

MIDDLE TECH

Princeton Studies in Culture and Technology
Tom Boellstorff and Bill Maurer, series editors

This series presents innovative work that extends classic ethnographic methods and
questions into areas of pressing interest in technology and economics. It explores
the varied ways new technologies combine with older technologies and cultural
understandings to shape novel forms of subjectivity, embodiment, knowledge,
place, and community. By doing so, the series demonstrates the relevance of
anthropological inquiry to emerging forms of digital culture in the broadest sense.

For a full list of titles in the series, go to https://press​.princeton​.edu​/series​
/princeton​-studies​-in​-culture​-and​-technology​.

Middle Tech: Software Work and the Culture of Good Enough, Paula Bialski

Code Work: Hacking Across the US/México Techno-Borderlands, Héctor Beltrán

The Government of Emergency: Vital Systems Security and the Birth of American
Biopolitics, Stephen J. Collier and Andrew Lakoff

Prototype Nation: China and the Contested Promise of Innovation, Silvia M. Lindtner

Hidden Heretics: Jewish Doubt in the Digital Age, Ayala Fader

An Internet for the People: The Politics and Promise of craigslist, Jessa Lingel

Hacking Diversity: The Politics of Inclusion in Open Technology Cultures,
Christina Dunbar-Hester

Hydropolitics: The Itaipu Dam, Sovereignty, and the Engineering of
Modern South America, Christine Folch

The Future of Immortality: Remaking Life and Death in Contemporary Russia,
Anya Bernstein

Chasing Innovation: Making Entrepreneurial Citizens in Modern India, Lilly Irani

Watch Me Play: Twitch and the Rise of Game Live Streaming, T. L. Taylor

Biomedical Odysseys: Fetal Cell Experiments from Cyberspace to China, Priscilla Song

Disruptive Fixation: School Reform and the Pitfalls of Techno-Idealism, Christo Sims

https://press.princeton.edu/series/princeton-studies-in-culture-and-technology
https://press.princeton.edu/series/princeton-studies-in-culture-and-technology

Middle Tech
Software Work
and the Culture of
Good Enough
Paula Bialski

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

Copyright © 2024 by Princeton University Press

Princeton University Press is committed to the protection of copyright and the
intellectual property our authors entrust to us. Copyright promotes the progress
and integrity of knowledge. Thank you for supporting free speech and the global
exchange of ideas by purchasing an authorized edition of this book. If you wish to
reproduce or distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work
should be sent to permissions@press​.princeton​.edu

Published by Princeton University Press
41 William Street, Princeton, New Jersey 08540
99 Banbury Road, Oxford OX2 6JX

press​.princeton​.edu

All Rights Reserved

ISBN 9780691257150
ISBN (pbk.) 9780691257167
ISBN (e-book) 9780691257174

British Library Cataloging-in-Publication Data is available

Editorial: Fred Appel and James Collier
Production Editorial: Jaden Young
Jacket/Cover Design: Benjamin Higgins
Production: Lauren Reese
Publicity: Paula Bialski
Copyeditor: Valerie Ahwee

This book has been composed in Adobe Text and Gotham

Printed on acid-free paper. ∞

Printed in the United States of America

10 ​ 9 ​ 8 ​ 7 ​ 6 ​ 5 ​ 4 ​ 3 ​ 2 ​ 1

http://press.princeton.edu

For Götz Bachmann

vii

CONTENTS

Illustrations  ix

Acknowledgments  xi

Introducing Good Enoughness  1

1	 Welcome to MiddleTech  22

2	 Software’s Sociality  43

3	 Where Stuff Goes Wrong  65

4	 Managing Good Enoughness  99

5	 Slowdown  132

Conclusion  157

Afterword: Good Enough beyond MiddleTech  179

References  189

Index  199

ix

ILLUSTRATIONS

3.1:	 Legacy Code at MiddleTech	 90
4.1:	 The Team Reshuffle	 110
4.2:	 The Scrum Task Board	 119

	 4.3:	 The Jira Board	 120
5.1:	 ETA Game Instruction Cards	 137
5.2:	 The ETA Game Outdoor Setup	 139
5.3:	 The ETA Game Scoreboard	 140
5.4:	 “Blocked” Help Sheet at MiddleTech Kitchen	 151

xi

ACKNOWLEDGMENTS

Stating that something is “good enough” is a by-product of straddling two
or more worlds: negotiating care for one thing, one person, one practice,
then pausing and shifting our care toward another. Not surprisingly, per-
haps, this book is about one of the most intimate practices I experience in
my life on a daily basis, a practice we can call “good enoughing.” For the
past fifteen years, I have been both a musician and author, living in two (or
more) cities, and constantly having to say something is “good enough for
now” in order to be able to leave it for a moment, switch hats, and shift into
my other obligation. Now as a mother, I can safely say that every parent
knows what I’m talking about: that moment when you say, “This will have
to be good enough for now,” because somebody needs you somewhere else.
The following acknowledgments are dedicated to all the people who helped
me negotiate good enoughness and who didn’t mind all the compromises
I made at one moment, knowing and believing I’d somehow care for them
eventually down the line. Karol Strzemieczny and my other bandmates, in
particular the band Paula & Karol, felt this while I was traveling to and from
concerts from my university lectures in Poland and Germany or responding
to e-mails during sound checks.

This project began with a friend named Ori. Although this book didn’t
turn out to be his life story (as we always joked it would), it’s safe to say that
without him, I wouldn’t have made it to MiddleTech, and this book wouldn’t
have been written. Ori’s humor, his care for communicating his technical
experiences with me, and his general hunger for knowledge will always stay
with me. At MiddleTech, my gratitude begins with Greg for letting me into
his department the first year, as well as his entire front-end development
team: Dariusz, Florentina, and Keith deserve thanks for all the hours drink-
ing beers, playing cards, eating burgers, and practicing esoteric fortune-
telling. I’d also like to thank Amira for her candidness, wisdom, and friendly
nature, and Pedro for taking a chance on my weird ideas and blindly meeting
me in a small English town to play strange experimental games. I would also

xii Acknowledgments

like to express my gratitude to the team of Oleksei, Jelena, and Aseem for
treating me as part of their development family. I would like to acknowledge
Charlie for helping sort out my thoughts, joking with me, and being up for
analyzing any situation with me, as well as Youssef for waking me up with
his yerba maté breaks, algorithmic problems, and personal stories about his
family. Moreover, I am grateful to Simon for all the hours and hours walking
home with me, confiding in me, poking fun at me, laughing with me, and
trusting me. This time was invaluable and helped me to gather and refine
my thoughts. While much of the ethnographic energy that I spent on these
developers spilled onto the pages of this book, the majority of my experi-
ences, conversations, and realizations didn’t actually fit here. As with most
ethnographies, choosing what stories to put in and leave out became a very
tough balancing act. Nevertheless, I’d like to thank everyone whom I spoke
to, but whose experiences here were left unwritten.

Institutionally, the seeds of this work were already sown over ten years
ago at Lancaster University, where I started to work in two research fields
that greatly contributed to my thinking. There, I’d like to thank Monika
Buscher, Lucy Suchman, and the late John Urry for impacting my work
by building a kind and caring space for sharing and building my thoughts.
Other colleagues-turned-friends (or vice versa) throughout the years whom
I am indebted to include Dominik Batorski and Grzegorz Brzozowski at the
University of Warsaw. I also spent a lot of time thinking with my Science
and Technology Studies/History of Science crew, which include Thomas
Turnbull and Jeremias Herberg, who also shaped my work with their feed-
back on a few versions of the manuscript, as well as our pandemic reading
group Mace Ojala, Andreas Bischof and Jeremy Grosman. Jeremy, in par
ticular, spent over one year reading my manuscript on a monthly basis, and
his involvement was pivotal in finishing my first draft.

The majority of research for this book was financially and intellectually
supported by my wonderful research community at the Digital Cultures
Research Lab, the Center for Digital Cultures, and the Institute of Culture
and Aesthetics of Digital Media at Leuphana University in Lüneburg, Ger-
many. For more than seven years, over countless seminars, lectures, lunch
hours, evening drinks, and train rides back to Hamburg, I received construc-
tive and critical feedback from my dear colleagues Armin Beverungen, Lisa
Conrad, Laura Hille, Mathias Denecke, Marcel Mars, Randi Heinrichs, Sascha
Simons, Boris Traue, Florian Sprenger, Martina Leeker, Nishant Shah, Robert
Rapoport, Timon Beyes, Jan Muggenburg, the late Wolfgang Hagen, and
Goetz Bachmann. I am deeply grateful for their invaluable contributions to

Acknowledgments xiii

my work. Armin and Götz were particularly dedicated in reading manuscript
drafts, helping me refine my ideas and approach. Wolfgang was an ally and
sparring partner for years, and his sharp critique still somehow resonates
throughout these pages.

I am also appreciative of Nina Wakeford, Joel McKim, Lilly Irani, Adam
Fish, Ben Peters, Christopher Kelty, Fred Turner, and Gabriella Coleman for
supporting me along the way, both during their fellowships at the Cen-
ter for Digital Cultures in Lüneburg and beyond. Fred and Biella in particu
lar helped me immensely during the publishing stage of this manuscript. I
also would like to thank the Re-Configuring Anonymity research group,
especially Michi Knecht at the Department of Anthropology and Cultural
Research at the University of Bremen, for her methodological and moral
support. Most of the initial fieldwork analysis was also done during my fel-
lowship at the Kulturwissenschaftliches Kolleg at the University of Konstanz,
for which I am also very grateful.

I would also like to acknowledge my closest colleagues at the University
of St. Gallen, in particular Tanja Schneider, Veronica Barassi, and Insa Koch
from the School of Humanities and Social Sciences; Johannes Schoening and
Guido Salvaneschi from the School of Computer Science; and my research
team, Julien McHardy and Daniela Weinmann, for rooting for me during
the last phases of this process. My longtime friend Norah Franklin has also
played a crucial role in professionally editing my drafts and motivating me
until the end with her caring, thoughtful, and humorous approach to proof-
reading. The anonymous reviewers at Princeton University Press gave me
overwhelmingly detailed editorial comments that had a tremendous effect
on the past few drafts, and I’d like to thank them for going above and beyond
their call of duty (wherever they are!). Although unusual in academic set-
tings, my mother, Yaga Bialski, and my father, Alec Bialski, have also heard
various versions of this book, and I’d like to thank them for their contribu-
tions and for listening to me, supporting me, and challenging my ideas. I’d
finally like to thank my dear husband, Götz Bachmann, for all the wonderful
ways he inspired me to think (which led to the concept of “good enough”),
for motivating me to write and to keep writing, and for raising the bar of my
understanding of what “good” and “enough” can be.

MIDDLE TECH

1

Introducing Good Enoughness

The notion of “good enough” is strange: often it means that we have given
up on the desire to be great, or even excellent, and sorrowfully succumb to
compromise. Even though the phrase “good enough” means that there is
“enough goodness,” and that things are generally fine, the phrase also evokes
failure or giving up and embracing mediocrity. I bet you would quickly return
this book to wherever it came from if on the back cover a reviewer wrote,
“This book is not bad, not excellent, but just good enough.” Or what if I told
you that the software running in your car was good enough? Wouldn’t that be
slightly scary? Or what if a colleague or boss said that the job you were doing
was good enough? “Good enoughness,” a term I use throughout this book,1
might have a pejorative ring to it. It connotes mediocrity, a failure to achieve
more; it’s something that we humans have learned not to desire. Yet this book
offers another perspective on what “good enough” means by focusing on
the regular, ordinary work of corporate software developers making regular,
ordinary software, and on the complex decisions, everyday practices, hidden
ethics, and implicit and explicit collective negotiations that make good-
enough software possible. My point throughout this book is that achieving
good enoughness is an incredibly complex and interesting endeavor.

1. I toyed with using the neologisms “good enoughing” or “good enoughness,” yet chose the
latter to stay consistent. Both are a bit awkward, but it was important for me to create a term
that highlighted an unfolding and negotiated process. Throughout my book, “good enough” is
less objective criteria, more a state, and for sure a practice. Both “good enoughing” and “good
enoughness” could have worked.

2 Introducing Good Enoughness

The first moment I remember encountering good enoughness in my field
was on a Friday afternoon during one of my first weeks of fieldwork at a
company I call MiddleTech, a mapping and navigation software company
in Berlin. It was getting close to 4 p.m., and happy hour was approaching.
A few software developers were planning to meet up for beers across the
street, and Marek (a front-end developer working on the Android naviga-
tion app) had not yet finished his code review. Much like any peer review,
software developers have to review each other’s code before submitting it
to the main code base. It was getting late, and the other developers called to
Marek: “Are you joining? Just give a +2 and come on!” They started laugh-
ing. Giving a +2 during code review meant giving the code a green light and
integrating it into the working software system. A web developer on Marek’s
team later confessed that when he feels like leaving work and running off for
a beer, he quickly goes through the code review system and just adds +2, +2,
+2 to all the tickets waiting to be reviewed. Marek followed suit, and fifteen
minutes later we were all sitting and sipping craft beer, enjoying the warm
autumn Berlin weather.

The gesture of giving fellow developers a +2 in order to leave work was
not done out of sloppiness, laziness, resistance, or protest, or at least not
mainly so. Engineers care about the software they work on, and Marek was
no exception. Marek was also not prone to political resistance against the
demands of his labor process. Marek clicked on +2 that Friday afternoon
because he knew his colleague’s code was good enough. By clicking +2,
he expressed an understanding that the code was good enough for now.
Moreover, he knew that if anything went wrong, he would have the ability
to come back and fix it later. Knowing when to stop and say something was
good enough was not about not caring but about understanding the balance
between care and compromise.

As my first encounter with good enough software culture unfolded before
my eyes, it seemed counterintuitive, shattering my own stereotypes about
what software production looked like. Weren’t software developers sup-
posed to be aiming for seamlessness and efficiency? It stood in stark contrast
to the narratives I encountered earlier that summer, interviewing various
technologists from the San Francisco Bay area—people at Facebook, the
Wikimedia Organization, Mozilla, the Electronic Frontier Foundation, and
a slew of entrepreneurs.

The Silicon Valley techies I encountered seemed to believe that technol-
ogy had to be great, and that work on technology had to be hard and sweaty.
I spoke with Eric, an older investor and entrepreneur in San Francisco whose

Introducing Good Enoughness 3

long career was based on liaising between venture capitalists and programmers.
During my discussion with him in San Francisco, he explained, “Coders do
it just for their art. They want to sit and perfect their little babies. Coders
sit over their laptops and want to develop until it’s done. The harder the
project, the better. If they code something that’s outta this world, they will
get recognized for it. And it’s that recognition they’re after. Like, ‘Hey man,
you did it, you’re the shit.’ ”

While Eric might have been an extreme stereotype of somebody with
Silicon Valley tech fever, many engineers I met that summer in Silicon Valley
fit his description: They were driven by a similar narrative to change some-
thing in the world with technology, to do something difficult, and to strive
for a sort of aesthetic excellence. What I found striking was the repetitive
narrative that software developers were dedicated to working into the late
hours perfecting something “outta this world.” Software was not just patched
together to run, occasionally break down, and be maintained; it was meant
to run, disrupt, and innovate all in one go. Within this cloud of Silicon Valley
hype, I never could have imagined that a software developer somewhere, on
a Friday afternoon, would give another software developer a +2 in order to
go out for beers with their friends.

My long-term fieldwork at MiddleTech helped me understand that the
discourse and practice of making excellent software under a hyped work
ethic are at odds with regular, run-of-the-mill corporate tech offices, where
software and software work practices are about being good enough rather
than excellent. The corporate tech office—both in Berlin and, as I will dis-
cuss, in Silicon Valley and beyond—propagates and maintains a state of good
enoughness, despite discourses stating the contrary.

I spent an intensive six months (with additional field visits and inter-
views spanning two years) observing and at times participating in the work
of software developers at a Berlin-based corporate software company that
makes mapping, routing, and navigation software. This research focused on
the software developers and their managers in both the front-end and back-
end routing and navigation teams. During my fieldwork there, I worked
among hundreds of people.2 On a daily basis, I would discover new people,
new conversations, new departments, and new projects, all of which would
send me down another interesting research path. I recorded these stories in

2. In this book you’ll notice that I often describe the field by directly quoting various interlocu-
tors. It is worth noting that the conversations I reference from MiddleTech were not audio recorded
but taken from my field notes in which I paraphrased the discussions with my interlocutors.

4 Introducing Good Enoughness

my field diaries, both on paper and digitally, during my fieldwork and after
I left the office. The latter helped me blend in with the people I sat next to:
while hunched over typing away on my laptop, I was at times mistaken for
a new programmer on the team. I concluded that at MiddleTech, software
is an ephemeral object that needs to be only good enough to function until
the next update. The people working on it are well aware of this fact and
often don’t feel too pressured to perform perfectly during the first, second,
or even third iterations. As a consequence, software can never be great but
is instead just, well, good enough.

Drawn directly from my observations in the field, this book joins recent
efforts to complicate the discourse that software is seamless and awesome
(and not just good enough), and that the corporate software worker needs
to be driven to achieve excellence. As we have witnessed throughout the
past, technology breaks: staff cutbacks cause media platforms to break,3
in-car GPS systems cause catastrophic incidents (Lin et al. 2017), and
chatbots “tell lies and act weird.”4 The stories we hear in popular media
shape our understanding of digital technology as either a technosolution-
ist savior, a mediocre disaster, or a robot-apocalyptic nightmare. As many
ethnographies hope to do, this book provides a more complicated, less
sensationalist, empirical story of why software can’t be perfect. My time
at MiddleTech helped me highlight how the ethics of practice prevalent
in corporate software cultures encourages a state of being good enough,
where something (like software) or someone (like a software developer)
needs to be only sufficiently competent to operate. As I will show through-
out this book, good enoughness is an inevitable part of software culture
that contrasts with the popular understandings of how software is built
and what software is. Defining good enough is collectively negotiated
in resistance to managerial ideology while fluctuating between care and
compromise for what, with, and for whom one is building software. It is
an aspect of German software culture but is also present in larger, aging
corporate software companies globally, and it might be inherent in all
software development.

3. Ryan Mac, Mike Isaac, and Kate Conger, “ ‘Sometimes Things Break’: Twitter Outages Are
on the Rise,” New York Times, Feb. 28, 2023, https://www​.nytimes​.com​/2023​/02​/28​/technology​
/twitter​-outages​-elon​-musk​.html.

4. Cade Metz, “Why Do A.I. Chatbots Tell Lies and Act Weird? Look in the Mirror,” New York
Times, Feb. 26, 2023, https://www​.nytimes​.com​/2023​/02​/26​/technology​/ai​-chatbot​-information​
-truth​.html.

https://www.nytimes.com/2023/02/28/technology/twitter-outages-elon-musk.html
https://www.nytimes.com/2023/02/28/technology/twitter-outages-elon-musk.html
https://www.nytimes.com/2023/02/26/technology/ai-chatbot-information-truth.html
https://www.nytimes.com/2023/02/26/technology/ai-chatbot-information-truth.html

Introducing Good Enoughness 5

Studying Software Developers

Before I dive into this book’s central argument, I’d like to explain the ori-
gin of the thinking behind my book. My exploration of the culture of good
enoughness first began as a quest to understand the fluctuating relationship
between the production of technology and society. My research started by
asking how “the society we live in affects the kind of technology we produce”
(MacKenzie and Wajcman 1985, 2) and turned to the producers, designers,
and programmers of technology and those who managed them. Focusing on
the producers of technology, rather than the users, was not as self-evident
as it might seem. Following a tradition of science and technology studies
scholars, I ethnographically focused on an overlooked group of engineers
rather than on the simplistic narrative of the lone-wolf innovator (Haigh
and Priestley 2015).

MiddleTech was always meant to be an ethnography about how a col-
lective group of people collaborate, communicate, care, and compromise
in order to make software work. By getting to know their work hierar-
chies, their forms of interaction, and the micropolitics of their profession,
I encountered the programmers’ social world. As I will illustrate through-
out the next chapters, good-enough software is achieved through collective
software practices, where programmers learn the process of programming
something in a good-enough way, which is part of their sense of belonging
and engagement in their sociotechnical worlds. Negotiating what is good
enough or not—through discussions, jokes, fights, and other practices—is
an important part of the collective practice of corporate programming.

My research resonated with maintenance and repair research, which
focuses on the programmer and those conducting the maintenance and
repair. As Lee Vinsel and Andrew L. Russell (2018) reminded us, life with
technology is usually far removed from the cutting edges of invention and
innovation and is instead devoted to keeping things the same. Drawing on
these researchers and their tropes, MiddleTech starts with an interest in the
programmer: interest in the human condition of being engaged with the craft
of programming, their relationship to their machine, and the way their work
and their profession are negotiated within their community.

MiddleTech also became an empirical description of the material con-
straints of software work, where software cannot be perfect in practice due
to certain forms of complexity in software production. Throughout the fol-
lowing chapters, I describe how old code, software’s constant cycle of being
updated, its architecture, and how it is designed and by whom all contribute

6 Introducing Good Enoughness

to the material complexity of software. As Marisa Leavitt Cohn (2016) has
highlighted, our software and our software companies are aging. As our
software ages, our software projects become more and more complex,
evolving into multilayered beasts, “polluted” by programs, reports, files, or
data that lose their purpose over time (Visaggio 2001). Much of the software
we use today is built on years and years of effort by software developers
who have managed to patch together a project to make it work. As our
societies continue to strive for smarter systems (Halpern and Mitchell
2023) and better solutions to our problems, it is crucial to understand the
faults in the technologies we so trust. Software’s increasing complexity
and age also challenge the relations between programmers, managers and
their programmers, programmers and their code, and various other actors
involved in the entire process. The moments when these actors have to
negotiate care and compromise are also a crucial part of the story of our
technological societies, and understanding this can help us as users, cus-
tomers, and creators grasp the tricky materiality of software: that the tools
we use are sometimes based on forgotten updates, lost pieces of code,
and scrapped software projects, which, among other issues and mishaps,
contribute to merely good-enough software.

Lastly, this book looks at the environment in which these material soft-
ware practices unfold. In particular, I became interested in how corporate
culture is shaped and reinvented (Kunda 1992) in the tech sector, both
top-down through managerial discourse and bottom-up via the practices
of engineers. My analysis zooms out to the corporate, organizational level,
where understanding the power dynamics, work processes, and manage-
ment dynamics within a corporate setting becomes central to understanding
the culture of good enoughness—both how it is counterintuitive to vari
ous corporate narratives and rituals, and how it becomes negotiated on a
day-to-day basis. We will witness the contrasting and chaotic priorities and
understandings between designers, managers, and programmers working
on the same product, which has been also observed in other ethnographies
of software cultures.

While these other ethnographies look at how race and class are negoti-
ated in corporate software settings (Amrute 2016) and how programmer
work is organized (O’Donnell 2014), this book’s specificity lies in its ethno-
graphic account of the work cultures within older, aging companies. In the
past decade, increasingly digitized Western societies have had an abundant
need for programming work. Additionally, as tech companies grow bigger
and become more established and embedded within our society, they are

Introducing Good Enoughness 7

here to stay—meaning they are growing older, adding a level of complexity
to the code being worked on and produced. Taking into account that soft-
ware is an “object subject to continuous change and lived with over time as
it evolves” (Leavitt Cohn 2019, 423), one that does not sit still “long enough
to be easily assigned to conventional explanatory categories” (Mackenzie
2006, 18), MiddleTech zooms in on a work culture within a growing and
aging software industry and aims to give a more nuanced understanding
of digital media as inherently made up of these mishaps and compromises,
bugs and breakdowns, and wonky, half-baked, good-enough work and good-
enough software. Thus, to understand good-enough culture, understanding
the material agency of software is important, specifically in relation to how
corporate software is still produced, repaired, and maintained.

Not Bad, Not Excellent

The notion of “good enough” in this book contradicts and complicates the
discourses and normative orders of excellence and improvement that perme-
ate the tech world and shows that there is a distinction between discourse
(which includes metrics and management methods) and the everyday prac-
tices of software developers. Throughout the following chapters, we will
witness how workers reject notions of excellence in practice, but I’d like to
highlight that a hegemonic excellence discourse does exist in theory. Cor-
porate software companies, like many corporate environments, propagate
an ideology of excellence and improvement, both in relation to the software
product they are building and regarding the type of work that goes into
building a software product. But where do these normative discourses of
excellence originate?

One of the best places to search for the roots of the narratives of excel-
lence, perfection, and 100 percent–ness is management literature. Writ-
ten for managers, usually by more successful managers or management
scholars, these books and journals show what types of narratives permeate
corporate culture. At MiddleTech, it was quite common to find this sort of
management literature lying on a desk or tucked away on a bookshelf in the
company library. For example, the Harvard Business Review, a key publica-
tion for managers and management scholars, is full of case studies in which
clear “performance expectations” are set by managers and team members,
“performance measures” are delineated by said managers, and finally, the
goal of achieving “performance excellence” is (hopefully) met by the given
team. The Harvard Business Review and other similar industry journals are

8 Introducing Good Enoughness

full of tips on how to foster or scale up a “culture of excellence” in the fastest
way possible.5 This type of rhetoric can also be found throughout manage-
ment handbooks, one of the most prominent being Thomas J. Peters and
Robert H. Waterman’s In Search of Excellence: Lessons from America’s Best
Run-Companies, which despite having been written in the early 1980s, is still
used today to help managers achieve “productivity through people” in order
to become a “learning organization” (1982, 111) that experiments with and
tries new things while striving to be the best.

More recently, Robert Sutton and Hayagreeva Rao (Stanford professors
of Management Science and Organizational Behavior and Human Resources,
respectively) promised to show managers “what it takes to build and uncover
pockets of exemplary performance, spread those splendid deeds, and as an
organization grows bigger and older—rather than slipping toward medioc-
rity or worse—recharge it with better ways of doing the work at hand” (2014,
20). In their book Scaling Up Excellence: Getting to More Without Settling for
Less, “driving towards mediocrity” is seen as the first step to downfall, and
Sutton and Rao are here to help companies foster a “relentless restlessness”
that helps them constantly innovate (20).

As Paul du Gay explained, “Excellence in management theory is an
attempt to redefine and reconstruct the economic and cultural terrain, and
to win social subjects to a new conception of themselves—to ‘turn them
into winners,’ ‘champions,’ and ‘everyday heroes’ ” (1991, 53–54). This is
done through a new form of management that emphasizes good corporate
culture that can foster these “winners” and “heroes.” Corporate culturalism,
in its central argument, strives for an expanded practical autonomy of the
worker. Yet as Hugh Willmott has pointed out, it aspires to “extend manage-
ment control by colonizing the affective domain. It does this by promoting
employee commitment to a monolithic structure of feeling and thought, a
development that is seen to be incipiently totalitarian” (1993, 517). As I will
show in the following chapters, engaging in good enoughness can thus be
the software workers’ way of regaining power over their “affective domain,”

5. See, for example, Tony Gambill, “A Leader’s Challenge: Developing Teams That Have
Strong Relationships and Excellent Results,” Forbes, Sept. 14, 2022, https://www​.forbes​.com​/sites​
/tonygambill​/2022​/09​/14​/a​-leaders​-challenge​-developing​-teams​-that​-have​-strong​-relationships​
-and​-excellent​-results​/​?sh​=37d953766bb5, or Jeanine Murphy and Michael Sioufas, “How
Agile Teams Can Pursue Technical Excellence,” McKinsey Quarterly, Feb. 2, 2022, https://www​
.mckinsey​.com​/capabilities​/mckinsey​-digital​/our​-insights​/tech​-forward​/how​-agile​-teams​-can​
-pursue​-technical​-excellence.

https://www.forbes.com/sites/tonygambill/2022/09/14/a-leaders-challenge-developing-teams-that-have-strong-relationships-and-excellent-results/?sh=37d953766bb5
https://www.forbes.com/sites/tonygambill/2022/09/14/a-leaders-challenge-developing-teams-that-have-strong-relationships-and-excellent-results/?sh=37d953766bb5
https://www.forbes.com/sites/tonygambill/2022/09/14/a-leaders-challenge-developing-teams-that-have-strong-relationships-and-excellent-results/?sh=37d953766bb5
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/how-agile-teams-can-pursue-technical-excellence
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/how-agile-teams-can-pursue-technical-excellence
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/how-agile-teams-can-pursue-technical-excellence

Introducing Good Enoughness 9

rejecting the notion of excellence and settling for a software product and a
way of working that’s just good enough.

In my specific field at MiddleTech, I first noticed that when building
critical software like routing and navigation infrastructure, corporate soft-
ware developers work under the orders of managers who strive to build
software that meets particular requirements and safety standards in order
to gain certain levels of certification. These standards and certifications help
order the world of software developers, their manager, and their customer
(Bowker and Star 2000): it communicates to customers that the product
(in this case software) they are using is seamless. At MiddleTech, software
product managers gained certification from the International Organization
for Standardization (ISO), a nongovernmental standards board that sets
out various types of standards certificates for corporate software compa-
nies, including “quality management standards” and “IT security standards”
among many others. In order to gain these certifications, products had to
meet certain safety criteria or achieve certain metrics. Managers would meet
these metrics by incorporating discourses and methods of working that
would strive for perfection, particularly during the months leading up to a
certification audit. Thus, to achieve seamlessness or these “great metrics,”
the office had to have a work discourse of excellence. In practice, developers
negotiate what is good-enough work in order to meet these standards and
metrics (or get away with not meeting them), but excellence is something
managers still push as the overarching narrative to legitimize their own posi-
tion and the ways of working around the office.

An Ideology of Improvement

Beyond the notion of excellence, another normative discourse that circulates
around the corporate software office is the concept of improvement. If we
accept that the update is a defining characteristic of software work culture,
then we can also imagine that the notion of continuous improvement is
essential to how programmers work. Each update carries the implication
that developers can and should continuously iterate and improve on their
product. That said, the ideology of improvement can be found everywhere
in software work, materialized in the tools and methods that managers use
to make software teams work better together and individual programmers
code better. With hundreds of moving parts and dozens of teams of software
developers carrying out work that their managers often do not understand,
corporate software development processes have fostered cultures, rituals,

10 Introducing Good Enoughness

and forms of organization that get a product delivered, create accountabil-
ity, and stabilize continuous improvement. One particular method is called
“Agile”, one iteration of which is called “Scrum,” where software developers
are meant to work in “sprints,” two-week stretches devoted to particular
tasks, which are broken down on Post-it notes on a whiteboard. In this
method, the head of the development team reports on progress using soft-
ware that includes a dashboard indicating the state of every project. “The
manager could also show a graph of the team’s ‘velocity,’ the rate at which
the developers finished their tasks, complete with historical comparisons
and projections” (Posner 2022). Developers also engage in a daily ritual
called the stand-up, where they all stand around in a circle and take turns
explaining how their work is progressing or how they are improving on
each task.

This methodology emphasizes a culture of improvement, where discus-
sions in team meetings, company meetings, and one-on-one manager-to-
programmer and programmer-to-programmer meetings are often focused
on how to improve something: how to improve a work process, how to
improve communication, how to improve a piece of software, or how to opti-
mize (improve!) an algorithm. The notion of improvement is woven through
everything.

Additionally, in a company like MiddleTech, the velocity of improvement
is quantified and measured using something called a KPI or key performance
indicator. This performance indicator is not specific to software companies in
particular (those who have worked in any other corporate environment have
probably come across the term). As the metric is quite broad, a KPI has to
be defined within each industry, based on something that a management
team can track. In the past decades of software production, managers have
attempted to track certain practices of the software developer’s work, such
as the number of lines of code a developer committed or entered into the
system, or the number of features completed on a certain day (the more, of
course, the better). Managers have also turned to software itself to measure
KPIs by looking at the number of bugs in a software system or the code
simplicity, meaning the number of independent paths code must take to
run a piece of software (the fewer the better).

Progress is thus characterized by a distinct normativity of numbers
(Anders 2015), meaning the use of numbers as norms for measuring a com
pany’s progress in fixing bugs, implementing innovative solutions, and
introducing systems like the KPI or various company software tools to col-
lect and process numbers in a standardized fashion. Numbers like KPIs are

Introducing Good Enoughness 11

essentially about projecting power and coordinating activity (Porter 1995,
44). In bureaucratic business corporations like MiddleTech, “quantification
is simultaneously a means of planning and of prediction” (43), and there is
great pressure for workers and their managers to conform to ever-increasing
demands for “greater workplace productivity and enhanced efficiency modu-
lated by computational systems that manage KPIs” (Rossiter 2016, 18). In
other words, developers are being increasingly pushed into productivity
by software-driven metrics, where KPIs and the real-time measurement
of labor imply a constant acceleration described in terms of improved pro-
ductivity. More specifically, the belief in the neutrality of certain metrics
and measurements helps to enforce the corporate ideology that the soft-
ware team and the software product can continuously improve and actually
achieve excellence.

Excellence and Improvement and Reality

I discovered throughout my fieldwork that while these metrics, methods,
and modes of excellence and improvement are present in the MiddleTech
office culture, the reality is different. On a discursive level, corporate soft-
ware environments can be understood as factories of so-called technological
acceleration (Wajcman 2014, 16), where technology is constantly updated
to improve and strive for excellence. Yet in the everyday, often mundane
reality, software developers are more informed by good-enough principles
and practices.

Good enoughness implies settling for the here and now, as opposed to
accelerating forward to achieve something better. While in theory, an old
software version is always being updated and improved, a software devel-
oper’s practical tasks at the workplace don’t necessarily have to be oriented
toward improvement or some form of innovation. For example, a piece of
navigation software that is shipped today might be full of bugs that slow
down users. But the good-enough developer’s tasks are often self-defined.
One update might fix just two bugs instead of the imagined fifty. While clean-
ing up these few bugs might give users a more seamless experience, it can
also cause other bugs to appear and other slowdowns to occur. Thus, while
on a discursive level, managers and software workers may speak of acceler-
ated improvement and innovation, in practice their relationship to this inno-
vation and constant improvement can be quite ambivalent. Improvement
doesn’t always mean peak innovation and can instead be just good enough.
This example also shows us that what is good-enough work is also a matter

12 Introducing Good Enoughness

of subjective estimation, normally arrived at by the developers who hold a
more intimate knowledge of the code than their managers or the customers
they work for.

The normative orders of excellence and the ideology of continuous
improvement are strong forces driving the software industry and its socio-
technical culture. This company ideology is something that is reproduced
in day-to-day, face-to-face discussions, in meetings, conferences, and coffee
breaks (Wittel 1997). Yet these ideologies are not necessarily something that
everyone in the corporate software office believes in (Wittel 1997). While
excellence and continuous improvement may permeate the office discourse,
I observed that often neither software workers nor their managers really
believe in the importance of excellence nor in the ability to continuously
improve. For a particular ideology to survive, it is not essential that people
actively support or believe in it. As Renata Salecl stated, “the crucial thing is
that people do not express their disbelief. For them to abide by the majority
opinion, all that matters is that they believe it to be true that most of the
people around them believe. Ideologies thus thrive on ‘belief in the belief
of others’ ” (Salecl 2011, 10). What she means here is that people often do
not believe in something but pretend to in order to avoid offending those
who might believe in it.

Something similar in our context of software development is described in
Frederick Brooks’s The Mythical Man-Month. In his seminal text on software
production methodology, Brooks (1975) explained that software develop-
ment teams, particularly their managers, repeatedly plan for software proj
ects to go well and be finished on schedule, when in reality projects are full
of bugs and are always delayed. Brooks says that programmers hold beliefs
or assumptions that “all will go well” or “that each task will take only as long
as it ‘ought’ to take” (14), while in reality they often settle for good enough.
As you will see in this book, when you candidly ask a manager or a developer
if they really believe that a project will be finished on time, or if a piece of
software will work seamlessly, they will emphatically say “no.”

