 0 a moment ago, will return false on the first cycle
and true forever afterward:

(conditionindex-to-penguin (invert *marks-penguin?-result*))

The condition function takes an action name and a wire. Here the wire
is the output of an inverter whose input is the result of the marks-
penguin? operator. (In general, the result of an operator is a wire or bus
bound to a global variable whose name takes the form * operator-re-
sult*.) The index-thing! operator is also used to find bees; another bit of
code ensures that the action implementing this use of the operator is
suppressed while Pengi is finding the penguin:

(overrides-action index-to-penguin index-to-bee)

The overr ides-act ion function takes two actions and generates cir-
cuitry that ensures that the second one is suppressed whenever the first
one is activated.

To summarize, the bits of code I have just discussed construct circuit-
ry for three closely related purposes: (1) to ensure that the result of the
marks-penguin? operator always indicates whether marker 0 is located on
the penguin, (2) to use the index-thing! operator to move marker 0 onto
the penguin on the first cycle of the game, and (3) to ensure that Pengi
does not attempt to use the index-thing! operator to find both penguins
and bees on the same cycle.

Example

Figure 13.6 presents a schematic situation from a Pengo game.
The penguin finds itself in a particular situation involving an ice cube
and a bee. (In a normal situation more ice cubes and bees would be found
nearby.) It would probably be a good idea for the bee to fly up behind the
ice cube and kick it at the penguin. How does this work? In my explana-
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Figure 13.6. In this schematic situation from a Pengi game, the player will
notice that the ice cube is aligned with the bee, move the penguin alongside the
ice cube, and tell the penguin to kick it.

tion I will interpolate some of the code, simplified in various ways, that
builds the circuitry responsible for these routines. I will not present all of
the necessary code, because it is voluminous and very dense, so some of
the terms mentioned in the code will go undefined or described only in
English.

As the preceding section explained, Pengi has a convention that
marker 0 tracks the-penguin. As the penguin moves across the screen,
marker 0 moves along with it. Consequently, Pengi can now perform on
marker 0 all the operators that are predicated on markers and thus find
things out about the penguin. For example, it can perform visual opera-
tions to judge other objects' spatial relationships to the penguin and
determine whether the-penguin-is-moving.

Another, more complicated convention is that marker 1 is, with spe-
cific rare exceptions, on the-current-bee, the bee that Pengi is either run-
ning away from or attacking. In this case Pengi will try to attack the bee.
The circuitry must maintain the invariant that marker 1 stays on the
current bee. If some other bee becomes more interesting, either more
dangerous or more readily attackable, then somehow marker 1 has to get
on that more interesting bee. Thus, marker 2 is constantly picking out
moving objects and some circuitry is constantly checking if marker 2
marks a bee and if that bee is more interesting, by various criteria, than
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the bee under marker 1. (Dangerous attacking bees, for example, are
more interesting than vulnerable bees that are running away.) If it is,
Pengi moves marker 1 onto marker 2, unassigns marker 2, and then starts
once again looking around at other bees with marker 2. As a consequence,
Pengi will drop whatever it was doing to the preceding bee and now set
about dealing with the new bee. Marker 2's scanning routine is always
proceeding in the background. Whenever the arbitration circuitry lets it
use the necessary operators, the circuitry implementing this routine tries
to find the most interesting bee. These operations have a relatively low
priority, but they are always trying to happen.

Here is the code that drops marker 2 (i.e., moving-marker) on moving
objects near the penguin:

(set- inputs! index-moving-thing-near!
tracking-marker moving-marker
locus-marker penguin-marker
radius (constant 200 'distance)
doit? (andg *penguin?-result*

(invert *index-moving-thing-near!-result*)))

Some care is required to make this operator run at the right times. At the
very beginning of the game, it should wait until marker 0 has started to
track the penguin. More important, it should run only every other cycle
so that other operators can spend the odd cycles performing tests on the
new object it has identified. As a result, it runs only on cycles when it is
not returning a result.

Once Pengi finds a new moving object, here is the code that deter-
mines whether the moving object should be declared the currently most
interesting bee:

(se t - inputs! warp-marker! 1
markerl bee-marker
marker2 moving-marker
doit? (andg * index-moving-thing-near! - resul t*

*marks-bee?-result*
(defini tely *nearer?l-result*)))

Pengi has two warp-marker! operators because we did not have the
patience to figure out how to arbitrate between their two uses. (This
could be more principled. The other use involves identifying and avoid-



Pengi 291

Figure 13.7. Pengi assigns marker 0 (triangle) to the penguin. It moves marker
2 (pentagon) among the nearby bees until it finds one that seems vulnerable or
dangerous, whereupon it also moves marker 1 (square) onto that bee so it can
focus on it.

ing ice cubes that have been kicked by bees.) This copy of warp-marker!
moves marker 1 (i.e., bee-marker) to the object being tracked by marker
2 (i.e., moving-marker) provided that we have just picked out a moving
object, the object is a bee, and the bee is closer to the penguin than was
the preceding interesting bee. One might add many more conditions.

Figure 13.7 shows the initial scene with markers 0, 1, and 2 assigned.
We draw markers with polygons. Triangle is marker 0, square is marker 1,
and so forth.

Another operator picks out an ice cube near the penguin. Pengi applies
this operator repeatedly, picking out all the nearby ice cubes and using
some more circuitry to see if it might use the ice cube to attack the
current bee. It does this by using freespace-between? to determine
whether there is free space between marker 1 (the bee) and marker 3 (the
ice cube). If so, and if various other conditions apply, the ice cube is a
good candidate projectile. Next Pengi starts figuring out the directions
among things. It uses direction-from twice, to find the axes that relate the
bee and the ice cube and also to determine the direction of the penguin
from the ice cube in terms of these axes. A fair amount of circuitry sorts
among the various cases. For example, perhaps the penguin will have to
back up and move around behind the ice cube and kick it. Perhaps it will
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already be lined up with the ice cube. Different circuitry covers different
cases. This case at hand is relatively simple.

Here is the code that determines whether marker 3 has managed to
land on an acceptable projectile:

(setq *direct-projectile-won?*
(andg *freespace-between?-result*

(invert *direct-moving?*)
(invert (andg (possibly *nearer?2-result*)

*toward?-result*
(invert *aligned?l-result*)))))

The ice cube under marker 3 is an acceptable projectile under three
conditions. First, there should be free space between it and the bee.
Second, it should not be moving (i.e., from someone having kicked it).
(Another bit of code sets the constant *direct-moving?* to the output
wire of a circuit that determines whether the object under marker 3 is
moving.) Third, it should not be the case that the bee is closer to the ice
cube than the penguin and also headed toward it. The third condition is
prudent lest the bee arrive at the ice cube first and kick it.

Figure 13.8 shows the same scene with the marker 3 assigned and the
various directions mapped out.

The next step is to start moving. Pengi knows in what direction it
needs to move now by performing a simple calculation (using logic
circuitry) with the various encodings of directions and axes. In the dia-
gram, the penguin must move upward so as to align with the projectile.
Once aligned, it then moves rightward toward the projectile.

Here is the code that aligns the penguin with the projectile:

(action align-with-projecti le go!
direction (direction-in-other-dimension-from

*target-to-projectile-direction-major*
*penguin-to-projectile-direction-major*
•penguin-to-projectile-direction-minor*)

doit? *t*)
(condition align-with-projectile

(invert *aligned?l-result*))

The global variables used in computing go!'s direction input are the
buses that return the two components of the two direction-from opera-
tors. The call on the function direction-in- . . . expands into cir-
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Figure 13.8. Pengi has now assigned marker 3 (hexagon) to the ice cube because
it seems like a good projectile for attacking the bee.

cuitry for computing the appropriate direction. Since this action is con-
ditionalized on the penguin not being aligned with the projectile, it will
stop suggesting itself once the penguin is aligned. Once the penguin is
aligned with the projectile, the following code will propose moving the
penguin toward the projectile.

(action run-for-projecti le go!
direction *penguin-to-projectile-direction-major*
doit? *t*)

(condition run-for-projecti le *aligned?l-result*)

Instead of the condition on the run-for-projectile action, we could
equally well have specified

(overrides-action align-with-projectile
run-for-projectile)

This would guarantee that Pengi would not move the penguin toward the
projectile until it had finished aligning the penguin with the projectile.
The two actions are incompatible because the penguin cannot be moved
diagonally.

Finally, once the penguin is adjacent to the ice cube, it kicks it at the
bee (Figure 13.9):
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freespace

Figure 13.9. Pengi has aligned the penguin with the ice cube and is about to
kick it at the bee.

(action k ick -p ro jec t i l e kick! doit? *t*)
(condition k ick -p ro jec t i l e *adjacent?-result*)

Remember that all of these operators have been running all the time.
Pengi is constantly checking whether free space exists between the
projectile and target, and that is a constant condition for the next move. It
is also constantly checking whether the bee is aligned with the projectile,
and that too is a constant condition for the next move. Consequently, if
the bee moves out of range, Pengi will stop attacking the bee, though a
different bit of circuitry could make a separate decision to proceed any-
way in case the bee moves back into range. This more speculative tactic is
not implemented, but a beginning player regularly does it and it would be
easy to implement.

Pengi is also always checking, as much as it can, whether it has marker
1 on the most interesting bee. If some other bee is easier to attack or is too
dangerous, it always wants to know that. That is why, as mentioned
earlier, the routine whereby Pengi marches marker 2 among the various
bees and compares them with the current bee is happening all the time as
well. The penguin may take a definite path across the board to kick the ice
cube, but the process by which it does so is not a four-step serial pro-
gram. As a consequence, many different lines of reasoning want to make
claims on the visual operators all the time. This is the origin of the
problem of operator contention. Some of these routines can wait for a few
cycles if necessary. Checking around for a dangerous bee, for example,
cannot wait for long periods, but it can wait for a couple of cycles. The
programmer must make many such judgments.

Although all of the visual operators can run in parallel, several con-
straints operate. First, Pengi must check all its conditions frequently



Pengi 295

enough. Second, Pengi must not try to do conflicting things with an
operator on any given cycle (e.g., giving it two different values for the
same argument). Third, Pengi must be able to keep track of the various
claims on its operators despite its minimal state. In order to interpret its
operators' results, it must also be able to reconstruct to some extent what
it was doing on the preceding cycle. It does not, for example, have a
queue into which it can put the different functions that it wants to assign
to an operator. Nor would such a queue help, since the various operators
making up a particular visual routine have to be coordinated closely.
Pengi can reconstruct some of what it was doing by looking at the
markers. A fourth constraint is that the programmer's task must be
tractable. These considerations trade off in various ways.

Despite its flexibility, Pengi does have some inertia due to its visual
focus. The visual markers' being on various objects focuses the system on
those objects and thus to a certain extent preoccupies it. Sometimes the
action moves so quickly that Pengi does not have time to move marker 2
among other interesting candidate bees, so that a bee can sneak up behind
the penguin and sting it. That is how I often lose the game. Perception is
necessarily selective, so that skill in the game lies largely in effective
selection policies.