At MiddleTech, most developers and managers would openly (in meet-
ings or job interviews, for example) express their belief in excellence, tech-
nological innovation, or the efficiency of production, while in reality, they
practiced the opposite, meaning the work ethic and software ethic of good
enough. Good enoughness, therefore, becomes an emergent cultural prac-
tice that happens in practice, juxtaposed to its more dominant other. These
“others,” which will reappear throughout this book, are excellence, techno-
logical innovation, and the efficiency of production.

Introducing Good Enoughness 13

Good Enoughness

The concept of good-enough software production is not one I coined myself
but rather found in the field during conversations among developers at Mid-
dleTech, in online hacker forums, or in software engineering literature. In
their article “How Good Is Enough: An Ethical Analysis of Software Con-
struction and Use,” W. Robert Collins and his coauthors suggest that the soft-
ware industry should “encourage reasonable expectations about software
capabilities and limitations” (1994, 89), both among users and producers of
software. This call to be “reasonable,” as Collins and his colleagues explain,
is about understanding “how good is good enough,” a responsibility of
the software provider or the programmers and their team. The term “good-
enough software” highlights that perfect software for a complex system can-
not be guaranteed in practice (Collins et al. 1994); thus, releasing software
to the public will always be done under a good-enough principle, and will
include some level of failure (Pelizza and Hoppe 2018). Good-enough soft-
ware is, as Collins and colleagues explain, a principle that understands that
every piece of new software can be assumed to contain errors, even after
thousands or millions of executions.

In the mid-1990s, the concept of good-enough software was “getting a
lot of attention” (Yourdon 1995, 78) in order to counteract the “we’ll deliver
high-quality, bug-free software on time” battle cry (78) that was sweep-
ing the industry. In his short article in IEEE Software magazine, Yourdon
explained that software engineers were shifting from working on propri-
etary, one-of-a-kind systems, developed according to schedules measured
in years and funded by budgets measured in millions to software as a cheap
commodity that can be made and reproduced relatively quickly. In other
words, instead of making software for a shrink-wrapped CD to slip into our
PC, the dawn of the internet brought programmers cloud computing and
the ability to iteratively change the software in our fridges, phones, and desk-
tops. Instead of perfecting and preserving a piece of software for eternity, the
update became like a lifeboat or an eraser, enabling developers to fix their
work at any time. In essence, the update gave the software developer the
ability to settle for something good enough for now, only to be fixed later,
which, as Yourdon explained, began “to challenge some of our basic assump-
tions about software development” (78).

Aside from software development, the good-enough principle has been
used in psychoanalysis, pediatrics, urban studies, design, philosophy, biol-
ogy, economics, and more popular self-help books. For example, using the

14 Introducing Good Enoughness

concept of the “good enough mother,” the British psychoanalyst Donald
Winnicott describes the caregiver who settles for “good enough parenting”:
recognizing the fragility of a baby but failing at meeting all of the infant’s
demands and one’s own standards of the perfect mother. Through this fail-
ure, mothers allow their babies to find their own way of doing things (see
Winnicott 1987 or Doane and Hodges 1992). The concept has also been
taken up in medicine (Ratnapalan and Batty 2009), where practitioners
argue that excellence in medicine can be achieved by ensuring results that
are good enough rather than by aiming for perfection, or in psychological
research methods, where researchers set standards that indicate what kinds
of experimental outcomes are good enough (Serlin and Lapsley 1985).

In economics and organization theory, Herbert Simon coined the term
“satisficing” to describe the decision-making process whereby individuals
or organizations seek a satisfactory solution rather than an optimal one.
Similar to good enough, satisficing is when people choose the first option that
meets their minimum criteria for acceptability, rather than continuing to
search for the best possible option. Simon argued that satisficing is a practi-
cal and efficient approach to decision-making as it allows individuals and
organizations to conserve resources and make decisions quickly. He con-
trasted this approach with the idea of optimizing, which maximizes the benefits
of a decision but can be time-consuming and requires extensive information
and analysis: “Evidently, organisms adapt well enough to ‘satisfice’; they do
not, in general, ‘optimize’ ” (Simon 1956, 136).

This approach also resonates with wider discussions around the preva-
lence of good enough in both biology and culture, where the evolution of
many species on Earth was not optimal as Darwin believed, but they sur-
vived anyway in a good-enough state (Milo 2019). Other scholars called for
society to embrace the “good-enough life” as a state that understands what
“goodness” and “enoughness” mean (Alpert 2022). Alpert in particular links
good enough to the human need to change our relationship with nature and
ecology. He calls for a reduction in our production and consumption in order
to live more in harmony with nature, building our “good-enough life within
these good-enough conditions” (5). This plea for restraint and reduction
goes hand-in-hand with notions around the “good enough job” (Stolzoff
2023), or the “smart enough city” (Green 2020), where “enough” means roll-
ing back our need for acceleration and overproduction in our optimization-
centric jobs or urban planning endeavors and “limiting growth” (Meadows
et al. 1972). Here, being good enough can also be connoted with mediocrity,
which, as Groth (2019a, 2019b, 2020a, 2020 b) highlighted, is increasingly

Introducing Good Enoughness 15

becoming a positive point of reference in different fields of practice. Keeping
up with the midfield, earning a middle-range income, or being part of the
middle class are powerful models for socioeconomic behavior and lifeworld
interpretations (Groth 2019a).

Two Good Enoughs

As we can see, the notion of good enough has been used in various fields,
including in organization studies and computer science (where this book is
situated more closely). Rather than merely demonstrating that good enough-
ness exists, what I hope to highlight throughout these next chapters are
the cultural aspects of good enoughness in practice. Over the course of
my ethnographic observations, I noticed that two specific kinds of “good
enoughs” emerged from my field, somewhat related but different at the same
time. The first type of good enoughness addressed in this book relates to soft-
ware itself. Software is a material product destined to be just good enough.
Contrary to the seamless save-the-world technology promised in YouTube
clips from product demos touted by CEOs like Elon Musk, Steve Jobs, or
Mark Zuckerberg, software isn’t all that it’s cut out to be. When we look into
software’s constitution and how it’s built and maintained, we see that at its
core, it will always be merely good enough. Software is complex and made
up of hundreds of lines of code that are constantly changing, constantly in
flux. Due to this complexity, the people who work on software can never
understand it in its entirety, which also makes these projects hard to manage,
and as Brooks (1995) explained, they are hard to estimate in terms of scope and
duration of completion. As I will describe in later chapters, managers refrain
from micromanaging a project on a technical level but still implement various
strategies to maintain control of a project’s completion time. Developers also
often give up on achieving what they promised and settle for a good-enough
project in a good-enough time frame.

Another issue with software, as Brooks explains, is that it functions on a
logic of constant improvement: nobody gets it right the first time, and often
“one has to build a system to throw away, for even the best planning is not
so omniscient as to get it right the first time” (1975, 116). In programming,
for example, programmers iterate a project by building one version, only
to improve upon it in a second version, only to improve upon this in a third
version, and so on. This means that no software project is ever complete,
with each version being just good enough for the time being, to be improved
upon in the following version.

16 Introducing Good Enoughness

The second type of good enough is good enoughness in corporate soft-
ware work. After a few years of studying how corporate software developers
build a seemingly boring everyday software product, I noticed that contrary
to corporate discourses of efficiency, productivity, and meritocracy that
permeate the corporate office, workers, most of the time, are doing work
that’s good enough and are happy with jobs that are good enough.

The two types of good enoughs do not function separately but co-inform
each other: the good-enough worker in good-enough work conditions
makes good-enough software. We can also flip this relationship around: if
software has limitations to what it can do (be merely good enough), then
a worker will settle for doing a good-enough job and come to work with a
good-enough work ethic.

While good enoughness might superficially function in the excellence
and efficiency discourse as something subpar or even as a failure, it can be
embraced and accepted as something “okay.” Good enoughness is about
being pragmatic or realistic about the amount of work developers want to
put into their projects and about the limitations of what a piece of software
can do.

That said, good enoughness—particularly in terms of a good-enough
work practice—can often be achieved only from a position of worker and
company privilege. The worker who gets away with doing a good-enough
job is a privileged worker. Good-enough jobs are sought after and coveted
and often flourish in a culture that provides safe working environments. Not
many software developers in an outsourced coding farm in Krakow or Ban-
galore, working to meet deadlines and concerned about their job security,
would be able to work in a good-enough job (see Amrute 2016, 103). The
same can be said for software. Only companies that were successful at build-
ing a software asset—meaning a product that continuously makes money—
can settle into being good enough. Large old tech companies like Google or
Facebook or even MiddleTech have certain assets (the search algorithm, the
advertising infrastructure, the mapping engine) that they created years ago
but still generate profit. Because they were eager, driven, and efficient years
ago, these companies now have assets that give them the financial stability
to be good enough in the present. A small start-up wanting to burst out into
the tech scene and get noticed can’t hire good enough workers and expect to
financially survive. I’ll discuss this dynamic in more detail in the next chap-
ter but mention it briefly now to illustrate the “privilege of good enough.”
Being a good-enough company like MiddleTech means also supporting an
inequality in work speeds and demands, allowing some people to sit back

Introducing Good Enoughness 17

and opt out of hyperproductivity while cruising on the unrecognized labor
of other software developers and service workers.

This book is about a specific type of software worker in a certain kind of
software company. MiddleTech is a specific type of company—one that sits
on a certain software asset that allows it to be continuously relevant in a
global software market. The company has a decades-old technology that is
still embedded in various networks of software devices. Both the age and
scope of MiddleTech are important for understanding how good enoughness
emerges and becomes stabilized in such a company’s culture.

Book Structure

This book’s specific case study at MiddleTech brings to the fore a central
mechanism in all software engineering, whether in Bangalore, Berlin, or
Silicon Valley: that software is always merely good enough, in particular
in companies sitting on older, still-valuable software assets. Like software’s
different layers of abstraction, this book is also structured in layers. Each
chapter brings the reader into a different layer of abstraction that contributes
to the larger picture of how good-enough software is made and good-enough
work cultures are constituted. I begin with how programmers relate to their
software, then move on to those who build software, and finally to the levels
of management and organization that influence them.

Each of the following chapters addresses good enoughness in its own
way and is structured around stories from my field. I take ethnographic
storytelling seriously as I believe “stories display, juxtapose, figure, guide,
and enliven in ways that philosophical concepts or abstract procedures
cannot” (Kelty 2019, 4). While stories are too often dismissed as “ ‘illustra-
tion” or ‘evocation,’ as if they lacked the (masculine) rigor of the ‘concept’
or the ‘procedure’; stories . . . ​are the space of emotion and affect—too often
demoted in power as something incidental, soft, solipsistic, not academic,
or inadequately precise for thinking” (4). The first chapters will be largely
based on the stories I encountered in my field, and the final chapter will be
mainly analytical, focusing on the practices and figurations we encountered
at MiddleTech.

In chapter 1, “Welcome to MiddleTech,” I introduce the company, what
makes it distinct but also similar to other “Medium Tech” software compa-
nies, and how this particular corporate software environment is the ideal
site where good enoughness takes root and flourishes. I situate MiddleTech
within the global software industry and show how its workers self-consciously

18 Introducing Good Enoughness

define themselves in opposition to Silicon Valley discourses, particularly
through how they work. I highlight the many similarities between what I call
Medium Tech and Big Tech companies, particularly in how programming
work is defined, how management is organized, and how various management
methodologies are implemented. I also explain how good enoughness flour-
ishes in older companies (both Medium Tech and Big Tech) because their
software is still embedded in various social and technical infrastructures
currently in use—and making money—today. This dependency on an older
asset turns the focus of a Medium Tech company to maintenance and repair
rather than “disruptive” innovation.

Once we get a picture of the way in which MiddleTech is situated in the
software industry, I’ll focus on the software developers and their relation-
ship with their community and technical objects. In chapter 2, “Software’s
Sociality,” we get to know Ori, the Java developer-turned-lead software
engineer, who helps readers imagine the type of care and compromise that
programmers must constantly negotiate when building software. This is
where the reader first encounters good enough at work. I explore the craft
of working on software, showing how it requires the knowledge of the inner
workings of a software system, experiencing moments of “closeness to the
machine” (Ullman 1997, 40) and zoning in to a software environment to
find a sense of flow in one’s work. These ideal forms of care are often dis-
rupted by various social and technical factors, and developers are forced
to compromise and settle for something that’s merely good enough for a
customer to use. Describing software’s sociality from the get-go is impor
tant as it helps the reader understand what is at stake and what kind of care
and compromise programmers have to negotiate with their managers and
customers when building software.

Focusing on yet another layer of abstraction, I bring us deeper into the
social and technical conflicts that arise when working on software. Chapter 3,
“Where Stuff Goes Wrong” builds on the understanding that software is a
social object and paints a picture of the chaos, conflict, and misunderstand-
ing that software inherently holds. I will show how conflict and controversy
are inherent and inescapable in the software development process and an
important part of understanding software development culture. I also frame
the software company as a sort of “organized anarchy” (Cohen, March, and
Olsen 1972), where the company’s purpose or what it’s working on becomes
unclear for those working within it. To connect us to my central concept of
good enough, I show that when stuff goes wrong, software is shipped to its
customers in a state of good enoughness. While it may seem that stuff goes

Introducing Good Enoughness 19

wrong in any company, the difference with software lies in the rapid speed
of change within the software industry, which is rooted in software update
culture. The constant drive to update, fix, and innovate software means that
it quickly becomes obsolete, and how it is programmed does too. This speed
of change during software development challenges the stability of the knowl-
edge of the people involved. These heterogeneous forms of knowledge result
in processes of explanation and translation. Through explanation and trans-
lation between software developers, their code, managers, and customers,
misunderstandings happen, and software development plans fall through the
gaps between states of knowing and not knowing. Chapter 3 will also explain
the different roles in programming, the nature of the customer-programmer
relationship, as well as the role of management in organizing software work.

After describing how good enoughness is fostered through programming
practices on an individual as well as collective level, I will introduce the pro
cesses of production and management in software development. Chapter 4,
“Managing Good Enoughness,” highlights how good enoughness in software
work and the product results from the politics behind its development—
both the macropolitics from the perspective of the software industry and
the micropolitics from the perspective of the developer.

As Gideon Kunda showed, managerial ideology and managerial action
designed to impose a role on individuals are normative demands that play
out differently in action (1992, 21). To illustrate this, chapter 4 will outline
the tensions among developers, their managers, and their machines, as well
as how power and control are exerted, performed, and achieved when build-
ing software. While these forms of politics and power might be similar to
those in other large corporations, my ethnographic descriptions underline
the specificities of corporate software development, as well as the way in
which power and politics influence how software is built, deployed, and how
robust it becomes. Moreover, I also ethnographically show that software’s
materiality shapes the way in which programmers, managers, and customers
interact with one another.

Chapter 4 also describes the deep tension between managers, who need
to quantify their developers’ work, and developers, whose goal is to build
and fix their software, preferably with ample amounts of time. To highlight
this tension, I describe the culture of speed and the drive for efficiency,
velocity, or agility, which are all part of the office discourse at MiddleTech.
I also describe the industry-wide software development management tools
or methodologies that help drive this discourse (that is, the Scrum or Agile
methodologies of organizing software work) and how good enoughness

20 Introducing Good Enoughness

becomes a way of pushing back against the desired outcomes that such
methodologies aim to foster.

While my ethnographic stories are often more focused on the social
and cultural dimensions of building software, in Chapter 5, “Slowdown,”
I focus more specifically on the culture of speed and efficiency when building
routing and navigation software. Mobility systems, and the development of
software for them, are intrinsically dynamic processes encompassing various
temporalities, which are shaped by the interaction of sociality and technol-
ogy. Yet slowdown is often at the core of software work. The slowdowns do
not happen because the programmer chooses to take time to think through
a topic; instead, slowdowns are imposed on programmers and their teams
through various social and technical constraints. Once faced with these
constraints, programmers need to compromise on what they are creating
and releasing to the public. These slowdowns lead developers to create good-
enough code. In chapter 5, I show how slowdown is the precursor to good
enoughness, where part of a programmer’s practice is halting the inertia
of acceleration in the corporate software environment. Through various
stories, we will witness good enoughness at work with constant stutters,
blockages, breakdowns, moments of slowness, and deviations from the plan.

I conclude my journey through MiddleTech by theorizing the stories
we encountered and placing them into a wider understanding of what
good enoughness is and how it functions. To do so, I analytically explore good
enoughness from a variety of angles, showing how different relational con-
stellations inform good enoughness. Through this notion, we will start
to understand the myriad of actors relating to one another and helping
shape what “good for what” and “good enough for whom” can mean. When
exploring the various stories of good enoughness in the previous chap-
ters, we encountered different good enoughs for the programmer or good
enoughs for MiddleTech’s management or their customers. These parties
have different concepts of what counts as good enough, which are often
in conflict with each other and in need of negotiation. Of course this leads
to compromise on what’s good enough for the different parties involved.
I will conclude by exploring the ways good enoughness is under threat,
mainly by the forces of postindustrial capitalism that work against its logic,
and how it is then kept alive.

This book is about the collective struggle to keep the software we all
use alive, viable, and functioning. It is also a story about what is happening
to our tech companies today, particularly the larger, older, aging software
companies that built a good product sometime in the mid-2000s and are now

Introducing Good Enoughness 21

trying to maintain the one or two software assets that keep their revenue
flowing. I paint a picture of one specific “software world,” bringing you closer
to places where software is made and maintained, while introducing you to
the people who build it. I hope that this approach will also help personalize
your everyday digital objects, giving you an intimate picture of software’s
complexity. I hope it will be good enough.

22

1
Welcome to MiddleTech

In the center of Berlin’s Mitte (middle) district, above tramway lines, coffee
shops, drugstores, and Vietnamese restaurants, stands a big glass building
housing MiddleTech. The office is large and quite generic, with a lightly air-
conditioned interior, the breeze of which saved me from Berlin’s scorching
August heat during my fieldwork. Like many corporate offices, the entrance
was guarded by a keycard gate and a receptionist’s desk.

I loved the building’s glass elevators, which would always contain an
assortment of developers whom I slowly grew to know over my fieldwork,
making my elevator conversations more meaningful and less awkward as the
months went by. There were seven floors in the main building, and while
each looked almost exactly the same, I prided myself on knowing the differ-
ence between the second-floor front-end developers and the fifth-floor HR
department. There were two kitchens on each floor that had coffee machines
with very strong coffee and microwaves where developers would occasion-
ally warm up their morning oatmeal or soup cups at lunch.

The developers who witnessed my excitement at the smell of the corridors
or the shape of the garbage cans in the meeting rooms would roll their eyes or
shake their heads. After all, to them, this was just an average, uneventful tech
company. Indeed, beyond my ethnographic excitement, MiddleTech’s head-
quarters was just a run-of-the-mill tech office. The building, the lunchroom,
the elevator, and the receptionist were not that special. On the contrary, they
were quite average and quite mundane, with developers who worked during
the day and went home to their families or friends in the evenings.

Welcome to MiddleTech 23

It was the second summer of my fieldwork, and I came back after months
of not being at MiddleTech. That day, I was invited to join a team of data
science researchers (also working with the routing and navigation team)
for lunch at an Italian restaurant around the corner from the office. While
munching on white bread and olive oil, the six of them sat around me and
started talking about their new bosses, who were all based in Chicago,
and how they had recently been interacting with the teams in Chicago.
Charlie, a product owner, chimed in with a look of confusion: “I was on
a call with them today and they somehow always seem to be yelling. Why
are they yelling? It’s like they are constantly getting into a heated argument
about something.”

Ori, who was sitting next to Charlie, said, “Yeah, it’s so awkward. I was
once in Chicago, and two guys in our meeting said they had to step out and
discuss something, so they went into a meeting room and started yelling
at each other. It was very awkward. And embarrassing. And then they just
came out and were like ‘We sorted everything out.’ But they didn’t. Noth-
ing seemed to be sorted out.” The rest of the guys chuckled a bit and gave
knowing nods.

The images of their American colleagues yelling made me picture Steve
Ballmer, the former CEO of Microsoft, standing on stage in front of an
audience of hundreds of software developers in the legendary meme known
as “Steve Ballmer Monkey Dance,” or merely “Developers.” It’s sometime
in the year 2000, and Ballmer and his crowd have gathered together to cel-
ebrate Microsoft’s twenty-fifth anniversary. His face is red, and his generic blue
button-down shirt is dripping with sweat. Galvanized by excitement, he starts
his speech by pacing the stage and yelling, “Developers, developers, develop-
ers!” nearly a dozen times until he can barely breathe and turns red in the face.
The developers in the audience clap along to the rhythm of his yelling.

This moment embodies an emotional affect common to the Silicon Valley
tech culture: a sweaty nerd shouting passionately for digital technology and
those building it, making something nobody cares about sound like something
astoundingly awesome. A software engineer like Ballmer shouldn’t just like
his work; he should love(!!!) his work. Showing passion for one’s job, anger if
something goes wrong, or excitement during a new release is often an integral
part of tech culture. Kunda, explaining the rituals of product presentations in
a tech company, wrote that the “intense, highly charged, and often conflictual
interchanges” are “characteristic of the working stages of meetings” (2009,
139). Here, in engineering culture, emotional expression is “contrived and cal-
culated” in order to “accomplish certain goals” (85).

24 CHAPTER 1

As the data scientists around me at lunch snickered at their American
colleagues’ propensity for yelling, they also seemed to distance themselves
from the expectation that engineers should get so emotionally caught up in
their work, their company, and the products they are building. My interpre-
tation during that lunch hour was that getting passionate about a software
product—enough to get emotional and yell at others if things go right (or
wrong)—was foreign to the developer culture at MiddleTech. This moment
also helped position MiddleTech as a place where people don’t yell, shout,
or get overtly passionate about technology, and hinted at a different culture
of expressing urgency, passion, and the importance of work at MiddleTech
among managers and software workers. It wasn’t as if the data scientists at
lunch didn’t care about what they were working on; they just didn’t care that
much. Not enough to yell at their colleagues in meetings. They didn’t care
too much, but they also didn’t care too little. Their care was somewhere in
the middle.

This middleness is what this chapter is about as I unpack the “middle”
of MiddleTech, helping us position the company in the larger landscape
of the tech industry. I will discuss what makes MiddleTech so “middle” in
relation to its size, ambition, location, and the kind of product its workers
were building.

This ethnographic focus on field sites of “average” quality is not new.
In 1929, Robert S. Lynd and Helen Merryll Lynd published their semi-
nal ethnographic study, Middletown: A Study in Contemporary American
Culture, which focused on the forms of “human behavior” and “cultural
conditions” in an “average” American town. The researchers had a list of
criteria in finding their town: They looked for a town that had a population
size that was neither small nor very big (“25,000–50,000”), was located
in America’s Midwest, and had a “middle-of-the-road quality” (Lynd and
Lynd 1929, 9). While I did not originally search out MiddleTech for its
“averageness,” after years in the field, its middle-of-the-road-ness jumped
out at me, making it hard to avoid addressing just how “middle” it was in
relation to the Big Techs and small start-ups, as well as in relation to the
hype that always buzzed around the latter two. Its geographical middle-
ness also appealed to me. MiddleTech was located in Berlin, based not
in the tech capital of Silicon Valley but also not in the outsourcing and
innovation-hyped regions of India or East Asia.

I started to draw inspiration from Lynd and Lynd’s decision to focus
their attention on a middle-of-the-road town in order to highlight a part

Welcome to MiddleTech 25

of society that is ignored or deemed uneventful. MiddleTech, while widely
forgotten and not that exceptional, is a place worth studying as it repre-
sents hundreds of tech companies of its kind that are so often overlooked
by researchers, and don’t fit into the popular imagination of what tech
companies should be.1 Neither small nor very big and with technology
that is largely invisible, what I call “Medium Tech” companies still play an
important role in making up our digital infrastructures. This chapter sheds
light on certain “average” features of MiddleTech in order to illustrate what
these sorts of companies look like, how they position themselves in relation
to Silicon Valley and Big Tech, how local laws help shape their company
culture, and how these features become important for one specific version
of good enoughness to flourish.

The notion of “average” here, as I iterated in my introduction, is positioned
in relation to a tech industry discourse that values excellence and innova-
tion. This can include a value for employee engagement, the drive to “scale
up” as a software company and grow, positioning oneself in a location that
fosters “innovation,” or having the drive to make software technology that is
“disruptive,” “critical,” or “important.”

MiddleTech, our chapter’s protagonist, fulfills none of these criteria.
Or at least does so only sometimes. As a company, it is medium in size; its
employees have a fluctuating, average amount of ambition; it’s not located
in a particularly exciting “tech hub” known for fostering after-hours work
or go-getter work ambitions; the product its workers were building was
largely invisible to users, and their ways of working were nor particularly
well organized. MiddleTech was average: It was good enough.

This chapter will also provide you with a picture of how corporate software
culture is structured, both on an external industry level and an internal, orga-
nizational micro level. Understanding some of the organizational structures
behind MiddleTech will also help me highlight what can foster good-enough
culture. In this chapter, a few structural dynamics at MiddleTech, including
the company’s age as well as the legal and corporate culture it is situated in,
help good enoughness develop.

1. Beyond our popular stereotypes of digital media companies, averageness and middle-of-
the-road companies have become an archetype in popular discourse, functioning mostly as comic
relief in TV shows like The Office or Superstore. One can say that in the former American version
of the series, the average paper company Dunder Mifflin is featured as a space of good-enough
culture, constantly in negotiation with go-getter characters like Dwight Schrute, who represents
an ambitious colleague striving to achieve excellence and top performance.

26 CHAPTER 1

Medium Tech

Even without disguising the identity of MiddleTech with a pseudonym, most
people wouldn’t have heard of it. For most people, stories about tech com-
panies often involve so-called “Big Tech” or the Tech Giants: Apple, Ama-
zon, Facebook, Google/Alphabet, and Microsoft. These companies became
more prominent over the past decade, becoming well known around 2013,
when economists and journalists noticed that they were no longer disrup-
tive start-ups emerging from the Dotcom boom but instead had acquired
large numbers of tech users, large amounts of user data, and large shares of
the market. Since then, Big Tech has been in the spotlight in our popular
discourse. These companies are the protagonists in fiction and nonfiction
books, feature regularly on the news, and are scrutinized by our govern-
ments. The wealth of the Big Five “total more than the entire economy of
the United Kingdom” (O’Mara 2019, 17) or France (Foroohar 2021, 5). And
if we expand our definition of Big Tech to encompass the global market, we
can include companies like Samsung Electronics in South Korea, Tencent
Holdings in China (the world’s largest producer of games), Foxconn Tech-
nology Group (the world’s largest provider of electronics manufacturing), or
Taiwan Semiconductor Manufacturing Co., Ltd. (TSM) (the second-largest
producer of semiconductors next to Intel). There is no denying that these
companies matter—they influence the digital technology we use, and their
technology influences us.

But beyond Big Tech, there are other companies that also employ many
people, make lots of money, and create digital technology for countless
users. They aren’t big or flashy, and most people don’t know who they are.
These Medium Tech companies are other large organizations that go mostly
unnoticed in the popular imagination. These are not small nor medium
enterprises (a category that most start-ups fall into at first) but large compa-
nies of over a thousand employees. At the time of my research, MiddleTech
housed about a thousand employees in its office in Berlin and had another
seven thousand working around the globe. The company’s objective was
to make digital maps and to provide location data and other services to
individuals (in the form of a navigation app on your phone or in your car) and
other businesses (in the form of location data information needed for build-
ing certain software). Located in over twenty cities, with its largest offices in
Berlin and Chicago, the company has a thirty-year history of growth, acquisi-
tion, and rebranding. In the mid-1980s, an American company called FastMap
was building digital navigation technology, which focused on providing

Welcome to MiddleTech 27

map data used in in-car navigation equipment. In the late 2000s, FastMap was
acquired by a large mobile phone manufacturer, who, in 2012, rebranded
its entire mapping and navigation services under the umbrella name of
MiddleTech. In late 2015, six months before I arrived, MiddleTech was
sold to a consortium of German car manufacturers, which, at the time of
writing, held around 75 percent of the company’s shares. Other hardware
and semiconductor companies still held stakes in the firm. MiddleTech
was, and still is, a company with years of history, a mix of programming
styles, legal regulations, different work practices, and methods of conflict
negotiation all coming together under one sleek, modern, community
garden–covered roof.

The first “middleness” that defined MiddleTech was its number of
employees. The company—with a multitude of locations and teams work-
ing on a large array of software products—was big enough for employees to
get lost and for senior managers to lose track of who was working where.
Yet the company was not too big—it was markedly different from powerful
tech companies like Google or Microsoft who have scaled up to employ
hundreds of thousands of people globally. It was also not a small start-up
of a couple of dozen or a couple of hundred employees. Size mattered, as
I observed that the number of employees at a corporate company was often
tied to employee engagement, management style, and a sense of personal
accountability. Charlie, a product owner, who also had experience work-
ing at a smaller start-up, explained that when companies have a handful of
employees, it becomes easier for employees to feel they have “ownership”:
“You feel you have built something from the ground up . . . ​and it’s small, and
[the employees] are so driven by this. People feel they have a higher mis-
sion. They feel they can change how [the company] proceeds; they feel very
accountable.” The employee population size of a Medium Tech company
gives employees the ability to hide and absolves them of feeling accountable
to their company or software product. While there were other factors that
contributed to this lack of accountability and the ability to be less noticeable
at work, I felt that MiddleTech’s size was a significant factor in keeping it
in the middle—not scaling up, not striving for excellence, but establishing
itself somewhere in the middle.

Apart from the number of employees, forms of employee organization
also add to the averageness of the company. After years of conducting
research on corporate software development—through short field visits to
other companies, discussions with software developers who moved on from
MiddleTech to other companies, and my field visit to San Francisco—I noticed

28 CHAPTER 1

that MiddleTech was a quite average representation of how any medium-size
software company was structured, how the office was designed, and the type
of job positions that made up a software company. For those of us who have
briefly encountered a tech company, MiddleTech did seem like any other
corporate software company, no matter the scale.

The office space oozed a mix of corporate anonymity and random cama-
raderie. Every day when I entered the office, I would take the desk of some-
body who happened to be away on vacation, and I would sit down and start
typing away on my keyboard, making the same “click click” sound that my
developer neighbors were making. I would also check my e-mails, proudly
hoping that a developer would walk behind me and peek over my shoulder
to notice that I was just like them and used the same e-mail system they
did (they never did notice). I would also log in to the chat system called
“Spark,” and much like the developers around me, I would read through the
daily discussion threads. At 12 or 12:30, I would become part of the wave of
developers standing up to go to lunch. I existed with them; I fused into their
global tech ecosystem and felt that nobody really took notice of me—not
because I wasn’t the odd one out (I was) but because software developers
have a social culture of not noticing one another and, moreover, corpora-
tions have the same culture of not noticing one another. When walking past
somebody in the hallway—in the case of both the software developer and the
corporate worker—not saying something is more socially acceptable than
stopping to say hello. Developers work within their machines, and even
when getting up to get a coffee in the kitchen, they are often still absorbed
in their task at hand. For example, at the MiddleTech Christmas party, I was
surprised to find a few developers laughing and joking with me after hav-
ing, on their own, initiated a conversation. I asked Dimitri, one of the most
introverted developers at the office, why he was so outgoing when he was
usually so shy and avoided me, and he said, “Paula, you don’t get it. When
you see me in the office, I’m still inside my problem; I am talking to the
computer, in constant conversation with it. I don’t have the mental capacity
to just change gears and notice you, let alone start talking to you.” Silence
at MiddleTech is a virtue.

As in most software companies, software developers were divided into
teams based on what software product they were working on. During the
first summer of my fieldwork, I was placed in a team of one hundred front-
end developers building a map-based app similar to any navigation app in
your phone. My second year was spent with the routing and navigation team,
which was made up of around one hundred developers. In computer-speak,

Welcome to MiddleTech 29

this group was known as the back-end team, meaning the group working
“closer to the machine” on parts that the regular user of the navigation app
doesn’t see at all, such as the map-operating system, the cartographic data,
the routing algorithm, etc. Aside from front-end and back-end developers
(or full-stack developers who were jacks-of-all-trades and could do both),
others I met called themselves data scientists. The data scientists’ task was to
conduct research experiments on large data sets and turn these experiments
into working prototypes. They would take a large amount of data collected
by the MiddleTech in-car navigation system about, for example, the number
of mis-maneuvers on a route, and then use machine-learning algorithms to
find patterns on the route that might cause these mis-maneuvers (such as
the number of left-hand turns). There were also privacy officers, whose task
was to comply with legal regulations and make sure the data they collected
were encrypted and minimized and, as much as possible, destroyed. These
diverse employees came together to build software, their roles resembling
those in any other generic software company.

The word “software” suggests that there is “a single entity, separate from
the computer’s hardware, that works with the hardware to solve a problem.
In fact, there is no such single entity. A computer system is like an onion,
with many distinct layers of software over a hardware core” (Ceruzzi 2003,
80). These layers are built and maintained by different developers with
different skill sets. A programmer working on the top layer of this hypo
thetical onion might not know how to work on another layer closer to the
onion’s core.

More specifically, at MiddleTech the front-end developers worked
on the company’s navigation app, and the back-end developers created
and maintained the map-operating software that was built into cars for
large German car companies (although throughout my few years coming
in and out of the company, various software projects and products changed
and grew). The front-end engineers making the navigation app performed
the so-called “easy” tasks. They worked on problems that had clear solu-
tions. Place a button here. Add a feature there. Debug or fix another error.
This type of work was done by thousands of other developers in other
companies around the globe, often regardless of whether they were build-
ing a map or a fitness app.

The back-end division, on the other hand, was made up of developers
who worked on the part of the app you couldn’t really see, such as the data
and algorithms. These developers were also split into two types of engineers:
those who worked on cleaning up data, fixing bugs, or updating old code,

30 CHAPTER 1

and a small number of programmers and PhD student interns who con-
ducted experiments using the database and technical infrastructure in the
company. Their task was to break new ground, invent, and be creative. As in
many research environments, their goal was to develop a hypothesis and
test it. As they tested their hypotheses, they often came up with proto-
types that would (but often would not) be made into a working technology
that the company used.

There were those programmers who conduct the headwork, or the
research and creative work, and others who just do the manual labor of fixing
bugs, testing code, or reviewing it for mistakes. The headwork is valued more
(literally in terms of salary but also in terms of status) than the handwork,
which in this case was characterized by repetitive copy-and-paste Googling,
bug-fixing, or perhaps even testing.2

Throughout my work, I became accustomed to interchanging terms like
“software developer,” “software engineer,” and “programmer.” These terms
were (and are) frequently used and interchanged by programmers them-
selves, who admit to having slippery job titles that evolve all the time. As
the profession is rapidly shifting, a programmer can go from being a “lead
developer” to “head programmer” to “lead software engineer” when switch-
ing jobs, but their tasks remain nearly the same. Aside from the front-end
and back-end developers, there is also the data scientist, who is more of a
researcher and who doesn’t necessarily work on any software that will be
of direct applicable use to anyone.

2. This division dates back to the beginning of work with computers. In one of the first pam-
phlets on computing published in the United States, called “Planning and Coding of Problems for
an Electronic Computing Instrument,” Herman Goldstine and John von Neumann (1947) outlined
a division of labor in computing that clearly distinguished a symbolic hierarchy in the type of work
involved in building a computer. The headwork was conducted by the (largely male) scientists or
“planners” (Ensmenger 2010, 15). On the other hand, the handwork was conducted by the “coder,”
who was mainly female at the time. The planner did the intellectual work of analysis, and the coder
merely translated this work into a form that a computer could understand. Coding was a “static”
process—one that could be performed by a low-level clerical worker (Ensmenger 2010, 15). While
the type of work that goes into building software and hardware has largely changed since the time
of Goldstine and von Neumann, there are a few divisions that remain in place today, including the
division between the headwork and the handwork. The latter today has moved from just typing
or inputting data to a more subtle type of physical labor, such as copying and pasting code found
on the internet or fixing bugs. While computers have drastically changed since Goldstine and
von Neumann wrote their pamphlet, the division between the headworkers and handworkers
still permeates the programmer’s culture, with the headworkers holding more status, skill, and
authority. These divisions are a bit more nuanced and could be divided into the creative research
workers, the maintenance workers, and the cleaners or bug-fixers.

Welcome to MiddleTech 31

While front-end and back-end developers make a software product run
for a specific customer or user, other software workers make software for
other software developers (this division of labor also appears in many soft-
ware companies). While this may sound confusing, this team is known at
MiddleTech and other software companies as the DevOps team, short for
“development operations.” These workers create the software infrastructure
that helps software developers deliver their code to the main project, test
the code, and detect bugs in the code.

Another important division among software workers is between those
developers working in-house and those developers working in an exter-
nal outsourcing company hired to complete a part of the software project.
Outsourcing companies are chosen based on cost, meaning that managers
search for an outsourcing team that gives them the most productivity for the
least amount of money. The teams I worked with at MiddleTech outsourced
certain parts of their software production to companies in Poland, Ukraine,
and Russia. The type of work done by these outsourcing teams is considered
the boring, annoying, repetitive, less-skilled type of labor, or “monkey cod-
ing,” as many developers called it. This included tasks like bug-squashing,
in which developers had a long list of bugs/errors in their software and had
to fix the issue in a given amount of time. Outsourcing teams made periodic
visits (every few months) to their headquarters in Berlin, but most of their
collaboration with Berlin-based developers was done via conference calls
or online software collaboration platforms.

Outsourcing is part of the global software industry and also fosters
inequalities among workers. Unlike Amrute, whose research partially
looked at the ways in which Indian tech workers experience difference and
inequality at the office, I observed less inequality between workers who did
the same type of work (for example, the DevOps engineers) than between
engineers with different software development skills (for example, code
reviewers versus researchers), or those located in Berlin and externally in out-
sourcing teams. For example, a team of DevOps engineers at the MiddleTech
office, made up of Ukrainian, Indian, German, and American engineers,
would generally be treated the same way within their team—they would
receive the same tasks and work on similar projects, and their peers would all
judge each other’s work based on its technical proficiency, rather than on
who wrote the code. People from outsourcing teams were, from the get-go,
othered. They received different types of more mechanical tasks than the
teams working in Berlin; their work was more scrutinized and reviewed;
and because of how the outsourcing contracts were structured, they were

32 CHAPTER 1

more disposable than the workers in Berlin. I witnessed a number of occa-
sions when managers dropped a team in Wrocław, for example, because they
found another team that was cheaper and more reliable in Kyiv. While this
book does not directly address the forms of inequality and tension that arise
between different classes of coding work, and the regional inequalities in
labor distribution, these forms of difference are nevertheless a prevalent part
of corporate computing culture and exist throughout the industry beyond
the offices of MiddleTech.

There are others who make up the corporate software world, including
managers of all levels (middle managers, senior managers, CEOs, and team
managers); the legal team, which deals with lawsuits or copyright; the pri-
vacy team, which focuses on data privacy; designers; user experience teams
who conduct research on how the software is being used “in the wild”; and
cleaning staff, support staff, and the human resources department. There are
many others whom I don’t focus on within this book, but I would like to
acknowledge that their work is indeed a part of the way software is made and
maintained.

This characteristic rather than exceptional way of organizing a software
company at MiddleTech also made my study typical and helped my observa-
tions, with a bit of caution, become relatable to other digital media produc-
tion environments.

The Sometimes-Invisible Middle

Another way we can characterize the middleness of MiddleTech is the way
its technology was invisible both to users and the programmers building it.
Software, much like any infrastructure, is “by definition invisible,” taken for
granted, and becomes “visible [only] on breakdown” (Star 1999 380). Here,
these authors are referring to the actual seamlessness of a software system—
how we, as users, don’t really see or interact with the code operating our
everyday systems until these systems break down. I would argue a bit further
and say that certain software gains a status of visibility (think of the iOS oper-
ating system in your Apple phone) or complete invisibility (a traffic-control
system), both in the sheer number of users using the product and also in the
way in which an average user notices it. There are also some companies that
function between this space, with their product being somewhat noticeable
only to a smaller group of people. This has a lot to do with the back-end or
front-end focus of a software company. While Google might be working on
new machine learning technology, Facebook/Meta might be building its

Welcome to MiddleTech 33

next Second Life, and Apple will be working on yet another new interface
design for their new phone. In these examples, users don’t actually see their
technology run, yet the front-end experience—or the part of the software
and hardware that users see, touch, and engage with—is quite explicit and
becomes meaningful to the users.

This ability for a sensory engagement with software gives users the
feeling that software and the software company are somehow impactful
or socially relevant. What Medium Tech companies are making—products
like medical software, transport software, systems that help us navigate, or
smart home software—are much more invisible (yet, one can argue, they
impact us in ways that might be hard to quantify but are still salient). Mid-
dleTech didn’t particularly focus on their front end. After my first year of
fieldwork observing the front-end team build the user experience mapping/
navigation app for iOS and Android, the whole project was drastically down-
sized, turning the company into building mapping infrastructure for other
businesses, cars, and other systems. While the front-end app was still there,
running on the phones in some of the pockets of some users, the company
didn’t particularly focus on it, making the MiddleTech name, as well as
the software they produced, less visible. For German car manufacturers,
delivery services, logistics teams, or companies in need of a mapping and
navigation app, MiddleTech was important. Yet, as you can see, it was not
a very popular app that was generally recognizable. It was not completely
irrelevant but also not highly relevant to the general population.

Middle-Aged Tech

Another way of characterizing the middleness of MiddleTech was its age and
the older software assets the company held. While older companies in any
industry are often replaced by new ones that build better or more innova-
tive products, I would argue that because of the way in which software is
embedded into a variety of other systems, many software companies survive
for years, “living alongside new technologies” (Pinch 2010, 409) MiddleTech
was no exception. It morphed out of a company that was founded in the
late 1980s, and their mapping system, which is still in use today, was built
in the late 1990s. While MiddleTech wasn’t one of the oldest companies in
the software industry (see my example of CAE in the next paragraph), it
certainly wasn’t the youngest.

Throughout my fieldwork, I noticed that the age of the company is highly
relevant to how software developers work and how a company functions in

34 CHAPTER 1

relation to its industry competitors. Both Medium Tech and Big Tech have
aged and survived because they created a software asset that is still in use today.
Here, we can understand the aging of a software company not as a failure but
as a privilege. Most software companies don’t pass their start-up phase, and
the software they create is briefly used and then forgotten. If a company ages
and stays around for ten, twenty, or thirty or more years, it usually means
that they have created a software asset that is successfully embedded in a
social and technical infrastructure. Once embedded in such an infrastructure,
it becomes harder over the years (and often impossible) for the infrastructure
to retract this particular technology. One example of another Medium Tech
is CAE (formerly Canadian Aviation Electronics), a Canadian manufacturer
of, among other things, simulation and modeling software for airlines, aircraft
manufacturers, health-care specialists, and the military. CAE was founded
in 1947, and its software, while changing and adapting over the company’s
seventy-five years of existence, also features very old products that are still
embedded and locked within certain aviation infrastructures, both generating
revenue for the company and making their software irreplaceable.

At MiddleTech, this digital asset is mapping and navigation software,
called the map engine, which they sold and continue to sell to third-party
businesses in need of maps in their products (such as a car or another app
that needs a map feature). Due to this prolific embeddedness of the com
pany’s software, the company is able to coast on its revenues from its asset,
which was built years ago, not necessarily needing new innovative ideas to
pay its employees.

As Marisa Leavitt Cohn explained in her ethnographic study of engineers
operating a large-scale, multidecade technological infrastructure, systems
(like software systems) age at different rates and are entangled with each
other. Additionally, “what decays or ages are the relations across multiple
parts of the infrastructure and among people, the organization, and its tech-
nologies” (Leavitt Cohn 2016, 1519).

Such processes of aging and infrastructural embeddedness are common
but not limited to Medium Tech companies. A Big Tech example of this phe-
nomenon is Google’s PageRank. Has it been reinvented since its introduction
in 1998? There have been some variations since then, but the essential asset,
the PageRank algorithm, has existed ever since its inception. Despite being
built years ago, this digital product continues to make the company a large
amount of money as it has been embedded in a large network of systems.
The difference here is the scale: Big Tech companies created a more prolific
software asset that is able to age, while at the same time making such huge

Welcome to MiddleTech 35

revenues for them that they are able to reinvest some of that revenue into
more innovative products and services. Medium Tech companies do not
make as much revenue as their Big Tech counterparts, and their scope for
reinvestment in research or innovation is quite limited.

With this limitation, the software work at MiddleTech was dedicated mostly
to maintenance and repair. All infrastructural systems, including software,
are “prone to error and neglect and breakage and failure” (Graham and Thrift
2007, 5), and those working with such systems accept decay, errors, and fail-
ure as normal. Software becomes more complex over time: the number of
components making up a software system has been “proliferating, becom-
ing more complex and becoming composed from an ever-greater range of
materials, thus requiring ever more maintenance and repair” (Graham and
Thrift, 2007, 3). As I aim to show in the following chapters, working on
maintaining software at MiddleTech was not simply about tending to the
material software infrastructure but was also about “maintaining relation-
ships among people, organizations and technologies” (Bietz et al. 2012, 904).

My focus on MiddleTech’s maintenance work was part of accepting ero-
sion, breakdown, and decay, rather than novelty, growth, and progress, as
my “starting points in thinking through the nature, use, and effects of infor-
mation technology and new media” (Jackson 2014, 221). I started to notice
that programmers working in maintenance and repair require a certain
specialized skill. They are the ones who have to keep systems stable, which
is not easily achieved mainly because those software developers who main-
tain and repair their own system are faced with a large corporate software
legacy: an “old and layered (software) world, making history but not in the
circumstances of its choosing” (223). In most cases, successful software is
not built from scratch over and over again and then sold to customers like
any other consumer object. Despite seeming new and “updated,” software is
dependent on and encased in years of code that constitute the very structure
of its existence. As Vinsel and Russell (2018) reminded us, life with technology
is usually far removed from the cutting edges of invention and innovation. It is
crucial to distinguish certain forms of work that are devoted to keeping things
the same—to highlight maintenance (the work that preserves technical and
physical orders) over innovation (Vinsel and Russell 2018). David Edgerton
sees these activities as part of a broader concept that he calls technology-in-
use, through which “a radically different picture of technology, and indeed
of invention and innovation, becomes possible” (2008, xi).

During my research at MiddleTech, I noticed that only a very small
number of engineers were dedicated to research or building new products,

36 CHAPTER 1

whether that was in the Routing and Navigation team or elsewhere. On the
other side of the spectrum, at Google, the 20 percent rule is encouraged,
where at least 20 percent is spent on “exploring or working on projects that
show no promise of paying immediate dividends but that might reveal big
opportunities down the road.”3 As we shall see in the following chapters,
the practice of “keeping software present” (Leavitt Cohn 2019, 432) is much
more part of the practice at MiddleTech. Here, making good-enough soft-
ware or judging what is good enough for now is deeply entangled in the
continuous work of maintenance and repair but might seem quite out of
place among workers striving for innovation and big opportunities.

In the introduction, I highlighted how excellence and continuous
improvement have become ingrained in the discourse and work culture
of any tech company whether it is Big Tech or Medium Tech. Yet at Mid-
dleTech, discourses around excellence and improvement are not actually
at the center of what it does on a day-to-day basis. Its focus is rather on not-
so-exceptional maintenance work.

MiddleTech: Not the Global Tech Hub

One afternoon, I met an American security developer through some Mid-
dleTech colleagues. Tyler had long hair and was completely dressed in black,
perhaps the visual epitome of a security hacker. He had been living in Berlin
for only a few months after having worked for a German company in Munich.
In the United States, he worked in various cities, including San Francisco.
He saw a drastic difference between the two countries.

“I mean generally in Berlin—it’s slower here. In San Francisco, the idea
is mainly to get involved in any hot start-up you can, work eighty hours a
week, and then become a billionaire. That’s the general mentality . . . ​In
San Francisco you can’t have a conversation that isn’t about money. It’s a
million miles a minute. Dog eat dog. When I came to Berlin, I was in shock.
People can say, ‘No, I’m not going to do that.’ They just say it. Not because
they don’t know how, but just because they don’t want to get their hands
messy, or because they want to do something more interesting . . . ​So they
just work—but they aren’t about delivery. They care about everything else
but the results. I have a feeling people in Berlin just love being right, but

3. Bill Murphy Jr., “Google Says It Still Uses the ’20-Percent Rule,’ and You Should Totally
Copy It,” Inc., Nov. 1, 2020, https://www​.inc​.com​/bill​-murphy​-jr​/google​-says​-it​-still​-uses​-20​
-percent​-rule​-you​-should​-totally​-copy​-it​.html.

https://www.inc.com/bill-murphy-jr/google-says-it-still-uses-20-percent-rule-you-should-totally-copy-it.html
https://www.inc.com/bill-murphy-jr/google-says-it-still-uses-20-percent-rule-you-should-totally-copy-it.html

Welcome to MiddleTech 37

they do a lot of time-wasting. In San Francisco, all that matters is ‘Did it
make you money and what is the result?’ Here everyone plays the lazy game.
Nobody can fire you. Sometimes they say they can’t do something for an
honorable reason like picking up their kids from work, but a lot of the time
I’ve seen them just make some stuff up. Or they just say ‘Umm, yeah, I’m
not doing that.’ ”

Here, Tyler contrasts two software worlds: San Francisco, where soft-
ware developers overwork, work fast, and express their ambition, and Ber-
lin, where employees engage in “time-wasting” and are able to say, “I’m
not doing that.” While Berlin and Silicon Valley might have more similar
work cultures than we may think, Tyler described how MiddleTech work-
ers position themselves as “other” in contrast to a region that carries with
it a “model” (Pfotenhauer and Jasanoff 2017b) of innovation, performing
efficiently, holding the utmost expertise, and working passionately to build
awesome software around the clock.

Over the past fifty years, Silicon Valley has become a key site where imag-
inaries in computing and digital cultures are not only created but enforced
and reproduced. What I mean by “imaginaries” is the way that those behind
building technology collectively enact their hopes and expectations through
technological innovation. These imaginaries are reproduced over and over
again through discourse, which instills an ideology in human agents and
institutions (see Jasanoff and Kim 2015, 17), and companies like MiddleTech
were no exception. Over the years, Silicon Valley had become not “merely a
place in Northern California” but “a global network, a business sensibility”
and “a cultural shorthand” (O’Mara 2019, 20).

MiddleTech was situated outside Silicon Valley, while also somehow
relating to it or constructing its identity as “other” to Silicon Valley. Berlin,
of all places, was situated geographically and symbolically also somewhere
in the middle of Silicon Valley and the Indian and East Asian tech giants. In
the 2010s, Berlin began branding itself as the “Silicon Allee” (Schimroszik
2015) as the German start-up capital of Germany,4 in an attempt to create a
Silicon Valley in Europe (Casper 2007), although some industry discourses
were skeptical of its ability to really be a “meaningful player” in the global
software industry, with its ambitions fizzling in the past decade.5

4. Nik Afanasjew, “ ‘Silicon Allee’ in Berlin: Det nächste grosse Ding” [“Silicon Alle” in Berlin:
The next big thing], Sept. 28, 2013, https://www​.tagesspiegel​.de​/gesellschaft​/medien​-​_​-ki​/det​
-nachste​-grosse​-ding​-6343603​.html.

5. Martin Kaelble, “Grenzen der ‘Silicon Allee’ ” [The borders of “Silicon Allee”], May 24,
2013, https://www​.capital​.de​/wirtschaft​-politik​/Grenzen​-der​-Silicon​-Allee.

https://www.tagesspiegel.de/gesellschaft/medien-_-ki/det-nachste-grosse-ding-6343603.html
https://www.tagesspiegel.de/gesellschaft/medien-_-ki/det-nachste-grosse-ding-6343603.html
https://www.capital.de/wirtschaft-politik/Grenzen-der-Silicon-Allee

38 CHAPTER 1

It was hard for MiddleTech to completely ignore Silicon Valley’s way of
working, its discourse, and its ambition. By “theorizing” itself as a specific
“world model” of technological progress and innovation (Pfotenhauer and
Jasanoff 2017b), Silicon Valley creates a common understanding of “other-
ness,” which it expresses to the rest of the world (Hasse and Passarge 2015, 8).
The region also imagines itself as a “center of a progressive force for global
change” (Darrah 2001, 4) and thus situates itself in a way that attracts gigantic
amounts of investment capital. Silicon Valley also exerts a passionate “master
narrative” of “making the world a better place,” repeated through venture
capitalists, consultants, innovators, start-up owners, and social media.

More specifically, companies in Silicon Valley have a way of propagating
ideas about ways of organizing a software company (who works on what and
how), ways of speaking about company values (with slogans, company mot-
tos, and principles), ways of hyping up the purpose of one’s company (with
technosolutionist excitement), and propagating the notion that new tech-
nology will save us from the problems of older technology (Morozov 2013).
These ideas and discourses are expressed and spread to the rest of the global
tech industry through a variety of channels.

Silicon Valley’s ideology (Barbrook and Cameron 1996) has been so
ingrained into the narratives of our tech imaginaries, particularly as business
schools, consultancy firms, and other media of neoliberalism keep position-
ing Silicon Valley as a global world model. Drawing an example from a recent
(2021) consultancy study about “Technology Innovation Hubs,” KPMG sur-
veyed eight hundred “global technology company leaders” (CEOs, COOs,
etc.), who suggested a list of “leading technology innovation hubs over the
next four years (in addition to Silicon Valley/San Francisco).” From the out-
set of the study, the San Francisco Bay area was positioned as the top model,
or the standard of a leading technology innovation hub, further promoting
the world model narrative I mentioned earlier. Among the top 10 rankings
were Singapore, New York, Tel Aviv, Beijing, London, Shanghai, Tokyo,
Bangalore, Hong Kong, Austin, and Seattle. According to this study, a “tech
hub” is defined by “local factors” and “macro factors,” which “can help posi-
tion a country as an incubator of technology innovation.”6

It is striking that the authors then provide a table of the countries that
show the most “promise for developing disruptive technologies” and a com-
prehensive list of questions that “company leaders” should ask themselves

6. Alex Holt and Mark Gibson, “Technology Innovation Hubs,” KPMG, https://www​.kpmg​
.us​/content​/dam​/global​/pdfs​/2021​/tech​-innovation​-hubs​-2021​.pdf.

https://www.kpmg.us/content/dam/global/pdfs/2021/tech-innovation-hubs-2021.pdf
https://www.kpmg.us/content/dam/global/pdfs/2021/tech-innovation-hubs-2021.pdf

Welcome to MiddleTech 39

before acquiring a tech company, such as “Is the regulatory environment
favorable to technology companies?” or “Is the prevalent culture of the new
locale compatible with the overall company culture?” These questions are
quite broad but seem to point toward two important axioms valued in the
tech industry: tech companies need an environment to “innovate” and a
governmental ecosystem that allows for “disruption.” While these notions
are quite vague, they also gesture toward an ecosystem that fosters speed
and labor laws that also allow for a quick changeover in relation to whatever
“disruptive” workforce is needed at the time (that is, absence of labor laws
that allow for the quick hiring and firing of staff), building a local “culture . . . ​
compatible with the overall company culture.”

This study is part of a whole genre of reports that establish Silicon Valley
as a “role model,” helping “government and company delegations . . . ​report
back on Silicon Valley’s secret sauce” so that their company or organization
“can use it as a seasoning” (Pfotenhauer and Jasanoff 2017b, 784).

MiddleTech, while situated in the capital of Germany, was not a “role
model” for innovation and disruption in the eyes of developers like Tyler.
The master narratives propagated by Silicon Valley and various industry
discourses were also largely incongruent with software work itself, placing
demands on software workers that they cannot and don’t want to, in the
end, fulfill. MiddleTech’s focus on maintenance was already a factor in its
non-innovation-driven work practices. Additionally, as I’ll show, Germany’s
work culture at large protected its workers and fostered pushbacks against
overwork.

The German Labor Laws

This discourse of American othering doesn’t manifest itself only in lunchtime
jokes about yelling. I met a handful of MiddleTech developers, like Tyler, who
ran away from their jobs in Silicon Valley or vowed never to set foot in San
Francisco again. These characters became legends around the office. Every
developer I spoke to knew somebody who had worked in the Valley and who
had stories to tell about the pressure, lack of work-life balance, or obsession
that didn’t fit their way of working.

One developer, who used to work in San Francisco, stated, “California is
a ‘work at will’ state, which means that at any time somebody can come up
to you and just fire you on the spot (which is supposed to also protect the
worker who can ‘leave at any time,’ ha ha). But since you don’t want to live
under a bridge, you will do whatever your boss wants you to do.”

40 CHAPTER 1

German tech companies are also different on a legal level from American
companies due to the makeup of German labor laws. To state that labor laws
are more just and fair for workers in Germany compared to the United States
would be an understatement. Germany is also situated in a European culture
that takes into consideration that workers care about things other than their
work. First of all, German labor law gives the employee more protection
against unfair dismissal than in the United States, meaning that companies
can fire their workers only under certain clearly defined circumstances. In
most of the United States, employees can be fired from one day to the next.
Germans typically receive unlimited work contracts, and working on Sundays
and public holidays is generally prohibited. MiddleTech employees, like
most German employees, also receive between twenty-five and thirty vaca-
tion days per calendar year (for more about German labor law, see Weiss and
Schmidt 2008, or McGaughey 2016). All of this adds up to a quite relaxed
work culture, where workers do not have to worry if they will be fired.

German labor laws make it possible to create good-enough software and
do a job that’s just good enough. Mediocrity is, de facto, written into the
German Civil Code. The German Civil Code (BGB)’s law of obligations,
which German employment laws draw upon, has a subsection (subsection
243, section 1) called the “Leistung mittlerer Art und Güte” (Right to aver-
age performance and quality). According to this subsection, workers have to
deliver their labor or object only in “Mittlerer Art und Güte” (average type
and quality). This means that an employee is not obliged to deliver the best
possible performance but indeed only work of medium quality (subsection
243 BGB). It is difficult for an employer to fire somebody on the grounds
that they are not reaching certain performance targets.

Thus, the feeling that one cannot be fired is possible only because Ger-
man laws make it more difficult for an employer to fire someone simply
because they are not good enough. Firing somebody is possible if a com
pany downsizes, suffers huge losses, or in some other very specific circum-
stances. But if a permanent employee is just slow or doesn’t really care that
much about their job, German employers are not as quick as their counter
parts in the United States to lay somebody off. For this reason, it is accept-
able to be good enough in a German office. While it’s not the responsibility
of the German legal system to define company culture, a legal structure that
makes layoffs more difficult can affect workers’ approach to their work.
One can imagine that German workers would not consider every mistake
or setback they make, or even their permanent state of mediocrity, as a
threat to their jobs.

Welcome to MiddleTech 41

Conclusions

This chapter situated MiddleTech in a discussion of the larger landscape
of tech companies today to illustrate the significance and specificity of my
field site. Here, I highlighted its middleness from a variety of angles. While
not extremely profitable like the biggest companies in the world, nor highly
exciting like some of the newest start-ups, MiddleTech can survive because
it provides a product that people still need and have become dependent on
over the years. This dependence on an older asset turns the focus of com-
panies like MiddleTech to maintenance and repair rather than “disruptive”
innovation. This focus means that both the work culture within companies
like MiddleTech, as well as the software they produce, become inescapably
good enough. I will turn to the reasons for this inescapability in my later
chapters.

I also described MiddleTech’s middleness through its size, invisibility,
and average, run-of-the-mill employee work structures. Indeed, MiddleTech
was the lesser known, less exciting version of the corporate tech office. It was
just average, with regular office buildings, no baristas selling coffee, and
programmers who don’t get too emotional at work. While some parts of the
MiddleTech office can resemble the offices of Big Tech—with whiteboards,
a small gym, and the occasional beanbag chair lying around—these office
perks and add-ons, as well as the company culture, seemed more restrained,
more toned down, somehow more repressed at MiddleTech. More broadly,
we also learned about the structure of a tech company and the jobs that go
into building software, focusing on MiddleTech while also highlighting its
similarities with other global software companies.

Through describing MiddleTech’s middleness, I tried to hint at some of
the structural causes that help foster a good-enough culture. While we will
get into more detail about how good enoughness emerges in later chapters,
I showed how Medium Tech companies are characterized by their age and
older software assets they hold. These companies still make money on a
unique software product that is embedded within a large, wider network
of software and hardware systems, making other companies dependent on
their product. This dependency absolves Medium Tech companies from the
need to keep innovating, as this asset keeps earning revenue for them. These
companies then structure their workdays around maintenance and repair,
rather than around innovation.

While MiddleTech might seem like a very ordinary, generic office,
the company fosters a a particular culture, and the workers within it are a

42 CHAPTER 1

particular class of people, characteristics that need to be understood in a larger
global software landscape. I started this ethnographic journey by focusing on
MiddleTech as my main character precisely because as a company, it is part of
other similar middle-of-the-road companies that are often forgotten yet impor
tant pieces of our digital media discourses. We are so often confronted with
stories from the Silicon Valley Big Tech that we forget that most of our digital
infrastructure isn’t actually made by these companies. For those interested in
the political, economic, or social implications of digital media technologies, our
understanding of the tech industry should expand to encompass the stories of
such Medium Tech companies. In the next pages, I will zoom in on another
level of abstraction by explaining the relationship between the programmers,
their programming community, and their programming practice, in order to
provide a better understanding of life within MiddleTech, and how the pro-
grammer’s practice both supports and clashes with the corporate culture of
good enoughness in which it is situated.

43

2
Software’s Sociality

“We are surrounded by machines . . . ​we are suspicious of the new
‘psychological machines’ and fear the hacker’s intimate relationship
with his object.”
—TURKLE, THE SECOND SELF

Many of us have a techie friend in our lives. The go-to person whom we like
to turn to when our laptop crashes or our smartphone doesn’t turn on. The
friend who can explain to us what machine learning or AI chatbots are all
about, or why our smartphone map gives us the wrong directions. Ori was
that friend of mine.

He was extremely thin, with curly hair that fell over his expressive eyes,
and he managed to be both shy and outgoing at the same time. He was a
wonderful storyteller, the type of storyteller who made you feel as if you
were there with him during his adventures. My favorite stories were the ones
of his years in the army, of his escape in the middle of the night and running
in his uniform through the desert to get to a music festival, or getting an
extra blanket from his supervisor he was in love with and cuddling it while
he went to sleep. I was surprised that somebody so soft-spoken could ever
be in the army in the first place.

His grandparents on both his mother’s and father’s sides were Yemenite
Jews, who arrived in Israel in 1949 on the bizarrely titled “Operation Magic
Carpet,” an Israeli-led rescue operation that airlifted nearly fifty thousand
Jews from Yemen to Israel. Ori moved to Germany around the same time

44 CHAPTER 2

I did, in October 2012. His reasons for moving were a bit of a cliché: He met
his German girlfriend in Israel when she was working in a kibbutz, they fell
in love, and after about a year of traveling back and forth, he got on a plane
and flew to Berlin for good. His father, who ran a lucrative flower farm, had
always hoped that Ori would take over the business when he retired. His
mother, who had Ori’s older sister when she was only nineteen, thought that
her world-wandering son had abandoned the family on the day he left for
Germany. His stories about his family were always laced with a tiny drop of
guilt, knowing that his mother and father were disappointed that he wasn’t
around in Israel to support the family as a good Jewish boy should.

Before discovering his gift for programming, Ori was a writer. One of
his first jobs at the age of fifteen was working as a betting bookkeeper in a
smoky bar in his hometown near Tel Aviv. The bar featured a small betting
shop at the back, where local men would come to place their bets on vari
ous games and events around town. His task was to sit in front of a small
computer and input the customers’ bets. The computer wasn’t that power
ful and featured only a text-input program and a bookkeeping software.
The pub was very seldom frequented, and his section of the bar even less
so. Ori, therefore, had a lot of time on his hands. This time became precious
as it opened the door to his talent for writing. Every day at work, he would
fire up his very slow computer, and instead of recording bets (nobody was
betting at that time anyway), he would open up a text document and start
typing. He would describe everything around him: the men smoking their
cigarettes, the conversations they would have sitting around the bar. He
would also treat his afternoon as a time to dig deep into his inner, magical
world, and talk about the discoveries of a teenage boy: the young women
he was fantasizing about, the emotions he was experiencing, the things he
was angry about. His boss never found out. His typing just made him look
like he was working. Little did Ori’s manager know that he had written
hundreds of pages of personal and pseudo-ethnographic discoveries over
the years under his manager’s employment.

One day, the job came to an end as Ori had to prepare for his military
service. At the time, he didn’t have any way of backing up the data of his diary
files, so he left the pub and his small computer, thinking that he would come
back a few months later to find it. One afternoon on his way home from mili-
tary service, he checked in at the bar to find out what had happened with his
database of locked-up memories. Much to his disappointment, he discovered
that his boss had thrown out the old computer and replaced it with a new one.
Ori’s heart sank, feeling frustrated at himself for not saving his data.

Software’s Sociality 45

While he didn’t say so explicitly, I wondered if his time at the betting
shop, and the fateful way it ended, somehow shaped his relationship with
computers. His process of writing was very similar to the practice of pro-
gramming: writing locked him into a machine where his imagination was
able to run wild, building and inventing a world filled with all sorts of inter-
actions and descriptions of people and places. Software developers, at their
most engaged moment, become “close to the machine” (Ullman 1997) and,
using their imagination, focus on building another world. The teenage Ori
also experienced something all programmers encounter: sitting behind
a machine can help disguise their actions, giving them a sense of power,
secrecy, or even partial anonymity. Ori’s boss at the betting shop thought
Ori was working on his betting statistics, not realizing that Ori was really
pouring his heart out into a very personal diary. Ori also did not possess
the skills nor the tools to save his material. Perhaps if he did, he would have
saved his files before leaving his job.

This first encounter between Ori and his betting-bar computer touched
upon two of the deep driving forces that entice young people into learning
how to program: (1) a computer provides the programmer with a private
space, a sense of connection between the programmer and the machine that
nobody else can enter, and (2) knowing how to program becomes a way
of solving a problem that the programmer would not know how to solve
without the knowledge of programming.

Ori never stopped writing. When he wasn’t writing code, he was writing
in his diary. He would take vacations to write in his diary. He once rented a
remote cabin in the farthest reaches of Norway just to write for two weeks
straight, uninterrupted. He had a knack for reflection about his own practice,
which, I assumed, came from his years of introspection.

Over the few months leading up to my fieldwork, I would take the train
to Berlin and sit down with him over a bowl of our favorite warm chickpea
dish, called Massabaha, and discuss the philosophy of technology. I came
alive when speaking to Ori, who helped me imagine what happened within
our laptops or smartphones. Through his stories about where and how he
worked, Ori taught me to care about all the people behind that smartphone
or laptop screen—their frustrations, the tests they were doing on us, the con-
versations they were having about one feature or other. Each button, each
tiny object suddenly had a back story. My chat app had certain swipe fea-
tures, certain colors, certain moments of flashing on and off, and ways of
behaving that no longer seemed arbitrary. Who decided that my thumb
would swipe left and not right? When my phone collects my GPS data when

46 CHAPTER 2

I run, where does that data go, and who are the people making the decision
that my data will trigger another feature that allows me to listen to music at
the speed of my running pace? Ori made me want to meet all those people.
To talk to them and see what they looked like, what food they ate for lunch,
or what music they listened to while coding. Through Ori, digital media tech-
nology became social: close to me, personal, human. Despite not being a
programmer, I started to understand software as being nonstatic, viscose,
and constantly shifting like a ball of modeling clay that a group of people was
collectively pushing and pulling, reshaping its size, purpose, and scope.

Sociality, Care, Creativity

Software workers like Ori, beyond just making software, experience
moments of creativity, conflict, frustration, humor, silliness, laziness, awk-
wardness, and various other forms of social and antisocial behavior while
working with code. Indeed, software is a social process (Mackenzie 2006).
Understanding technical artifacts as social artifacts is nothing new and is
perhaps one of the central claims of science and technology studies. In the
research program set forth by Wiebe Bijker, Thomas Hughes, and Trevor
Pinch, they aimed to contribute “to a greater understanding of the social pro
cesses involved in technological development” (1989, 10). Specifically, they
underlined how the social environment shapes the technical characteristics
of an artifact, meaning that technological artifacts are first and foremost
social constructs. What they meant is that during the development of an
artifact (such as software, for example), innovation is not at all linear but
involves many stages of variation and selection of the right path to take,
which includes much negotiation on behalf of the artifact developers (in
this case, the programmers).

So, while we might know quite generally that technical systems are social
systems, how does this sociality play out in software production? Through
Ori’s stories and the stories of his colleagues, this chapter explores how
programmers relate to their practice of programming and the software they
create. It does so through the notion of sociality, which in this chapter is an
umbrella term that encompasses the interactions among programmers and
between the programmers and their software. In uncovering the sociality of
software production, I will also describe the care and creativity that result.

In doing so, this chapter shows the intricacies of a software developer’s
work. I use the term “software’s sociality” to mean: (1) an interaction between
the programmer and the material object of the computer, a “closeness to

Software’s Sociality 47

the machine” (Ullman 1997); and (2) a sociality between software devel-
opers, defined by closeness and care for one another’s work. We will see
that, in the best of times, software development is about care, craft, and
closeness to one’s programming work (for example, finding a solution to
a problem, building something that works, etc.), harnessing certain social
relations among developers and working as a collective, and using one’s
skill to engage with, manipulate, or hack into various digital infrastructures.

Describing software’s sociality is crucial to understanding my broader
argument about good enoughness as it shows how the programmer’s work
practice and the social interactions that come along with it clash with the
corporate software culture’s narrative of production. More specifically, mul-
tifaceted forms of sociality are part of software work, including moments of
slowness, care, and creativity. This sociality often conflicts with the narra-
tives and logics of corporate software production, including discourses of
excellence, speed, and agility, which I mention in the previous and follow-
ing chapters. This forms a tension between care (for one’s own work) and
compromise (for the sake of the production process or customer demands).
In addition, I will show how the craft of working on software through
specific software development tools (yes, software for software develop-
ers!) also informs the developer’s care and creativity and often shapes how
good-enough software and good-enough work practices emerge.

In this vein, we will see that delivering good-enough software doesn’t
always mean that software developers are sloppy and do not care about their
projects. Rather, programmers are often forced to disrupt their care for and
engagement or interaction with the project they are working on in order to
compromise and settle for something that’s merely good enough for now,
good enough for a customer to use. As this chapter reveals, understanding
the depth and dimensions of software’s sociality will help us grasp the type
of compromises that software developers have to deal with when working
on a software project.

Material and Human Sociality

Throughout my research, I understood sociality as “interactive practices”
(Law and Mol 1995), studying how groups of entities (both human and non-
human) are gathered into specific forms of collective association, enabling
interaction between the entities concerned (Latour 2005). As John Law
and Annemarie Mol highlighted, “when we look at the social, we are also
looking at the production of materiality. And when we look at materials,

48 CHAPTER 2

we are witnessing the production of the social” (1995, 274). In this sense,
my work looks at the interactive practices of software, the programmers
and their teams, and the users and customers for whom they are building
their software.

This approach is an expanded conception of sociality that includes (but is
not limited to) material objects, which Karin Knorr-Cetina termed “object-
centered sociality.” This concept “attempts to break open such notions as that
of an expert, of technical competence, of an expert system or of scientific-
technical work” (Knorr-Cetina 1997, 9). These notions often presuppose
but do not unfold or interrogate the object relations on which expertise
depends. In contrast, the concept of an object-centered sociality takes its
lead from these relationships. But it also serves as a “convenient gloss on
the entire range of social forms that are governed or mediated by objects”
(Knorr-Cetina 1997, 9).

Sociality is thus a familiarity between humans and objects composed of
“affect, knowledge, mutual action, and norms” (Forstie 2017, 1). In addition,
this chapter focuses on sociality as a form of closely knowing and closely
interacting: the close knowing of the people, spaces, and/or tools one
engages with, which allows for an easy familiarity with them.