Seriality and focus

Pengi can have such a simple architecture because of what we
learned about the dynamics of situated activity in general and Pengo-
playing in particular. Central to this understanding is the fact that a
situated agent, far from being a detached abstract intelligence, has a body.
Having a body implies a great deal: facing in a direction, having a loca-
tion, the tendency of the objects near us to be the significant ones, and
the availability of various resources in the physical world. Pengi has a
body only in a rudimentary sense, but its interaction with its video-game
"world" does imply that, like any embodied agent, it must continually
choose a single disposition for each of its parts (up or down but not both,
here or there but not both). The necessity of such choices has pervasive
implications for an agent's architecture. This section concentrates on two
intertwined themes that figure in the dynamics of any embodied agent's
interactions with its environment: seriality and focus. These themes
appear on three different levels.
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The first level is in the realm of dynamics. Simply having a body
imposes a certain seriality on your activity. You can be in only one place at
a time. You can be facing and looking in only one direction at a time. You
can only do about one thing with your hands at a time. You can drink
from only one cup at a time. If you have several things to do, you have to
do them in some serial order.

The second level is that of the visual system. The visual system em-
ploys visual markers, in terms of which many of the visual operations are
defined. Each visual marker can be located in only one place at a time,
and each operator can be used for only one purpose at a time. More
generally, one's visual system is focused on one thing at a time, in three
senses: one's eyes are aimed in one general direction at a time, one
actually focuses in a specific place, and the visual markers are allocated to
certain locations and not others.

Finally, the themes of seriality and focus assert themselves on the level
of representation. I can have only one the-cup-I-am-drinking-from at a
time, and if I actually want to deal with several such objects then I must
do so one at a time.

All of these kinds of seriality and focus are aligned. The representation
scheme is less general than others in that it cannot represent arbitrary
spaces of meaninglessly distinguished objects with identical significances
all at once. But it does not need to, since an embodied agent can interact
with only a small number of functionally distinguished objects at a time.
In the end, this is the main way in which our understanding of dynamics
has led us to simpler machinery. The machinery provides only the
capacities we really need. In doing so, it takes advantage of the dynamics
of interaction in relatively benign worlds for its power rather than provid-
ing cumbersome machinery motivated by a spuriously conceived
generality.

Despite these lessons, again, Pengi has a body in only a rudimentary
sense. It stands transfixed in front of its video screen without moving
among the materials and equipment of its task. Nothing is ever behind it.
It interacts continually with the world but it is not truly in the world.
More genuinely autonomous embodied agents will require a deeper un-
derstanding of the dynamics of embodiment.

It would be instructive to try applying Pengi's technology in a
different domain. Doing so will presumably reveal that we made many
mistaken decisions about this architecture's underconstrained features.
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Some of our mistakes will have resulted from the exigencies of having to
make it programmable at all, given our rough understanding of the
detailed dynamics of this particular activity. Other mistakes will be due to
the biases inherent in this domain. A Pengo board is a visually busy place.
Since the bees have an uncooperative random element, a Pengo player
must keep a finger on an abnormally large number of details of its
environment; this is why Pengi relies more heavily on markers for its
causal relationships than is the case in real life. Indeed, this aspect of the
domain tends to obscure the distinction between deictic and objective
representation, since visual markers are much more similar to variables
than most other means of maintaining causal relationships to entities.
When an agent's interactions with the world have a more reliable struc-
ture than Pengi's relationship to the Pengo game, it becomes possible to
focus more tightly on particular objects and tasks. Pengi, by contrast, has
a fairly diffuse kind of focus that conflicts with the premises of its
architecture.

Questions and answers
Pengi reliably provokes a long list of questions. Though I have

tried to address most of these while developing the argument, several are
best dealt with separately. I have tried to word most of them in exactly the
way that AI people tend to ask them.

You say that Pengi isn't a planner. But how can it be a serious model
of any kind of activity without anticipating the future?

A system can anticipate the future without constructing plans. All that is
required is that one's actions take ideas about the future into account. In
a planner, this takes two forms: the decomposition of goals into subgoals
provided by the programmer and the simulation of possible future
courses of events that the planner performs. Pengi also anticipates the
future, in two senses. First, Pengi's tactics were designed using an under-
standing of the dynamics of the game. This understanding involves ideas
about what tends to happen next and about how individual actions lead to
winning the game. Second, Pengi uses its visual system to visualize
possible courses of events. Pengi does not have a general facility for
simulating the future, because it suffices to visualize certain patterns.
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You say that Pengi does not use world models. But couldnt we view
its retinal image of the Pengo screen as a world model and its visu-
alizing as simulation?

The distinction between performing a simulation and running visual
routines is indeed not as clear-cut as it appears. One might choose to view
the visual operations as performing some sort of logical deduction. Visual
routines certainly do not constitute a general simulation or theorem-
proving facility, but inference need not imply a general inference facility.
The representations over which the visual operators apply are retino-
centric and thus not objective world models. A retinal image is a poor
world model because it encodes only the most primitive information
about the world. It does not encode the identities or structural relations
of the visible materials. Furthermore, a retinal image is not a world model
because its relation to outside events depends on the agent's location and
orientation. Pengi, it is true, always has the same location and orientation,
but other systems employing the same technology need not.

You emphasize the way Pengi's entities support a sense of focus.
Couldn't you implement focus in a much more straightforward way,
perhaps by maintaining only a model of what's happening within a
certain radius from the penguin?

That wouldn't do, since a bee can kick an ice cube from an arbitrary
distance. It would also be a domain-specific solution that would not be
helpful in domains where it would be too complicated to model all the
materials within any reasonable radius of any given point.

Pengi has no state in its central system. How could intelligence be
possible without memory?

People certainly do remember things. Pengi is not supposed to be a
model of all human activity. Pengi does not have any state in its central
system purely as a matter of machinery parsimony. It turns out that the
dynamics of Pengo-playing are such that no central system state is
necessary.

Pengo is such a specialized domain. Why should we consider that
Pengi has taught us anything about everyday life as a whole?
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Pengi's ability to play Pengo certainly proves nothing about activities
such as making breakfast. I do not claim to demonstrate any propositions
about everyday life by generalizing from Pengi. Instead, Pengi is an
illustration of some things we learned by moving back and forth between
observation and technical exercises. We chose the Pengo domain because
we were unable to build a breakfast simulator that did justice to the reality
of breakfast-making, because we feel we understand many of the
dynamics of Pengo-playing, and because the central dynamic themes of
improvisation, contingency, and goal-directedness all arise in Pengo in
natural ways. Pengo's only major drawback as a first experimental do-
main is its adversarial nature.

It seems as though playing Pengo involves reacting to a series of
crises. Combinational logic is very good at this, but what about
anything else? Haven t you tailored the Pengo domain to show off the
strengths of your architecture and hide its weaknesses?

Playing Pengo isn't like that at all. Pengo players who do not use complex
tactics and anticipate the future will indeed find themselves reacting to a
series of crises. Beginners tend to alternate between periods when they
attack and periods when they are in trouble and have to focus on surviv-
ing. More advanced players must often defend themselves, but the line
between attack and defense is more blurred. Pengi itself is a relative
beginner, but it spends at least as much time on the attack as it does
dealing with crises. In particular, Pengi constantly uses its visualization
abilities to see if it can use its various tactics.

You insist that the world is fundamentally a benign place, yet your
domain is violent. If the efficacy of improvisation depends on the
beneficence of the world, why should we believe in your analysis of
why Pengi can play Pengo?

The adversarial nature of Pengo is unfortunate, but we can be precise
about the way in which it disrupts our efforts to build Pengi. The
principal difficulty is that Pengi, like any human player of Pengo, must
continually work to keep track of the bees because of their random
motion. A Pengo player cannot take advantage of many of the dynamics
by which one can keep track of things in other domains, such as keeping
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them in a special place, carrying them in a pocket or purse, or going to
find them when a need for them arises. As a result, playing Pengo places
much heavier demands on one's visual system than most normal ac-
tivities. The most difficult thing about writing Pengi was to arbitrate
among the visual operators that Pengi uses to keep track of all the bees
and their geometric relations to the penguin. That the only serious
difficulty in writing Pengi corresponds so closely to the principal
difficulty in playing Pengo is at least mildly encouraging.

At the same time, the video-game metaphor of killing-or-being-killed
should not distract us from the benign properties that the Pengo domain
does share with many routine activities in the everyday world. The mate-
rials of the player's immediate activity are readily visible. The vast major-
ity of its objects - the ice cubes - do not move about capriciously. The
domain has a strong sense of locality, since objects do not move quickly
compared with the dimensions of the game board. And the player does
not encounter wholly unfamiliar types of objects.

Furthermore, it is important to distinguish Pengo from activities that
involve genuine violence. One simple distinction is that in Pengo it is the
penguin that dies, not the player. But there is a deeper distinction as well.
The world of Pengo works in a definite, unvarying way. The bees are
always driven by the same simple random process. Pengo would be much
harder if the bees were smarter. The bees could, for example, observe
patterns in the player's actions and devise strategies to take advantage of
them. If Pengo's bees changed their flight patterns, Pengi would certainly
compensate to a limited extent, but if the changes were substantial, Pengi
would not be able to evolve the necessary patterns of interaction. If
someone is genuinely trying to kill you - if you are at war or being
hunted - the way you represent the world is your Achilles' heel. All the
unarticulated assumptions behind your reasoning and all the unreflective
patterns in your actions create opportunities to catch you off guard. For
example, as weapons systems and their logistical support grow more
complex, and as the components that must work together grow more
numerous, the opportunities for subversion and sabotage multiply. Little
of this is at issue in Pengo, or in the routine activity of everyday life.

The lesson is that part of the benign nature of both Pengo and the
everyday world is that, far from working to subvert your understanding
of them, both help ensure that the representations you have developed
will continue to work well enough. Pengo offers this assurance through
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its simple lack of change. In the everyday world, though, the story is
more complicated. The unvarying nature of physical laws and the ten-
dency of physical objects to stay where you have put them certainly help
your representations to keep on working. Beyond this, considerable effort
goes into keeping the physical apparatus of everyday activities tidy and in
working order. But above all, the order of the everyday world is a social
order that is actively maintained through the intricately organized efforts
of all its participants. Far from subverting the common reality, everyone
makes everyone else participate in the common task of maintaining it
(Heritage 1984). The vast majority of this work is invisible to casual
inspection, but careful investigation or experiments in deliberate disrup-
tion can easily reveal it. Every element of the everyday world retains its
significance and its salient properties through this continual cooperative
effort. Making computational sense of this process, however, remains a
project for future work.

Does Pengi understand what it is doing? After all, you built its
circuitry yourselves.

Pengi does not understand what it is doing. No computer has ever under-
stood to any significant degree what it was doing. We built Pengi's cir-
cuitry ourselves; the authors of a planner provide it with the possible
decompositions of its possible goals and with functions for computing
the consequences of its actions. What grounds could we have for ascrib-
ing some measure of understanding to a conventional planner? One
ground might be the amount of relevant material made explicit by the
planner's representations. Yet the procedures needed to manipulate these
representations become computationally intractable as the representa-
tions themselves become more accurate. It is too early to settle the
question.



14 Conclusion

Discourse and practice

My argument throughout has turned on an analysis of certain
metaphors underlying AI research. This perspective, while limited, pro-
vides one set of tools for a critical technical practice. I hope to have
conveyed a concrete sense of the role of critical self-awareness in techni-
cal work: not just as a separate activity of scholars and critics, but also as
an integral part of a technical practitioner's everyday work. By attending
to the metaphors of a field, I have argued, it becomes possible to make
greater sense of the practical logic of technical work. Metaphors are not
misleading or illogical; they are simply part of life. What misleads, rather,
is the misunderstanding of the role of metaphor in technical practice.
Any practice that loses track of the figurative nature of its language loses
consciousness of itself. As a consequence, it becomes incapable of per-
forming the feats of self-diagnosis that become necessary as old ideas
reach their limits and call out for new ones to take their place. No finite
procedure can make this cycle of diagnosis and revision wholly routine,
but articulated theories of discourses and practices can certainly help us
to avoid some of the more straightforward impasses.

Perhaps "theories" is not the right word, though, since the effective
instrument of critical work is not abstract theorization; rather it is the
practitioner's own cultivated awareness of language and ways it is used.
The analysis of mentalism, for example, has demonstrated how a genera-
tive metaphor can distribute itself across the whole of a discourse. The
inside-outside metaphors of mentalism do not appear simply as buzz-
words that can be noticed, reflected upon, and altered in isolation. The
preceding chapters' studies have turned up numerous obscure and
tightly interconnected manifestations of these metaphors. Some exam-
ples include

302



Conclusion 303

• the abstraction-implementation couple,
• the standard theoretical definition of a computational problem,
• the vocabulary of input and output,
• the distinction between planning and execution,
• the notion of thought as simulated action and action as recapitu-

lated thought,
• the notions of world models and expressiveness,
• the idea of perception as mental model-building, and
• the theory of meaning as correspondence between knowledge-

inside and reality-outside.

These mentalist ideas reinforce one another, so that - through a home-
ostasis of practical logic - it is hard to challenge one of them without
challenging all the rest. Someone who tried to stop viewing reasoning as
mental simulation without also abandoning the planning-execution dis-
tinction, for example, would be forced to formulate an alternative con-
ception of planning that would nonetheless serve the same function.
While such a conception is certainly possible in principle, it is more likely
that an impasse would quickly arise as the practical logic of conventional
planning research proceeded to reassert itself. Or, to take another exam-
ple, someone who tried to undermine planning research by proving
negative complexity results about planning problems would discover that
the theorems had little effect, since the whole methodological framework
of "problems" (as functions from single inputs to single outputs) does
not fit the situation of an agent that alternates periodically between
planning and execution. Attempts to reinvent the field within new meta-
phors will constantly encounter additional ways in which the earlier
metaphors have gone unquestioned; putatively novel technical
proposals - such as my own - will constantly turn out to combine new
and old in complicated and problematic mixtures. Further historical
analysis could pursue the lines of mutual reinforcement even more
widely: back and forth between hardware and software, between ideas
and artifacts, between science and engineering, between business and
government, between popular culture and technical communities, and
between the proponents and the critics of all of these things. Across this
whole landscape, the analysis of generative metaphors serves as a power-
ful critical tool because it allows us to call entire networks of ideas into
question at once by tracing the threads that unify them.
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Let us review how the analysis of metaphor has helped in sketching
some alternatives to mentalism. The first step, not so clear in the linear
exposition here, was the long process of unraveling the metaphor system
of inside and outside and discovering its pervasive effects. This process
was not simple, but it would have been much simpler if suitable critical
tools had been readily available in the milieus of technical work. These
tools include the basic idea of generative metaphors and vocabulary of
centers and margins, as well as the broader substantive critique of Carte-
sianism. Once a generative metaphor has been detected, the next step is
to lay out its structure: the surface metaphors that obscure it, which
phenomena it makes central and which it makes peripheral, how its
margins become manifest, what happens when those margins are inter-
preted as new technical problems within the existing metaphor frame-
work, and so forth. Next, to make clear what exactly is at stake in accept-
ing or rejecting a given generative metaphor, one employs the strategy of
reversal - founding a new, competing technical enterprise, such as inter-
actionism, that reverses the original hierarchical relations of center and
periphery. This is difficult because it is hard to become aware of the full
range of ideas needing replacement. It is also difficult, obviously, because
it is hard to replace them all; one will seek guidance, for example, from
alien disciplines and from unsung precedents in old journals. Finally,
then, one insists on the displacement of both the original discourse and
its reversal. Rather than adopt the reversed theory as a new orthodoxy
replacing the old, one attempts to cultivate a more sophisticated view of
the role of language in technical practice. None of this will happen
quickly. But even a sketchy start can throw a great deal of light on the
existing practices, revealing the contingent nature of many things for-
merly taken for granted.

One promising aspect of this method is its capacity to predict the
progress of actual technical work - in other words, to use an analysis of a
discourse to anticipate certain aspects of the logic of a practice. These
predictions state that a technical practice will get itself into stereotyped
sorts of trouble as it encounters its margins. The practice will not simply
fail, or blow up, or hit a logical wall. Indeed, the trouble may be invisible
to the unaided eye: it may seem like a routine cycle of problems and
solutions and new problems and new solutions. Considered uncritically,
such a cycle might constitute progress or it might constitute a treadmill.
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Technical fields do not die through clear-cut empirical disproof of their
premises; the margins of practices lead not to sharp limitations but to
endlessly ramifying spaces of technical trade-offs. At any given moment,
the technical situation will be terribly complicated. Yet a great deal
becomes clear once the whole space of possibilities revealed by research is
mapped out through analysis of the discourses within which this research
is conducted.

Of course, any such clarity is best obtained in retrospect. A critical
analysis certainly does not replace practical work; nor should it be viewed
as a kibbitzer invalidating this work from a comfortable seat in back. To
the contrary, critical analysis is what allows the activity of research to
make sense as an orderly conversation with its own practical reality. And
by allowing the patterns of that conversation to become clear as soon as
possible, critical analysis can prevent a great deal of futile effort. Indeed,
this conception of critical insight suggests a new way of evaluating tech-
nical research: technical work is "good" when it facilitates critical reflec-
tion. Solving technical problems is a useful activity, but as an intellectual
matter it is much better to get oneself into a really revealing impasse -
and then to work through the internal logic of that impasse toward some
fresh understanding of the research process itself. Thus, there can be bad
interactionist work - when "interaction" degenerates into an indis-
criminately applied stock of techniques - and good mentalist work -
when, as with the work of Minsky and Newell, the internal logic of
mentalism appears to rise up and compel research into genuinely com-
plex engagements with the practical reality of computational work. Some
impasses are easily resolved, of course, and reasonable people can
disagree about how deep a rethinking of received ideas a given impasse
requires. But the matter is not arbitrary, nor wholly a relativistic matter of
opinion.

Internal analyses of metaphor systems are valuable, but they cease
providing guidance as soon as it is time to choose among them. Mental-
ism and interactionism both have metaphors, margins, and logics. In-
deed, as discourses go they are neighbors, organized by complementary
sets of topological figures; what is central for one is peripheral for the
other and vice versa, very neatly. It is too early to make firm decisions:
arguments for each option must appeal to practical experience, and the
research community has not yet accumulated enough practical experi-
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ence with either option. One crucial consideration is: what understand-
ing does each type of technical practice offer of the matters that the other
type makes central? That is, what accounts can mentalist AI offer of
complex interactions with the world, and what accounts can interaction-
ist AI offer of the prototypical cases of internal mentation? I have already
considered the first question - mentalist APs accounts of interaction - at
length and found some deep and serious problems. But the comparison is
not fair until we can pursue the opposite inquiry: investigating the practi-
cal logic of interactionist computational research on the phenomena most
closely associated with "the mind."

This inquiry has not even begun. It begins with this question: within
an interactionist view of human life, in what sense(s) do people have
"insides"? Obviously, any interactionist computational practice that we
can currently imagine will retain the minimal, physical sense of the term:
bodies and skulls have spatial interiors and exteriors. And, just as obvi-
ously, interactionism refuses to convert that minimal sense of the term
into a full-fledged generative metaphor. What interactionism does sug-
gest is that having-an-inside really is troublesome. The basic analytical
categories will be defined in terms of interactions, but certain concepts of
insideness might make sense against that background. Interactionism, in
other words, does not say that nobody "has" anything one might wish to
speak of with metaphors of "inside." It only suggests that insideness is
likely to be derivative, problematic, multiple, variable, constructed, and
contingent (Winnicott 1975a [1949], 1975b [1951]). That is, in the
dynamics of human life are several distinct phenomena that one might
want to call an inside:

• You might have an innermost self that you share only with your
innermost circle of friends.

• You might describe your thoughts as occurring inside yourself,
in the sense that you experience them as inside your conscious-
ness, while still being unaware of the unconscious thoughts.

• You might hold your feelings in.
• You might have something in mind in pursuing a certain line of

reasoning in a conversation.
• You might have someone in particular "in your life."

These are cultural idioms and not technical concepts. They all name
perfectly real phenomena, but these phenomena must be understood
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within the fullness of someone's life - interactions, involvements, and
relationships - and not (at least a priori) as specifying an anatomy or a
cognitive architecture. In particular, they must all be understood as
different varieties of "in"; each "inside" applies to a different useful way
of mapping a metaphorical topology of the self.

Perhaps the most unfortunate cultural consequence of mentalism is its
tendency to collapse all of the disparate inside phenomena into a single
"mind" vaguely coextensive with the brain. At the root of this im-
poverishment of psychological discourse is the practice, found in
Descartes and subsequently intensified by the discourse of mentalistic
computationalism, of conflating a rough phenomenological description -
that of inner thought - with a specification of mechanisms - processes
inside the brain. In undoing this conflation, it becomes possible to ex-
plore other metaphors and other ways of relating phenomenological and
mechanistic theorizing. Chapter 1 began by complaining about this con-
fluence of technology and experience; and it is here, in this slightly more
sophisticated reflexive understanding of metaphor and its role in techni-
cal work, that some alternative becomes conceivable.

Converging computational work

Several interactionist AI research projects have emerged over
the past decade. These projects grow from the history of computational
ideas in their own distinctive ways, and the authors appeal to a variety of
research values in presenting the rationales for their work. These ration-
ales can be usefully sorted under three headings: layered architectures,
interlinked automata, and machinery parsimony.

Layered architectures

Much AI research on interaction with the physical world has
been motivated by the desire to build autonomous agents (Maes 1990) or
artificial life (Steels 1993; Varela and Bourgine 1992), or to use computa-
tional modeling to study biological phenomena (Meyer and Wilson
1991). An emphasis on fixed or nearly fixed circuit structures is common
in this literature. Some authors attempt to replicate the properties of
human or animal nervous systems, but others share a more theoretical
concern with physical realization.
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Brooks (1986, 1989) has explored the design of "nervous systems" for
insect-like robots based on these principles. Arbib (1989) has likewise
explored the schemata comprising the nervous systems of frogs through
anatomical study and simulation. Their ideas about circuit architecture
share an idea that Brooks calls subsumption: the circuit is divided into
behaviorally specified layers, with each layer of circuitry modifying the
function of the otherwise self-sufficient package of layers below it. In
Brooks's robots, for example, the lowest layer of circuitry prevents the
robot from running into obstacles; the next layer causes the robot to
wander around, interrupted by periodic avoidance behaviors caused by
the first layer. By analogy, Arbib and Liaw (1995) consider a toad's neural
circuits for snapping at prey and avoiding predators; they argue that the
lowest layer of circuitry will snap at anything that moves, and that the
next layer overrides this reflex and substitutes avoidance behavior if the
moving object is too large.