This definition of object-oriented sociality can thus be a form of “pro-
fessional vision” (Goodwin 1994), meaning a set of skills, tools, and practices
that enables a programmer like Ori to use this collection of knowledge to
engage with, infiltrate, or hack the world around him. While a profession
such as archaeology, for example, gives the professional archaeologist
the ability to see a map or excavation differently than nonarchaeologists, the
specific adaptability of software makes Ori’s professional vision more far-
reaching. What I mean here is that a Web site for a train ticket system, a
city hall’s Web site, or an app for a university can be programmed in the
JavaScript language, making Ori’s close knowledge of the digital under-
belly of the world around him more far-reaching. As an expert, Ori has a
multitude of object relations (Knorr-Cetina 1997), where objects (like an
app or a Web site) serve as centering and integrating devices for regimes
of expertise. One can theorize that software gives Ori a huge range of
“embedding environments” in which his similar type of “expert work is car-
ried out, thus constituting something like an emotional home for expert
selves” (Knorr-Cetina 1997, 9).

Expanding our understanding of sociality to include our form of close-
ness not only to a person or animal but also to an object or a sociotechnical
system (like, for example, a piece of software, a human body, a train line

Software’s Sociality 49

network, etc.) can be useful when trying to understand how tacit knowledge
is constituted. Specifically, it can help us to understand how craftspeople
or skilled workers connect to the inner workings (or inner self) of physical
objects or the technical systems they are working on. Closeness here is thus
the depth of experience, like knowing and caring about somebody or some-
thing closely (this can be an object, one’s space, etc.). Researching this form
of sociality, therefore, involves acquiring an understanding of how closeness
and distance are constructed. The following paragraphs will return to Ori
but will also introduce other interlocutors I encountered in the field who
helped me to develop my account of software’s sociality.

Close to the Machine and Craft

As I mentioned earlier, Ori began writing before he started writing code.
He began to code later in his teenage years, slowly teaching himself, and
then again while studying computer science at university. I would argue
that his writing introduced him to zoning into something or deeply focus-
ing on a craft. Writing is an intimate endeavor as it involves mirroring our
own thoughts back to ourselves. This is a state of mental inwardness that
many craftspeople, artists, and writers experience. During this process, the
person creating something is locked within a nonmaterial, imaginary world,
which then manifests itself through a material medium—whether through
a paintbrush or paint, code, a processor, a server, or some other medium.

Ori’s desk was on the fifth floor of the MiddleTech building in an open-
concept office space. His desk was simple. He kept it uncluttered for the sake
of convenience: The senior managers at MiddleTech liked to shuffle the work-
spaces every few months in order to keep the teams dynamic and the program-
mers “agile” (the term, meaning dynamic and quick to react, is one that I will
return to in a later chapter). While the desk space lacked photos, personal
trinkets, or gadgets, Ori did have two computer monitors that were adjusted
to his body: they were ergonomic, fitted just high enough to suit his gaze and
back comfort. He had two screens: One was turned vertically on its side, and
the other, sitting to the right of it, was horizontal. Programmers like turning
their screens vertically in order to fit more lines of code onto the screen, much
like the way you turn your camera vertically in order to capture the entire height
of a skyscraper. When the skyscraper screen was filled with the project Ori was
working on, the other screen was open to all sorts of other work tools, such as
a chat system, which connected Ori to his other colleagues, and a code review
system (which I’ll get into later).

50 CHAPTER 2

After a few years of working in the front-end team, Ori moved up the
software development ladder into a more prestigious researcher role as
a data scientist, where he worked among PhD dropouts and supersmart
brains applying, among other things, machine learning models for vari
ous car- and navigation-related problems and a variety of experiments to
help improve the products that MiddleTech was selling to other businesses.
MiddleTech has a number of software products that they sell to customers,
and in such large companies, software developers are assigned the task of
building just a tiny component of a piece of software, which then fits into
a larger piece of software, sort of like a Russian doll. Ori, as a researcher,
usually builds little programs, which then become part of larger research
projects that do not necessarily ever have any practical application. These
programs attempt to improve the navigation software, allowing it to work
with new hardware, like a self-driving car or in-car cameras, and helping it
detect lane data more precisely.

When Ori becomes “zoned in” or immersed in coding, he fills both
screens with a “programming environment,” a set of processes and pro-
gramming tools used to create the program or software product. Part of
this programming environment is something called an IDE or an integra-
tive development environment, which can contain a code editor, as well
as a compiler or an interpreter. I find it quite suitable to call this tool an
“environment.” As Miriam-Webster defines it, an environment is literally
“the circumstances, objects, or conditions by which one is surrounded.”
When it comes to a programming environment, I will emphasize the word
“surrounded.” The programming environment surrounds Ori in his work
and envelops him from all sides. After fifteen years of working in this pro-
fession, he has come to find this environment very cozy, familiar, and even
intimate. He speaks the language (Python, usually) of this environment and
generally understands what he is working on and where he can find the tools
to build his program.

During a typical work week, he is assigned a small task and then zones
into it, working at it for a few weeks or even months. While he is not always
alone, of course, a large part of his work is about his relationship with what
he is building or fixing.

In the late 1990s, Ellen Ullman was one of the first software engineers to
write a firsthand account of computer engineering and its social and personal
implications. While not directly ethnographic, Close to the Machine: Tech-
nophilia and Its Discontents (1997) gave its readers a detailed understanding
of what programming entails. “Closeness” here was partially about “retreat

Software’s Sociality 51

into some private interior space, closer to the machine, where things can
be accomplished,” where “the machine begins to seem friendlier than the
analysts, the users, the managers” whom programmers encounter in their
daily work (Ullman 1997, 23). By working alone to build something on a
computer, Ori is able to build a private world between himself and his com-
putational system, a practice that often involves high levels of concentration
and craft.

In Richard Sennett’s The Craftsman, he highlights how a craftsman’s work
(like a programmer’s work, which Sennett also studied) involves a whole cul-
ture of material interaction, what he terms “material consciousness” (2008,
120). Here, the craftsman becomes particularly focused and interested in the
things they can change (Sennett 2008, 121), which in Ori’s case can be a bug
fix, a line of code, or a new feature. Through his own material consciousness,
Ori also discovers and understands his own capabilities.

Much like a carpenter sets up a workshop, how programmers set up
their IDE is significant to their level of material consciousness, as it’s the
space that their creativity inhabits. We can also imagine an environment in
programming as a space that one figuratively enters. Christian, another pro-
grammer working on a research team that finds ways of improving a routing
algorithm, told me that he can close his eyes, look inward, and imagine the
entire architecture of a system like his own home. He knows where every
thing is. His colleagues often ask him to solve a problem, and he can close his
eyes, visualize the space where the problem might lie, and sit down and write
code. The sense of familiarity and comfort Christian experiences comes with
knowing the software infrastructure and how to build it. Programming, as
Sherry Turkle describes, requires an “intimate understanding of the logic of
the machine” (2005, 175), meaning a knowledge of how a piece of software
works, what libraries and components it takes to run the software, and, more
importantly, where to go to fix a problem. In order to understand this logic,
one has to understand intimately the programming environment or space.

Flow

Some programmers at MiddleTech have termed this process of zoning in, or
inwardness, as “flow.” One programmer explained, “We have this thing . . . ​
It’s basically an agreement with a team. Whenever I have my headphones
on, don’t disturb me. It’s these times where we agree to allow ourselves to
work without distraction and interruption . . . ​It’s disruptive to call some-
body out. To disrupt the flow.”

52 CHAPTER 2

This rule was easily agreed upon within the team because most pro-
grammers understand this state of being in flow and have experienced the
necessary pains of being taken out of this state. A signal to other program-
mers that one is in the state of flow is achieved by wearing headphones.
Bigger headphones are more effective at repelling others (as opposed to
earbuds, which can easily be hidden by a hoodie) as they are more visible
and signal “Leave me alone, I’m coding.” For many programmers, sound
is also an important component of the programming environment, and
many programmers like to listen to certain playlists or genres (I noticed
that mostly metal and electronic music were preferred). Finding flow has
nothing to do with skill, writes psychologist Mihaly Csikszentmihalyi: It is
a sort of “mystical, intuitive understanding” of one’s work and work envi-
ronment and a “gradual focusing of attention” (1997, 151). Csikszentmih-
alyi, who pioneered the academic study of creativity, wrote about how
labor practices achieve flow by drawing on an example of a team of Italian
psychologists who studied a rural inhabitant of the Italian Alps. One inhabit-
ant, Serafina, who was in her seventies at the time of this study, woke up
every day at 5 a.m. to milk her cows. Through this daily routine, she knew
“every tree, every boulder, every feature of the mountains as if they were
old friends” (1997, 145). By connecting to the environment around her, she
worked with joy and contentment. Much like Serafina, software developers
are in a privileged position to work in a job that becomes part of their lives
and that most of them deeply enjoy. And when zoning into their work for
hours, they are also connected to the environment they are working in.
They know the software space they are working with much like Serafina,
who knew every tree, every boulder, and every feature of the mountains
as if they were old friends.

A Serbian developer named Marko once stopped me in the hallway to
explain his frustration whenever he was taken out of his state of flow: “Meet-
ings are slow. I feel sleepy. But you know why, Paula? Because we are in a
different mental mode when we are working. It’s faster. The speed of cod-
ing just pushes you forward. And you work and work and go quickly, and
then you are in a meeting. And somebody is late, and then you have to go
find an adapter, and then this and that. It’s slow. I just see the time clicking
away, click click click. I feel so sleepy. I just want to sleep. And I just think
it’s because I’ve been interrupted from this deep state of concentration. I am
also like this at home, when I’m working. My wife has to call my name or
shake me to get my attention. It’s not like I don’t care—I am just deep into
concentration.”

Software’s Sociality 53

Here, Marko is much like Serafina when he is in a deep state of flow.
We can also see that software development for Marko is more than just
the practice of typing in commands on a keyboard. While the relationship
of programmers to their machines has been conceptualized in program-
ming textbooks and historical accounts of the programming profession as a
command-and-control practice, this same relationship can be understood
in another language, the language of sociality. Through Marko, Ori, and
others, we can see that the practice of programming is achieving a form
of sociality with the machine. Software gives programmers a relation-
ship with the computer because it allows them to see as well as influence
what happens inside of a machine and between machines. It gives them
access to a huge complexity that is playing out in the electrical circuits of
a computer.

Therefore, it’s no wonder that when programmers talk about their
work, they talk about their “closeness to the machine” (Ullman 1997). To
clarify what this “closeness” means, Ullman doesn’t simply mean that a
programmer is close to an inner core of a machine. She means closeness
to a form of abstraction. Software is always an abstraction and thus brings
us close to the machine by providing layers of abstractions that hide much
more than they make visible and accessible. An abstraction can be the
Graphical User Interfaces that we use on our laptops or smartphones, as
well as programming languages that programmers use. Closeness is there-
fore a closeness to some form of abstraction. One could say that closeness
with people works in a similar way: We can intimately know somebody
without really knowing everything about them, or by knowing only one
layer of their personality.

Yet what makes coding in a programming language, as opposed to just
swiping your phone, so special? The knowledge of how to program the
machine gives programmers like Ori much more power, providing them
with a greater ability to shape the technical system they encounter. This
power is an increased ability to shape the very abstractions that allow pro-
grammers to be close to the machine. It is also an engagement with the
contradictory properties of written code, which is, on the one hand, fully
understandable, consisting of a set of commands, and, on the other hand, so
increasingly complex that no human being can understand it in its entirety.
It is an engagement with software that is constantly moldable and changing,
that consists of many layers of older legacy code that still exists within the
system. These layers of code were created at earlier phases when the soft-
ware was written and could not be taken out of the system anymore. (I will

54 CHAPTER 2

address legacy code in a later chapter.) It is an engagement with a dizzying
plurality of libraries and languages and multiple translations and interfacing
moments that make the overall system work.

Collective Sociality

By this point, I have explained that software development is a relational
endeavor as it requires knowledge of the inner workings of a software sys-
tem and also involves moments of closeness to the machine, craft, and
zoning in to a software environment and finding a sense of flow in work. In
our quest to grasp the sociality inherent in software development, another
element worth uncovering is the collective sociality among members of the
group building a software project and the level of interpersonal understand-
ing and communication that comes with it. As we have learned through
Ori and his colleagues, software development is a highly social endeavor,
analogous to dozens of people writing an ongoing Google document at
the same time. Code is written by a collective of people. Much like any
profession in which people work collectively and passionately on a par
ticular project, software work is also, in this way, intimate. While building
something together, developers share a common understanding—they use
the same language and the same forms of participation—and through this
understanding, they become close to other developers around them. Soft-
ware developers told me that after working together for a while, they can
identify who wrote a certain line or section of code because those particular
individuals write in that specific style. As I will explain later in this chapter,
a team of programmers develops common coding standards, but individual
styles of coding are still discernible to those who intimately know the team
and those coding within it.

Collective Coordination

Throughout my months at MiddleTech, I learned that software is a strong
team effort, and coordination is very important. Software is made up of
lines and lines of code written by a multitude of people, and these lines
have to make sense as a whole. Without close coordination, software would
become a large mess much like a group of dancers performing to music with-
out knowing their exact choreography. In order to coordinate their code,
developers have planning meetings during which they discuss what they
need to work on, and how they will go about doing it.

Software’s Sociality 55

I would crash these planning meetings, sitting in the corner of the small
ten-person meeting room and take notes. At one particular meeting between
the algorithm research team, a group of six developers were discussing
how to solve a problem. The decisions about how to solve the problem had
to be made collectively so the changes could be individually implemented
into each team member’s own subtasks. The nature of software development
requires these types of meetings as developers working in large software
companies like MiddleTech cannot build something solo, in a corner, cut
off from the rest of the development team.

One of the only female developers in the back-end development team
was Jelena, who worked in the Electric Vehicle routing team. She was a
Serbian in her mid-thirties. She liked ordering lots of Amazon packages for
her nephews back in Serbia and loved explaining things in metaphors. Jelena
explained the fragmentation of a software project using the metaphor of a
house: “It’s like the house metaphor. When building a house, the plumber
works on something, and then the carpenter. Often this doesn’t happen at
the same time because they would get in the way of each other . . . ​but we are
all doing it at the same time.” What she means is that a team of developers
has to know what to build and make sure it fits with what the rest of the team
is also building (much like a carpenter has to speak to the architect to make
sure the door is the right size to fit into the house). Jelena also drew attention
to the temporal dimension of software work, where development is done at
the same time—for example, carpenters do not wait for the floor to be laid
down before the door is built (in keeping with the house metaphor). Soft-
ware developers merge their code into the main code base at the same time,
which sometimes causes bugs in the system, as a piece of Jelena’s software
is often deeply intertwined and dependent on what her other teammate has
built. She added, “We are constantly breaking each other’s stuff. What you
are creating communicates with other code others are building.”

One way to synchronize this work, which is done simultaneously, is to
“align the coding style . . . ​to keep code easy to understand,” as Christian,
the team lead or manager, told the other team members. As coding style is a
subjective matter, aligning coding style means being closely acquainted with
the style itself and with how other developers code. As Christian explained,
developers constantly review one another’s code after it is written: “This is
done to maintain a coding style. There might be sixteen ways to do some-
thing, but you want to have everyone writing something in a similar way.”
This similarity helps define the boundaries of the coding collective. If this
style is broken, and somebody writes in a different style or builds something

56 CHAPTER 2

that disrupts another section of the code through a rough hack (meaning
a careless way of writing code), one can say that the closeness is somehow
broken, and conflict or frustration arises, or certain components of the soft-
ware system won’t work altogether.

In the first front-end team I joined, the team of Dev-Ops programmers
made up an automated system to test their code. It was a verification bot
they wrote in order to make “the system flow quite smoothly.” Marco, one
of the Dev-Ops programmers, explained, “so we write code now that has
to fit the standards of this bot. We send what we wrote out to the bot. The
robot runs some tests and analyzes it.”

Jan, his teammate, added, “It’s very socialist. Everything has to be equal
and clear.”

This so-called “socialism” that Jan referred to is, again, about creating a
common coding collective that writes code in a similar style. Rather than
having an each-programmer-for-themselves mindset, programmers are
forced to think about the system as a whole, in collective coordination.

Code Review Style

Developers also explained to me that there is even a “style” of code review. At
MiddleTech, developers use code review software that requires developers
to review one another on a scale of +2, +1, –1, or –2. A front-end developer
named Dariusz explained this process to me:

dariusz: The ratings depend on the reviewer’s style. My style was
‘I can give you +2 even if something is a bit wrong, as long as I can
highlight it, and you will fix it in the future’ because my main
goal with code review was to make the other person a better
programmer for the future.

paula: Oh wow! How interesting! What are some other styles?
dariusz: “I know some asshole reviewers who would see a very small

bad piece of code . . . ​for instance, a variable name they didn’t
agree with because it wasn’t descriptive enough, and they would
give the committer −1 and tell them to fix it. I would in that case give
them +2 and say, ‘Make the variable more descriptive in the future.’ ”

paula: Wow! So you’re a kind of ‘benefit-of-the-doubt, let’s-give-
you-a-chance-to-learn’ type of code reviewer? And then there are
assholes?

dariusz: That’s how I’d put it.

Software’s Sociality 57

In this example, the code review process provides another layer of closely
knowing the other developers: Dariusz knows who the “asshole” reviewers are,
and others in his team know that Dariusz is a relaxed and forgiving reviewer.

A year prior to my conversation with Dariusz, in the summer of 2016, Ori
came down to my office area to ask me to lunch. As it turned out, a lot of the
developers in my new team work area used to work with Ori. I asked the team
if anyone wanted to come. Three guys nodded and said “yes.” (It’s a small
fieldwork victory if I convinced any new developer to come to lunch with me.
Three at once made me feel like I was getting bonus points.) We decided to
go for lunch at a generic Vietnamese restaurant frequented by business lunch-
goers in that particular district of Berlin. We sat down and ended up having a
long and intense conversation about a number of topics. At one point, I asked
them if they ever see a line of code and can identify who wrote it:

Jan joked, “Sure, but I never saw Ori’s code ever. I don’t even know if he
ever wrote a piece of code in his life.” The other guys laughed. “Whenever
we touch something, we say ‘What a crap line of code’ or ‘Who the fuck
wrote this? Oh, it’s that person!!’ ” The guys continued to chuckle at Jan’s
joke. “But we are really trying to eliminate the personal factor in the way in
which we write code at this company.”

The guys then explained to me that there are a few ways of noting down
how people write code. One is that you can actually turn on a feature to see
who wrote this section of code. But the other way is just through the style
people use.

I couldn’t imagine how one piece of code has a style.
Jan said, “It just sort of has the same syntax or lines somehow.” Here, the

guys were quite vague, and I didn’t really understand or fully grasp what
they meant by “different style.” I thought of something I learned previously
about the difference between tabs and space bars. “Is that like a particular
style?” I asked.

“Yes, exactly. So [the computer] reads your code much faster if the style
is the same. Like, for example, tabs and not space bars. Right now we don’t
use tabs at all. You can make mistakes with a tab because it would just slow
down the process,” Jan explained.

Nishant added, “But I worked in a start-up before coming to this job and
there they just wanted to do things very quickly. Just get out their products
quickly and get on with it.”

Jan explained that there “is an advantage of writing ‘slow code.’ You
gather more knowledge about what is happening in order to prevent things
from breaking in the future. That’s what slow code is all about.”

58 CHAPTER 2

Automating Closeness

I found our conversation striking as it pointed to how software develop-
ment is about building a collectively fostered sociality among developers
that adheres to a certain style of expression. On the surface level, we can
take Jan’s point about eliminating the “personal factor” of writing code and
assume that it eliminates the “humanness” in the code, stripping away the
style and character of each developer, thus taking away the personal close-
ness developers have with one another. Yet if we look more closely, knowing
how to eliminate the “personal factor” means being in tune with the entirety
of the code and understanding what the rules, forms, and modes of syntax
are in order to camouflage one’s code and blend in. I learned that eliminat-
ing the “personal factor” in coding is about collectively understanding or
intimately knowing the collective coding style. At one point, Ori sat down
with me to explain how this collective style is enforced, particularly through
the software platform that he and his colleagues use to write their code,
called an integrated development environment (IDE):

“Many IDEs style your code. For example, [the IDE] automatically puts
in indents instead of tabs, or it puts braces in one line instead of the next
line, or does not put a space after a bracket. But a coding style is something
you agree on with a team. Many teams take a reference from Google or other
places online. The IDE also gives you guidelines that are written in text,
like the Google JavaScript coding style, which is like a list of rules. An IDE
just helps to enforce this rule. If we forgot a space somewhere, an IDE will
reformat based on the coding style. You can also define your own coding
style and change the definitions or parameters in the IDE.”

Programming requires a great deal of collective understanding in order
to build slow code, gathering more “knowledge of what is happening,” as Jan
explained. During this conversation, the developers hinted that start-ups do
things quickly, hastily, without care for the style of how software is written.
During my fieldwork, I heard countless stories from software developers
about their quick-and-dirty start-up times, when software development
was about “hacking together” ideas and getting them out quickly, rather
than slowing down to maintain a cohesive system. Slowing down and creat-
ing cohesion is often favored—not simply to make code beautiful but rather
to maintain the long-term stability of their system, to reduce the chance of
potential bugs, and to help those who will maintain the code in the future. As
Sennett also explained in relation to a craftsman’s work, “slowness serves
as a source of satisfaction; practice beds in, making the skill one’s own.”

Software’s Sociality 59

Here, slow craft time also “enables the work of reflection and imagination—
which the push for quick results cannot” (Sennett 2008, 295).

This “knowledge of what is happening” that Jan mentioned is also key
in collective coordination: a close knowledge of the style of the collective,
involving a level of care for one’s software environment. Ori’s code was invis-
ible to people like Jan, not because he was sloppy and careless but because
he had a close knowledge of the system and knew how to blend in with
others. Developers become aligned with one another through the IDE, as
well as from other forms of automated systems, like bots, which help check
the code for bugs or inconsistencies.

The bot I mentioned earlier also tests the code for inconsistencies. The
more intimately acquainted one becomes with the actual parameters that
the bot is looking for, the more one can write code that is standardized
with the rest of one’s team. Additionally, this “socialist” and “equal” approach
Jan mentioned is about creating a collective sociality; it involves shifting the
individual coder’s desire to work alone to a deeper knowledge of how to
work in coordination with others.

During many team meetings and moments when I observed how devel-
opers code, I noticed that there are a number of other tools that instigate
coordination between developers. For code review, which I mentioned
earlier, programmers at MiddleTech use a software called Gerrit, a free, open-
source, Web-based code-collaboration tool (see www​.gerritcodereview​
.com), which has become a code review standard in many software develop-
ment teams. The tool allows developers to review each other’s modifications
to their source code and approve or reject these changes. Gerrit displayed
a list of merges, meaning updates or additions to the code base. This list
included the type of update, who updated it, and the status of the update
(whether it passed or failed).

Developers also use something called “Confluence,” a team collaboration
software that keeps all projects and ideas surrounding a given project in one
place. All developers at MiddleTech also use something called GIT, an open-
source version control system run on a piece of software that tracks changes
to code and works alongside the developer environment or IDE. (There are
other forms of version control systems, but GIT is the most popular.) When
a developer writes code, each line has their name written beside it.

When a developer sees a bug or is unhappy with the code that was writ-
ten, they type a command into GIT called “git blame,” which reveals who
wrote the last line of code. When a developer becomes frustrated or con-
fused with a line of code, they use “git blame” in order to reveal that it was

http://www.gerritcodereview.com
http://www.gerritcodereview.com

60 CHAPTER 2

Jan or Ori who wrote that piece of code, and they can then confront the
author in person or via the GIT system. “Git blame” gives the developer
an intimate knowledge of all the software developers and their mistakes,
which becomes an inherent part of the software development process. One
can read this as a form of sociomaterial sociality where the infrastructure
itself, or the software system, knows the software developers by tracking
their movements. Here, GIT also introduces an element of control through
employee monitoring or direct surveillance. In this case, the GIT system not
only provides management with more methods of employee surveillance
but “today it is ‘the team’ of co-workers that bear witness to everyday work
efforts” (Gregg 2011, 74), where software developers as a community track
each other’s frequency and quality of code performance. This type of mutual
surveillance does not necessarily have to lead to competition, with workers
attempting to outperform one another. Rather, it can lead to the opposite:
One developer sees that another developer is still struggling with a piece of
software, not “committing” anything, or even taking their time to fix a few
lines of code, which can lead to a justification for good-enough work. More
specifically, employee mutual surveillance through systems like Confluence
or GIT can also help developers compare their code with one another, lead-
ing to developers justifying their decision to push or finish a project and
commit it into the main code base in a good-enough state. While this may
seem counterintuitive, watching others commit good-enough code may lead
programmers to think, “Oh, their code isn’t that good/isn’t finished yet/
needs more adjustment so why can’t mine be the same?” In this case, pro-
grammer cosurveillance can consequently create a form of sociality where
developers align their programming practices with one another, fostering
a culture of good enoughness rather than excellence.

After gaining a greater understanding of how a developer interacts with
other developers through these various tools, we can start to imagine how
different forms of sociality in software development arise from a deep under-
standing of (1) the software system (or the architecture), meaning the pieces
that make up the software project, the software elements, the relationships
between these elements, etc.; (2) a familiarity with the style of the code,
meaning a deep understanding of not only the language in which the soft-
ware is written but also the style in which it is written; (3) the ability to
differentiate between software that is messy and wrong and software that is
done well or beautifully; and (4) a familiarity with the developers writing
the code with you—knowing how to identify who wrote which line of code
and whom to turn to if something looks strange, as well as that person’s

Software’s Sociality 61

wider work practices and the way in which they work on code. All of these
forms of knowing and watching over one another’s work using GIT are part
of fostering a culture of good enoughness. GIT becomes yet another tool
to individually and collectively negotiate a standard or limitation of what is
good-enough work or not.

Conclusions

In this chapter, I touched upon a variety of examples from my field that high-
lighted how sociality arises during software development. The concept of
sociality helps us understand the programmer’s multifaceted ways of creat-
ing “closeness to the machine” (Ullman 1997). But what does this closeness
actually look like in practice? What does it look like at a software company
that has its own logics, agendas, methods of management, and various types
of programmers all working together?

As I showed in this chapter, the concept of sociality helps us to under-
stand the nuanced ways in which programmers relate to their software and
to the community of people building software. In framing these various
modes of closeness, I have shown that programmer sociality takes place in
a distributed sociotechnical system that the programmer learns to navigate
through practice.

But why is studying software’s sociality important? For one, it can explain
what is at stake in programming through the eyes of programmers them-
selves. In this chapter, I hoped to shed light on the care and craft that pro-
grammers put into programming. Computational objects are interaction
partners to their users, more like thought prosthetics than simple tools
(Turkle 2005, 3). The computer is evocative in an even more profound way
for those who know it well, who interact with it directly, and who are in a
position to experience its second nature (Turkle 2005, 19). For many pro-
grammers, programming is not a job but a creative endeavor that brings
them closer to software and to the people around them.

Yet it is important to note that this chapter introduced the best-case sce-
nario in a programmer’s work. At times, programmers are not that closely
connected with their work, and they don’t care, don’t focus, don’t under-
stand exactly what is required of them, or don’t understand the complicated,
mangled code base they are working with. Programmers can also care a
lot, and despite their meticulous planning, there will still be incongruities
between these carefully laid-out plans and the fundamental limitations of
the machine in action (Suchman 1987, 2007). Furthermore, as we shall see

62 CHAPTER 2

in the following chapters, the temporality of work in a corporate software
office as well as various customer requirements do not allow for the constant
care and craft that I described in this chapter.

Moreover, while some programmers occupy positions in which they can
constantly strive to achieve this level of care, craft, and flow in their soft-
ware project, others are measured against those who achieve this level of
closeness to the machine and become frustrated when they are not given
enough time to do the same and are thus left behind. Acquiring this level of
object-oriented sociality and being assigned (by one’s managers or project
leads) time to focus on these moments, to zone in and just build software,
is regarded as a privilege.

Those like Ori, who work in more research-oriented and development
positions, are considered the privileged ones because of the time they are
given to devote to their projects. These privileges are still granted in various
tech offices, at Medium Tech companies like MiddleTech, but even more
so at Big Tech companies. These jobs are created to provide workers with
“cushy flexible hours” and “creative workspaces,” giving them time to think
(Turner 2009), which becomes a way of trying to maximize these moments
of intense flow and intimate engagement with the programmer’s software
project. This is a way in which some companies, such as Google, Facebook,
or MiddleTech, construct status and privilege. Such companies often boast
that their workers are the best of the best and must be given time to be
creative and zone into their inspired software projects.

Software is also about maintenance and dirty work, often requiring so-
called “code-monkeys” to punch away at fixing bugs, leaving little time for the
levels of sociality and closeness I described in this chapter. These types of jobs
are unequally distributed geographically, with outsourcing offices in Eastern
Europe, in cities like Krakow or Kyiv, or in the Global South, in cities like
Bangalore. This places programming work in the same category as other jobs
in the labor hierarchy debate; workers from the rich North are hired for “elite”
jobs and those in the Global South are given the noncreative “click-work.”

That said, studying the sociality inherent in programming can help us in
various ways. Firstly, it can help us understand the collective subjectivity and
social interaction that goes into the practice of writing code. As I will keep
highlighting throughout this book, programmers do not work alone. Their
computers are networked to an entire software development ecosystem. This
ecosystem requires that they merge their code into the code base by closely
understanding the work of others around them, writing in the same language
and style as others, and collaborating with others if something goes wrong.

Software’s Sociality 63

A large part of programmers’ work is devoted to rating and reviewing one
another’s code according to collective standards. These standards are enforced
by a variety of factors: (1) by bots, small programs that monitor the work of
the programmers and constrain the style in which the code is written to fit a
general norm; (2) by the collective culture of how code should be written; and
(3) by the infrastructural constraints of the software project (sometimes a com-
ponent can’t be built because another existing software component is standing
in its way). The computer programmer is thus not a “creator of universes for
which he alone is the lawgiver” (Weizenbaum 1976, 115) but rather a member
of a large working collective. In order to do their job well, programmers must
be intuitively attuned to the collective. This collective practice thus influences
their subjectivity as it sets boundaries on their sense of agency and on their
desires to code in a certain way or maintain a certain personal style. It forces
them to constantly make subjective jumps between creatively coding on their
own and monitoring their own code to adapt to the rest of the team.

Secondly, studying software’s sociality helps to complicate the picture of
programming as something rational and logical. Software is not only a set
of algorithms but a sentient experience. Programming is not a command-
and-control practice but a creative process, with programmers proud of
what they have created. Software development involves a multitude of sto-
ries of creativity, personal struggle, power and powerlessness, meaning and
meaninglessness, hierarchy, cultural norms, humor, and playfulness. These
moments are messy and full of negotiation and force programmers to feel
connected to the code they write, to argue with their team members who see
things differently, to sense what’s right and what’s wrong, or what should be
done correctly or not. Programming is thus a practice that is far from rational
and calculated. This sociality, like the care and creativity around the craft of
programming, clashes with the narratives and logics of corporate software
production, including discourses of excellence, speed, and agility. This forms
a tension between care (for one’s own work) and compromise (for the sake
of the production process or customer demands). Delivering good-enough
software doesn’t always mean that a software developer is being careless
about work or a project. On the contrary, programmers are often forced to
disrupt their care or engagement with a project they are working on, or a
programmer they are working with, in order to compromise and settle for
something that’s good enough for now.

In that vein, studying software’s sociality can give us a new temporal
understanding of how software is produced and maintained, which I will
return to in a later chapter dedicated to speed and temporality. We are

64 CHAPTER 2

accustomed to understanding software as fast, smart, and seamless. But
when we insert forms of sentiment and emotion into our understanding
of how software is built, we can see that these relationships take time and
create resistance to the Silicon Valley “move fast and break things” motto
that dominates our digital economy.

Lastly, understanding software development through the notion of social-
ity can help us understand that certain software tools, especially those that
programmers use, negotiate closeness. As in the example of GIT software,
software developers also use digital tools that mediate and shape forms of
sociality. This is a sociality that is deeply entangled in software, displaying a
human-machine interaction on a multitude of levels, including the connec-
tion between programmers and the software they create, a connection that
is collectively being built or was built over the years and still exists in the sys-
tem, as well as a relationship between software developers and the tools that
shape and constrain their behavior in relation to the software product they are
building and those building it around them. As software becomes an actor in
negotiating forms of sociality between programmers and their collaborators,
it also helps order the norms of what is good enough and what isn’t.

 The purpose of this chapter was to frame sociality as a direct characteristic
of programming software, which becomes a key tension between program-
mers and their corporate work environments, with programmers constantly
having to decide between more care (which leads to missed deadlines) and
compromise (which leads to good-enough-for-now software projects). Vari
ous forms of sociality can generate explicit and open conflicts, and I could
observe them playing out in my field: for example, between one developer
who feels deeply connected to their personal style and others who beg to
differ. Or it can trigger potential, simmering conflicts, such as when a pro-
grammer like Christian is always worried about being interrupted and taken
out of his close connection with his machine. This can be the very source
of the conflict, or it can further fuel other conflicts that are typical of any
industrial workplace.

Now that I’ve introduced you to software’s sociality, let’s move to another
level of abstraction in corporate software development by zooming out to
the dynamics of the software development team and looking at how this
collective experiences software’s complexity, how they create misunder-
standings, disharmony, and conflict, and how things simply go awry.

65

3
Where Stuff Goes Wrong

“Code is layered like lasagna. It’s lasagna code. But it’s more like an
onion. Because when you cut it, it makes you cry.”
—ASEEM, SOFTWARE DEVELOPER, AUGUST 2017

Every few weeks Aseem attended a photography meet-up in Berlin. The
group was made up of a random collection of ex-pats and Berlin locals who
got together a few times a month to share their love of photography. The
small group would wander the streets or take day-trips to explore the land-
scape around the city. Aseem absolutely loved nature photography. One
afternoon in the office, I commented on the picture he used as his desk-
top background. He smiled proudly and told me it was his photo. He then
invited me to sit down with him to browse through his online portfolio.
I was surprised. His photos were really good. He understood shape and light
and the emotions of the people he was shooting. Landscapes in particular
came to life in his photos. One of my favorites was a wide-angle view of a
forest on a small hill, with a soft yellow meadow framing it from below. The
autumn colored each tree differently, and the light from the sky was hitting
only a small collection of trees at the front of the patch, giving the entire
landscape a deeper texture. Aseem looked proud of his photos. Nature pho-
tography helped him melt into the landscape, becoming one with the beauty
he encountered. Photography seemed to be about precision and control for
Aseem—many of his photos were deftly captured, with trees, clouds, and
fog delicately placed in the frame. Nothing seemed out of order in any of

66 CHAPTER 3

his photographs. For Aseem, this sense of precision and control was hard to
come by when building software. Not because he was a poor programmer
(on the contrary) but because software is often unstable and uncontrollable.

Aseem was young. He was maybe twenty-four or twenty-five when we first
met. He had joined MiddleTech as a working student, meaning he was just
finishing up his master’s degree in computer science at the Technical Uni-
versity of Berlin and was on probation at the company. He arrived in Europe
a few years before getting his job at MiddleTech, first studying in Holland
as an exchange student, and then transferring to Berlin. He grew up around
New Delhi and was always very technically inclined. He enjoyed his studies
because they provided an alternative to the practical side of programming.
Studying was theoretical, about building and optimizing certain algorithms,
and he liked that. He told me that his mind often races when he thinks about
“good software architecture.” He was also always interested in mathematics
and engineering, and was drawn to the profession of programming more
for building systems himself rather than copying and pasting from some
open-source piece of code he found on the internet (which is the common
practice of many programmers). He wanted to continue his graduate studies
and do a doctoral degree, but he decided to take the opportunity to stay and
work in Germany. In his opinion, Germany offered much more creativity for
a programmer. He explained that India is seen as the outsourcing giant of
the tech world: Software companies in Europe or North America will often
hire an Indian outsourcing company to do the work that the programmers
in the rich Global North do not feel like doing. This work can include bug-
squashing or cleaning up old code, the maintenance work that is incredibly
necessary when building software. He was grateful that he didn’t have to
work in an Indian outsourcing company but could instead work creatively
on building new software and new features at MiddleTech. He explained that
he yearned to live a “creative and challenging life,” something that program-
ming in India wouldn’t offer him.