These models envision a specific relationship between machinery and
dynamics. The agent's interaction with its environment is understood as
a collection of discrete behaviors each of which is subserved by a module
of machinery. Some of the behaviors subsume others, and so do the
corresponding modules. This scheme is motivated by an evolutionary
story: higher functions developed as additions to, and modifications of,
lower ones. The research strategy is to work upward through phylogene-
tic history, understanding the more basic structures of brain and behavior
before investigating the more advanced structures that are built on top of
them (Kirsh 1991).

Interlinked automata

Several authors have tried to formalize in mathematical terms
the interactions between agents and their environments. The most com-
mon approach is to interpret the agent and environment as interlinked
automata. The theory of automata is part of the theory of computation. A
given automata-theoretic formalism will provide mathematical tools for
describing a class of idealized machinery: the unitary components, how
these components can be assembled, and the rules that govern how a
given assemblage of components evolves over time. Perhaps the most
familiar of these formalisms is Conway's Game of Life, in which the
components are simple binary elements (glossed as "living" or "dead")
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arranged on an infinite, discrete two-dimensional grid. Any given ar-
rangement of "living" squares on this grid constitutes a particular au-
tomaton. As with most such formalisms, these games evolve step by step
according to a discrete clock; simple rules determine the arrangement of
living squares on step n + 1 given their arrangement on step n. Turing
machines are also formal automata in the same way.

When an agent and its environment are interpreted as interconnected
parts of one large automaton, the formalism's evolutionary rules will
determine the dynamics of the interaction between them. Lyons and
Arbib (1989) formalized these automata as hierarchical networks of con-
current processes; these networks implement the schemata just men-
tioned. Such automata might be used in a variety of ways. They might be
a theorist's tool for designing and predicting the dynamics of a given
agent and environment. Or representations of them might be supplied as
data structures to a computer program; Lyons and Hendriks (1995) have
explored how such a program might automatically identify and represent
the dynamics of the agent and environment's interactions. They have
applied this method to the analysis of a number of industrial robots.

Beer (1990, 1995) has taken another approach, characterizing agent-
environment interactions within the formalism of dynamical systems
theory. Though not commonly understood as a branch of automata
theory, dynamical systems theory expresses the evolution of a formally
specified system. Like Lyons and Arbib, Beer treats the agent and en-
vironment as portions of a larger system that comprises them both.
Beer's formalism is continuous, so that his systems' rules of evolution are
specified by differential equations. He has applied his formalism to a
robotic insect whose legs are driven by simple neural networks, using
genetic algorithms (Goldberg 1989; Holland 1975) to assign weights
automatically to these networks by simulating various possibilities. The
resulting robot insects exhibit stable, biologically realistic gaits, and Beer
wishes to explain how and why. This threatens to be difficult, given that
the numerical weights in the neural network, plotted in any simple way,
are not obviously meaningful. The tools of dynamical systems theory,
however, permit the robot's behavior to be usefully plotted as a trajectory
through a mathematical space.

Rosenschein and Kaelbling (1986, 1995) take yet another approach.
Their design methodology for situated automata is based on a mathemati-
cal logic formalism that describes the informational relationships be-
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tween an agent and its environment. That is, a given element of the
agent's circuitry might be held to "carry the information that" such-and-
such state of affairs holds in the world: for example, that a certain door is
open, a certain light is on, or a subgoal has been achieved. Since they
employ the methods of model theory, they understand this "carrying" as
a correspondence relationship, and they normally specify their examples
in terms of objective individuals; these are named by logical constant
symbols such as robot l and ball37 (1995: 156). In practice, due to the
demands of embodiment, they more closely resemble deictic entities
(1995: 166). A designer builds a situated automaton by using a logical
formalism - or a convenient specification language with logical
semantics - to describe the desired goals, perceptions, actions, and in-
ferences. A compiler similar to the Pengi designer's is used to translate
these specifications into working circuitry. This circuitry is more general
than Pengi's since it includes a general facility for building latches.

Machinery parsimony

A third strategy in interactionist AI research has been defined in
methodological terms through the principle of machinery parsimony
introduced in Chapter 3. Recall that this principle suggests that careful
attention to dynamics will lead to simplifications in the design of machin-
ery for agents that participate in those dynamics. The requisite under-
standings of dynamics might take many forms; some might be mathe-
matical and others might be intuitive. In practice these understandings
will typically be driven by the design of architectures. Given a partially
designed architecture, a choice about how to proceed with the design can
often be translated into questions about dynamics: Does this happen?
Does that happen? Is this kind of information typically available? And so
on.

One example of this reasoning is found in Agre and HorswilPs (1992)
work on a class of tasks heavily abstracted from cooking. Cooking is
normally organized as a sequence of conceptually discrete steps: mixing,
pouring, stirring, spreading, picking up, putting down, turning on, turn-
ing off, and so forth. Particularly with a familiar set of recipes, the
question is always, which step is next? Answering this question does not
normally require extensive formal analysis, because so many of the steps
are either wholly independent of one another (you can beat eggs and pour
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cereal in either order), or else simply impossible until certain other steps
have been performed (you cannot beat eggs until you break them). As a
result, one can go a long way with the simple policy of repeatedly finding
something that needs doing and can be done, and doing it. Applying this
policy, of course, presupposes that one knows (at least) what steps must
be done eventually, what enables a step to be taken, how to take the
individual steps, and how to recognize that the task has been completed.
The technical question is, does it require any more than that? Horswill
and I analyzed this question by adapting the classical AI framework for
plan construction through search. Strong constraints can be imposed on
the structure of the search space by analyzing the behavior of the objects,
particularly utensils, actually found in kitchens. As a formal matter, it is
necessary to construct a schedule of activities only when one risks run-
ning out of stove burners or other such tools that must be committed to a
fixed purpose for an extended period.

Another example is found in Hammond, Converse, and Grass's (1995)
analysis of stabilization - the actions by which someone maintains a stable
relationship to his or her surroundings. They became interested in stabil-
ization through their development of cognitive architectures based on the
storage and retrieval of "cases" in the construction and execution of plans
(Hammond 1989). Case-based architectures, like dependency-based ar-
chitectures, work best when the same cases tend to recur frequently; they
work ideally when life is orderly enough that a manageably finite reper-
toire of cases covers the vast majority of the situations that tend to come
up. Agents can help to minimize the diversity of situations they encoun-
ter by actively adjusting the world to normalized forms. A simple exam-
ple is putting one's tools away in conventional places at the end of a task;
Hammond et al. call this "stability of location." Their taxonomy of
stabilization tactics also includes stability of schedule (driving to work
the same time each day), stability of resource availability (keeping kitchen
staples in stock so that they do not run out), and stability of cues (leaving
objects that need work in locations where they will be noticed), among
others. Their program FIXPOINT implements some of these tactics in
the context of the task of building toy boats.

Taken together, these projects demonstrate a trend in interactionist AI
research that Rosenschein and I have described as using principled charac-
terizations of interactions between agents and their environments to guide
explanation and design (Agre 1995a). Subsequent research can develop
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this theme in numerous directions. The methodological key is to maneu-
ver between design of machinery and investigation of dynamics, search-
ing for dynamic phenomena that constrain or support particular candi-
date designs.

Some next steps

The preceding section has placed this book in the context of a
broader movement toward post-Cartesian computational conceptions of
activity. The breadth and creativity of these projects justify a cautious
optimism about the prospects for future research. But the situation is
complicated. As I have continually emphasized, a critical technical prac-
tice always finds itself in the paradoxical position of digging the ground
out from under its own feet. It would be all too easy to neglect this
imperative and allow "post-Cartesian computational theory" and the like
to become the cant of a new establishment. It is thus essential to define
precisely the horizon of issues that this book defines through its limita-
tions and silences.

First of all, the metaphor system built up around the notions of
"inside" and "outside" does not exhaust the discourse of contemporary
computational discourse. Further metaphors that invite analysis along
similar lines, some of them already mentioned in passing, include the
following:

• Information as a commodity (Agre 1995b; Buckland 1991;
Schiller 1988). One has a certain amount of information; one
requires sufficient information to make a given decision; infor-
mation is obtained through computational expenditure (leading,
for example, to a trade-off between perceiving the information
and remembering it); stored information can depreciate over
time.

• Society as a network. Individuals as nodes in the network; rela-
tionships as "connections" (i.e., wires); communication as sig-
nals that pass over these connections; the normative stasis of
connectivity patterns in this network.

• Formalization as hygiene. "Neat" versus "scruffy" research pro-
grams; formal systems as "clean" in virtue of the alleged preci-
sion of their language; the process of formalization as a
"rigorous" production of this cleanliness.
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• Computation as power. The practice of comparing computers
along a linear scale according to their capacity to perform com-
putational work per unit time; the notion that computational
work can be measured and thereby understood as a commodity
whose expenditure is to be minimized.

In each case, the point of analyzing these metaphors is not to refute or
debunk them. The point, rather, is to displace them - that is, to under-
stand that they are metaphors. They might still be useful, but they are
not the transparent reality of things. Their analysis will be far from
routine; all of them are implicated in a larger network of discursive
devices and practical arrangements. Nothing is simple about this; the
metaphors are neither simply good nor simply bad.

Moreover, the analysis of generative metaphors is limited as a critical
tool. An explicit awareness of one's metaphors will certainly be part of
any critical practice. But sorting ideas by their generative metaphors is a
terribly coarse procedure. In the present case such measures are surely
necessary. But the next stage of analysis, within the broad mess of the-
oretical positions that I have called interactionism, will require more
refined tools. Many of these are simply the tools of serious scholarship:
clear thinking, close reading, interdisciplinary dialogue, and sustained
engagement with archival and ethnographic materials. These tools may
be applied to reflect on attempts to get things working, as I have done
with RA and Pengi; they may also be applied to historical reconstructions
of the projects that established technical traditions, as I have done with
computational research on planning and representation.

Furthermore this study, like most attempts at syncretic inquiry, runs
afoul of the standards of all the fields it tries to cross. Computer scientists
and philosophers alike are doubtless appalled at one aspect or another of
my methods and exposition. Computer people, for their part, tend to
have definite ideas about reporting technical work: one documents the
program thoroughly, states clearly what problem it is solving, keeps the
rhetoric to a minimum, reckons the relevant literature in terms of techni-
cal similarities to other people's programs, and offers no views that are
not justified by the "work ethic" of running code. Chapter 1 has already
attempted to sift the legitimate from the overly inflexible in these views,
but unfortunately it is not yet clear what a fully revised technical practice
would be like.
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Philosophers for their part will be justly upset at the rapid use I have
made of some large and difficult ideas. To take one central example, I
have invoked the name of Heidegger in defense of a computer program
that is, contrary to Heidegger's conception of human being, in no sense a
social creature. Yet Heidegger's own procedures provide the material for
a reasonable reply: the renovation of technical work is necessarily a her-
meneutic cycle in which each stage is a necessary preparation for the
next. In taking a few steps along the way, I can be happy enough to have
revealed a horizon for subsequent research. Each hermeneutic step will
involve questioning everything that has gone before, without at the same
time declaring the earlier work to have been a waste of time. My appeal,
in short, is not to the finality of my work but to its utility as a beginning.

Nonetheless, the missing theme of sociality diagnoses the central sub-
stantive difficulty with my theory: mentalism and interactionism seem
unified by an overly individualistic conception of agents in environments.
Getting beyond this limitation will entail recovering the history of com-
putational conceptions of individuality. It is perhaps a fluke of technical
history that the stored-program digital computer arose far in advance of
large-scale digital telecommunications, so that one could enumerate com-
putational individuals in the same way as human individuals. With the
growth of large-scale networking, though, conceptions of computational
individuality are shifting rapidly toward the new topological metaphor
sometimes called "cyberspace." This development deserves critical at-
tention; it lends itself equally to the political idiom of "empowerment"
and to control regimes of unprecedented scope. Far from encouraging
the values of collective action, this worldview would dissolve all individu-
alities into a boundless res cogitans. The margins of such a picture lie in
the human body, in the physical realization of all computation, and in the
boundaries between the res cogitans of bureaucratic rationality and the
res extensa of the human world. These margins will surely become the
sites of deconstructive inquiry and material contest, and the sooner the
better.

Critical attention should also be devoted to the status of design argu-
ments in computational inquiry. Early on, I insisted that science and
engineering be understood as distinct activities with different claims on
technical work. But the fact remains that the most powerful conceptual
tool of computational work, in both psychology and engineering, starts
from a sense of good design. In this sense, critical AI would benefit from



Conclusion 315

historical analysis of the discourses and practices of engineering (Layton
1971; Noble 1977). How has the social organization of engineering influ-
enced the metaphors and values of engineering practice? And how have
the scientific and engineering versions of computational research inter-
acted in the past? How have the frequent ambiguities between the two
activities affected each of them?

Further directions of research are more strictly philosophical. How
has the history of ideas functioned in technical work? The question is all
the more interesting given that computationalists have rarely thought of
themselves as engaged in an intellectual enterprise: "ideas" has long
meant "techniques." Yet a book like Miller, Galanter, and Pribram's
Plans and the Structure of Behavior can have an underground life, pre-
figuring whole generations of research without being extensively cited
within the resulting literature. How does this work?

As the social consequences of computational machinery grow more
extensive, the reciprocal influence of ideas about machines and people
will presumably grow as well. Ideas about machines and people have, of
course, influenced one another for a long time. But the situation is
different now. When automata were curiosities, and later when compu-
ters were confined to air-conditioned rooms, one could speak of a meta-
phorical relation between two vaguely similar but basically independent
entities. The early cognitivists, having been inspired by the new inven-
tions of military laboratories, could return to their laboratories and in-
vent a new psychology. This psychology's metaphors of "inside" and
"outside" were a modern variation on some old themes. During the Cold
War, the vocabulary of inside and outside spoke of existential loneliness
in a world gone mad. Now that computational ideas and computational
machinery are becoming ubiquitous, so that people find themselves
growing "interfaces" to complex devices whose spirit often seems alien, it
is urgent that we attend to the forms of human experience that these
devices embody and help reproduce. Once we become aware of such
things, they are no longer inevitable. In choosing our conceptions of
computing machinery, we choose, to some small degree, the world in
which we live.



Notes

1. Introduction

1. See, e.g., Miller's interview with Jonathan Miller (1983: 24), and Edwards
(1996: 180-187).

2. Truesdell (1984) refers to these packages of metaphor and mathematics as
floating models and suggests that computers encourage their use. But where-
as he regards them as a mark of poor science, I will simply argue for a
conscious awareness of their properties. On the ascription of intentional
vocabulary see Churchland (1989), Coulter (1983), Dennett (1981), and
Woolgar (1985).

3. For example, Descartes's near contempt for formal logic did not prevent
McCarthy (1968 [1958]) from founding a school of AI research that translates
all questions into problems of deduction in the predicate calculus.

4. Neisser (1966: 73-77) unkindly but intriguingly points out that this move-
ment began in a period when Madison Avenue and the Cold War brought a
mass-cultural preoccupation with brainwashing and other forms of human
"programming."

5. For general histories of AI, see Boden (1977), Crevier (1993), Fleck (1987),
Franklin (1995), H. Gardner (1985), and McCorduck (1979). For general
philosophical discussion see Boden (1990); Copeland (1993); Ford, Glymour,
and Hayes (1995); Haugeland (1981, 1985); and Putnam (1975b [I960]).
Newell (1983) outlines the major intellectual issues that have organized
debate within the field. Critical analyses of AI include Athanasiou (1985),
Berman (1989), Bloomfield (1987a), Coulter (1983), Dreyfus (1972), For-
sythe (1993a), K. Gardner (1991), Gilbert and Heath (1985), Lakoff (1987:
338-352), Leith (1986, 1987), Lighthill (1973), Roszak (1986), C. Taylor
(1985), Winograd and Flores (1986), and Woolgar (1985, 1987).

6. It also permits the use of neuter pronouns.
7. On Heidegger (1961 [1927]) see Dreyfus (1991) and Preston (1988). On

Garfinkel (1984 [1967]) see Heritage (1984) and Suchman (1987). On
Vygotsky (1978 [1934]) see Leont'ev (1981) and Wertsch (1985). Leont'ev
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in particular is responsible for an influential elaboration of Vygotskian psy-
chology known as activity theory (Engestrom 1987; Nardi 1996). My use of
the term "activity," however, is less specific than Leont'ev's, in large part
because I do not know how to realize many of Leont'ev's more advanced
categories in computational terms.

8. For Miller, Galanter, and Pribram's influence see Forbes and Greenberg
(1982); Friedman, Scholnick, and Cocking (1987); Geoghegan (1971);
Greeno (1974); and Hayes-Roth and Hayes-Roth (1979). Bruner (1974)
argues against the application of Miller, Galanter, and Pribram's theory to
child development. Edwards (1996: 233) describes the role of Plans and the
Structure of Behavior as a cognitivist manifesto.

9. For alternative computational theories of plans, see Agre and Chapman
(1990), Alterman (1988), Chapman and Agre (1987), Grosz and Sidner
(1988), Pollack (1992), and Webber et al. (1995).

10. I owe this way of looking at things to Gerald Jay Sussman. Smith (1996),
extending this line of argument, suggests that "computation" is not even a
meaningful category, that is, a category that distinguishes any well-defined
set of objects from others.

11. Moreover, both of these methodological concepts are distinct from the
substantive AI concept of "problem solving," which later chapters will
discuss at length.

12. Woolgar (1994) argues that the ascription of intentional categories, whether
to people or machines, is always discursively organized within a tacit order
of social convention. Thus, he suggests that a status such as "knowing" or
"acting" does not reflect an objective fact residing underneath an agent's
surface, but is instead something assigned by the participants to a social
setting based on surface displays. It follows, he suggests, that narrating the
operation of machinery in intentional terms is not metaphorical, since that
would presuppose that intentions are inherently attributes of people and not
machines. Instead, he suggests, research should inquire into the methods
and conventions of ascription in particular settings.

13. See also Holmqvist and Andersen (1991).
14. Anderson (1990) has more recently attempted to provide principled justifi-

cations for his architectural ideas by arguing that certain designs are "ra-
tional," meaning optimal in terms of some efficiency criterion. By starting
out with an elaborate proposal about cognitive architecture whose details
need pinning down, he is able to formulate these criteria very specifically
and in quantitative terms. For the most part, the arguments depend not on
fundamental issues of physical realization but on more abstract measures of
efficiency.

15. In the vocabulary of AI, a representation scheme is a language or notation or
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formal system for representing things, and a representation is an instance of
some representation scheme. For example, the first-order predicate calculus
is a representation scheme and the logical sentence sleeping(Rover) is a
particular representation. It is often assumed for expository simplicity that
representations represent particular things in the world, but \/(x) snoring(x)
—> sleeping(x) - a quantified sentence involving two predicates, snoring and
sleeping - is a representation that does not. Representations are commonly
held to be mental objects; representation schemes are commonly held to be
structuring principles of mental life, but are not generally held to be mental
objects themselves.

16. On AFs relations with its critics see Bloomfield (1987b).
17. Sengers (1995: 157) uses the phrase "immanent critique."

2. Metaphor in practice

1. Philosophical analyses of Whorf have ranged from Devitt and Sterelny's
(1987: 172-184, 201-206) excoriation to Black's (1962: 244-257) carefully
itemized puzzlement. More recent scholarship, however, has made it possi-
ble to situate Whorf's view in a specifically anthropological and linguistic
tradition, and to employ it as a basis for empirical investigation (J. Hill and
Mannheim 1992; Lucy 1992).

2. De Anima iii, 4: "The thinking part of the soul [i.e., the mind] must [be]
capable of receiving the form of an object; that is, must be potentially
identical in character with its object without being the object." See Arbib
and Hesse (1986: 148-152).

3. A dialectical relationship between two entities, called moments, has three
properties: (1) the moments are engaged in a time-extended interaction, (2)
they influence each other through this interaction, and (3) this influence has
grown sufficiently large that it becomes impossible to define either moment
except in terms of its relationship to the other. The moments are typically,
though not necessarily, thought of as being in conflict with one another; the
interaction between them and their mutual influence are the products of
this conflict. If this seems overly metaphysical (which is to be expected,
given its origin in Hegel's Science of Logic), think of it in the following way.
Make a list of the states or properties that the two entities possess at a given
moment. Then take each of the lists in isolation from the other and ask
whether it is possible to find any rhyme or reason for that set of states or
properties, except by reference to the interaction and cumulative influence
that the entity has gone through. If not, i.e., if the only reasonable explana-
tion for each entity's list makes reference to its past history of interaction
with the other entity, then the relationship between the two entities is
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dialectical in nature. Moreover, the states and properties you have been
enumerating must probably be specified in dialectical terms as well.

4. Similar arguments are found throughout the German philosophy of the mid-
twentieth century. See, e.g., Heidegger's essay "The Question Concerning
Technology" (1977 [1954]; cf. Zimmerman 1990) and Husserl's The Crisis of
European Sciences and Transcendental Phenomenology (1970 [1954]), of which
more later. Habermas (1987 [1981]) later formulated the Frankfurt School's
version of this critique in terms of the technical colonization of the lifeworld.
These authors, however, did not locate the phenomenon of technical coloniz-
ation in a linguistic project. Heidegger and Husserl regarded it as, crudely
speaking, a matter of worldviews, whereas Habermas viewed it as an institu-
tional matter of the rational reorganization of daily life. Although these
authors do not dwell on case materials, they formulated their arguments
contemporaneously with the ascendence of systems analysis, which has been
the subject of extensive critical analysis (Bloomfield 1986; Hoos 1983; Lilien-
feld 1978).