Aseem’s biggest hobby outside of work was taking photos. He didn’t
need the motivation of the group meet-up to get out with his camera, but he
explained that he did it mainly to make friends. We became friends through-
out the second summer of my fieldwork. I felt a bit sisterly toward him. He
would call me out for coffee or tea every few days, and we would sit together
on the fourth-floor MiddleTech balcony, where I would listen to his stories
and worries. His life in Berlin was, at times, painfully lonely. He would come
to work and go home alone, often spending the weekends by himself. I was
upset that a young kid with a friendly smile and bright eyes, full of ideas

Where Stuff Goes Wrong 67

and burning creativity, would have a problem finding friends. The Polish
mother in me wanted to walk through Berlin and help him find people to
socialize with. I didn’t mind listening to him, although I was painfully aware
that I wouldn’t be able to be there for him in a month or two when I would
leave the field. I really hoped that by the time he read this book, he would be
surrounded by people who cared for him.

It was useful to have a newbie on the team. I found that the people who
were new to a team really highlighted the problems within a software proj
ect. At times it was because they were still learning and making mistakes.
At other times it was because they didn’t feel confident owning up to things
going wrong, and I, as the ethnographer, was the only neutral outlet to
complain to. Aseem was very open to explaining his struggles. He didn’t
hide if something went wrong. And because he was new at his job, he often
didn’t understand why something he was building was going wrong. So he
would try to figure it out, and I would follow him during his journey. It was
through Aseem’s eyes that I started to understand the challenges and contro-
versies that happened when building software. In the last chapter, I explained
the way in which building software is a social endeavor—an act of sociality
between programmers, their social world, and the sociotechnical system
that is computational software. But when reading the previous chapter, you,
the reader, might have been misled into thinking that software production
is about finding a sense of creative craft, and that software developers work
in friendly teams in a homogeneous, transparent system.

This chapter will look through the eyes of Aseem and his colleagues to
show us that conflict and controversy are an inherent and inescapable part of
the software development process and an important part of understanding
software development culture. I will in particular focus on the role software’s
materiality plays in creating this chaos and controversy. As Bruno Latour
highlighted, “it is with controversies that the heterogeneity of technologi-
cal systems appears most clearly. An accident, a breakdown, an incident
of pollution, and suddenly the ‘system,’ by dint of polemics, trials, media
campaigns, becomes as unsystematic as possible, multiplying the unforeseen
branchings that delight sociologists of technology” (2013, 218).

Organization scholars, particularly in anthropology and sociology, have
looked at how decisions are made, how resistance and conflicts at work
emerge, or how various forms of knowledge are employed and ignored in
corporate cultures (see, for example, Burawoy 1982; Allaire and Firsirotu
1984; Courpasson et al. 2012; Paulsen 2015; or Beverungen 2019). Yet, soft-
ware is a particular beast, shaping corporate work culture in a particular way.

68 CHAPTER 3

Theoretically, it might help to frame the software company as an “organized
anarchy” (Cohen, March, and Olsen 1972). According to the authors who
coined the term, organized anarchies have three properties:

1.	 The first property refers to the purpose of the company itself, where it
becomes not so clear what the purpose of the company is or what it’s
working on. Here, “the organization operates on the basis of a variety
of inconsistent and ill-defined preferences . . . ​it discovers preferences
through action more than it acts on the basis of preferences” (Cohen,
March, and Olsen 1972, 1). While MiddleTech is clearly a mapping
company and has customers and products that seem straightforward,
deciding on how and when to finish a software project, or the scope of
the project itself, is tricky as it is “difficult to impute a set of preferences
to the decision situation” (Cohen, March, and Olsen 1972, 1). As we
shall see, there are a variety of ways to solve a software problem, with
no clear preference for how to tackle it.

2.	The second property of an anarchic organization is what the authors
term “unclear technology.” Here, although the organization manages
to survive and even produce a product (like software), its “own
processes are not understood by its members” (Cohen, March, and
Olsen 1972, 2). As I will illustrate in the following chapters, often
managers don’t understand how software development works,
and software developers don’t understand the logics and customer
demand requirements or the methodologies of production.
“Figuring out stuff ” is also symptomatic of various forms of
obscurity encountered in production.

3.	The third property of an anarchic organization is so-called “fluid
participation.” Here, “participants vary in the amount of time and
effort they devote to different domains; involvement varies from
one time to another. As a result, the boundaries of the organization
are uncertain and changing; the audiences and decision makers
for any particular kind of choice change capriciously” (Cohen,
March, and Olsen 1972, 2). In the following chapter, I will also
highlight how developers devote their time to a project, but then get
discouraged and give up for a variety of reasons.

While this list is not exhaustive, it helps us place MiddleTech, and software
companies at large, within a larger discussion about the labor practices and
work cultures of contemporary corporations, particularly those in which
chaos and conflict are an integral and inescapable part of everyday work.

Where Stuff Goes Wrong 69

This chapter will illustrate software’s role in an organized anarchy: how
it becomes a medium that helps create and stabilize the existence of chaos
and conflict in software organizations. Working with software means that
different heterogeneous forms of knowledge are in constant competition
with one another, and the code base often expands but is not always deleted,
building convoluted, codependent legacy systems that are also challenging
to figure out. These two factors lead to a particular work culture of “figuring
out stuff,” compromise, and confusion.

As we shall also see, this inevitable chaos and conflict help create a cul-
ture of good enoughness, as compromise and confusion become the status
quo in order to move forward and complete a project. More widely, this
chapter slowly paints the various structural, infrastructural, and communi-
cative norms that shape the programmer’s work culture.

Push the Update

It would be worth providing some background on why the software system
is so prone to stuff going wrong all the time. In order to understand this, one
must first understand the crucial role of the update within software develop-
ment. The story of the update goes hand in hand with the role of the internet
in software development. The internet revolutionized the temporal order of
building software, allowing software developers to make mistakes and fix them
at no cost to the customer. While software used to arrive at our doorsteps
or computer store shelves ready to use, never to be changed, in a shiny new
box, the 2000s brought us high-speed internet, which allowed for something
called software-as-a-service. This software was (and is) brought to our devices
through the internet. In the past, shrink-wrapped software, as it was called,
had to be purchased, installed, and configured on a personal computer (PC),
and updated regularly by the users themselves. Today, however, it suffices
to log on to a single platform and install a service to easily access Dropbox,
Facebook, Google, etc., and updates of this software are normally automated
by somebody within the software team (Kaldrack and Leeker 2015, 10). In
short, the team building this software has, with the owner’s permission, the
ability to change or update a feature in the software. In software development
lingo, this is called “pushing an update.” Because of internet connectivity, one
software team, or even one developer, can push a new update to hundreds,
thousands, or millions of devices with just one click.

The ability to push an update creates an important distinction between
software and other types of engineered technologies. In the case of software,

70 CHAPTER 3

mistakes are, in essence, easy to fix and quite forgivable. When it comes to
engineering and physical objects like a car or a plane, it’s quite the opposite.
A large company can sell millions of a particular model of their car, but if
the car was engineered poorly, and something goes wrong with it, updating
it is not so simple. If a car has faulty emissions meters (as we saw with the
Volkswagen diesel emissions scandal in 2015), the VW team cannot just fix
it with one click but has to go through a large and arduous process of recall-
ing the physical goods.

Ori explained that “there are so many ‘dammit’ moments . . . ​like oh no
people are suffering under my code, undo decision! It’s quite paradoxical.
That it’s cheaper to fail with our kind of work. You aren’t building something
out of hugely expensive metal or something, that you have to get everything
right. You are just using your brain . . . ​what we are creating is just lines of
code. We don’t have to carve out a new piece of metal. It’s just stuff that
comes out of our heads. I have all the tools in my hands. Creating bad code
is cheap.”

Not only does the ability to update software make it easy to undo deci-
sions but moments of failure during software development are relatively
cheap. Software is not heavy, expensive, or hard to handle. It’s . . . ​well . . . ​
soft. And it’s precisely this “softness of software” that makes failure so cheap
and easy to fix. Mark Zuckerberg’s “move fast and break things” motto
doesn’t come out of nowhere. “Breaking things”—which, for Zuckerberg,
can be interpreted as innovating, changing, testing, and rearranging—is rela-
tively cheap and easy when working with lightweight, seemingly ethereal
software that is stored within the cloud, with seemingly endless storage
capabilities. Additionally, there is an out-of-sight, out-of-mind principle that
cloud storage has given the programmer. When programmers write code,
it is no longer stored on the central processing unit under their desk but in
the cloud. MiddleTech (like most large software companies) rents server
storage from the world’s biggest cloud provider, Amazon Web Services (yes,
it’s that Amazon).

The move to the cloud in a certain sense created more stability, freeing
software from being locked in a bunch of computers sitting around in a base-
ment. But the move to the cloud also “seems to suggest that a qualitative shift
towards a kind of hyper-instability is taking place: instead of a stable pro-
gram nothing but a temporary relationship of queries across interfaces and
devices, rendering something that was immaterial even more airy and vapor-
ous” (Kelty and Erickson 2015, 41). This airiness not only makes it cheaper
to fail but also easier to store old software projects and forget about them.

Where Stuff Goes Wrong 71

Software-as-a-service, cloud storage, and the update culture that have
resulted from these changes write failure and iteration into the program-
mers’ work culture. This can cause stuff to go wrong in a software system,
and putting stuff back together when it does go wrong also takes a lot of
energy, various forms of knowledge, and time. In order to understand the full
picture behind the practice of software development, we have to understand
programmers’ obsession with breakdown, chaos, and bugs, as well as their
almost mythical belief in the immateriality of software—that it can be con-
stantly updated, shifted, and reinvented at (seemingly) little to no physical
or financial cost. This, of course, is a myth. Updating a bug costs the software
company money, as the programmers’ salaries are high, and their work time
is highly valued. Data centers use an estimated two hundred terawatt hours
(TWh) each year, which is more than the national energy consumption of
some countries, including Iran. Although I hate lumping them together,
both Ori and Zuckerberg (sorry Ori!), like the majority of programmers,
live within the myth that breaking things, undoing decisions, and making
mistakes is cheap and easy. The truth is a little darker.

Types of Knowing

Now that we understand the wider principle defining the programmer’s
work, I’d like to describe the type of work a programmer actually engages
in. Software work is knowledge work. Knowledge workers are “defined
broadly as white-collar workers, including teachers, lawyers, politicians,
scientists, social workers, accountants and computer programmers” (Darr
and Warhurst 2008, 31). This knowledge work is quite often, but not always,
technical work. As I hinted at before, “sociologists of work and occupations
have paid scant attention to technical work” and this includes “computer
occupations” (Barley 2005, 377). The building block—“knowledge work—
upon which theory should be grounded remains an unopened black box”
(Darr and Warhurst 2008, 34), inviting analysis of these occupations’ work
practices.

So what does the knowledge in “knowledge work” look like for a program-
mer? Like many technical systems, a software system is made up of heteroge-
neous parts that require the collective work of a team of people who specialize
in knowing a lot about these various respective parts. Software developers
as well as their managers and designers do not, and cannot, understand
everything about the software they are building. Consequently, knowledge
of how a software project is developed and maintained is heterogeneous,

72 CHAPTER 3

with the members of a software development team possessing various forms
of knowledge about the system they are building.

This underlying differentiation of knowledge regarding how to get stuff
done in a software company vibrates through the interactions between
developers, developers and their managers, and managers and their cus-
tomers. Software workers, therefore, have a few different forms of knowing.

It was July 2017, the first day of my second summer of fieldwork at
MiddleTech, and I was about to be introduced to Aseem and his team of
developers. Simon, Aseem’s manager who ran the entire navigation and
routing team, met me at the elevators of the seven-floor building and led
me up to the fourth floor to meet a new team of one hundred developers.
I loved being back at the office. It smelled like a mix of my grandmother’s
perfume and cleaning detergent. It must have been the stuff they used to
clean the wooden floors or the bathroom tiles. It was slightly sweet, some-
thing resembling flowers with a hint of lemon. There were large windows
on both sides of the office that stretched from floor to ceiling. Software
developers filled the large rooms, which were designed with an open-office
concept. The developers were clustered around two rows of desks, and they
sat facing each other, separated by a large number of computer screens.
I looked around, and they were either staring at their screens or meeting in
teams to discuss their projects. Simon led me through the hallways, stop-
ping to greet developers as we walked by them. There were Post-it Notes
and whiteboards everywhere, as well as small photos of team members cut
out and glued onto the walls and the odd funny poster of a meme or a joke
posted up between the work-related scribbles. I was home.

Simon placed me at a desk with the Electric Vehicle team (called the
EV team for short). There were two women sitting next to me—a Serbian
developer and an Australian product owner—and three developers on the
opposite sides of the desks—one Ukrainian, one older Spanish guy, and
Aseem (whom you’ve already met). This was a stereotypical team of six
programmers: a mix of cultural backgrounds, mostly men with one female
developer. Huge black monitors (two per desk) were blocking my view of
the Ukrainian developer Oleksiy, who was sitting across from me.

The EV team was making a new product: a navigation system for a
new electric car that was supposed to come out on the market the follow-
ing year. As I quickly found out, the electric vehicle presents engineering
challenges to the navigation system that are different than those of gas-
powered cars. Liz, the product owner sitting next to me, explained that the
navigation system in an electric vehicle has to be different from the ones in

Where Stuff Goes Wrong 73

other cars. “Was it about the type of fuel consumption that the app itself
required?” I asked Liz. She said that it was not only that. It was generally
about the type of fuel consumption and the refueling capabilities of elec-
tric cars. An electric car does not have that many options to refuel when
driving down a highway, so it’s a different “use case” than other cars. Liz
explained that while the network of recharging stations is growing, it’s not
that prolific. So her team has to calculate the reachability of the vehicle,
meaning whether the driver will reach their destination. (Fun fact: The
official industry term for the driver’s “worry” that their car will run out
of battery power is called “range anxiety.”) An electric car also consumes
fuel differently when driving up a hill and recharges when going down a
hill. “So we care about slope, about elevation, about altitude,” Oleksiy, the
team leader, chimed in to explain.

That morning, like every morning, the EV team started their daily five-
minute stand-up meeting. This somewhat compulsory ritual provided the
team with an opportunity to explain to one another exactly what they
were working on that day. (I will explain more about the stand-up in the
following chapter.)

The stand-up was very ritualistic, almost religious. The team members
stood up near their desks facing a large whiteboard that had a list of tasks
on it labeled “to do/in progress/completed.” The meeting started with
Jelena. She explained that she was working on “scaling the battery state.”
Everyone around her nodded as if they knew exactly what she was talking
about. The attention then switched to Liz. She talked about the workshops
with their clients that would take place in the following weeks, and she
explained that she was getting ready to “set things up for them.” Then
Oleksiy started discussing the “dev drop” procedure that he would have
to do with the client. Liz didn’t know how that procedure worked, so
she asked him, “What happens during the dev drop? How long does that
take?” Oleksiy explained that it normally takes around twenty minutes
but didn’t give much more detail. (I assumed that a dev drop is a way of
implementing a new piece of software nonlocally, on another computer
in another system, such as the car manufacturer’s system.) Aseem started
talking about a “bad scaling parameter” that he needed to fix. Everyone
else nodded. The meeting ended shortly afterward with Liz awkwardly
saying, “Okay, let’s start,” as if she ran out of things to say and didn’t really
know how to break up the group.

This type of meeting provides insight into the entire software devel-
opment process. A group of people with varying skill sets and forms of

74 CHAPTER 3

knowledge about their collective software project comes together to per-
form knowledge exchange. I use the word “perform” because knowledge is
not always fully processed by each team member, and it is not a given that
each team member really learns something from the others. When Oleksiy
is nodding along to Jelena’s report on her project of “scaling the battery
state,” he might be just superficially noting down that his own project relates
to what she is doing. When Liz is nodding, she is perhaps just expressing
copresence, without any real knowledge of what Jelena is doing. When
Aseem is nodding to Jelena, he might not even know what she is working
on, but he pretends to know in order to mask his freshman status within
the team. Nodding is also about communicating acceptance and a way of
performing phatic communication, where the maintenance of a relation-
ship rather than the communication of actual information is at the center
of an exchange. When Aseem nods for Liz’s daily comments, for example,
he doesn’t necessarily have to understand what she is planning to do that
day, but rather, through nodding, he communicates, “I trust that what you
are doing is good for our common goal, and I care.” Additionally, the mis-
understanding or lack of knowledge is not one-directional, with the less
technically inclined not understanding the more technically inclined. For
example, we cannot assume that the inexperienced developers like Aseem
or nontechnical employees like Liz don’t understand the more technical
programmers like Oleksiy, while Oleksiy understands everything that Liz
and Aseem are doing. When Liz explained that she was “setting things up”
for her meeting with the customer, most of the group had no idea what really
goes into “setting up a meeting.”

Knowledge is thus diverse, and as in most social settings, forms of under-
standing can be ingrained and embodied or strictly performative gestures.
When team members ask one another what they are doing—especially if
these team members hold completely different forms of knowledge, like
Jelena and Liz—they do so rather to perform a sense of camaraderie and
become one with the prevalent culture of “figuring stuff out” that domi-
nates the corporate corridors at MiddleTech. The stand-up meeting is just
one of many performative rituals that are an inherent part of MiddleTech’s
work culture. Having a good company “culture,” as it’s called around the
office, is all about explaining to others what you are working on and sharing
knowledge. While this is a culture that underlines practices of explanation,
understanding, knowledge acquisition, and transparency, I am not assum-
ing that knowledge is truly acquired or that software processes are made
less opaque.

Where Stuff Goes Wrong 75

Knowledge Silos

On another day, Aseem led me to something called a “fixathon,” a focused
workshop where a team of developers works on one larger software prob
lem that affects a larger part of the code base. These fixathons can last
from one day to one week. This particular event was organized by a few
people on one of Simon’s teams, and around ten programmers from various
teams attended. In a small meeting room, computer screens were squished
together on long tables to accommodate these ten developers, who sat
tightly together, almost elbow touching elbow. Gabriel, a Spanish program-
mer, explained, “As you look around the room, you’ll notice that it’s mainly
the young guys who are here. We want to know more about the system. We
want to break down the ‘knowledge silos.’ ”

This fixathon was just another ritual in the culture of knowledge transfer
and transparency building, an attempt to simplify the complex parts of soft-
ware development. The fact that “only young guys” like Aseem were sitting
around the room also highlighted their eagerness to make sense of the soft-
ware system they were working on and break down these knowledge silos.
I noticed that older developers, perhaps due to their experience, seemed to
lack any hope of breaking down these silos.

Knowledge silos exist in any complex organization, but what is specific
about software is that it is highly interdependent. In this case, develop-
ers work on a narrow piece of a software project and have little time to
understand what another team is building, and thus do not develop any
knowledge about how to build another software component or what is
being built in parallel. Alexei, another developer at the fixathon, explained
that it’s simply hard to know what other people are working on, a real
ity that sometimes leads to multiple teams working on the same thing
without any knowledge of one another. At a recent team demonstration
(called a demo), he found out that another team was building the “exact
same thing that was implemented six years ago.” Not only does this create
redundant work projects that waste developers’ time, but not knowing
what is being worked on elsewhere can also create other bugs, break-
downs, or unforeseen problems due to the interdependency of various
software components.

When relating this experience to me, Alexei asked, “But how should
we know something already exists?” Returning to the definition of the
“anarchic organization,” one of Middletech’s features is a lack of under-
standing about the technology being deployed in the company. Although

76 CHAPTER 3

MiddleTech manages to survive and produce a product (like EV software),
its “own processes are not understood by its members” (Cohen, March,
and Olsen 1972, 2).

Alexei’s experience further made clear to me that developers often sit
within their silo of understanding and have little insight into the large, com-
plex system in which they work. Again, I was skeptical that a collective
meeting like the fixathon could actually break down these silos. The event
was rather another symbolic ritual in the corporate programming culture
of knowledge transfer—much like the stand-up meeting—where members
participate in order to understand but also to perform care for understand-
ing, neither gaining nor embodying knowledge.

Where Stuff Goes Wrong

After spending some time watching the EV team over the next few months,
I noticed that there are a number of ways to solve a certain problem, which is
one reason why stuff can go wrong in a software project. If one developer has
an idea of how to build this navigation system—which points to emphasize
and which to avoid—another developer might have a completely different
idea. This is also symptomatic of an anarchic organization where deciding on
how and when to finish a software project, or the scope of the project itself,
is tricky as it is “difficult to impute a set of preferences to the decision situ-
ation” (Cohen, March, and Olsen 1972, 1). Not only do the developers have
to negotiate whose idea will be implemented, but the idea that the team of
developers votes on has to be explained to the other developers, who might
not fully understand either the logic of the solution or how to implement
and build it. A long process of explanation ensues.

I will give you an example. Aseem was just finishing his master’s in com-
puter science when he joined the EV team, and he was hired as a work
student. Although he was more experienced than an intern, his contract
was intern-like and temporary. About a month into my fieldwork, the EV
team had to provide one of their clients (a luxury car company) with a new
feature on the routing system called the multistop routing feature, through
which a driver would be able to make various stops on a route and still make
sure that fuel consumption was accounted for. While this might seem like
a simple task, this new feature meant optimizing or tweaking the current
routing algorithm to provide a good, smooth, working multistop route for
the user. All week, Aseem paced around the office kitchen, nervously await-
ing his team meeting where he was planning to pitch his multistop routing

Where Stuff Goes Wrong 77

solution to the rest of the team. I noticed his nervousness as he shared his
ideas with me and told me about his attempt to approach a senior developer
(known as one of the company geniuses) for help and approval.

Hours after his team meeting, where he pitched his idea, I wrote him
via our in-company chat system to see how he was doing. The following is
pasted from the chat conversation we had that day:

paula: Hey Aseem! How are you doing? How’s your plan for
implementing your multistop routing idea going?

aseem: The team seems to have decided to take the path that requires
“less effort,” whatever that means. But I guess there is still some
confusion as to how we plan to do it . . . ​We had a meeting and
people voted on the possible solutions. Mine didn’t make the cut.
We now plan to stick with the same solution as we have now, not
doing anything new.

p:	 What’s that about? Isn’t the “less effort” path the one that leads to
more “hacky” solutions?

a:	 But in a lower level of the stack. Yes, I like to call it a stack-of-hacks.
p:	 Oh I’m sorry to hear that yours didn’t make the cut! Why do you

think that happened? That yours didn’t make the cut? (hehe, stack
of hacks sounds very funny.)

a:	 I still don’t know actually if the team will consider my solution,
realizing at some point that what we plan now is not good enough.
At least we need to prototype the solution I had in mind . . . ​I’m
still going to discuss this with Oleksiy [team leader]. He went on
vacation right after our meeting. But some of the team members
who voted and, in fact, were the deciders . . . ​they have no idea
how the current solution, “the hacky one,” works.

p:	 Ah! So you think that at one point the team will be like, “Oh,
we should use Aseem’s idea after all?” Strange. So you vote even
though you have no clue about the method itself?

a:	 What they plan now is definitely below my expectations of a quality
delivery, unless the prototype proves otherwise, and we will
end up firefighting like the rest of the routing team does . . . ​and
regarding your comment: “So you vote even though you have no
clue about the method itself?” At least [the rest of the team] don’t
have as much of a clue as the people who designed and improved
it (read Oleksiy and me). And yes, after the meeting they were
still trying to understand how to go about it . . . ​even after voting

78 CHAPTER 3

all 5 possible points to that hacky-solution . . . ​So yeah . . . ​I guess
it’s still only partially decided, and I will pitch in my concerns to
Oleksiy as soon as he is back from vacation on Monday.

p:	 I don’t want to take up too much of your time, but I am curious about
what your proposal was—and what theirs was. What’s the difference?

a:	 Theirs rests on an assumption that the routes for EV and otherwise
shouldn’t be that different. Theoretically, that’s a bad move in my
understanding.

p:	 Routes for EV and otherwise? You mean EV and other cars?
a:	 Of course I can’t say that with certainty as both methods should

ideally be prototyped and then decided. Yes, EV cars and other
normal fuel cars, even after adding requisite charging stations. But
the team has decided, at least so far, the one is “easier” to prototype.

We decided that it would be easier to explain the technical solutions to
the problem over a cup of tea. Both of us wandered to the kitchen and sat
down. I pulled out a piece of paper to take some notes.

paula: So can you explain the difference between your idea and the
other guys’ idea?

aseem: So imagine you are going to Munich. You will get a message
(in your navigation system) that says, “not reachable in one charge.”
So you have to then drive along to X, Y, and Z. Then new stations
come up. The navigation is dynamic, depending on the map data
that’s fed back to us. And the way in which the guys want to build
this system depends on the expectation that it will be the same
route forever. And that’s not the case.

I still didn’t understand. I asked him to draw it out for me on a piece of
paper.

p:	 So you have a road to Munich. And there is one line and another
line. The usual tank station is located every twenty minutes . . . ​
but then . . . ​I don’t get it. How could you build a system that isn’t
dynamic? Of course, data is changing and stations are being built all
the time. So what?

aseem: [Takes the pen from my hands and draws the A9 highway
near Nuremberg and then another highway, the A6, to Stuttgart.]
So let’s say the car is driving down the A9: Should it go into the
city to charge, which will use more of its battery? Or should it go a
bit off-course and charge at the A9? You can use an algorithm that

Where Stuff Goes Wrong 79

changes the basic ways that the system works—so an inbuilt system
that evolves on its own—or you can build various modules, where
humans are going to make the choices and define the actions in
such cases. So which would you choose?

p:	 And by “humans” you mean developers?
aseem: Yes. But that latter option is plan B—what the guys around

me proposed. And that’s why it’s a stack of hacks—because you just
patch and build modules on top of modules . . . ​I am a bit selfish;
I am in this company for the multistop routing. I set my eyes on
this. I would be shattered if they took it in a direction that would be
a hack. If it starts off as a hack, it will remain a hack . . . ​I can’t work
as a team if nobody believes in what I am doing.

Aseem clearly seemed frustrated. But I understood what he meant.
His proposal was to optimize a certain algorithm that would respond to
“dynamic data” that would feed into the map, meaning data that would be
updated based on traffic data fed in through different regions, new charging
stations that were being built, and the users’ behavior. The other system—the
one that was chosen—was one in which developers would preprogram the best
choices possible for the driver, and this program would remain the same
regardless of the driver’s driving patterns.

My conversation with Aseem had a number of points that help illustrate
the moments when software development can go wrong. At the first level,
there is Aseem’s frustration with his team. Programmers have expressed to
me that they enjoy working on their own, especially when conceptualizing
a large solution, because they do not have to do the “translation work” that
goes into working with other programmers who have their own design ideas.
Developers are forced to work in teams because of the company’s method
of managing their software project. (I will get into more specifics about
software project management methods in chapter 4.) Much like any team,
a programming team is characterized by conflict and direct competition
between programmers. Any programmer’s idea can be rejected by the rest
of the team. Because programming is quite subjective—and there is rarely
only one right way of building something—ideas often have to be negotiated
based on allegiances to others in the team (like Aseem and Oleksiy), or for
various reasons relating to power, status, educational background, gender
politics, racial politics, or a slew of other factors. While I didn’t ever find
out why Aseem’s idea was rejected, I know it had little to do with his idea
being objectively worse than the others.

80 CHAPTER 3

These frustrations can create conflict. Negotiating takes time, learning
something new takes time, and Aseem’s frustration takes time. This frus-
tration then translates into differing ideas, which can lead to faulty code or
delays in implementing any changes. Although Aseem was not the type of
engineer to sabotage the team’s project, I have witnessed other instances
when teams actually split up, and one developer started building a solution
in order to prove to the rest of the team that their idea was worthwhile.
While this is an extreme case, it illustrates the types of tensions that might
arise when two or more programmers have different ideas. These tensions
can cause delays in coding a project or result in frustrated developers sub-
consciously coding poorly in order to prove that their idea was best.

Myth of Knowing and Understanding

When speaking of his team, Aseem noted that “some of the team mem-
bers voted, and in fact were the deciders. . . . ​but they had no idea how
the current solution, the ‘hacky one,’ worked.” In this case, a group of five
developers voted on a solution without fully understanding the method
of implementation or the consequences of the solution. So why did they
pretend to understand?

The problem is it is difficult for any developer to understand the conse-
quences of a solution before the piece of software is actually built. This issue
is quite specific to software development and has to do with how code is
intertwined with other code that exists either in the code base or is being
built and added to the system in real time.

I’ll lean on a metaphor to help illustrate my point. For example, let’s imag-
ine software work as a Google document with hundreds of people merging
their ideas onto the document at the same time. This complexity grows, as
one person likes to write their sentences one way, another the other way,
and others imagine the document completely differently and delete what
was done before them. Similarly, we can imagine that every line of code
ever written makes up the system that the programmers are working on.
A software project holds layers and layers of legacy code built throughout the
history of the software company. The sheer scale of the system being built,
the speed at which it is changed and updated, and the number of people,
processes, and machines collaborating with one another make posing the
“right” solution very hard. As engineering scholar Nancy Leveson explained,
“The problem is that we are attempting to build systems that are beyond our
ability to intellectually manage; increased complexity of all types makes it

Where Stuff Goes Wrong 81

difficult for the designers to consider all the potential system states or for
operators to handle all normal and abnormal situations and disturbances
safely and effectively” (2016, 4). Here, Leveson defines complexity as intel-
lectual unmanageability.

So, within a setting where a handful of developers have to vote on a solu-
tion, how are they supposed to make sense of this huge complexity and predict
how their solution will fare in action? Aseem was trying to push through his
idea, but it was impossible for him to fully understand how his idea would
work in practice with other code, with the future requirements and com-
plaints of the customer, or with code that currently exists. Perhaps the
hacky solution of his colleagues would indeed be better. The paradox is that
within such a complex system like a large-scale software project, teams are
presented with a choice in coming up with a good solution. Developers
are thus forced to vote on the unknown, to make a bet or an educated guess.
Within this software development culture, they have to make a decision as
if a particular proposal is an engineering solution that is better than another
one presented. The idea that there is a solution implies that there is a means,
an answer, a panacea to fix a given problem. In the process of choosing a
solution, developers and their other team members have to pretend to know
something (as in the case of Aseem’s team vote) in order to keep their project
developing. This is what we can call the “myth of knowing,” which allows
teams to work within such a complex system.

Pretending in order to keep up this myth of knowing happens not only
between developers themselves but also between managers and their devel-
opers (and vice versa), product owners and their customers (and vice versa),
designers and developers (and vice versa), and all combinations of roles in
between. During one of my many lunches with Simon, who managed all
teams building the MiddleTech navigation system, he lamented that, “It’s
not even about knowing or not knowing. It’s about pretending to know.
There is constantly a myth of knowing everything technical. Which is not
possible. For example, there is a project lead or product owner. And their
job is to translate what type of product the customer wants to the technical
team. And this product owner would start talking to their customer about
a certain algorithm. They don’t really know what that algorithm does. So
why are they talking to them about something so technical?”

Simon attributed this “pretending to know” to a pressure around the
office, in particular for managers, to know something: “There is constantly a
myth that we should know something. But we shouldn’t. This is a subjective
feeling. Instead of feeling comfortable with their job and going out to ask

82 CHAPTER 3

somebody else or referring the customer to somebody else, they pretend
they know something they don’t. Or there is another problem: they learn
the details that they shouldn’t know in the first place. They start solving
something over there when they should just really slow down and focus on
what’s in front of them.

Simon underlined two things here: firstly, that managers also fall under
the myth of knowing in being expected to know the technical side of soft-
ware production, which often they do not. His software developers know
he used to be a programmer, so they may assume he knows what they are
talking about. Instead of confronting him, or instead of Simon admitting
he doesn’t know something, both the developers and Simon himself sus-
tain the myth of knowing in order to push a project forward. This myth is
sustained by pretending—managers pretending to know as much about a
project as their developers do; developers pretending that their manager
also speaks their language; product owners pretending to know how an
algorithm works when interacting with their customer (and vice versa);
and programmers pretending to know something about a newly proposed
solution. Instead of owning up to their lack of knowledge, they often pretend
to know something they do not.

Pretending to know also happens between the software team’s prod-
uct owner and the customer. The role of the product owner is to mediate
between the customer’s demands and the software team’s capabilities. They
are the ones making the phone calls or flying off to meetings with various
representatives of car companies or other customers. During these meet-
ings, product owners are asked to tell the customer that they know how
their team will complete the given software product (hence using the name
of a certain algorithm as Simon explained) or perhaps give their customer
a certain time by which the software will be completed, which is also often
an assumption or a clear act of pretending to know when the project will,
in fact, be completed.

Subjective Estimation

Staying with the customer-to-product owner relationship, another rea-
son a project can go wrong and get messy is the vague, highly subjective
method of estimating the amount of time that a project will take to com-
plete. As Liz, the product owner, explained, “It’s really hard. When we
meet with the customers, the developers just have to go like this [sticks
thumb in the air and moves it up and down].” What Liz means is that she

Where Stuff Goes Wrong 83

often has to explain to her developers what the customer requires, and
the developers have to give her an estimate of how long this project will
take. In some instances, a thumb estimate is enough. More commonly,
developers give an estimate using T-shirt sizes. Aseem explained how this
method worked in his team’s previous meeting: “The product owner then
[this time Aseem, who was standing in for Liz] would get the developers
to “T-Shirt Size” the amount of work it would take to finish their product.
S, M, or L.” I learned that this basic T-shirt sizing is a software-industry
standard and works as follows:

S = one week to finish
M = two weeks
L = four weeks
XL = sixteen weeks

These estimates require a larger or smaller group of people such as
Aseem’s team to collectively create a project deadline based on a large
number of very subjective factors. One project might seem very hard to
one team member, while another team member might find it quite easy,
but they have to rely on one another to create this collective estimate.
How to determine this collectively? Jelena addressed this problem when
she asked, “How could I assess something I don’t even know how to build
yet?” Developers are forced, in their producer-client relationship, to create
an estimate of the amount of time it will take them to complete a software
project. In order to create this estimate, they need to have a methodology
for how to build something before they start, which as Jelena pointed out,
they cannot.

The method of building something often arises while building it and not
beforehand. The process is messy and full of improvisation (Feyerabend
1993), a reality that is not accounted for in the producer-client relationship.
As a result, a software development team can become frustrated with their
customer after a few years of working with them and estimate that the com-
pletion of a project will take longer just to annoy the customer. The problem
again arises out of the customer’s belief in the myth that the developer knows
exactly how to build a particular software project. The customer will often
demand something that seems useful for their users, but this demand will
be difficult or impossible for the programming team to fulfill. Returning to
Aseem’s example of building multistop routing for electric vehicles, Aseem
explained his impressions after attending a meeting with representatives
from a luxury sports car company that was building a new EV.

84 CHAPTER 3

Now [the car company] thought, “We want our drivers to be able to
drive madly like a [sports car] consumer,” so they asked us to make an
estimated time of arrival for that—so keeping the user experience as
close to a non-EV car. They wanted this on top [of their other demands].
My reservation is that it neglects a lot of things we do under the hood.
Like time awareness [certain roads are blocked at a certain time, speed
limits done at certain times] that we calculate. They want to override
our current ETA [estimated time of arrival] predictions. Their idea is
that a fast [sports car] driver will think that they can reach their charging
station in time. The problem is that time awareness is off. The problem
is that we do a hell of a lot of calculations to assist the driver. I can do
ten different computations with ten different modules, and then give
them this. But this takes so much computation. If we make a hack, I will
compromise quality. To build their feature we would have to change the
whole foundation.