5. Jordanova (1986) and Markus (1987) survey the related difficulties of analyz-
ing the role of language in the natural sciences; see also S. Montgomery
(1989).

6. "My point here is not that we ought to think metaphorically about social
policy problems, but that we do already think about them in terms of certain
pervasive, tacit generative metaphors" (Schon 1979: 256).

7. The notion that a generative metaphor can organize an integrated philosoph-
ical worldview is generally attributed to Pepper (1961), who asserted that four
basic root metaphors (formism, mechanism, contextualism, and organicism)
suffice to classify philosophical worldviews.

8. Perhaps the most sophisticated version of this trend is found in Turbayne
(1970), who decries the tyranny of dead metaphors in both philosophy and
science. Rather than argue for their elimination, Turbayne regards metaphors
as inescapable and recommends that they be used consciously. This is my
own view as well. But he also regards metaphors essentially as falsehoods -
as constructions that can be laid over already-determined things, rather
than as constitutive of our knowledge of those things. Berggren (1962) and
Ricoeur (1977: 251-254) offer trenchant critiques of this view. Ricoeur
believes that scientific metaphors operate not through single coined words
but through the coherent deployment of connected systems of metaphors
(1977: 243-244). On the other hand, he argues (1977: 289-295) that philo-
sophical terms are not metaphorical in any important sense beyond the
simple lexicalizations of metaphor found in a word like "comprehend" (Latin
"grasp").

9. Compare J. Martin and Harre (1982) on the theories of metaphor of Black,



320 Notes to pages 36-48

Boyd, and I. A. Richards, as well as Wheelright (1968: 102-123) on meta-
phorical tension.

10. See Bolter (1984: 15-42) for a general discussion of defining technologies
such as clocks and computers. Schon (1963: 191-199) has suggested that
much of the social history of ideas can be reconstructed by tracing the
careers of particular metaphors which hop from one theory to another
across centuries. A similar idea is found in Nietzsche's theory of metaphors
as intellectual imperialists absorbing whatever they can in a given historical
period (Cantor 1982).

11. See also Hayles (1990).
12. See Black's essay "Metaphors and Models" (in Black 1962). "The heart of

the method consists in talking in a certain way" (1962: 229). Compare Hesse
(1966).

13. This use of the word "logic" derives ultimately from Hegel (see Ilyenkov
1977) and is used in roughly this sense in anthropology (Bourdieu 1989;
Sahlins 1981). It runs a considerable risk of being confused with the analyt-
ical and technical notions of logic (logic as the forms and notations of
reasoning; logic as the basic circuitry of computers), both of which also
appear extensively in this book. Yet I cannot find an alternative vocabulary
that works any better. To forestall potential misunderstandings, I will take
care to mark which sense of the term I have in mind.

14. A prototype of this phenomenon is Ptolemy's theory of epicycles in plane-
tary motion, to which Dreyfus (1972: 112) likens APs regress of rules.

15. For Derrida's own versions of them, see Positions (1981), Of Grammatology
(1976), and "White Mythology" (1982a). On Derrida, Heidegger, and in-
formation technology see Coyne (1995).

16. Compare Spinosa (1992) on Derrida and Heidegger.
17. The word "case" itself must be employed with some caution. The presup-

position that the world comes pre-sorted into "cases" (or "data" and "phe-
nomena"), as opposed to being actively interpreted within discourses, is
itself a tacit theory of presence. Compare Cartwright's (1983) distinction
between "phenomenological" vs. "fundamental" laws in physics.

18. The term is variously translated; Derrida's word is renversement.
19. This notion of metaphor as establishing contact between disparate worlds is

roughly Black's (1962) theory. It is also a metaphorical characterization of its
own. What is really needed is a theory of metaphor as social practice. Such a
theory might follow my policy of establishing articulations between the
literary and practical dimensions of language use. In particular, one might
start with Derrida's (1982a) refusal to establish "metaphor" as a term of
critical art standing outside the field of language it describes. "Metaphor"
names a wide variety of discursive practices, and its properties depend in
important ways on the practical relationship between the two "worlds" in
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question. In the present case, it is precisely the project of existing technical
practice to privilege one of these worlds (the world of mathematics) at the
expense of the other (the world of "ordinary" descriptions of everyday life)
while still retaining the ability to gloss the workings of technical models in
"ordinary" terms (Agre 1992). The history and dynamics of this project are
still poorly understood, but they deserve further investigation.

20. One must be careful to distinguish between the structurally pathological
vagueness of much technical vocabulary and the inherent imprecision of
language in a functioning scientific enterprise (Boyd 1979: 403).

3. Machinery and dynamics

1. Elias (1982 [1939]: 245-263) recounts some of the history of inside-outside
metaphors applied to the individual in sociology. Bachnik and Quinn (1994)
and Devisch (1985) provide comparative perspectives. Rorty (1979: 32-38)
describes "the diversity of mind-body problems" in philosophy.

2. Johnson's (1987) theory of "the body in the mind" describes the role in
mental processing of metaphors based on the body, such as balance.
Sternberg (1990) enumerates "metaphors of the mind," but these are not
metaphors in the strict sense but whole disciplinary discourses. He groups
these into "metaphors looking inwards" ("the biological metaphor," "the
computational metaphor," etc.) and "metaphors looking outwards" ("the
sociological metaphor" and "the anthropological metaphor"), recommend-
ing in the end the multifactorial approach to intelligence proposed in his
earlier work. Miller's (1974) analysis of metaphors for psycholinguistics is
similar. De Mey (1982: 6) suggests that "outside world" and "inside self"
are conceptual models. Edwards (1996: 164) observes that "The COMPUTER
metaphor . . . draws attention to the internal structure of the mind and its
representational schemes." Derrida (1976) discusses the origin of inside-
outside metaphors in relation to language, for example in Saussure.

3. See also Forsythe (1993a).
4. Compare Edwards (1996: 256): "In its Enlightenment-like proposals for an

encyclopedic machine, AI sought to enclose and reproduce the world within
the horizon and the language of systems and information. Disembodied AI,
cyborg intelligence as formal model, thus constructed minds as miniature
closed worlds, nested within and abstractly mirroring the larger world
outside."

5. Note that AI discourse employs the word "model" for two different pur-
poses. In its methodological meaning, already familiar from Chapter 1, it
refers to a computer program whose input-output behavior is supposed to
predict the behavior of some natural system such as a laboratory subject. In
its substantive meaning, usually as part of the phrase "world model," it
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refers to a mental representation whose structure is homologous with the
parts of the outside world that it represents.

6. See, e.g., Bruner (1986); Dewey and Bentley (1949: 119-138); Garfinkel
(1967); Gibson (1986); Lave (1988); Leont'ev (1981); Maturana and Varela
(1988); Sullivan (1953: 102-103); Varela, Thompson, and Rosch (1991); and
Vygotsky (1978). Gadlin and Rubin (1979) provide a useful critique of a weak
version of interactionism. Pervin and Lewis (1978) and Pervin (1978) survey
several precomputational formulations of the interaction between "internal"
and "external" determinations in psychology. My use of the word "interac-
tionism" is broader than that of the sociological movement known as "sym-
bolic interactionism," which descends from the pragmatist movement of
Dewey (1929) and Mead (1934) to present-day figures such as H. S. Becker
(1986) and Glaser and Strauss (1967). Finally, my use of the term bears no
relationship to the mentalist and dualist notion of "psychophysical interac-
tionism" in Popper and Eccles (1977).

7. The distinction between task environment (environment plus task) and prob-
lem space (abstract space of paths that mental search processes might ex-
plore) is clearer in Newell and Simon's Human Problem Solving (1972: 55-60,
72, 79-90, 83-85), but the word "object" still floats freely between external
physical objects and internal symbolic representations of those objects (1972:
21, 67, 72).

4. Abstraction and implementation

1. I am using the word "implementation" in a more restricted way than usual, to
refer to the specifically physical realization of some abstraction. Thus, a
Fortran program is not, by this definition, an implementation of anything.
Indeed, qua software, it is a variety of abstraction, one that can be imple-
mented by being run on a suitable physical machine. (M. Mahoney [1988:
116-117] observes that computer hardware and software have distinct intel-
lectual histories and still retain largely separate identities. In any case, the
epistemological status of the hardware-software distinction is, in my view, of
little moment for AI.) Chalmers (1995: 391) suggests that "a physical system
implements a computation if the causal structure of the system mirrors the
formal structure of the computation." Chalmers is trying to adduce general
conditions for saying that something implements something else, whereas in
technical practice the question arises only for systems that have been ex-
plicitly designed to implement something.

2. Recent commercial microprocessors accelerate the basic serial-processing
paradigm by performing as many as four instructions at a time. But this
innovation does not change most programmers' relation to the processor in
any way.
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3. Despite what one might hope, however, the successive layers of early visual
processing are not neatly stacked into a three-dimensional cube. Instead, they
are laid out in adjacent regions of a folded sheet of cortex, with bundles of
wires passing outside the sheet as they travel from one stage to the next
(Maunsell and Newsome 1987).

4. On the metaphor of computer "memory" see Bolter (1984: 151-164).
5. The most significant exception is the task of "register allocation," through

which the compiler generates instructions that shuffle various quantities back
and forth between the millions of general-purpose memory words and the
small number of registers that other instructions can invoke directly. The
IBM 801 computer, mentioned earlier, was made possible in part by an
elegant mathematical solution to the register-allocation problem based on
graph-coloring algorithms.

6. See Sun (1994) for a brief survey.
7. On this divergence in approaches to AI see Schopman (1987).
8. Newell credits ACT* Q. R. Anderson 1983, 1993) as the first such theory.
9. See especially his analysis (Newell 1990: 121-123) of the time scales of

cognition and action.

5. The digital abstraction
1. This is not actually right. The theory of electricity, unfortunately, is formu-

lated in such a way that electrons have a negative charge, thereby making the
theory almost impossible to explain with familiar analogies.

2. Mahoney (1988: 116) observes that "it is really only in von Neumann's
collaboration with the ENIAC team that two quite separate historical strands
come together: the effort to achieve high-speed, high-precision automatic
calculation and the effort to design a logic machine capable of significant
reasoning."

3. Searle (1986) is perhaps an exception.
4. The latches I will describe are "dynamic latches," so called because they

depend on the electrical capacitance of the wires. "Static latches" employ
gates that continually drive each wire to its correct value.

5. As the nontechnical reader has probably observed, the technical term "state"
is used in several loosely interrelated senses. I hope the distinctions will be
clear enough from the context.

6. For Augustine see P. Brown (1967); for Descartes see Bordo (1987) and
Toulmin (1990); for Turing see Hodges (1983).

6. Dependency maintenance
1. My dissertation (Agre 1988) provides a somewhat fuller account.
2. Similarly, many linguists report that they often spontaneously notice in
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ordinary conversation the grammatical constructions they have been
studying.

3. Routines differ from what Schank and Abelson (1977; see also Schank 1982)
call scripts. Scripts, unlike routines, are held to be mental entities with causal
roles in action and understanding. A script might be considered a representa-
tion of a routine, but it is not the routine itself. In any event, the primary
purpose of a script is not to dictate action, but to help form expectations and
interpretations when engaging in the action, or in understanding stories
about the action.

4. Lave (1988: 186-189), impressed by the degree of moment-to-moment con-
tingency in the dialectically emergent interactions between people and sites
of practice, argues that an activity can have a routine character only if
the routineness is deliberately produced, that is, if the activity is actively
shaped to give it a routine character. This sort of active shaping obviously
does exist, particularly when some activity is consciously intended to be "the
same" time after time, for example in the prescribed sequences of action in
factory work. But as Bourdieu (1977 [1972]), Ortner (1984), and others have
argued, embodied skills and the customary forms of artifacts suffice to ex-
plain a great deal of stable routine in everyday life. It is important to
distinguish between an industrial conception of routine, which is carried over
into APs conventional ways of representing action, and emergent routines,
which have been considerably harder to conceptualize in computational
terms. And it is crucial to distinguish between a theorist's description of
activity as routine and participants' own obligations to exhibit their activities
as having been conducted according to some routine. Lave's argument has
implications for the latter phenomenon, but not for the former. (This
is discussed further in Chapter 8.) On routine work generally see Gasser
(1986).

5. For evidence on the tendency of routine mutations to become permanent and
on several other relevant phenomena, see Neches (1981).

6. The larger phenomenon of transfer (Thorndike and Woodworth 1901) is the
subject of a large literature (Singley and Anderson 1989). The concept of
transfer can be defined broadly as the degree to which learning that occurs in
one situation influences behavior in another situation. Lave (1988) has ar-
gued that the empirical evidence does not support a common narrow inter-
pretation, according to which learning transfers from one situation to another
because of a mental representation of a formal analogy between the two
situations. Alternative interpretations of the concept of transfer exist, such as
Pea's (1987) suggestion that material learned in one setting must be inter-
preted, in the manner of a text, in any other situation to which it might be
transferred.

7. Hayes (1975) invented dependencies. So did Stallman and Sussman (1977),
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independently and a little later. Doyle (1979) abstracted the functionality of
dependencies to produce the first Truth Maintenance System (TMS), a
name Doyle and most others now regret. These systems have been used
principally to direct backtracking in languages that express domain-specific
search strategies. An important early analysis of the theoretical problems that
motivated the invention of dependency-directed backtracking appears in
Sussman and McDermott (1972). An extensive technology of TMS's has
grown up, including de Kleer's assumption-based version, the ATMS (de
Kleer 1986; de Kleer and Williams 1987). Forbus and de Kleer (1993) codify
methods for using TMS's in problem solving systems. For an interesting
theoretical treatment of the complexity issues that arise in dependency sys-
tems see Provan (1987). On the formal logic of dependencies see McDermott
(1991). Dependencies are similar in spirit to Minsky's (1980, 1985) idea of
k-lines and to CarbonelPs (1983) idea of derivational analogy. McAllester
(1988) has used the idea of accumulating lines of reasoning in logic circuits, in
his notion of semantic modulation and in the lemma library of his proof
checker.

8. For a broader discussion of some related phenomena concerning reminding
and its relationship to memory organization see Schank (1982) and Kolodner
and Cullingford (1986).

7. Rule system

1. David Chapman suggested the outlines of this scheme for the case of IF rules.

8. Planning and improvisation

1. For a later computational treatment of serial order along parallel intellectual
lines, see Jordan and Rosenbaum (1989).

2. On the relationship of Plans and the Structure of Behavior to Newell and
Simon's work, see Simon (1991: 224).

3. In their explicit definition, Miller, Galanter, and Pribram spoke of Plans as
"processes," perhaps due to the influence of Lashley's theory, which did not
include any notion of a hierarchical symbolic structure. But they do not
explain what it would mean to "execute" a process (Hoc 1988: 91). And when
they actually discussed the mechanics of Plan use, Plans generally had a
thinglike character: they could, for example, be selected from a library or
assembled from scratch or by modification of existing Plans. I will persist in
referring to Plans as "structures," since it is this understanding of Plans that
had the greatest effect on the subsequent AI literature.

4. Miller et al. did offer some explication of the process of execution in the
notion of a "TOTE (Test Operate Test Exit) Unit" as the basic unit in the
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construction of a Plan. The idea, inspired by cybernetic notions of feedback
control, is that each Plan step is associated with the condition it is intended
to achieve; the organism executes each Plan step repeatedly until its associ-
ated condition obtains. They offered the example of hammering a nail repeat-
edly until it no longer protrudes from the wood. Despite its interactionist
character, and perhaps because of it, this notion is not at all integrated into
the rest of their theory and has had little influence on subsequent AI work.
Moreover, the proposal itself faces serious difficulties, among them explain-
ing the ways in which successive strokes in actual hammering are adapted to
specific conditions (how far the nail protrudes, how it is bent, how much
clearance is available for swinging the hammer, the consequences of denting
the wood, etc.). It is also quite unclear how many kinds of activity can
reasonably be described in terms of these nested feedback loops. I there-
fore disagree with the prevailing consensus (e.g., Edwards 1996: 230-233)
that TOTE units constitute the intellectual core of Miller, Galanter, and
Pribram's theory.

5. This work is described in several papers, all of which repay close reading:
Fikes (1971); Fikes, Hart, and Nilsson (1972a, 1972b); Fikes and Nilsson
(1971); Munson (1971). See also Nilsson's later revival and generalization of
some of the original ideas from this project in the form of action nets (1994);
the result is similar to the circuitry developed by RA (see Chapter 9). For the
subsequent development of the planning literature see Georgeff (1987); Al-
len, Hendler, and Tate (1990); Hendler, Tate, and Drummond (1990);
McDermott (1992); McDermott and Hendler (1995); and Weld (1994). In a
late interview (Agre 1993b: 434-436), Newell asserted that the STRIPS
model of planning misconstrued the theory of problem solving in GPS by
focusing exclusively on the execution of plans rather than upon planning as
simply one internal problem solving method that contributes to an agent's
choices of actions.

6. I am simplifying here for expository purposes. In fact the STRIPS search
space consisted of partially specified plans that the search process could
incrementally elaborate in a variety of ways. Subsequent research has
developed and analyzed this approach in much greater detail (Chapman
1987; S. Hanks and Weld 1995).

7. In the AI literature, the program that executes a plan is most commonly
called an "executor." The term "executive" is usually associated with the
notion of an executive decision (see, e.g., Hayes-Roth and Hayes-Roth 1979:
289-290) made in the process of constructing plans. That notion will play no
role in my argument.

8. The phrase "reactive planning" which became current among AI people
around 1987, reproduces these confusions in an instructive way. The adjec-
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tive "reactive" is supposed to mark a distinction from the conventional
account of action as purely the construction and execution of plans. The
term, however, seems almost always to be opposed to the broad use (reason-
ing about action) rather than to the narrow use (constructing a plan to
execute). As a result, AI vocabulary has made it difficult to conceive that
agents might reason about action without executing plans. (This dynamic is
of some concern to me, since the phrase "reactive planning" is often incor-
rectly credited to Agre and Chapman [1987].) For a particularly forceful
version of this logic, see Ginsberg (1989). At the same time, I do not wish to
condemn those authors who do wish to apply the word "reactive" to their
projects, each of which deserves separate analysis (Firby 1987; Fox and
Smith 1984; Georgeff and Lansky 1987; Kaelbling 1986; Sanborn and
Hendler 1988; Schoppers 1987, 1995).

9. For a typical statement of the view that recipes are at best defective compu-
ter programs see Knuth (1983: 6). See also Shore (1975). For more about
the actual nature of recipes see Scher (1984).

10. See, however, the relatively sophisticated treatments of goals in Schank and
Abelson (1977), though their topic is story understanding and not action as
such, and Wilensky (1983).

11. Donald (1989, 1990b), however, describes a technique for plan construction
based on "error detection and recovery" (EDR) methods that addresses
certain kinds of geometric uncertainty in robot motion.

12. This use of the word "incremental" is distinct from a related use, for
example in Hayes-Roth and Hayes-Roth (1979: 304), according to which a
plan is constructed entirely in advance of execution by a process of adding
successive increments to an initially skeletal plan structure. I will discuss
Hayes-Roth and Hayes-Roth's sense of the term momentarily.

13. Knoblock (1989) has extended Anderson and Farley's analysis in an elegant
way.

14. On Descartes's mechanism and view of the body, see Jaynes (1970), Mack-
enzie (1975), and Rodis-Lewis (1978).

15. Chapman (1987: 352-354), for example, points out that certain restricted
categories of plan-construction problems are amenable to computationally
tractable intermediate methods.

16. Recent work (McAllester and Rosenblitt 1991; Weld 1994) has clarified the
structure of the search space and found some ways to circumvent Chap-
man's result. Nonetheless, the classical plan-construction problem still faces
a stiff trade-off between the expressive power of its representations and the
practicability of its searches.

17. See Sudnow (1978) and the discussion of Lave and Suchman below.
18. In subsequent discussions I will use the phrases "improvised action" and
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"situated action" interchangeably. These phrases do not pick out a particu-
lar species of action. Instead, they emphasize that #//action is improvised, in
the special sense of the term that I have defined.

19. In related work, Shrager and I have extended this level of Lave's analysis to
describe the extremely fine-grained processes of routine evolution that we
observed in a detailed study of someone using a photocopier (Agre and
Shrager 1990).

20. The term "objective" here is not supposed to imply "infallible" or "certain"
but simply "from the theorist's point of view." See Warren (1984) for a
general discussion.

21. Bratman (1987) suggests that the necessity of plans in human activity can be
demonstrated through computational considerations: a preconstructed plan
saves effort that would otherwise have to be expended in moment-to-
moment reasoning; and since nobody has the processing capacity to con-
struct fresh plans continually on the fly, plans are indispensable to intel-
ligent action. Bratman is correct in suggesting that plans can conserve
computational effort. But it is not so clear that plans are indispensable, given
that many other resources can serve a similar purpose - tools, for example
(Agre and Horswill 1992; Vygotsky 1978 [1934]). Perhaps the crucial issue
for present purposes is whether Bratman's argument implies that plans are
like computer programs. Bratman himself does not suggest that it does, but
the conclusion may seem plausible anyway. After all, the whole point of
computer programs is that they can be interpreted with extremely little
computational effort. People, however, are much smarter than the central
processing units of computers; they can, and routinely do, use plans in
much more varied and complicated ways than computer processors use
programs. In arguing that it actually is possible to compose complex plans
on the fly, I do not mean to argue against the existence of recipes, schedules,
visualized courses of action, memorized scripts, and so forth. My purpose,
instead, is simply to place great pressure on the planning-execution distinc-
tion in order to see how it breaks and what layers of unarticulated assump-
tions lie buried underneath.

22. Thus, Fodor (1981b) refers to the research strategy of "methodological
solipsism."

9. Running arguments

1. On the changes that words like "decide" undergo as they become cognitivist
vocabulary see Coulter (1983: 8-10) and Woolgar (1987).