Returning to our framework of the anarchic organization here, a cus-
tomer is making certain demands based on “inconsistent and ill-defined
preferences” (Cohen, March, and Olsen 1972, 1). Liz’s team “discovers
preferences through action more than it acts on the basis of preferences”
(Cohen, March, and Olsen 1972, 1). While the EV team might have custom-
ers and a seemingly straightforward product, deciding on how and when
to finish a software project, or the scope of the project itself, is tricky. This
is where the relationship between the myth of knowing and stuff going
wrong really comes to the forefront. Aseem’s customer in this case believes
that Aseem and his colleagues can make the EV routing system behave in a
similar way to the system in a regular petrol car. In this case, the customer
is forgetting the complexity of a software system, that a software project is a
messy creative project and is highly contingent on the software legacy—or
the lines and lines of code that the new project is sitting and drawing on.
Here, software’s complexity makes it “difficult to impute a set of preferences
to the decision situation” (Cohen, March, and Olsen 1972, 1). A customer’s
assumption that the software team can just figure it out and exercise control
over these complex, highly fickle machines does create messy, problem-
atic, hack-driven projects that are prone to crashing. This example shows
that Cohen, March, and Olsen’s metaphor of the “anarchic organization”
extends beyond the walls of the organization itself and also into the rela-
tionships between customers that help further the chaos, anarchy, and stuff
going wrong.

Where Stuff Goes Wrong 85

A Stack of Hacks

Up until now, we have discussed how programmer-to-programmer
relationships—their knowledge gaps (nonknowledge or the need to pre-
tend), need for explanations, misunderstandings, and frustrations—can cre-
ate chaos and complexity in software projects, helping to define the software
company as an anarchic organization. I also described how the customer-to-
product owner relationship can cause software to be faulty and teams to be
frustrated. The final and perhaps most significant element that leads to things
going wrong is the material object of software itself: layers and layers of code.

One common term for a messy coding style is a “hack,” as Aseem
explained previously, meaning a rough way of building software. We can
liken a hack to the way a house might be built by an inexperienced or sloppy
builder: the foundation is shaky, the materials used are of poor quality, and
perhaps the structure doesn’t account for the electric wiring or plumbing.
A hack in coding is when developers use various coding shortcuts, do not
account for the larger architecture of a system, or overlook the style of code
with which their code interacts. As Aseem explained after his meeting with
his team members,

I feel that the lack of hack-driven implementations and lack of archi-
tectural vision promotes incremental hacks. You can build a house and
make it stable for some time. But I know that you go to the [meeting
with a customer] and say, “Well we know our quality is bad; somebody
decided to make a hack and decided to incrementally improve.” Incre-
mental improvements end up in spaghetti code . . . ​Today we are adding
features on top of it, but it is a leaning tower of Pisa.

Here, Aseem describes something called “hack-driven implementation.”
Hacks are often done out of a lack of time or are the result of a messy, cre-
ative, improvisational state of coding, but they can lead to interesting design
ideas. In Aseem’s world, where software development follows a methodol-
ogy and software developers have an “architectural vision” before they build
something, software should last for generations to come, and hacks make
maintaining the software much harder for the people who will work on the
project in the future.

With or without a vision, programmers cannot predict how a system will
run before they actually build it. This is quite specific to software develop-
ment: What a software developer makes today can react poorly with other
pieces of code being built in real time or built years before. If a system is

86 CHAPTER 3

built quickly, sloppily, and messily, then something called “spaghetti code”
arises—an entangled mess of source code that has a complex and tangled
control structure. Spaghetti code is especially common in systems using
many “goto” statements (used to jump or link one line of code to another).
As computer programmer Bill Blunden writes, “Like a mound of spaghetti,
when you try to pick up a few strands of pasta with your fork, you end up
having to lift everything” (2003, 23). A lot of spaghetti code means that any
change (imagine pulling out one strand of spaghetti) will affect the rest of
the stack of code (the mound of spaghetti). If a developer tries to build a new
feature when working in a complex system of spaghetti code, they will either
have to take longer to build the feature, find other ways of building it, or not
build it at all. This type of code can deeply impact the design process of a
system: slowing down bug fixes, limiting how features are built, or creating
more bugs in a system. In order to solve this problem, developers need to
have a vision and create modules that are not that codependent.

Legacy Monsters

Another (and perhaps the main) code-based reason for misunderstandings
and mix-ups during software development is legacy code. As you are likely
starting to see by now, developers don’t simply write new code every time a
customer wants new software. They build on top of the foundations of other
software that came before it, much like building a house. When constructing
a house, one can build a new construction from scratch, renovate an exist-
ing house, or just use parts of the foundation and add on top. A software
project is much the same. Code is often built on top of older code, much
like adding new floors to the foundation of a building (Brooks 1995). Legacy
code is also constantly being added to and patched, like new additions to
the house. Patching is also an inherent part of legacy code as it denotes that
legacy code is constantly in the making, neither new nor old but part of the
entire software system.

The term “legacy code” has a wide range of definitions: It sometimes
refers to code acquired from another company, and at other times it refers
to code that was left behind by people on the original development team,
who moved on to other projects, or found other jobs in different companies.
Some developers define legacy code as a form of inheritance, meaning that
they inherit code or a project to work with. For example, one developer used
this sense of the term to explain a problem with a feature: “We realize this is
a design defect that we inherited from others.” Here, a problem with their

Where Stuff Goes Wrong 87

software was inherited, not something of their own making. Inheritance
implies that the developer can absolve the system of problems: Somebody
else screwed up, and the developer’s job is to clean up the mess. It also
absolves the developer of any responsibility, placing the blame on other
anonymous developers who came before them and left them with code that
doesn’t work or is causing problems by infecting other code, making their
software more complex, full of bugs, etc. Legacy is also something to deal
with, to be managed, and to be acted upon. A programmer can’t just ignore
legacy code. As another developer wrote to his team to explain the cause
of a certain bug, “the problem is the script that does this—it was never
refactored [rewritten] and [it was just] inherited.” In this case, legacy code
has to be updated or “refactored,” and if left alone, it can mess up the rest
of the system.

The turn to cloud storage was a big catalyst in the growth of legacy code.
As computer engineer Bill Blunden explains, “Engineers in the days of
yore had to meticulously balance memory usage with the need to minimize
the number of CPU cycles consumed. . . . ​Engineers today are not faced
with the same pressures to squeeze every ounce of performance out of their
programs” (2003, xvii). What Blunden means is that due to improvements
in cloud storage infrastructures, computing memory is now limitless. Today,
companies like MiddleTech do not have to save their code on their com
pany’s hard drive or in their office basement, but instead, they send it to
“rented” storage spaces provided by huge tech companies, Amazon Web
Services (AWS) being the biggest global player (others include IBM Cloud,
Google Cloud, and Microsoft Azure). As you can imagine, software devel-
opers do not have to worry about having too many lines of code. As long as
their software works and the performance of their software is up to speed,
a lot of legacy code can be lying around in Amazon’s server farm in Iceland.
Fernando, a developer in the front-end team, said, “It’s very tempting to just
forget about a project if it fails you. You don’t delete from the source code.”
Here, legacy code is just like old objects stored in a basement—you can keep
piling up the junk, and nobody will really notice.

An additional reason for leaving code lying around is, as another devel-
oper explained, a lack of trust in your new system: “Well, you are not sure
your new way will work. So you just keep it. Because you might want to
switch back to your old version at another time. It’s like a safety net.” As we
know from previous chapters, software projects often fail or get scrapped,
and software developers make mistakes or wrong design decisions, so keep-
ing the code is a safety net.

88 CHAPTER 3

Developers also have different relationships with legacy code. In his
industry-specific text Working Effectively with Legacy Code (2004), com-
puter scientist Michael Feathers wrote,

If you are at all like me, you think of tangled, unintelligible structure,
code that you have to change but don’t really understand. You think of
sleepless nights trying to add in features that should be easy to add, and
you think of demoralization, the sense that everyone on the team is so
sick of a code base that it seems beyond care, the sort of code that you
just wish would die. Part of you feels bad for even thinking about making
it better. It seems unworthy of your efforts. (Feathers 2004, xvi)

Some developers, like Feathers, think of legacy code as a monster, like
Frankenstein’s stitched-together creature, that needs to be tamed. Legacy
code haunts some software developers as it has either been written in an
older programming language a developer does not understand, or it has been
fixed or patched so much that it has now become too complicated and messy.
Initially, a given code might be well written, but then it might undergo a
number of modifications based on the premise of customer demand, causing
what was originally well written to evolve into a complex beast.

On the other hand, others think of legacy code as a wise elder, an impor
tant, tried-and-true, and robust part of one’s software ecosystem. Dima, a
senior software developer in the back-end team, told me that he has respect
for legacy code: “If you don’t need to change the functionality, why touch it?
It’s working ages in production, probably free of crashes and bugs, proven by
years of running devices. Any new code is a risk.” So perhaps it would help
if we think of legacy code as an old, wise grandmother. In some instances,
her grandchildren would treat her as a source of wisdom and knowledge
with years of valuable experience. In other cases, she would be treated like a
slow, annoying burden, speaking at snail speed, ranting about the “good old
days,” perhaps occasionally blurting out awkward, prejudiced comments.

Dima suggests this impatient approach to legacy code is the go-to strat-
egy of inexperienced developers: “In my personal opinion this is ‘juniorish,’
a mindset to rewrite everything since the system is complex and you don’t
understand it and it looks to you like a spaghetti monster. After years you get
used to that and know all the tentacles of this monster and the big picture
of the system now in your head.” Interestingly enough, while Dima wants
to move away from the junior developers’ perception of legacy code as a
scary monster, he still imagines it in similar terms. For Dima, it is a friendly
monster, but it’s still a monster.

Where Stuff Goes Wrong 89

So, to summarize, legacy code is code written by somebody else, and
because it is written by somebody else and inherited, it is something to be
managed, explained, and clarified to the other developer. As Leavitt Cohn
explained, “Working with code involves working across time and building
legacies and inheritances that serve as connections not only between prac-
tice and the functions of a tool but between different ways of working with
systems over time” (2019, 439).

Legacy code creates another level of complexity because not only is a
programmer’s code dependent on the team they are currently working with,
as well as the other teams working on other pieces of the software, but it
is also dependent on layers of code that came before (like the foundations
of a house), which are often hard to challenge, remove, or rework. During
one of my many group lunches, I was sitting with Ori’s team at an Indian
restaurant, and they started to explain how conflict arises when dealing with
legacy code, as well as the deep entanglements of code:

“You see,” Jan explained, “the system is sensitive and it easily breaks. But
it’s also because some systems have been running for so long that you
hardly challenge [the system],” he said. “Take somebody who is building
a wooden toy. Let’s say they want to change the color of the toy or add
something to it. This wouldn’t really change the basics of the wooden
toy. The toy would stay the same. It wouldn’t break. But in software
there is this difference that there are so many entanglements . . . ​There
are so many dependencies you can’t see. You start building something
and you can’t really foresee what will happen . . . ​But you can’t undo it
sometimes.”

The “many dependencies you can’t see” makes it very hard to address
certain issues that might make the current project problematic. For example,
if one programmer finds that a piece of legacy code is complicating the rest
of the system, and if the programmer who wrote the code is still in the com
pany, the programmer dealing with the legacy code can just approach the
programmer and ask them what their programming logic was when writing
such a monster of a mess. But most of the time this is not possible. One of
the developers at MiddleTech made me a chart showing how much of the
code base at MiddleTech is legacy code by writing down each year since
the software project started in 2005 and the percentage of code that is still
being used in the main map-operating system.

At MiddleTech, a small percentage of the code base (15 percent) is being
used from legacy code written in 2005. This example of the various ways of

90 CHAPTER 3

both understanding and working with legacy code inherently “[troubles] the
valuations that we place on current software development” (Leavitt Cohn
2019, 439) and helps illustrate yet another reason why stuff goes wrong.

During this lunch hour, I began to understand that the code base is both
quite confusing and incomprehensible for the developers building it, which
makes it mythical and full of blind spots; it is very interdependent and inter-
twined (making certain changes difficult), and often it’s also a really large
mess that needs to be cleaned up or refactored, which becomes especially
difficult if the code is quite old.

Both Leavitt Cohn and Nathan Ensmenger wisely pointed out that software
is a tangible record. Within this record, one can discern not only the intentions
of the original designer but the social, technological, and organizational context
in which it was developed (Ensmenger 2010), and legacy code exists as a kind
of record or organizational memory of “various pain points, like scars from
wounds that have mostly healed over” (Leavitt Cohn 2019, 430).

FIG. 3.1 Legacy code at MiddleTech

Where Stuff Goes Wrong 91

Through this example of legacy code, we can see that software possesses
“a secondary agency” that supports or extends “the agency of some primary
agent: the programmer, the corporation, the hacker, the artist, the govern-
ment, or user” (Mackenzie 2006, 8). This understanding of what software is
highlights that stuff doesn’t go wrong only in software development because
manager-to-customer or programmer-to-programmer interactions involve
conflict and misunderstandings. Rather, code has to interact with other
code. This interaction happens between code written now, or written days,
months, or years ago. This complex temporality complicates the relations
between various layers and lines of code, causing stuff to go wrong.

The Culture of Good Enough

It was “feature-complete week,” and many developers were slightly more
on edge than usual. Even Charlie, who was normally quite a calm, Zen-like
character, was feeling the tension. He was a senior product owner, managing
the projects of various development teams and being the go-between for the
tech world and the customer. He was English and had moved to Berlin after
meeting his German wife during their studies back in the United Kingdom.
They now had two children, and Charlie seemed to approach both parenting
and his work in a happy-go-lucky, shit-happens sort of way, not getting too
overwhelmed by anything, knowing everything can be tackled with a good
chuckle and a bit of eye-rolling. He balanced his cynicism and jokiness with a
deep knowledge of how the company worked. I noticed that he was one of the
rare product owners who had a sociological sensibility, a bird’s-eye view of
what was going on around him. He spoke knowledgeably about code, bugs,
breakdowns, and updates, but he also knew a lot about the mobility industry
he was in and always had something interesting to say on various topics, like
the social consequences of managing knowledge workers.

That day in the office, I noticed Charlie in various parts of the office—in
the kitchen and hallways, pacing around as if he were late for a meeting, his
eyes wide as if he were thinking about something very important. I walked
up to him and asked him what was wrong. He said that he was trying to put
out a fire.

Later that afternoon, after I asked him a few times about the “fire” that
he was trying to put out, he offered to show me what his work was all about.
He grabbed his cup and his laptop, and we walked over to the common cof-
fee area near the staircase. He opened up his laptop to an internal site called
“Gerrit,” a free, Web-based team code collaboration tool that many software

92 CHAPTER 3

companies use for reviewing code. This site displayed a list of “merges,”
meaning updates or additions to the code base. This list included the type of
update, who updated it, and the status of the update (if it passed or failed).
As one developer explained, the Gerrit code review system is a way in which
other developers are forced to look at the code, review it, and say, “ ‘Oh it’s
good enough, we want it in’ or ‘No, they have to improve it,’ and then they
write their remarks about what has to be improved.”

Good-Enough Code Review

As I have now explained the various human and technical ways that things
can go wrong in software development, I would like to note that there are
attempts to fix and contain these mistakes before code gets shipped to the
customer or user, yet problems still slip through the cracks, resulting in
good-enough code. One important mechanism for trying to prevent stuff
from going wrong is the code review system, which, as we learned from the
previous chapter, acts as a peer review process when developing software.
While in the last chapter I addressed how code review can be a mechanism
for collective style acquisition and encourages closeness among develop-
ers, I’d also like to highlight that code review can be a way of writing good
enoughness into the software system, leading to stuff going wrong.

If we go back to the Electric Vehicle (EV) team comprised of around
five developers, we can understand that collectively, they often have to
solve a routing problem typical of electric vehicles: how to optimize a
driving route for a car that has to secure charging stations every few hours.
Before their project is finalized and implemented into a vehicle’s software
system, their work is split into small subtasks. At the start of the project (the
project’s “sprint period”), the group of developers would sit together in a room
with their manager or product owner, and together they would define the
subtasks that needed to be done to complete the project. These subtasks are
called “tickets.” The next day, each developer would take a ticket and start
working on it. A ticket, in the case of the EV team, could be, for example,
to match the library for EV charging stations to a route library. Jelena would
then take this ticket, work on it, and then upload it or “push it” to the Gerrit
code review system for review. Her colleagues would then give her a score
between +2 and −2, a rating system we encountered in my introduction.

Ori once explained that the main purpose of the code review was to
monitor collectively whether each line of code that a developer uploads into

Where Stuff Goes Wrong 93

their team’s main repository actually fits and will work with the code that the
other team members have created. Developers often peek over their desktop
screens and yell out to a colleague, “Can you review my code please?” or
“Hey, why did you give me a −1!” Ori’s lines of code have to speak to another
developer’s lines of code, and these collections of lines have to communicate
with one another when running within the entire system.

The code review systems are an inherent part of a corporate software
environment, a crucial part of a production pipeline. This code review sys-
tem is necessary because a software product has to be “shipped” to its users
within a certain time frame in order for the software company to remain
competitive on the market, and that product has to work without major
bugs or breakdowns. Here is where the nuance lies: what is good enough to
be shipped? How does a collective group of software developers negotiate
what is good enough, especially on such a large scale?

Large-scale corporate software environments, made up of teams of doz-
ens of developers, need code review systems to make collaboration and
communication with a large amount of software updates easier. This is where
a system like Gerrit comes in. Michael, a developer who used to work at Mid-
dleTech and who has since moved to a small start-up company, explained
that the code review system at MiddleTech is a good example of how a big
company deals with the review process. After moving jobs, Michael and
his new team of two or three people don’t have a review process, but rather
the team members communicate with one another before starting their job,
agreeing what to work on that day, and cooperating throughout the develop-
ment process. Merging a change into the whole system becomes more of a
formality in his case rather than a necessity.

In noncorporate contexts, software developers working in a small team
without a strict deadline might use an informal code review system, giving
each other feedback much like a band of musicians would give each other
tips and tricks on how to make a song better. But a code review system
in a corporate large-scale software project environment is a formalized,
software-based assembly-line.

James, a team leader, explained to me: “Gerrit is a key part of our culture.
If a developer has a piece of code, he uploads it to Gerrit. You collaborate
together to make one commit [the act of uploading a piece of code] happen.
This is not a competition for making code. It is trying to work together. Try-
ing to transfer information and knowledge.” Sebastian, another iOS devel-
oper (building the application for iPhones), uses the metaphor of a tree to

94 CHAPTER 3

explain how code review works: “It’s like a tree and every coder adds another
branch to that tree. In order to merge their changes (branches), there [have]
to be certain tests done. Only after these tests can the branches be really
incorporated as part of this tree.”

Using Sebastian’s metaphor, when a programmer adds a “branch” to
Gerrit, it is visible to other developers, and the code waits for at least two
developers, plus an automated bot, to approve the code. At MiddleTech’s
front-end team, developers were encouraged to look at an incoming
review every one to two hours, although one developer informed me
that this rule “often didn’t happen anyways, but a review of your work
did take place every twenty-four hours.” A review in the Gerrit system has
five variables:

−2: Do not submit
−1: I would prefer that you didn’t submit this
0: No score

+1: Looks good to me, but someone else must approve
+2: Looks good to me, approved

As I mentioned in the introduction, Michael, a web developer, half-
jokingly once confessed that on Fridays, when he feels like leaving work
and running off for a beer, he would quickly go through the code review
system and just add +2, +2, +2 to all the tickets waiting to be reviewed. How
much of this is actually true is a mystery, but it shows how variables such
as fatigue, the weather, the time of day, and the relationship between the
developers themselves actually factor into their ratings.

While Michael was joking, a bit of his humor was of course true in
describing what was happening in the field. Many developers I spoke to do
not uphold strict excellence standards but just assume that the code will
be good enough to work somehow. The more rushed developers are, the
more sleepy they are, and the more focused they are on other things (like
their family issues, their presentation for their boss that day, or what they
will have for lunch), the easier it is for them to let certain code slide through
the code review system, making way for merely good-enough software. The
code review system is thus a collective way that good enoughness becomes
ingrained into the software system as no software moves forward without
peer approval. While undoubtedly some developers are strict reviewers and
aim for certain forms of perfection, others can just click +2 for code that
might not work. Even if some developers review in a “this-code-is-good-
enough-for-now” way, it will impact the entire software system.

Where Stuff Goes Wrong 95

Firefighting

Yet after the code is uploaded to Gerrit, there are still people like Char-
lie whose job is to monitor these updates and changes, especially during
the last week of production, which in this case was Week 44. This was
feature-complete day, which meant that all features or changes should be
finished and merged into the code base. Merging doesn’t happen seam-
lessly. Charlie often anticipates that something will go wrong, and during
days like these he always keeps his computer open in order to monitor
the progress of each merge. During merging, Charlie explained, the code
is automatically tested, or reviewed by fellow programmers, and because
code tests can go wrong, or code review can overlook some mistakes,
various problems can arise.

I asked Charlie, “So is it kind of like putting two pieces of a puzzle
together, but one person chopped off one arm of the puzzle piece, so it
doesn’t fit into the other piece as it was intended to?”

Charlie explained, “You have to imagine something like a Google Doc
that two people are working on. And one person makes the changes while
the other person made changes already to what the other person was work-
ing on simultaneously. When they merge these two documents together,
they can have a conflict.”

Charlie also explained to me that “feature-complete day” is usually when
people start “chucking stuff in,” or roughly merging their code in, “and every
thing crashes.” “Firefighting” is inevitable for Charlie. The term “firefighting”
describes the attempt to make sure that not too many things crash at once
in order to avoid “things getting really bad,” which can include (as I men-
tioned earlier) calling on developers to build so-called “hacky-solutions” in
order to fight a fire. It is obvious to Charlie that things will go wrong, but a
product owner like him can monitor the situation, and such monitoring or
firefighting helps mitigate any giant mishaps.

As we can learn from Charlie, firefighting is an inevitable part of software
development. For Charlie, there will always be some sort of fire he is trying
to put out. These moments of firefighting are neither shocking nor disap-
pointing. Charlie explains this all to me quite matter-of-factly. I thought
about the stereotypical image of the firefighter, who always seems quite calm
in the face of the firestorm that is coming their way. Fires always happen,
and firefighting isn’t seen as annoying but as a natural part of living with
fire. The same can be said of software—the reality that things will break is a
natural part of living with software.

96 CHAPTER 3

Good-enough software is, as Collins et al. (1994) highlighted, a principle
that understands that every piece of new software can be assumed to contain
errors, even after thousands or millions of executions. In the mid-1990s, the
concept of good-enough software was “getting a lot of attention” in order
to counteract the “we’ll deliver high-quality, bug-free software on time”
battle cry (Yourdon 1995, 78). Firefighting, chucking stuff in, and building
quick hacks all help to illustrate that programmers and their managers, like
Charlie, are not focusing their attention only on creating awesome software
but are trying to keep stuff from going completely wrong or trying not to let
the whole house burn to the ground, so to speak. Being just good enough to
survive in the face of a huge fire is an achievement. In this culture of keeping
stuff together, a development team understands that they cannot deliver
perfect software and becomes satisfied with code that is good enough (as
the programmer describing the Gerrit code review explained).

Conclusions

By this point, I hope you are getting a good picture of the various social and
technical dynamics inherent in software development and the ways these
dynamics can cause software to go wrong. This overview was in no way
exhaustive, but its purpose was to give you a picture of the chaos, conflict,
and misunderstanding inherent in software development.

This chapter zoomed in on the knowledge work of Aseem and his col-
leagues in order to show how conflict and controversy are unavoidable in the
software development process and are an important part of understanding
its culture. This inescapability stems from a variety of things: For one, work-
ing with software requires heterogeneous forms of knowledge that permeate
the development process. Software developers often change jobs within a
software company or between other software companies. Or while writing
in the same programming language, another team might have a completely
different task, requiring the programmer to possess a very different skill set.
While these various forms of knowing might seem quite similar to those in
any large complex company, the difference with software is the rapid speed
of change within the industry, which is rooted in the update culture I men-
tioned earlier. A lot of software quickly becomes obsolete. A lot of program-
ming languages have become redundant. Code becomes legacy code and
has to be updated, often by programmers who know little about how this
legacy code was programmed in the first place. This rapid speed of change
during software development challenges the stability of the knowledge of

Where Stuff Goes Wrong 97

the people involved. Aseem and other programmers I encountered spent a
few hours a week studying, learning, and reading up on new programming
trends. Programmers who take this kind of initiative further diversify the
heterogeneity of knowledge within one team, dividing it into those who
study, or whose knowledge evolves with the speed of change within their
industry, and others who are left behind.

This chapter discussed how product owners, managers, and program-
mers give one another, as well as their customers, very vague and subjective
estimations about how long a software project will take. This is also part of
the myth of knowing as it involves pretending to understand the method
of building a software project before it is actually built. These subjective
estimations lead to misunderstandings and rushed “hacky solutions” (or a
“stack of hacks”), which result in buggy code and general frustration for all
parties involved.

This isn’t to say that the myth of knowing is only about pretending and
faking it. The myth of knowing also enforces a sense of trust between two
parties. What I mean here is that a customer believes that their developer
knows how to build their software product and trusts them to figure it out.
In the case of Aseem’s colleagues who voted on something they didn’t fully
understand, they trusted that Oleksiy, their team leader, would indeed know
which solution would be best. This can also be seen as good-enough knowl-
edge, where Oleksiy’s team has a good-enough understanding of a system
to follow along with what’s happening but entrusts Oleksiy with knowing
the details and carrying out the job.

But where does this myth of knowing come from? Why not just give
up and give in to the utter chaos and unpredictability of programming a
software system? I would argue that this myth of knowing is the result
of tensions between those who demand full precision, transparency, and
knowledge of the software system (like, at times, Aseem or the customers
he was working for) and others who give in to the reality that development
is messy, unpredictable, and unknowable (like, for instance, Jelena). These
tensions of knowing and not knowing permeate the relationships between
the customer, product owner, and the developer; between the older devel-
oper and younger developer; between the theoretical developer and practi-
cal developer; and between the manager and their developers, as well as the
layers and layers of code that come between them.

This myth of knowing is the result of an engineering culture that follows
a certain scientific method and craves intellectual security in the form of
clarity, precision, “objectivity,” and “truth.” Engineers follow the principles

98 CHAPTER 3

of critical rationalism, which demand that they “take falsifications seri-
ously; increase content; avoid ad hoc hypotheses; ‘be honest’—whatever
that means; and so on.” Engineers are also taught the principles of logical
empiricism: “be precise; base your theories on measurements; avoid vague
and untestable ideas; and so on” (Feyerabend 1993, 218).

Yet, as Paul Feyerabend expressed, these scientific principles and meth-
ods give an inadequate account of science because science is much more
“sloppy” and “irrational” than its methodological image (1993, 218). He
states that there is “only one principle that can be defended under all cir-
cumstances and in all stages of human development. It is the principle:
anything goes” (Feyerabend 1993, 39), which is really the only principle
that does not inhibit progress. “Anything goes” allows for chaos, messi-
ness, and mistakes.

So, as a software development culture is characterized by its heteroge-
neous forms of knowledge, moments of explanation and translation, and a
permeating myth of knowing, stuff can clearly go wrong. Misunderstandings
fall through the gaps between knowing and not knowing. Programmers and
their team members mistranslate or do not fully explain something to other
team members. A software system is not fully knowable, and code written
one day mingles poorly with other pieces of code written tomorrow or years
before. These are all symptoms of this culture of good-enough software—of
the instability and imprecision that is software engineering.

In this chapter, I framed the software company as an “organized anarchy,”
where the purpose of the company or what it’s working on is not entirely
clear, where the company’s “own processes are not understood by its mem-
bers,” and the boundaries of the organization are uncertain and changing
(Cohen, March, and Olsen 1972, 2). In such conditions, it becomes quite
inevitable that imperfection and good enoughness, rather than excellence
and precision, become the status quo. In the next chapter, I’ll turn to how
corporate management and various methodologies try to tame this anarchy.

99

4
Managing Good Enoughness

It was warm on this particular August afternoon, and after a few meetings that
day, I felt like walking home. I caught Simon’s eye across the room and tilted
my head toward the exit door. Like most days, he quickly and without hesita-
tion nodded, immediately recognizing that I wanted to walk home. I grabbed
my bike, and we started walking toward Prenzlauer Berg. The weather was
sticky, the exact temperature of my skin, and Berlin’s parks were buzzing with
naked kids in water fountains and grannies eating ice cream.

When you work in a large institution like a corporation, you’re often
placed in situations in which you interact with people you would never have
thought of meeting. Simon and I were an unlikely pair—a straight-talking,
ambitious manager in charge of one hundred people, walking down the street
with a slightly chaotic ethnographer. But there was something I instantly
liked about Simon from the first moment I met him. It was the kind of feeling
you have when you meet somebody you know you will be friends with for a
long time. He was curious and inquisitive, which made me feel that he was
interested in the things that I was saying and the world around him. He always
had a response, almost before I could finish my sentence. Maybe it was also
because he was Israeli, and I have always found Israelis familiar people too
(a sense that somewhere down the line our great-great-grandmothers might
have bumped into each other in a Polish shtetl somewhere).

Simon and his family lived on the third floor of a beautiful nineteenth-
century apartment building on a small street in Prenzlauer Berg, the type
of street that makes you want to walk up and down it a few times to imagine

100 CHAPTER 4

you are living on it and enjoying every minute. In 2015, Simon and his wife
decided to leave the conservative confines of Israel for good and move to
Berlin. Both he and his wife were rather timid people, quite the opposite of
the adventure-seeking, globe-trotting types you might think would immi-
grate at the age of forty. Yet they exuded a “we did it” energy that perhaps
stemmed from the fact that they successfully reinvented their lives in Berlin.
Simon was quite happy with the city he was living in, filled with the excite-
ment found among ex-pats who didn’t take anything for granted. Every new
café, every trip to the grocery store, every walk to work was something
special because these experiences represented a break from the life he had
left behind in Israel.

The friendship between us unfolded quickly and naturally. I found it a
blessing to come across somebody in my field who wanted to discuss my
insights and actually had something to say, something to interpret. “Okay,
so what do you think about X?” he would ask me. As we walked, I asked him
about his day. He grumbled a bit, frustrated at his managers who were “tak-
ing the company in directions” he thought were completely wrong. I asked
him if this had anything to do with their company downsizing. “There is just
so much waste in this company, Paula,” he replied. The word “waste,” when
discussing a person or a group of people, will always make me shudder. He
looked down at his feet and shook his head. “Months and months of people
working on projects that don’t work or not working on anything at all.”
I asked him what he would do to fix the problem, what he thought was a
“good vision” of management. I also asked him what he hoped was happen-
ing in the company on a structural level but wasn’t. He didn’t really know. He
just thought that people weren’t being creative, weren’t showing initiative.
I probed him: “Maybe they do care, but management is just expecting too
much from them.” This notion prompted Simon to launch into a discussion
about what great companies do to really motivate their workers.

I reminded Simon of the article he sent me a few days before about Ama-
zon’s “Leadership Principles.” Many tech companies have slogans, principles,
and rules, which permeate their office spaces and company Web sites. On
its own Web site, Amazon states that the company “uses [its] Leadership
Principles every day.” Of the list of sixteen, some include “customer obses-
sion,” “leaders are right a lot,” and “hire and develop the best.”1

“Some of those principles creeped me out,” I told Simon. He looked a bit
surprised. “What do you mean? I genuinely think these are great principles.”

1. “Leadership Principles,” https://www​.amazon​.jobs​/en​-gb​/principles.

https://www.amazon.jobs/en-gb/principles

Managing Good Enoughness 101

I felt a bit awkward as if I had offended him. I chuckled nervously and said,
“I can’t recall the exact principle, but there was something in there about
putting the customer first. I think if you start putting the customer first,
there is no limit. Because you are providing a service for somebody who
has limitless demands. And when somebody has limitless demands, they
don’t take into account that the person providing the service is limited.
They have limited time and energy. You know what I mean?” He shook his
head. “I just think there is a limit to everything,” I continued, “and places like
Amazon, with people crying at their desks, are not worth the ten, twenty,
one hundred customers who will be very satisfied with a service. You have
to care about the providers.”

Simon responded, “Look [he always seemed to start with that word,
“look”], there is a balance to everything. You don’t want people crying at
their desks. Or maybe not always crying.”

I laughed, “Like the I-miss-my-mom crying is okay.”
“True, exactly. But you know what I mean. You don’t want people to feel

crushed. But you also have to understand the customer, remember that you
are doing something for them.”

“I guess I agree with you to some extent. I just don’t know how to ensure
this balance will happen. When organizations get too big, things get lost
along the way, people’s emotions get forgotten.”

Simon replied by sharing an anecdote about Amazon. They invited him
for an interview. A recruiter contacted him and seemed mildly interested in
Simon’s profile. So Simon called them back. He was then bounced around
from one recruitment officer to another, to another. All internal staff. “Their
disregard for people was appalling. They just didn’t care. They would have
this American sort of vagueness to them when they said, ‘Let me know what
else I can do for you.’ But you haven’t done anything! And then I e-mailed
them, and they said, ‘Oh wait, wow, tomorrow a representative from the US
is flying in; let’s schedule you into an interview tomorrow.’ ”

“And did you go to the interview?”
“Yes, I did. But I just had to drop everything.”
“So you agree with me? See! This company is so customer-first that they

forget to think about their employees. Or future employees.”
Simon just shook his head and chuckled. “You’re right,” he said, and we

continued walking.
During my second year of fieldwork, I walked home with Simon almost

every afternoon after work. But there were moments in my interaction with
Simon that made me feel somewhat uneasy. This unease stemmed from the

102 CHAPTER 4

symbolic and actual power that Simon held as a manager of the one hundred
developers I was researching. Simon could fire people. He could hire people.
He could rearrange his employees’ workspaces and decide who they worked
with. Both Simon and I were cautious about expressing our friendship at
work, as it would make my own role as their team ethnographer that much
harder. I made it a rule not to talk about his employees; although, despite this
rule, I still felt watched every time I snuck out the back door and wandered
down the street with him. I worried sometimes that some of my interlocutors
wouldn’t talk to me if they found out how close Simon and I had become.

I knew Simon and I sometimes believed in different things, and the sto-
ries I would tell about his company were not necessarily the ones he was
interested in hearing. He was also embedded within a management culture,
while I was focused on critiquing the system he was part of and was build-
ing. Our discussion about Amazon is a perfect example: It was ingrained in
me, as a sociologist, to look at the forms of exploitation within a company,
while Simon was interested in how Amazon mobilizes efficiency. These were
the times we agreed to disagree.

Managers Used to Be Developers Too

In the previous chapters, you saw the world through the eyes of the software
developer. But in order to paint a more complete picture of corporate
software development culture, I can’t avoid describing managers, man-
agement culture, as well as certain key production narratives that perme-
ate the software development workplace. Management, the people who
directly report to management, and those who help managers implement
software management methods are important to programmers. The people
in these roles influence the flows of the programmers’ work and attempt
to reframe their work culture as well as the narratives of production. They
care about performance and customer satisfaction. They also implement
software development methodologies that help push this peak performance
and customer satisfaction. To illustrate this latter function of management,
I will explain a particular methodology used at the MiddleTech office that
presents programmers with a set of schemes, stories, rituals, and routines
that help enforce this narrative of peak performance.

At MiddleTech, Simon was a senior research and development manager
of navigation, which meant that he managed all the software projects of around
one hundred software developers who were working on navigation technol-
ogy. These one hundred developers were then divided into ten different

Managing Good Enoughness 103

subteams who spent their days optimizing, fixing, and building the software
that would help navigate users to their destination. Each of these subteams
had one leader, the team lead, who would help them complete their tasks
on time. And all these leaders would be under Simon’s watch. His role was to
plan the general direction of the work of all the teams and to make sure that
these teams were “performing well,” which meant that they were working on
time and coming up with creative ideas and “innovating” while also creating
software that would withstand the test of time.

Simon’s career in software began with his job as an engineer for a com
pany that was an integral part of Israel’s tech boom of the late 1990s/early
2000s. Their main business was built around a centralized hardware system
that supported voice and fax messaging, which was then sold to telecom-
munications companies and other large enterprises that sold the voice and
fax services to their customers. Before the smartphone, one’s voice in-box
was a precious tool. Today, this type of technology is obviously obsolete.

Much like many tech managers, Simon started his career in software as
a programmer. Having doubts about his ability to code, he progressed to
being a team manager. Many developers try to avoid becoming managers
because they know that the management path will take them away from the
programming work they like so much. Some also want to avoid the stress of
being a leader, or they lack leadership or organization skills. Simon didn’t
have these qualms, however, and he found that his ambition and competitive
streak made him better suited to a managerial role. Promoted to director of
research and development, he continued to work for this Israeli tech com
pany until 2011, around the time of the company’s collapse.

Simon’s professional history is also typical within the computing indus-
try. Middle managers are often sourced from a programming team. With
enough skill to understand what a programmer was working on and enough
drive and company loyalty to push efficiency, customer-facing innovation,
and competition, programmers-turned-managers became figures who
promised camaraderie and understanding among computer programmers,
as well as the drive for excellence and ambition for upper management. The
truth is a little messier, of course. As we know by now, software changes
rapidly. The voice messaging software that Simon was building at the Israeli
tech company is a perfect example. Practically nothing he was building in
the 1990s and 2000s is still used today. The programming languages he was
using are now obsolete or considered niche skills. Many programmers who
have become managers have told me that their skills quickly turned rusty.
This lack of knowledge (or partial knowledge) of how to program continues

104 CHAPTER 4

to challenge the management’s authority, giving the “real” programmer an
upper hand. So how does a manager gain control of a project and minimize
the moments in which the programmer has this upper hand?

Organizing for What and for Whom?

Most days during my second year of fieldwork had a steady rhythm: I would
spend my day in meetings, take lunches and breaks with software develop-
ers and their colleagues, and then end my workday with a forty-five-minute
walk home with Simon. I noticed the contrast between the developers and
the manager in my workday. Often Simon would have a completely different
perspective on why something was built or why a project shut down. I recall
a conversation we had about a few developers who felt frustrated when their
work was ruined. It happened in another team the summer before I set foot
on Simon’s floor. A group of developers were working on one feature for an
entire year. They loved what they had built, and they put a lot of creative
energy into the project. One day, seemingly out of nowhere, their manager
told them to abandon the project and start building something else. I asked
Simon, “Isn’t this tragic?” Simon didn’t see it as tragic at all. He told me that
developers see this type of occurrence as something sad only when they think
that they’re building for themselves. But if they remind themselves that we
are all here for the customer, then they should recognize that these types of
changes happen all the time.

From Simon’s perspective, software development is about building a prod-
uct for somebody. As he explained on our walk home, MiddleTech resides
within a service industry in which its software serves customers, and accord-
ing to Amazon, developers should be “obsessed” with their customers. What
does this mean exactly? On the one hand, being obsessed with the customer
means building software for somebody else, based on either the customer’s
or user’s expectations. This product-oriented perspective, which Simon and
many of his colleagues have, places demands on managers and their teams,
and these demands help organize deadlines, requirements, standards, and the
type of components that need to be completed for the customer.

On the other hand, if we take the perspective of the software developer, as
I mainly did in the preceding chapters, software development is primarily done
to build something cool. It’s a creative, highly intimate, highly social sport that
values beauty and elegance, with the developer at the center of all creation. This
tension—between the developers (who want to create, code, hack, and break
and fix stuff) and the managers and legal team (who have customers, deadlines,

Managing Good Enoughness 105

standards, and legal regulations to adhere to)—is a constant point of conten-
tion: how to care and compromise when building software, or how to function
in a system of efficiency and excellence when sometimes good enoughness is
all that is possible. Is the computer—the care and intimacy it demands and its
shaky, annoying architecture, which constantly breaks down—the object at
the center of a team’s organization and organized practices? Or is profit at the
center of a team’s efforts to organize? Or is it perhaps both?

This chapter highlights the competing organizational tensions within a
software development company and how good enoughness is both at the
heart of software management methodologies as well as the outcome of these
methodologies. I will focus on the role of the manager, as well as on one of
the many methodologies of software project management. Revealing these
competing organizational tensions also helps uncover the struggle to main-
tain control over the labor process. On the one hand, managers like Simon
and his team of micromanagers use software development methodologies
to break down and simplify the labor process in order to make production
more transparent and tangible within their management team. On the other
hand, software developers often attempt to retain control of the labor process
and push back against these methodologies, explaining that no method of
production can capture the complex, unforeseeable nature of software.

This chapter will focus specifically on how software development work
is managed and organized, who does the organizing, and how organization is
resisted. This will then help me explain how organizational methods struggle
to capture the complex, unforeseeable nature of software. I will also highlight
how developers engage with this unforeseeability to gain control of the labor
process. Aside from telling you more about Simon, I will also introduce you to
some of the people who work for him, including Chris, a “Scrum Master,” who
works directly with Simon to maintain productivity levels among the software
developers. You will also meet a few developers who work for Simon, and we
will return to some characters you already know, such as Aseem, the junior
developer we met earlier; his software developer colleague Jelena, who was
part of the EV team; and Ori, the data scientist/researcher.

The Team Reshuffle

Every second Thursday at around 10 a.m., Simon would host a Team Demo
for his one hundred developers. This demo (short for “demonstration”),
a widespread practice within the corporate software world, was an oppor-
tunity to share projects, accomplishments, and ideas with broader teams

106 CHAPTER 4

and/or departments. Each week a few teams would volunteer to show off
their work, and for five to ten minutes would stand up in the large conference
room at MiddleTech’s seventh floor in front of about sixty of their colleagues
and awkwardly point at a few slides. Christian, a more senior developer
(the head of the algorithm team whom Aseem looked up to in an earlier
chapter), would always buy breakfast for everybody. Rounding up a few
friends from his team, Christian would lay out packages of cheeses, meats,
jams, and breakfast rolls, and everyone would fill up their plates and sit
around listening to the week’s presentation. Buying food for the rest of the
team might seem like an over-the-top biweekly gesture from any regular
programmer, but Christian was widely respected as an astonishingly good
developer (with some like Aseem saying he was the genius of the entire
team), and his breakfast gesture fully established him as the unofficial king
of Simon’s navigation team.

Simon always opened these demos with a short pep talk. This particular
week, he started the meeting with the topic of the team reshuffling, which
would start the following week. The team reshuffle, which took place every
six to eight months, is an “exercise” (as Simon called it) that gives develop-
ers the opportunity to switch teams as well as their seating arrangements.
He began:

So, guys, we are a very large group, we need to break things down into
small focused teams in order to be autonomous, agile, and well synchro-
nized. It’s about providing feedback. It’s not about saying, “Yeah, just search
in the Jira [online project management software], and you’ll find what we
do.” Every decision we take is good for the time it was taken, but we need to
reevaluate it periodically and look internally to ourselves and say, “Assum-
ing everything is what it is, what can we do better? How can we be better
aligned?” We need to deliver our [software product]. This is the main goal in
our team. The other goal is to evolve our code base assets. We have a lot of
assets. We need to improve our online services.Simon then clicked to a slide
that outlined the structure of the Routing and Navigation team. The team
substructure showed the various product owners (known as POs) who are
responsible for each subsection. He also suggested that everybody look at
a little Q&A sheet that he uploaded onto the team’s internal site. There was
a lot of commotion. This type of reshuffle was tricky to do as it challenged
the stability of the team’s social networks, ways of working together, and
methods of self-management. After the meeting was over, I went back to
my desk and copied the link into my browser and pulled up a page with the
following explanation of how the team reshuffle would work in practice:

Managing Good Enoughness 107

Q: 	What does the process look like in reality?
A: 	In the set week, the entire Navigation team will meet for 15 minutes

every day, usually 13:45–14:00. There are posters for each team,
each marking the number of available slots per team. There is
a Post-it Note with the picture of each developer, and then each
person places themselves in an open slot. The location can be
changed each day.

Q: How do we know the process is over?
A: 	At the end of each daily session we have a vote—each developer

should be either happy, or neutral, or come forward with an
objection. The result of the vote is transparent to everyone. When
we get to a point when there are no more objections, we wait an extra
24 hours, and if there are still no objections, we move on to the new
setup. If you object, you don’t have to provide a solution, but we
will share your objection.

Q: 	What are the guidelines for selecting which team to join?
A: 	a) Do what is best for the company before what is best for you.
	 b) Each team should have the skill set to meet the delivery targets.

Q: 	What happens if I am away during the self-selection period?
A: 	You should ask for someone to act as your proxy.

Q: 	Is the process available for all developers or just for MiddleTech
full-time employees?

A: 	Unfortunately, only people in the Berlin site are participating in the
exercise.

Q: 	Will I change line managers when joining a new team?
A: 	Potentially, yes, the line managers are defined as part of the

structure definition. If you join a new team that is managed by
a different line manager than your current one, you will start
working with her/him.

Q: 	I like working with my line manager. Why do I need to change?
A: 	We are trying to make sure that line managers are not just generic

support functions but are involved in the day-to-day activity of
their reports.

Q: 	Do I need to ask the team line manager for approval before joining it?
A: 	No.

108 CHAPTER 4

Q: 	What happens if more developers want to join a specific team than
available seats?

A: 	Some people will have to compromise and join their 2nd or
3rd preference.

Q: 	What should I do if I want to join a team, but all the spots are
taken already?

A: 	You can either move one of the developers to another team or add
yourself as a new developer. However, in the second option, this
structure cannot be the final structure by definition.

Q: 	Do I have to move to a new team?
A: 	No, you don’t have to move if your team continues to exist and the

number of available slots in the team has not reduced.

Q: 	Do existing team members of a team have priority in joining it?
A: 	Yes and no. Everybody should have the same opportunity; however,

existing teams with clear delivery objectives would benefit from
continuity of at least some of its members. We would need to
balance this if/when such a situation arises.

Q: 	Will I have to move my seat?
A: 	Likely, yes. After we finish the team self-selection process, we would

like to arrange the seating so that all team members will sit together.

Q: 	What happens to current in-progress activities?
A: 	You need to bring existing activities to a state where they can be

handed over to the new team members if you are not continuing
with your current team.

Q: 	When would be the next re-shuffling exercise?
A: 	Usually, we have such an exercise every 6–8 months.

This list illustrates the entire process of the team reshuffle as well as how
confusing it was for the developers. Many of these programmers were not
accustomed to working in an office where their desks and teams changed
twice a year. This list, which was created by Simon, also further cemented him
as the person in power: He made his team move, and he, in the end, was the
one with all the answers.

Under the Q&A, a few developers posted a number of new questions
directed at Simon: “How do we know the skill sets necessary for each par
ticular team? Let’s say I’ve learned a bit about one team and would like to

Managing Good Enoughness 109

move there, but in the end, there is no place for me there and no place in
my current team either. How do I learn where else I can fit if I am not a
C++ developer required in most of the teams?”

Another developer asked, “Why do we need line managers to be involved
in our day-to-day activities? What is their role there? And how does chang-
ing the line manager help when changing teams? When you change a line
manager then the new manager doesn’t know much about you, your skills,
ambitions, performance and achievements, and it will take time for the line
manager to learn about and start supporting you. Doesn’t it make sense to
make it more stable by line management not being dependent on the par
ticular team you are part of?”

A third developer wrote, “Additionally, binding line management to the
team membership is likely to cause a conflict of interest for the line manager
(what is best for the team vs. what is best for the person within the com
pany). It’s a widespread natural thing, and I had such a negative experience
in the past. Yet another developer wrote, “I’d also like to know, what is
the role and what are the general responsibilities of line managers in the
navigation team?”

These comments help illustrate how the team reshuffle stirred up some
excitement and the underlying tension among the programmers and their
managers.

The exercise had a mixed message: On the one hand, it gave developers
the seeming autonomy of being in control, being able to choose the team that
they wanted to be in. On the other hand, it delineated, top-down, that a
rearrangement of their team was necessary. This was a sobering reminder
that they were not, in fact, in control, and that Simon and the company were
really in charge of the rhythms of their labor, something that programmers,
as intellectual and creative laborers, had a hard time coming to terms with
(as I will explain later). Simon was the one who decided they had to move.
He was the one who decided that they needed to get up, stop what they were
doing and building, and reshuffle their working order. The team reshuffle,
was, as Simon mentioned in his demo pep talk, a way of “realigning” the teams
and helping them “reevaluate” how they can work better on providing faster
product “delivery.”

Simon’s reorganization caused a lot of social negotiation, and the guidelines
he outlined in the Q&A established a way of working that he decided on, which
might not necessarily work for the team. As the developers revealed in their
responses to Simon’s Q&A, they didn’t fully understand the responsibilities
of a line manager. One made it clear that “binding a line manager to a team”

110 CHAPTER 4

created a “conflict of interest.” What he meant here was something I mentioned
earlier—that developers had different goals in mind than deadline-driven man
agers. Simon’s team reorganization is an illustration of the competing powers
at work as it is a top-down attempt to reshuffle the power structures at play
within each team, to create new alliances among developers, and to abolish
the alliances that were toxic or not working well.

History of Managing Expert Knowledge

This team reshuffle exemplifies a variety of wider themes in the modern
corporate office, including shifting labor relations and the issue of how to
control the knowledge worker in a postindustrial workplace. Indeed, the
shift in programmer expertise, what programming looked like on a corpo-
rate level, and the management methodologies used in programming were
part of a larger shift in ideas about expert power, organizational control, and

FIG. 4.1 The team reshuffle

Managing Good Enoughness 111

occupational/class formation in late modernity, particularly in relation to
the new class of knowledge workers.

In the middle of the twentieth century, organization studies scholars,
labor scholars, and industrial sociologists all observed a shift in what the
workplace looked like, how professions were shaped, and how power was
constituted in the corporate setting, particularly because new professions
(like programmers) were starting to emerge, and they possessed an exper-
tise that was quite ephemeral and based on information and knowledge.
The concern over the power of the expert was nothing new to the modern
workplace. As some scholars have noted, experts have always been able
to gain authority “if they can convince their society that they have access to
esoteric matters only to be reached through their specialized skills and
yet of general potential utility” (Schaffer 1994, 17). Yet, when it came to
the modern organization, the key issue was the rise of knowledge workers
(again, such as computer programmers), who possessed a certain profes-
sional expertise that their managers did not have. One of the core mecha-
nisms of modern management is keeping control in the hands of managers
(Braverman 1974), but how could this be achieved in light of the rise of the
knowledge worker?

If we look back to Frederick Winslow Taylor’s factory floor, the manager
had a direct visual and conceptual connection to what was being built on the
assembly-line. In postindustrial workplaces, however, as the workers’ “practical
skill grew out of an abstract system of knowledge,” the workers’ control of their
occupation lay in the “control of the abstractions that generate the practical
techniques.” Here “control of knowledge and its application meant dominat-
ing outsiders who attack that control” (Abbott 2014, 25). These “abstractions”
would be the theoretical knowledge behind the workers’ practical, mechanical
output, and the “outsiders” would be anybody without this abstract knowledge
(like managers) hoping to take control.

Thus social and organizational researchers started to notice that in the
postindustrial corporate workplace, expert power and control had begun
to reemerge as a central theme, raising fundamental questions about the
“longer-term impact of contemporary socio-economic restructuring on
the forms of organizational and class control taking shape in ‘late moder-
nity’ ” (Reed 1996, 573).

Not surprisingly, management had a completely different set of challenges
as the workplace began to shift from “capital-intensive industries, such as
steel and automobiles, to information-intensive industries, such as financial
services and logistics, and then towards innovation-driven industries, such

112 CHAPTER 4

as computer software and pharmaceutical companies” (Alvesson 2004, 5).
When studying various knowledge professions, scholars started to notice
that managers had begun to lose touch with what workers were working on
and what was being created in the first place. As Alvesson explained, “the
individual knowledge worker (or team) was often in the situation of having
the best general insights into the problem area as well as being the person (or
team) with most familiarity with the specifics of the actual problem. Supe-
riors may have more general experience and overview but have less under-
standing of what can and should be done in specific situations” (2004, 23).

Managers made various attempts to reclaim power over the workers. One
idea involved building a “humane” workplace, which in the 1980s and onward
became a prevalent theme among management gurus who would train man
agers to “work with their ‘hearts and minds’ not structures and systems,”
focusing on the “human relations aspects of organizations” (Clark and Sala-
man 1996, 86; Woodworth and Nelson 1979, 29). This included at times invis-
ible or more indirect employee-control structures, particularly with the help
of various management methodologies and computer-assisted information-
control systems (much like the team reshuffle). As Zuboff ’s (1988) research
shows, more advanced information-control systems can enhance “the ‘con-
trol at a distance’ capacity available to modern organizations, but that very
distancing capacity can have a debilitating impact on the capability of man-
agement to negotiate everyday order on the shopfloor and in the office” (Reed
1996, 578). In other words, the more management relies on management
software, the more potential there is for them to be detached from what is
being produced and how.

Thus, the expert-based information- and communication-control sys-
tems increasingly evident in the financial, commercial, technological, and
organizational activities of modern corporations began to “signify a move
towards an integration of ‘planning and control on a systematic and reg-
ularized basis . . . ​A key point about new technologies is their increasing
pervasiveness and intrusiveness, their capacity to penetrate even deeper
into physical, social and personal areas. And, by virtue of these characteris-
tics, what the new technologies offer is more flexible forms of surveillance”
(Webster and Robins 1993, 248–49). Here, both managers and colleagues
are able to monitor their workers and coworkers in new ways. As a result,
expert groups often found themselves subjected to the more unobtrusive
and pervasive control systems that they helped to design and introduce. This
“enhanced organizational transparency and visibility makes it very difficult
for anybody to hide from the ‘supervisory gaze’ ” (Reed 1996, 582).

Managing Good Enoughness 113

History of Managing Developers

Now, understanding how these particular power dynamics and forms of
professional control shifted in programming would perhaps require a bit
more explanation about the shifts in the professionalization of computing
work throughout the past decades.

Programming evolved out of electrical engineering in the mid-1940s, and
it used to require familiarity with the machine’s electrical logic as well as its
physical structure and operation. Early computing was highly integrated and
highly skilled, requiring the programmer to understand machine-language
programming, which meant having knowledge of logic and mathematics
as well as familiarity with the machine being programmed (Kraft 1979). As
Nathan Ensmenger explained, computer programming started to be rec-
ognized as a uniquely creative activity, a genuine “brain business,” which
was “often an agonizingly difficult intellectual effort—and therefore almost
impossible to manage using conventional methods” (2010, 144). Ensmenger
means that, as a manager, it was quite hard to monitor what developers were
doing just by looking over their shoulders.

Moreover, as programming languages developed and software became
more complex, a difference emerged between the “brain business” of one
programmer and another, with some programmers needing to know much
less about the computer in order to run it.

Following the 1950s, high-level programming languages implemented
“translators,” which triggered multiple machine operations with a single
instruction. These higher-level languages allowed anybody who mastered
the language to run the machine, making it unnecessary for all programmers
to be quasi-engineers. Along with the development of these higher-level lan-
guages came the development of smaller, more packaged programs, which
both expanded the employment of low-skilled specialists and finally freed the
managers from depending on individual, highly skilled software workers.
They also made possible, for the first time, a genuine task-based fragmen-
tation of labor in programming (Kraft 1979, 148). As software production
increasingly became big business throughout the 1960s until today, the divi-
sion of labor and fragmentation of skills became a rational way to optimize
output. At this point, software companies began to regard their workers as
mere units of production and were concerned solely with the maximization
of the profit extracted from them (Cooley 1980, 532).

This type of shift in fragmentation of programming work is nicely illus-
trated in Andrew Ross’s No-Collar (2004). He recalls a story of a web

114 CHAPTER 4

developer named Paulsen, who worked in the early 1990s as a no-collar
freelancer “renaissance man” within his field, hopping from one company
to the next. Suddenly, in the late 1990s, when “projects became so com-
plicated that a team needed to be specialized,” he was forced to choose
a specialty. In Paulsen’s words, “Suddenly there was a factory, and you
had Taylorization. . . . ​Now it only takes a tiny portion of my brain” (Ross
2004, 55).

This task-based fragmentation of labor gave management the false
promise of scientific control over the “often-unpredictable processes of
research and development” that software engineering involved (Ensmenger
2010, 59). Indeed, despite this task-based fragmentation in programming,
a manager still did not have control over the full labor process, as there was
still a large disconnect between how software was built and the complexity
of a computer. Philip Kraft, a pioneer in the early sociology of comput-
ing, pointed out that while these new trends in computing, like structured
programming, gave the software manager an “answer to the assembly line”
(Kraft 1979, 145), they could not predict the massively rapid changes that
the computer would undergo and the influence that the internet, including
cloud storage, would have on the programming practice.

It seemed like the programmer and the software manager have been,
since the beginning of their profession, in a subtle yet constant push-and-
pull struggle over the control of their work organization.

Despite managers’ many attempts to gain control of the labor process
through various forms of task fragmentations and simplifications in pro-
gramming styles, software developers were well aware that they had more
control of the knowledge of their projects as computing gained more and
more algorithmic and structural complexity. As programmers contend with
the unprecedented unpredictability and complexity of computing, they
must make decisions that are highly contingent on the task at hand. Con-
trolling how to complete a task and how long a task will take depends on a
variety of technical factors, such as the amount of legacy code that a given
problem relies on, the robustness of the data being used (if it’s cleaned up
or not), as well as human factors (for example, if the one person who knows
how to fix a bug is on vacation). As difficult as this task may be, managers
like Simon still attempt to gain control over the decisions that are made in
the course of work through strategies like a team reshuffle or a number of
other management “methodologies.” As I will also show, Simon’s seating
reshuffle was typical of the modern agile workplace, where movement and
change become a catalyst for innovation and flexibility.

Managing Good Enoughness 115

Scrumming Together

Up until the 1990s, conventional methods of developing software called
for detailed upfront plans, precise prediction, and rigid control strategies.
These methods seemed to stop working. Software developers themselves
started to gain more status (and earn more money) and called into question
these more rigid methods. In response to these changes, managers began
opting for more subtle ways “to bound, direct, nudge, or confine, but not
to control” (Highsmith 2013, 40).

Countless books and articles were then written—both by engineers (Ereiz
and Mušić 2019; Mahanti 2006; Turk, France, and Rumpe 2002) and soft-
ware project managers (Cervone 2011; Schwaber and Beedle 2008)—about
how to best introduce more subtle software management methods. These
texts outlined a number of methodologies that help manage complex (and
reactive!) knowledge work, the most prominent within MiddleTech as well
as throughout the global software industry being the Scrum methodology.

Scrum was introduced into the world of product development meth-
odologies in 1986 by two Japanese professors of marketing who were look-
ing for a way to make product development faster and more flexible, and
reactive to the changing demands of the market. While Scrum was not
originally intended for software development, the internet changed how
software was built, deployed, and updated (as I mentioned in my discussion
of “update culture” in a previous chapter). Basically, the internet allowed
both software users and customers to demand updates to the software prod-
uct any time they wanted (while also giving developers a way of delivering
imperfect software, which could be tweaked, improved, or fixed weeks or
months later through software updates, resulting in good-enough software.
This development made software very reactive to the demands of the user
and the market. A need for agility in software production teams emerged,
meaning a way of being responsive to the changes that the update culture
of the internet allowed.

This brought on a so-called “agile turn” (Gürses and Van Hoboken 2017)
in software development, a response to the increased complexity of software
and the shift in the distribution infrastructure of software. A new production
order, characterized by short development cycles, continuous testing, and
greater simplicity of design (Douglass 2015), also attempted to speed up the
developers’ work and deliver to their customers and their users quickly. Agile
software companies encouraged teams to come up with solutions and cus-
tomer requirements through self-organization and communication, and they

116 CHAPTER 4

advocated adaptive planning, evolutionary development, early delivery, and
continual improvement to promote rapid and flexible response to change
(Douglass 2015).

This push-and-pull dance over the control of the computing work process
was also displayed in these production methodologies. As management
gurus were coming up with ways of structuring their workers, Agile, which
is very much linked to the Scrum methodology, originated in 2001 in the
“Manifesto for Agile Software Development,” which was, ironically enough,
written by a team of seventeen software engineers after meeting at a confer-
ence. These self-professed “organizational anarchists,” devised “12 principles”
in their manifesto, which valued “individuals and interactions over processes
and tools,” “working software over comprehensive documentation,” “cus-
tomer collaboration over contract negotiation,” and “responding to change
over following a plan” (agilemanifesto​.org). They explicitly stated that their
approach was a response to their frustration with management: “Marketing,
or management, or external customers, internal customers, and, yes, even
developers—don’t want to make hard trade-off decisions, so they impose
irrational demands through the imposition of corporate power structures”
(agilemanifesto​.org). This fight between the “irrational” managers and the
more realistic or rational programmers was a trope that seemed to repeat
itself at MiddleTech twenty years after the manifesto was born.

It’s worth noting that any methodology or technical tool that is imple-
mented in a team comes with controversy and backlash. In Thomas Malaby’s
ethnographic look at programmers at Linden Labs and the development
of Second Life, he described how the team moved from using a tool called
Achievements and Objectives (or As & Os) for distributing information
about the many projects going on within the company to using something
called Jira (which is also used at MiddleTech). Supposedly “the transition
to Jira from As & Os never sat well with some employees at Linden Lab,
who felt the new technological conditions of their work ran counter to an
established and flexible practice already in place” (Malaby 2009, 64). This
struggle over freedom of choice and flexibility has a lot to do with the efforts
to regain control over the labor process.

Scrum was thus just one methodology used to implement this so-called
“agility.” As I will show, Scrum is made up of microprocesses, defined roles,
and rituals that help management regain control over the decisions that are
made in the course of work, giving workers the illusion that they are in control.

To illustrate this struggle, I want to pinpoint the way in which Scrum was
shaping the organization of software work at MiddleTech and give a concrete

Managing Good Enoughness 117

description of how MiddleTech’s workers experienced this method. I will
briefly pinpoint the basic principles of one methodology to illustrate how it
can organize the labor process of developers while at the same time provide
more units of control for the manager and reveal how methodologies strug
gle to capture the complex, unpredictable nature of software and how devel-
opers play upon this unpredictability. I will also show how Scrum becomes a
way for developers to cooperate in order to establish certain criteria around
what is good enough and what isn’t.

Scrum “focuses on project management in situations where it’s difficult
to plan ahead” (Schwaber and Beedle 2008, 12), and development teams
constantly work on versions of their software in small two-week “sprints,”
with developers given feedback following each sprint. This feedback comes
either from their management, their customer, or analytical data (called Key
Performance Metrics, which I will introduce later) gathered by MiddleTech’s
analyst team. This team reviews how the software is used and locates bug-
giness or breakdown.

Software is developed by a self-organizing team, and a manager like
Simon is supposed to be quite hands-off. In fact, Simon relies on line man
agers who work for him, namely product owners (such as Liz, whom we met
in the previous chapter, on the Electric Vehicle team) or Scrum Masters.
A Scrum Master’s role is to make sure teams are adhering to the Scrum
production methodology. They are also sometimes called an “agile coach”
or even, as Simon once pointed out, a “productivity coach.” Their job is
to attend all the developers’ meetings and encourage them to meet their
deadlines. Scrum Masters also often report back to managers like Simon,
with the goal of making the developers’ work explicit and transparent. When
observing them in action, they sometimes reminded me of personal trainers,
priests, coaches, or cheerleaders.

I also noticed that Scrum draws heavily on a vocabulary of “reflection,”
“sharing,” and “transparency,” pushing the developers to make their work
explicit. This push for transparency stems from the fact that managers want
to keep track of the speed of their developers’ output. To this end, Scrum
Masters not only cheer the developers on with their work but also help instill
a culture of reflection through various daily or weekly meetings or rituals.
As programmers engage in these moments of reflection, the Scrum Master
collects information on the progress of the teams and the type of work they
are doing and then provides this feedback to managers like Simon.

There are roughly 1,000 developers at MiddleTech, with around 150
developers working in the front-end team and 850 in the back-end team;

118 CHAPTER 4

these developers are then further divided into smaller five-person teams
that work on specific tasks, software products, or projects. Each of these
small teams does not always need to know what another team is doing in
order to complete their own task, so the deadlines for their projects are
not always dependent on one another. Software development managers,
therefore, structure the developers’ production schedule using the Scrum
methodology, with software developers working in sprints in which they
have to deliver or update a piece of software to their customers. Within these
sprints, the Scrum Master coordinates meetings to help temporally organize
the developers’ work. These meetings include a Sprint Planning session,
which takes place once at the beginning of the sprint and lasts around two
to four hours, during which developers plan what needs to be built in the
next two weeks.

Midway through the sprint, the Scrum Master also organizes a weekly
“grooming session,” lasting from thirty minutes to one hour, to help refine the
developers’ work, acting as a check-in to see what still needs to be completed.
Finally, at the end of the sprint, the Scrum Master holds a “retrospective
meeting” to help developers reflect on the sprint and help improve it during
the next iteration. Additionally, developers are expected (with or without the
Scrum Master present) to hold a stand-up meeting every day for five to fifteen
minutes, at which their team members stand in a circle and share what they
are doing with the rest of the team. In order to help the developers visualize
and make transparent both their work and their progress, a large whiteboard
is hung up next to the team’s desks. Each developer takes a ticket, usually
written down on a Post-it Note, to work on and each day sticks it further
along on the board until the task is completed. This ticket represents a small
job a developer has to focus on, and the type of ticket depends on what the
team is working on. This progress chart or Scrum task board is organized into
vertical categories such as “To Do,” “In Progress,” “Blocked,” and “Done.”

For example, one team at MiddleTech was working on voice guidance
for drivers, and one of the tickets on any given day would read, “Add voice
command to speed limits.” The developer would take a ticket, which meant
they would commit to working on it and subjectively decide on the amount
of time it would take to finish the ticket. One ticket can take a day, or it can
take weeks. It is also worth noting that while sprints are small jobs that teams
work on, a finished product takes an industry standard of forty-four weeks
at MiddleTech. So Week 44 is known as feature-complete day, meaning that
all features or changes created by individual teams should be finished and
merged into the code base at that time.

Managing Good Enoughness 119

The Stand-Up

One key ritual in the implementation of Scrum is the daily stand-up. The daily
stand-up always made me feel like I was back in school or church. I would
arrive in the office, sit at my desk, and without even looking at my watch,
I would know it was 10 a.m. when a group of developers would get up and
walk over to a whiteboard. It was one of the first moments in a developer’s
day. They would stand in a circle, like they were praying. The quiet tone in
which they all mumbled made their work even more prayer-like. Each of the
developers in the team was supposed to take a few seconds to discuss what
they did the previous day. Depending on the team, the developers would
either be silent and a bit annoyed, or they would laugh a lot, mainly at each

FIG. 4.2 The scrum board. Image by Logan Ingalls, https://commons​
.wikimedia​.org​/wiki​/File:Scrum​_task​_board​.jpg​. CC BY 2.0 license.

https://commons.wikimedia.org/wiki/File:Scrum_task_board.jpg
https://commons.wikimedia.org/wiki/File:Scrum_task_board.jpg

120 CHAPTER 4

other. Some of them stuffed their hands in their pockets. They would say,
“I am trying to order the instances,” or “I am still trying to reach the team
in Chicago about the data from last month,” or “I am trying to synchronize
with the traffic team.” “I am figuring out the FC5 issues,” or “Bad news, ten
thousand cases crashed,” or “We had a meeting with the team from Tel Aviv.”
At times, I grasped what they were talking about. And at other times, I didn’t
understand at all. Their tasks were not always technical. They sometimes had
communication issues with another team. Or they were waiting for some sort
of process to happen. They often blamed their inactivity on something they
called “blocks,” which were both technical, human, and material.

Chris was the only Scrum Master in Simon’s whole team of one hundred
developers. He was in his mid-thirties and entered the tech scene after study-
ing knowledge management and cultural studies and was certified as a Scrum
Master in an official training course. He had a lot of energy and a kind aura
about him. I liked him a lot, and he always welcomed me into his meetings with
open arms, sharing details with me about the frustrations he was experiencing.
Although he was engaged, excited, and highly organized, he was not always
treated seriously, nor were the methods of working he was trying to implement.
For example, one afternoon, Chris joined the Electric Vehicle team during their
daily stand-up. We all gathered around a large screen, which was showing a
Jira Scrum board (Jira is a software that illustrates a Scrum workflow setup).

FIG. 4.3 The Jira board, accessed from Atlassian’s Pinterest page, May 1, 2023.

Managing Good Enoughness 121

In this stand-up, each member of the team took turns briefly explaining
what they were working on. In this particular meeting, they were clearly
not using the Scrum board.

After a few minutes, Chris became agitated and noticed that nobody was
using the tickets, nor were they pointing at the board and moving the tickets
from the “to do” to the “in progress” column. He started searching for the
ticket on the screen that corresponded with Aseem’s task.

“Can we see the ‘dev drop’ here?” He pointed at the screen with the Jira
software, and at that moment I also noticed that nobody had really taken
note of the screen at all in the past few minutes. Chris seemed more frus-
trated than ever. “Try to really reflect on the current work we are doing,
otherwise we cannot see what is happening,” he pleaded. The team then
started talking again about some sort of terrain problems in northern Canada
(the map in that area did not show the elevation). Chris got a bit annoyed
again. “What will happen here? Can we move this?” he said as he pointed
at a ticket. “Take your implements seriously, otherwise this does not make
sense,” he added, pointing again at the Jira board.

Aseem then started talking about a “bad scaling parameter” that he
needed to fix. Chris looked at the board and said, “Okay, well, can we find
this in here? Let’s do a search. What should I search for?” Aseem replied,
“Scaling,” and Chris searched around in the Jira system. They didn’t find
anything.

The group moved over to the screen displaying the Jira board. They
tried to work with it, but it was still not really part of their interaction.
For the rest of the meeting, Chris struggled to get the team to use the
correct procedures, while the team, lacking much enthusiasm for these
procedures, shrugged, nodded, and promised to use the right procedures
the following day.

The Unmanageable Art of Programming

This stand-up was relevant as it illustrated two themes that were repeated
over and over again throughout my fieldwork at MiddleTech. Firstly, the
programmers always seemed to resist meetings in general. While this might
be the case for any worker in any organization, observing meeting resistance
among programmers helped uncover a few tensions that played out within
the software workplace.

While the stand-up was the shortest of the Scrum rituals, it revealed the
sleepiness, the boredom, the unenthusiastic shrugs and yawns of the people

122 CHAPTER 4

attending. I have been to lunches, happy-hour beers, and Christmas parties
where developers and their teammates were full of social camaraderie. What
is different about these meetings? The problem was that these meetings
were not conducted on the developers’ terms. Developers at MiddleTech
shared a lot about what they were working on with their teammates via their
chat systems, in the coffee room, or through what I called “screen-tilting—
tilting from behind their screen to catch the eye of the developer sitting
across from them.

The Scrum ritual meetings were institutionalized, formalized, and pre-
scribed top-down by managers like Simon. The “meeting”—any meeting—thus
became a bit of a meme around the office: a joke, a waste of time, something
that distracts from the “real” work, a mechanism to control the developers,
etc. When Simon and Chris were absent for various reasons, meetings would
be sleepier or not happen at all. One developer told me sarcastically, “We
work on meeting-driven development—so for every four days of writing
code, we sit the rest of the time confused in meetings.”