2. I do to mean to imply that any uncertainty or change, etc., makes plan
construction impossible. In practice, these negative phenomena open up a
huge space of technical trade-offs in which technical tractability can often
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be repurchased by imposing additional constraints on the world or by loosen-
ing the criteria imposed on the resulting plans. It seems likely that much of
this work can find application in constrained environments that possess
particular combinations of uncertainty and constraint. For example, see
Donald (1990a) on robotic path planning in the presence of uncertainty
about spatial position.

3. For research on plan construction in the presence of other agents and autono-
mous phenomena, see Durfee (1988) and Lansky (1988).

4. On the philosophical analysis of argument see Perelman and Olbrechts-
Tyteca (1969 [1958]) and Rescher (1977). On its psychology see Billig (1987).

5. Note that Doyle is not conflating isomorphic streams of thought and action
in the manner of the mentalist planning research discussed in Chapter 8;
rather, he is effectively redefining thought and action in different terms, so
that one category contains the other (cf. McDermott 1978).

6. Doyle refers to his theory as dialectical argumentation. Whereas I use the term
dialectical in a sense that derives from Hegel, Doyle's version of the term
derives from the Greek study of dialog and debate. The word "argument" is
ambiguous as well, in both Doyle's text and my own; it refers equally to the
individual points raised in a debate and to the whole ensemble of those points
that results in a decision.

7. Fodor also suggests that the peripheral systems include linguistic modules of
the type that Chomsky (1980: 39; his phrase is "mental organs") has hypothe-
sized (cf. Garfield 1987). Since his primary theoretical focus is on the pe-
ripheral systems, he tends to define the central systems in negative terms as
not-peripheral - that is, as not-modular. This view aligns strikingly with that
of Lashley (1951), who also viewed the brain's central cognitive functioning
as a holistic mass of interconnections that interacts with the world through
the quasi-grammatical representations of action that I described in Chap-
ter 8.

8. The periphery and part of the world simulation are implemented as another
set of Life rules. Also, the modules and their connections are sufficiently
abstract that they can be arranged in arbitrary configurations. I will suppress
these extra generalities because they play no role in the examples.

10. Experiments with running arguments

Note that I am using the word "activity" in two distinct senses. One sense,
introduced in Chapter 1, refers in a general way to the things people do all
day. The second, more technical sense, used only in this chapter, refers to the
number of elements in a circuit whose states are changing. Both uses of the
word are conventional in AI.
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2. Both Brooks (1991) and Dreyfus and Dreyfus (1988) have filed a related
complaint: that the hardest part of an AI problem is already solved when a
"world" comes labeled with predicates like ON, LEFT-OF, ABOVE,
TOUCHING, and MOVING.

3. Recall that Chapter 9 has compared running arguments with SOAR's univer-
sal subgoaling and Chapter 7 has already distinguished RA's rule system from
a production system, contrasting the as-long-as semantics of Life rules with
the imperative semantics of productions.

4. Another, distinct problem is that most of the rules were written to employ
exhaustive forward chaining. An alternative would have been to write the
rules in more of a backward-chaining fashion, making more extensive use of
the methods described by de Kleer, Doyle, Steele, and Sussman (1977). In
that case, the system would effectively have been exploring the space of
potential inferences from its perceptions, and most likely it would often fail
to discover an inference that would have changed the action it took. Once
some situation did happen to provoke that inference, the dependencies would
automatically make it again whenever it applies.

5. Only fairly recently, for example, have Gupta and Nau (1992) discovered that
the crucial factor in the search for optimal (i.e., shortest) blocks-world plans is
the beneficial interactions between subgoals. These are hard to predict, and
they make it even harder to decompose the plan-construction process for
different subgoals.

11. Representation and indexicality

1. "A computer program capable of acting intelligently in the world must have a
general representation of the world in terms of which its inputs are inter-
preted" (McCarthy and Hayes 1969: 463).

2. This is clearly true for iconic representations, in which bits of representation
correspond one to one with things and properties in the world. But it is also
true for representation schemes that employ quantification. In these cases the
correspondence is more complex, but it is still a componential mapping.

3. Chatila and Laumond (1985), however, present an instructive study in the
complexities of actually trying to maintain an accurate world model, even in a
simplified environment.

4. Another influential vocabulary derives from McCarthy and Hayes (1969),
who say that a representation scheme is metaphysically adequate if it includes
formal elements that correspond to the world's basic ontological categories,
epistemologically adequate if it can express the knowledge that a given agent
can actually obtain through its observations of the world, and heuristically
adequate if it can express the lines of reasoning through which the agent
decides what to do.
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5. See Frege (1968 [1918]).
6. Since Boden (1970), the argument that computational devices could exhibit

genuine intentionality has rested on the strong mimetic understanding of
representation that I have outlined. Boden, indeed, cites Craik for the notion
of mental model and argues that the behavior of a robot that employed a
model of its own body could not be understood except in partially nonphysi-
cal terms. To be sure, Boden does not assert that intentionality is necessarily
subserved by a mental model; nonetheless, the AI literature regularly im-
plicitly equates the two and does not, as far as I am aware, develop any
alternatives. In discussions of intentionality in the cognitivist literature, it is
common to restrict attention to examples that clearly call for the imputation
of beliefs, desires, or intentions to some agent. (To speak of "intentionality"
does not imply the existence of a correlative "intention," in the sense of
"intending to do something.") Thus, one is not likely to see "avoiding an
obstacle" offered as an example of intentionality, nor indeed any other case in
which the intentionality inheres in an action or in a concrete functional
relationship between an agent and an object. (An exception is Searle [1980].)
Searle (1981) provoked much debate on the intentionality of machines with
his "Chinese room" thought experiment, which purports to demonstrate that
a computer (or, for that matter, a human being) could not exhibit inten-
tionality simply by following rules that it does not understand. Dietrich
(1994) gathers rebuttals seeking to defend various versions of computational-
ism against this argument.

7. In fact, in Being and Time Heidegger uses the terms "intentionality" or
"consciousness" only when discussing others' work, and scholars disagree
about the precise relevance of Being and Time to the issues at hand. I follow
the interpretation of Dreyfus (1991: 46-59), but see Olafson (1987).

8. A third mode of relationship, Mitsein (or being-with), pertains, roughly
speaking, to intentionality toward other people. It also relates to the broader
phenomenon that we experience the world of daily life as something shared
with others.

12. Deictic representation

1. Smith (1996) argues that the very laws of physics are indexical.
2. Perhaps the most sophisticated discourse on representation in computer

science is data modeling (Simsion 1994), a body of techniques for designing
databases that exhibits some parallels to AI ideas about semantic networks
(Borgida 1991).

3. "Only a being that could have conscious intentional states could have inten-
tional states at all, and every unconscious intentional state is at least poten-
tially conscious" (Searle 1992: 132).
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4. See Dennett (1987), Haugeland (1985), Searle (1984), and Woolgar (1994).
5. This proposal is based on a rough analogy with Heidegger's analysis of

everyday intentionality in Division I of Being and Time, with objective inten-
tionality corresponding to the present-at-hand and deictic intentionality cor-
responding to the ready-to-hand. Much of my terminology will be taken
from this analysis and from Dreyfus's (1991) commentary on it. But the
analogy between my proposal and Heidegger's is imperfect. Many of Hei-
degger's analyses, such as network of reciprocal implication that is charac-
teristic of the phenomenon of equipment, have no equivalents in my scheme,
though it would be worth trying to understand what these equivalents would
be like.

6. In his logical formalization of indexical propositional knowledge, Lesperance
(1991: 43; cf. Burge 1977) usefully contrasts two distinctions: objective vs.
indexical and de re vs. de dicto. Objective knowledge is framed in terms of a
specific agent and time (e.g., George at noon), whereas indexical knowledge is
relative to the agent and current moment (e.g., me now). De re knowledge
picks out a particular individual (e.g., the Eiffel Tower) whereas de dicto
knowledge picks out an individual through a definite description (e.g., the
tallest structure in Paris). My definition of a deictic ontology deliberately
collapses these distinctions because the "odd" cases (objective de dicto and
indexical de re) are of greater interest for the analysis of propositional knowl-
edge than for the analysis of intentional relationships as such. In my terms,
"functional" means roughly de dicto, but without the implication that the
agent has access to the definite description in the form of a linguistically
analyzable entity.

7. "Our central admonition [for robot designers] is that one should be careful not
to impose excessive knowledge requirements upon agents in formalizing actions; in
particular, one should merely require indexical knowledge, as opposed to de re
knowledge, when that is sufficient" (Lesperance 1991: 104; emphasis in the
original; cf. Lesperance and Levesque 1995).

8. This concept was originally called "indexical-functional representation"
(Agre and Chapman 1987). Since this phrase seemed unwieldy, subsequent
publications (Agre 1988; Chapman 1991) have employed the term "deictic
representation." Though more compact, it is unfortunately somewhat mis-
leading. The word "deixis," both in classical Greek and in modern philo-
sophical and linguistic vocabulary, pertains to the act of referring to some-
thing by directly pointing it out. It is broader than "demonstration" or
"ostention" but narrower than the meaning I have in mind here, which is not
necessarily linguistic and incorporates the full range of stable causal relation-
ships that one might have to a thing.

9. Hayes (1979b) describes an attempt to formalize the semantics of frames
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within an extended first-order logic. Schank (1982: 5) lists the interpreta-
tions that work in the Yale School has given to the idea of a script.

10. On active vision see Bajcsy (1988), Ballard (1991), Blake and Yuille (1992),
Horswill and Brooks (1988), Larkin and Simon (1987). Early formulations
of active vision include Garvey (1976) and Tenenbaum (1973). Several
authors have proposed sophisticated models of visual-motor coordination,
guided by various combinations of biological and technological inspiration;
see Arbib (1989), Grossberg and Kuperstein (1989), and Mel (1990).

11. See Chapman and Agre (1987) and Chapman (1991) for some thoughts on
the subject.

12. Rumelhart, Smolensky, McClelland, and Hinton (1986) suggest how a con-
nectionist model might internalize simple ways of using concrete
representations.

13. Pengi

1. Whitehead and Ballard (1991) have described a mechanism based on rein-
forcement learning for synthesizing deictic representations and devising
visual routines to register the newly formed deictic aspects. They employ a
quantitative reformulation of the notion of distinguishing entities in terms
of their functional significance. Johnson, Maes, and Darrell (1995) use
genetic programming to simulate the evolution of visual routines. For a
study in the historical specificity of visual routines see Baxandall (1972).

2. In terms of the register-transfer model of computing described in Chapter
4, a microinstruction is an instruction that specifies a much smaller unit of
processing than an instruction, and a processor with horizontal micro-
instruction set is capable of executing a large number of microinstructions
on each cycle.

3. Chapman (1991) has developed these ideas about visual architecture in
greater detail. For more about how visual operators might be organized see
J. Mahoney (1987). For an early computational account of visual system
architecture see J. Becker (1973).

4. A bus is a bundle of wires that carries a complex value. A three-bit bus - that
is, a bundle of three wires - can distinguish eight different values.
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