I understood that the developers’ lack of interest in meetings became a
form of resistance to outsider power. Neither Simon nor Chris had a deep
understanding of how to program a piece of software, being outsiders to the
craft of programming. Because Simon and Chris lacked these skills, develop-
ers had a hard time accepting their methods of order and organization—not
because structure and organization are bad but because developers work with
an object (software) that will inevitably go wrong, break down, or get more
complicated as the project goes on. If an outsider like Simon or his proxy,
Chris, attempted to organize the unforeseeable, complex matter that is soft-
ware, they would inevitably come up against programmer resistance—not
in the form of large explicit protests but small micropractices. In the case of
the stand-up, this resistance took the form of changing the subject or steer-
ing attention away from the organizational tool (in this case, the Jira board).
During another meeting, after Simon left the room, a developer said, “I would
say this is useless [he looked at the board that Simon suggested they look at].
The calculations are off. They aren’t reflective.” This comment clearly dem-
onstrated this resistance to outsider power and the reaffirmation of one’s own
skill and superior technical competence.

This brings me to the second issue of this stand-up, which illustrated a
more significant tension among programmers at large: the Scrum Master.
Scrum Masters always had a tough time gaining respect and acceptance
from the programmers, even if they were smiling, calm, and likable guys
like Chris. All Scrum Masters I encountered were faced with an uphill battle.

Managing Good Enoughness 123

Their job was to motivate a group of developers to finish a project, while at
the same time having very little (or no) competency for building or main-
taining the project itself. They were also the ones enforcing certain meetings
like stand-ups, grooming sessions, and retrospectives, which were all met
with outsider resistance as I mentioned above. Additionally, Scrum Masters
were the direct proxies for the programming senior managers. They carried
shiny boxes with colorful Post-it Notes to their meetings, trying to create a
fun (multicolors!) and inclusive atmosphere (Post-it Notes allowed every
one to put their thoughts down and share them with others), but whatever
was said in the stand-ups, grooming sessions, and retrospectives could at
any point be relayed back to the manager. Retrospectives, in particular,
were dressed up as venting sessions, drawing on pseudotherapeutic meth-
ods of introspection to look back at the mistakes that were made in the past
programming sprint. In one retrospective I attended, Chris asked the team
to write down their feedback under categories pasted up on the board on
neon sticky notes. The categories were “I loved,” “I learned,” “I lacked,” and
“I longed for,” all meant as ways of thinking through the team’s work in the
past sprint. These methods of introspection, typical of the Scrum methodol-
ogy, place the Scrum Master in a difficult position: Chris is forced to ask for
total honesty from his participants, while at the same time he might relay
the programmers’ feedback to management, who might use this feedback
against them. Moreover, it seemed hard for developers to be very honest
with their colleagues out of fear of creating conflict. On a more technical
level, it also seemed hard for developers to write about their technical prob
lems, or the technical things they “loved” and “learned” because the person
asking them these questions (in this case, Chris) knew little about software
development. Instead, if they responded at all, their answers were often on
a very basic level of technical abstraction.

We can see how the Scrum Master is placed in a challenging role. They are
either the object of ridicule or annoyance—or worse, they are ignored. I am
not the first researcher to have noticed this (Ereiz and Mušić 2019). A devel-
oper once told me, “I don’t even know what they do,” which I interpreted as
“I don’t even make the effort to care about what they do in the first place.”

Scrum Is Dumb

The problems with Scrum and Scrum Masters draw attention to how
organizational methods struggle to control the complex, unforeseeable
nature of software. The Scrum methodology breaks software production

124 CHAPTER 4

into little tickets, the tiny colored boxes in the Jira image in figure 4.3. While
these tickets are meant to break down work into manageable chunks, in
reality, software developers struggle to contain the various problems that
arise in one ticket. As a front-end developer explained to me the year before
this meeting,

There is a certain element of unpredictability to software. A car, for exam-
ple, is predictable; you know how it’s generally built. And it’s stable . . . ​
It’s built in a quite unique way, on an assembly-line and then reproduced.
But over time it doesn’t become something else. With physical objects
you don’t move things around all the time. [He gestured to the wooden
table we are sitting next to.] You can’t make the table longer. With soft-
ware things are often changing. Hence the name: soft-ware. It’s malleable.
Once you start with an idea for a product, you don’t actually know if it’s
good or not. So that’s why it changes.

This constant change and not knowing whether an idea is “good or not” is
what makes “reflecting on the current work” displayed on a Scrum board
(as Chris urged developers to do) a difficult practice.

Another Berlin-based programmer and blogger wrote the following in
one of his entries: “Scrum does not tell you how to organize interdependent
processes that mutate while they are in flux. It doesn’t tell you how to match
domains to common abstractions. It doesn’t tell you how to distinguish
important differences from superficial ones based on context.”2

No matter how friendly and approachable the methodology is, its prob
lem lies in its very makeup—that it is trying to predict, delineate, and quan-
tify the interaction between humans and machines, something that is not
possible to put into tickets or short sentences during a stand-up meeting.
Moreover, as this blogger highlighted, when the method is put into prac-
tice, it ends up coming to superficial conclusions, something I also partially
blame on the great skill division between the Scrum Master and the software
workers.

Over my few years at MiddleTech, there were many other attempts to
tackle this unpredictable human-machine production process and make
methods more reactive and agile. During my first year of fieldwork at Mid-
dleTech, the boss of the entire team even eliminated Scrum and implemented
his own methodology, which relied on programmer self-organization.

2. “OK I Give Up,” https://okigiveup​.net​/blog​/not​-big​-fan​-of​-scrum​/.

https://okigiveup.net/blog/not-big-fan-of-scrum/

Managing Good Enoughness 125

This was the manager of the front-end team who was the first person to
really give me a chance and be open to bringing an ethnographer into the
company. Greg managed around ten developers, and he decided that Scrum
was not working for the teams. He was well aware of the annoying and con-
straining nature of a top-down methodology (the way developers stopped
appreciating the methodology in itself and saw only stifling management
rules), so he and his colleague designed a new methodology called Tarzan.
The Tarzan system was about self-organizing: Developers were meant to
be the managers themselves, and each small team of five or six people was
supposed to set out their own tasks, called Missions, which roughly defined
their own deadlines. While Tarzan was intended to promote the autonomy
of the teams, it went wrong when put into practice. First of all, it gave the
developers the illusion that management was not needed, when in fact it was.
When I spoke to Jake, another American Scrum Master working for one of
Greg’s teams, he was frustrated at the lack of structure that Tarzan brought
into the teams and how certain management roles were deemed obsolete:

“I thought it was quite disorganized at my last job, but then I came here.
With this way of doing things, nobody really knows what they are supposed
to do. For example, how to write stories.”

“What are stories? Are they like ‘Jane needs to get to work and needs a
faster route?’  ”

“Yes, actually they are sort of like that. They are just a long sentence
explaining the problem of the user. Sometimes they are quite general. And
sometimes they are very specific user stories. And then they even have user-
names. Like a cyclist would be called ‘James’ or something. So there is this
story, and then underneath the story there is this list of factors that need to
be completed in order to fulfill the story.”

“So if you don’t like to write the story, then whose job is it to do this
usually?”

“Well, in a normal company,” Jake smiled a bit, “it’s the product owner’s
job to write the story. But because of this Tarzan thing, then it’s actually not
the product owner’s role to do this. So we have meetings sometimes at the
beginning of our sprint, and people will be sitting around and twiddling their
thumbs. And you ask them, ‘Who wants to write the stories?’ And nobody
is raising their hands.” Jake gestured pretending to be his colleagues and
stares up at the sky and whistles, twiddling his thumbs. He leans toward me
and says quietly:

“And so you know, this Tarzan thing castrated or neutered the product
owners. They have no role really. Officially they have to just facilitate or

126 CHAPTER 4

intervene if there is a problem. But they don’t have much responsibility. For
example, in the statute of Tarzan it states, ‘Product owners will not write sto-
ries.’ And when I asked our bosses about this, they clarified that ‘They don’t
have to write stories, but of course they can if the need arises.’ But the product
owners are like, ‘Well, it says here in black ink that I don’t, so I don’t.’ ”

“Oh, so is that why Connie [a product owner] is sometimes so frustrated?”
“Yes exactly, because she doesn’t really know what exactly she should be

doing. Or where her boundaries are.”
“I wonder if you can just talk to Greg about this. Like, this is a methodology-

in-transition. I am sure there are things being tweaked throughout the
process. It just seems like this methodology is still not complete. Like, what if
you just had a meeting before each sprint that would get people to volunteer
for jobs, or something like that?”

Jake chuckled. “You know that carnival game you play with the little cat
head thing? And you hit one and the other pops up. It’s sort of like that. Then
it goes to shit. I started losing hope.”

Tarzan showed that despite having another hands-off, self-organizing
methodology, people still don’t know what they are doing and needed
organization. In the end, these alternative methodologies still required some
quantified accountability from the programmers and product owners, as
well as predictability regarding when a piece of software would be com-
pleted. This lack of structure created a lot of frustration for the programmers,
who continued to complain that their work was highly unpredictable.

After my months at MiddleTech, I also started to consider the possibil-
ity that this tension is not in the method itself but in the conflicting goals
of the manager and the developer. If you have a team of developers think-
ing through a method of organizing and working together in order to build
robust, high-quality software with the least amount of personal conflict, and
a manager who takes this methodology in order to maximize productivity,
you have a train wreck waiting to happen. These are two conflicting goals:
quality (over speed) and quantity. While I always got the feeling from Simon
and Greg that they did care about their developers’ happiness and cared that
their developers felt fulfilled and respected as creators, what they cared most
about was the amount of robust software they were able to squeeze out of
their team in the shortest amount of time. At the end of the day, Greg and
Simon, as middle managers, had to be accountable to their bosses, and their
methods needed to provide the company with more value.

Any methodology sets the stage for a power game: management enforces
an organizational framework and software developers push back or ignore it

Managing Good Enoughness 127

because it doesn’t fit their technical constraints and the unpredictable con-
tingencies they are working under. Developers also struggle with the fact
that Scrum attempts to structure their labor process, taking control over the
process away from those who understand the technical system best and plac-
ing it in the hands of people like Chris or Simon, who do not or need not
understand the machine and its unpredictability.

Remember when I explained that developers were forced, in their
producer-client relationship, to estimate the amount of time it will take
them to complete a software project? In order to create this estimate, they
need a methodology for how to build something before they start, which,
as Jelena pointed out in the last chapter, they cannot. The method of build-
ing something often arises while building it and not beforehand. Thus, the
struggle to regain or retain control over their production process is inherent
to programmers’ work ethic, as is the acceptance of the technical unpre-
dictability of software. For many developers, it is impossible to manage the
unmanageable art of programming.

Jan, another developer, once told me in relation to their work method-
ology, “There are so many things in the structure of how we do things that
don’t make sense, and we can’t change them, even if we tried. I mean, I often
think that some of the decisions that the company makes are done by prod-
uct owners sitting in a chamber somewhere rolling dice and saying, ‘Yeah,
that’s a great idea. Let’s go for it.’ There is a golden standard that everyone
adheres to. Sometimes for no reason.”

This “golden standard” is often a methodology like Scrum—something
that software developers do not always find useful or see as being imple-
mented “for no reason.” As Brooks has explained, the unity of a team and
the methods for organizing a project often contrast with “the conceptual
integrity of the product itself ” (1995, xii).

Software-Driven Uncertainty

The question in this chapter is thus not how to make the interaction between
management and software developers more harmonious, but rather how this
inevitable tension shapes corporate software development culture.

Let me explain this a bit further. In an ethnographic study that looked
at how a software production method was implemented, Nahoko Kameo
showed that despite management’s affirmation of its commitment to a spe-
cific software production methodology, “software engineers produced and
reproduced a ‘culture of uncertainty’ ” toward Scrum (2017, 8). For Kameo,

128 CHAPTER 4

this culture was driven by the legacy of failed productivity schemes: “Work-
ers remembered how other schemes had come and gone and understood
the new scheme as another one of ‘those’ schemes that could be canceled
at any point by managers’ change of heart” (2). This was a product of
“organizational memory,” or the shared recognition of collective experience
that is “reenacted every time workers interpret their current situation” (3).

Kameo showed well how this “culture of uncertainty” arises, but after
observing the programmers at MiddleTech, I think we can further catego-
rize the specific dimensions of uncertainty in practice. Building on Kameo’s
concept, I would also add that this culture of uncertainty has three faces:

The first could be understood as software-driven uncertainty. This stems
from a collective memory of how the developers’ software behaved in the past.
As many of the programmers said, software development is a “Whac-A-Mole”
game made up of “interdependent processes that mutate while they are in
flux,”3 and thus, developers collectively doubted that Scrum would be able
to tame or address these complexities.

The second could be called skill-driven uncertainty. This stemmed from
the developers’ lack of trust in their manager’s expertise. The developers
collectively doubted that managers like Simon and their Scrum Masters
would be able to deploy the method in a way that addressed the right tech-
nical issues.

The third I term “goal-oriented uncertainty.” Here, developers become
uncertain of methodologies like Scrum because they doubt the manager’s
motivations behind implementing the method. A common discourse among
developers is that their managers are driven to increase the performance
and efficiency of their workers. Programmers perceive their own develop-
ment culture as constructed around a collective practice of engineering good
software. These are two contrasting goals. When Simon or Chris imple-
ments Scrum, the developers become uncertain about Scrum as a premise.
Developers start thinking, are we trying to build good software or build
software quickly?

The latter two points are not specific to software development. Around a
century ago, in The Engineers and the Price System, Thorstein Veblen (1921)
highlighted how managers are detached from the work of their engineers:

Business men are increasingly out of touch with that manner of thinking
and those elements of knowledge that go to make up the logic and the
relevant facts of the mechanical technology . . . ​the continued advance of

3. “OK I Give Up,” https://okigiveup​.net​/blog​/not​-big​-fan​-of​-scrum​/.

https://okigiveup.net/blog/not-big-fan-of-scrum/

Managing Good Enoughness 129

the mechanical technology has called for an ever-increasing volume and
diversity of special knowledge, and so has left the businesslike captains
of finance continually farther in arrears, so that they have been less and
less capable of comprehending what is required in the ordinary way of
industrial equipment and personnel. (Veblen 1921, 16)

Elsewhere, he highlights the diverging goals of the manager and the
engineer. While the manager is focused on value and profit, the engineer is
interested in mechanical performance: “Addiction to a strict and unremit-
ting valuation of all things in terms of price and profit leaves them, by settled
habit, unfit to appreciate those technological facts and values that can be
formulated only in terms of tangible mechanical performance” (Veblen
1921, 11).

He then goes on to explain that “the captains of finance, driven by an
increasingly close application to the affairs of business, have been going
farther out of touch with the ordinary realities of productive industry; and,
it is to be admitted, they have also continued increasingly to distrust the
technological specialists, whom they do not understand, but whom they
can also not get along without” (Veblen 1921, 17).

As we can see from Veblen’s observations, the tension between engi-
neers and the managers attempting to organize them and the machines
they are building has been an unresolved struggle lasting over a century.
These uncertainties also serve a purpose. They help define the boundaries
of the group of programmers (us versus the management), and they help
instill a discourse of care for their software. (We care about having a robust
infrastructure! These Scrum methods don’t let us get into the detail of
building something lasting and robust!) This boundary work and the care-
for-software discourse is what gives power to the programmers, both at
MiddleTech and beyond.

Good-Enough Methods: Some Conclusions

While these various uncertainties about a method of organizing software
work help define the identity of software developers and what they care
about (software!), they still have bosses and still have to live under Scrum
or other methodological doctrines.

As Scrum presents the workers with sets of durable schemes, stories,
rituals, and routines (Kameo 2017) that guide them through their workday,
we witnessed how developers engage only partially in these practices. On

130 CHAPTER 4

the ground, developers construct another culture in which engineering (the
computer) comes first, and “chaos is the reality” of software programming
(Rising and Janoff 2000, 26).

Programmers hold on to the ability to be chaotic, sloppy, and uncer-
tain. One explanation for this is that commercial software engineering sits
somewhere between factory labor and scientific practice. While some-
times software developers’ job description makes their job more repeti-
tive (as in the case of a tester or a programmer in an outsourced team), or
more scientific (as in the case of a researcher or data scientist), I would
argue that most programmers at MiddleTech, at one point or another,
no matter their job description, engage in forms of experimentation and
computer “science.” This “science” is much “sloppier” and more “irrational”
than its methodological image (Feyerabend 1993, 218)—than what Scrum
and other methods attempt to capture. And what appears as “sloppiness,”
“chaos,” or “opportunism,” when compared with methodologies, has a
“most important function in the development of those very theories which
we today regard as essential parts of our knowledge” (218).

Thus, in order to uphold this creative sloppiness and chaos, program-
mers engage in what I call “good-enough methodologies.” As we saw with
Scrum, most of the time developers go through the motions of engaging in
that particular methodology or in mix-and-match methodologies (many told
me that what they were doing was a general form of Agile and not Scrum
per se) and only partially engage in certain rituals, all while rolling their
eyes, not listening, or not using the various Scrum tools (as in the case of
the stand-up). Good-enough methodologies allow developers to perform
a methodology ritual to appease their managers and customers, while also
preserving a sense of chaos and serendipity that is a key component of the
corporate software development culture.

In the previous chapter I discussed the multiple ways in which stuff can
go wrong during software development, mainly due to the diverse forms
of knowledge inherent in building such a complex technical system. In this
chapter, I build on this discussion and examine how managers implement
methods into the software development process to help organize software
workers and the machines they are working on (and to prevent stuff from
going wrong). My goal was to highlight the tensions between developers,
their managers, and their machines, as well as the ways in which power is
exerted, performed, and achieved when building software.

In order to show these dynamics at play, I described how software proj
ect management methodology like Scrum can structure a software team’s

Managing Good Enoughness 131

work process, delineating tasks into tickets for developers to work on and
creating rituals for them to engage in. Scrum also sets forth a certain top-
down narrative: No matter how developer-centric the method claims to be,
it is still trying to provide “clients with deliverables faster” and to “maximize
return on investment” (Schwaber and Beedle 2008). A method like Scrum
becomes a management tool whose goal is to provide “breakthrough pro-
ductivity” (Rising and Janoff 2000, 27) for software management. As I show
in this chapter, this narrative of excellence and top performance permeates
the corporate software environment, and methods like Scrum are a mani-
festation of this narrative. Scrum presents the workers with sets of durable
schemes, stories, rituals, and routines that guide them, enforcing constant
transparency with the goal of reaching peak performance.

These methodologies thus serve a number of purposes, which are at odds
with the intended purpose of Scrum and other methods: They define the
identity of software developers (as those whose work as well as the machines
they work with cannot be “tamed” by a method) and help define the objects of
their care (software comes first, not customers, users, or peak performance).
In practice, methods like Scrum give developers rituals and daily routines that
they thus only partially adhere to (in a good-enough way) in order to appease
their management while at the same time reproducing a culture of unpredict-
ability and care for their software.

One theme that I obviously kept ignoring in this chapter with terms
like “agility,” “sprints,” and “deadlines” was the temporal order of software
development. The next chapter will look at how efficiency is inherently part
of corporate software development, and how this efficiency and various
temporal orders impact the culture of unpredictability and creativity, the
quality of software, and the culture of good enoughness in software devel-
opment at large.

132

5
Slowdown

You might be wondering what I was doing sitting in a parking lot on a cold,
early November morning in northern England with Pedro, one of the devel-
opers from MiddleTech. At that moment, so was I. I had almost finished my
ethnographic stint at MiddleTech and had decided to move from the con-
fines of the Berlin office into a more collaborative and spontaneous setting.

Pedro, one of the routing team’s lead data scientists, looked cold, huddled
on his little office chair in that parking lot. He was shivering a bit, and with
every shiver, I felt a little more embarrassed that I brought him with me. That
embarrassment was on top of my worry that nobody was coming to meet us,
and that my whole idea to convince a software engineer I barely knew to fly
with me to a conference in England and engage in a “thought experiment”
was making me look weirder in the eyes of said engineer.

I didn’t know Pedro well at all. He was a Portuguese developer in his mid-
thirties who worked, like Ori, in a more research-related role, concerning
himself with finding the right way to optimize the right algorithm to solve
the various routing problems his team was trying to tackle. At the time of
my fieldwork, he was working on optimizing an algorithm that would help
clean up messy GPS data.

We were at the large “Mobile Utopias” conference hosted by my for-
mer PhD supervisor, who was head of the Centre for Mobilities Research
(Cemore) at Lancaster University. Prof. Monika Buscher suggested that
I engage somehow in a “Mobile Utopia Experiment,” a subsection of her
conference that was supposed to be “a creative enactment of a mobile

Slowdown 133

utopia,” which could be expressed through a game or performance. Excited
to try my hand at game-and-performance-driven research, I decided to
build a game that would help participants understand how a car sees the
road, how it processes what is happening around it, and who is helping a
driver drive.

But before I move on to the relevance of our parking lot experience and
how I got Pedro to stop shivering, perhaps it would be useful to explain
what this chapter is meant to do. By this point, you have learned that cor-
porate software companies like MiddleTech function under a narrative of
excellence and improvement that dominates various corporate industries.
Excellence is measured by peak productivity and top performance, with
managers implementing software management methodologies; workers
being tracked, recorded, and ranked;1 and software output being measured
in Key Performance Indicators (KPIs) based on the least number of bugs
or other criteria.

Market competition within the software industry helps dictate a certain tem-
poral order of how quickly software should be produced, which includes the
customer’s product release time lines (like a new car being launched onto
the market), as well as software industry-wide competition with other map-
ping software companies. All this competition enforces a company culture that
values constant innovation and sprint-based production.

This commercial competition in the software company, and in the soft-
ware industry at large, creates a culture of acceleration among software
workers. Thus, another narrative dominant in the corporate computing cul-
ture, alongside excellence, improvement, and performance, is the narrative
of speed. The idea that both workers and software should work quickly and
efficiently is a key normative order within the industry.

In the last chapter, we learned that various software production meth-
odologies like Scrum help enforce this narrative of speed and efficiency by
organizing a developer’s work practices. In this chapter, I will look more
closely at this culture of acceleration and demonstrate that it does not (con-
trary to many hopes and dreams of the actors involved) constantly improve
the efficiency of software workers or software innovation. Instead, we can
witness good enoughness at work with constant stutters, blockages, break-
downs, and moments of slowness. I also felt I couldn’t talk about speed
without addressing the elephant in the room: I was researching people who

1. “The Rise of the Worker Productivity Score,” https://www​.nytimes​.com​/interactive​/2022​
/08​/14​/business​/worker​-productivity​-tracking​.html.

https://www.nytimes.com/interactive/2022/08/14/business/worker-productivity-tracking.html
https://www.nytimes.com/interactive/2022/08/14/business/worker-productivity-tracking.html

134 CHAPTER 5

made routing and navigations systems, the very technologies that sit in our
cars and in our phones and accelerate us forward, optimizing our mobility.

I want to highlight in this chapter that slowdown has a lot to with good
enoughness. While slowing down and focusing on a task at hand can lead
to great discoveries and excellence, slowdowns do not happen because
programmers choose to take their time to think through a topic. Instead,
this chapter is about an imposed good enoughness. Slowdown—and often
engaging in good enoughness—is imposed on programmers and their teams
through various social and technical constraints. And once these constraints
happen, programmers need to compromise on what they are creating and
releasing to the public. It is precisely these slowdowns that lead developers
into creating good-enough code. In this chapter, I wish to show how slow-
down is the precursor to good enoughness. It’s about halting the inertia of
acceleration and stating, “I’m sorry, we have to stop; this has to just be good
enough for now.” The practice of halting, waiting, stopping, or canceling in
order to do something else, figure something out, fix, or optimize is a key
feature of code work. These slowdowns are not about stopping and thinking
things through—they are about being interrupted or being forced to slow
down for other reasons beyond their control.

In the following chapter, through the metaphor and practiced reality
of the GPS navigation system, I will illustrate what causes slowdowns and
good enoughness to happen in software development, and then what these
slowdowns might look like in navigation software when software is then
implemented into the world.

Back to Pedro

Pedro’s work was devoted to optimization—getting your car from point
A to point B in the most optimal amount of time possible. “Optimal,” in the
case of MiddleTech routing and navigation software, could have a variety of
parameters but most often meant the quickest. Pedro’s job was to figure out
what could become a slowdown or hindrance along a route during naviga-
tion, fix it, and send the navigation system back into the world, helping a
car get from point A to point B faster.

My research at MiddleTech taught me that a car ride is affected by a mul-
titude of computer-mediated maneuvers and routing procedures, as well as
by the behavior of software engineers optimizing a route. To me, the naviga-
tion software at MiddleTech became a metaphor for what was happening in
the larger corporate software world. While we might plan and optimize for

Slowdown 135

speed and efficiency, the reality is messy, and slowdowns and breakdowns
happen all the time for a number of both social and technical reasons.

For our experiment at the Lancaster conference, I wanted to build a
physical racecourse-like game that would help give users a better picture of
the various sociotechnical issues that can cause slowdowns.

One afternoon in late August, I was having lunch with Pedro, and he men-
tioned that he was planning on taking a work sabbatical for one year start-
ing in October. (At MiddleTech, developers are allowed to take an unpaid
sabbatical every few years.) One of the first things he would do on his break
would be to fly to Manchester with a group of his best friends and watch a
football game. Again, I am not really sure why he was telling me all of this,
but I remember that at that moment, my mind quickly put the date of his
Manchester bro-hangout together with the date of my Lancaster mobilities
conference and realized that the two were happening in relatively the same
geographic region within one day of each other: on November 1 and 2, 2017.

One of the basic features in a car navigation system is an estimated time
of arrival (ETA) system that can provide you, the driver, with a prediction of
how long it will take to get from your starting point to your desired finish
point. Once you have an ETA, the car routes you to your destination on a
given path that coincides with your ETA. While driving, your car’s software
system communicates to satellite GPS waypoints that help position your
car in a given spot on a road. These GPS points signal to the navigation
software that you are, indeed, on the right route. To understand how this
process works in practice, perhaps it would help if you imagined that your
car is blind, and the GPS is like a cane that taps on a piece of road every few
seconds to help position you in space. These taps are fed back into the car’s
software as a piece of data, and the software knows where the car is because
the data from the satellite then correlates with cartographic map data in the
car’s software. These GPS points are often off by five meters, which can
be substantial when driving through a city, as roads, buildings, lanes, and
bridges are, at times, built on top of each other or very close to one another,
which can mess up the road data. This is where Pedro and his algorithm
come in. Long story short, Pedro was working on an algorithm that would
help predict, more accurately, if a road is a road or a building is a building.

Pedro was quiet, but he had an approachable, friendly face that always
seemed a little downhearted like he was going through something difficult
in his life (which, I later found out, he was). During one of my first days at
fieldwork, he agreed to go to lunch with me. I learned that he was living in
Berlin with his girlfriend. Most of his free time was spent taking care of his

136 CHAPTER 5

mother, who had come to live with them from his hometown in Portugal. He
would never call himself a programmer, preferring instead the more accurate
titles of research engineer or data scientist. He studied physics and electrical
engineering back in Portugal and loved living in Berlin.

Weeks before leaving Berlin, we spent a few afternoons planning what
this experiment would be about. I wanted our game to do two things. Firstly,
I wanted participants to understand that a seemingly simple and forgettable
feature like an ETA in their navigation app is extremely complex and involves a
multitude of factors and calculations. The game would give the participants
a picture of this complexity as well as a few examples of the different factors
and calculations that go into estimating a route. And secondly, I wanted to
show the complex human-machine interdependency of the ETA system. All
it takes is one bug or wrong calculation, and the ETA will be fully messed
up, and the driver’s drive will (at times) become more chaotic.

In order to achieve these goals in our little conference game, we decided
that we would set up a trail on the Lancaster campus. Players would all start
walking (or “driving”) at the same point on the trail. Each “driver” would
then have to stop at a waypoint station, where they would draw an instruc-
tion from a box.

This instruction would either (1) allow them to drive ahead, suggesting
that their navigation software is working smoothly; (2) provide them with a
bug or issue, which impedes their driving speed; or (3) provide them with
an enhancement to their navigation, giving them a bonus or advantage over
the other players, allowing them to run ahead. Each driver would, in the end,
be timed to see how long it took them to get from start to finish, with the
winner having the shortest arrival time. The game would be preceded by a
short introduction from Pedro on how an ETA is calculated and the factors
affecting an ETA calculation.

Stuttering

During our planning phase, Pedro and I spent a few lunch hours and e-mail
exchanges thinking about the various factors that go into calculating and
messing up an estimated time of arrival on a given route. The process of
building the game also emerged as an unorthodox methodology for field
expression. It forced Pedro to explain the problems in very simple-to-
understand terms that not only I but the average person would understand.

He taught me that in order to gain a relatively accurate ETA, the devel-
opers building this feature need to plan out what algorithm to use and, as

FIG. 5.1 The ETA game cards

138 CHAPTER 5

I mentioned earlier, need to optimize this algorithm. In the process of opti-
mization, they need to calculate “the sum of the car’s speed, the length
of the roads being traveled on, the traffic data, the turn cost (the number of
right turns and left turns in the route, with a left turn taking longer than
a right turn), etc.” As a car doesn’t travel in a bubble, software developers
also take into account the fact that various human-related problems can
mess up this data, such as the driver not obeying the routing guidance, or
the driver being engaged in a certain action that makes them slower than the
average driver.

Pedro and I then came up with a list of twenty-six playing cards, which each
player would draw from a box among twelve waypoints. The scenarios that
we wrote down on each playing card were derived from real examples that
both Pedro and I had witnessed, real issues that arise in mobility software
development and software in use. Pedro’s expertise was invaluable as he
gave me insight into what can go wrong when designing such a system.
The following are just five examples of the twenty-six ETA issues that were
written on each separate card (note that we gave the navigation system the
fictional name of MapNavi):

1.	 You are driving a car that has an older MapNavi map version. This
map uses an older technology of processing new changes to the road
called “batch processing.” This means that any changes to the road
must go through a long validation process (checking if the map data
is up-to-date and correct) with your map validation team back at
the MapNavi office. Thus, your map routed you to a road that closed
two weeks ago. Penalty: Wait back for ten seconds as your car gets
rerouted.

2.	Oh no! Your software has a bug, and your software developer is on
vacation and hasn’t had a chance to fix it yet! Your map asks you to
turn left at a junction when a left turn is not allowed (there is a one-
way route coming in the opposite direction). You take the turn and
have to veer off and make a U-turn. Penalty: Wait back for thirty
seconds.

3.	You are driving an Electric Vehicle (EV)! Your car is low on battery.
But oh no! Your EV routing team is using an algorithm that rerouted
you to the nearest charging station but didn’t account for dynamic
traffic data (meaning changing traffic conditions that are updated
live). You hit severe rush-hour traffic congestion. Penalty: Wait back
for sixty seconds.

Slowdown 139

4.	Oh no! Your ETA team is not accounting for dynamic traffic data
(that is, new data that emerge as the state of traffic changes). You
keep hitting traffic jams. Penalty: Wait back for thirty seconds.

5.	Your ETA team is not accounting for traffic signals on the route. You
keep landing on red lights. Penalty: Wait back for thirty seconds.

Once in Lancaster, I printed out these instructions on little cards. The
conference organizers suggested that I set up outside (despite the weather).
I found a seven hundred–meter path between a few trees and a row of
student dorms and set up our little waypoint boxes, filling them with cards.
Pedro showed up right on time, clearly hungover from his Manchester post–
football party and slightly confused about the whole parking lot setup and
the conference setting.

FIG. 5.2 The ETA game outdoor setup

140 CHAPTER 5

We then sat down on two office chairs outside and waited for conference
goers to wander their way over to our “experiment.” Nobody came for the first
hour. I got anxious. Then a few stragglers wandered over. Then some friends
of mine with their two teenagers stopped by. Our measly turnout and the
early November Lancashire weather, with its windy half-drizzle, didn’t
make things easier for us.

But by the end of the game, I felt our tiny gathering of participants
seemed to enjoy and learn something from the game, particularly after
I nudged Pedro to give a lecture to our crowd about how software is essen-
tially prone to bugs, prone to slowdowns. While our ETA game might not
get pulled out at anybody’s next family game night, the purpose of doing it
at the Lancaster “Mobile Utopias” conference was to make visible the invis-
ible sociotechnical constraints behind software systems. In this chapter, it

FIG. 5.3 The ETA game scoreboard

Slowdown 141

functions as a way to show that slowdown results in good-enough systems
that only sometimes make things more efficient.

The Need for Speed

Software-driven mobility is created by a group of people designing a sys-
tem that mobilizes others. The tool we hold in our hands or the box that
sits within our cars mobilizes us in specific ways. At times, it tells us to turn
down one road and not another. At other times, it breaks down and messes
up things. The experiment I just described was not only a story about how to
awkwardly attempt collaborative ethnography with members of your field. If
we look more closely at the playing cards, we will notice that these scenarios
are full of stutters and slowdowns. But if we think about how MiddleTech
software developers work and what they build, slowing down and stuttering
contradict their larger narrative of speed and efficiency. As we learned from
the earlier chapters, the dominant narrative in the software industry at large,
and one that influences MiddleTech, is the drive for efficiency, velocity, or
agility. Software development management tools or methodologies help
drive this narrative.

Routing and navigation technologies are also an extension of this need for
speed and speed and efficiency: They are designed to speed up our route to
work or to school rather than slow us down. They are also in direct competi-
tion with similar products from other software companies; thus, the promise
of creating a better navigation product with more efficient, quicker routes
drives their software design.

With these stutters and slowdowns, Pedro’s and my experiment became
a larger metaphor for how digital mobilities are made. Instead of promising
efficiency and speediness, routing and navigation software often stutters,
gets blocked for one reason or another, and slows down or comes to a halt.
Much like the larger MiddleTech ideology around performance and excellence,
where our practiced reality includes good enoughness and breakdown, the
reality of the GPS system is about the ideology of speed and its counterforce
of slowdown.

Understanding the speed of software through my field at MiddleTech
will also help illustrate the way in which software is an inherent part of the
story of how our digitally driven mobilities are made and function—how
the world moves and how we experience movement, flow, and acceleration
in our daily lives. For most of us living with mobile technologies, we are expe-
riencing an interdependency of physical space, mobility, and code, in which

142 CHAPTER 5

“flows, mobilities, and transactions; the folded geographies of inclusion and
exclusion; [and] the construction, consumption and experience of place . . . ​
all, very literally, are now performed—at least in part—through the continuous
agency of vast realms of computer software” (Graham 2005, 4).

This networked urban mobility is experienced through software, which is
now invisibly delegating our coordination to smart and intelligent environ-
ments, suggesting a fundamental change in the everyday practice of mobility
(Freudendal-Pedersen and Kesselring 2017). The popular sentiment around
smart cities or our networked digital cultures makes it seem that the tempo-
ral characteristics of material infrastructure that limited us in the past can
be reconfigured, that transport can be made quicker and more seamless,
and that capital can flow faster as the immateriality of bits absolves us from
the messy burden of our material world. Against this ideology of speed, the
reality is quite different.

The software industry is and has always been obsessed with speed,
mainly in the context of software’s processing speed, but also in the context
of the speed of innovation, resulting in an obsession with production speed.
In the previous chapter, I touched upon the latter topic in my discussion
of the slew of production methodologies like Agile and Scrum, which aim
to speed up and optimize production. But speed and productivity, one
could argue, were always tied to the architecture of the computer and to
how software works in general. A computer’s success is based on its pro
cessing speed: A computer with a slower processing speed will lose to one
with a faster processing speed. The road from the first general-purpose
electronic digital computer’s calculating circuits (of the ENIAC, the Elec-
tronic Numerical Integrator and Computer) in the 1940s to today’s Japanese
Fugaku Supercomputer with its 442,010 teraflops per second was a develop-
ment road paved with an obsession with processing speed. Punch cards,
magnetic tape or drums, disks, and drives were also all part of the inventive
ways that engineers thought of speeding up the supply of instructions to
the computer.

Then in 1964, Gordon Moore of Fairchild and soon-to-be cofounder of
Intel noted something interesting. He observed that “from the time of the
invention of integrated circuits in 1958, the number of circuits that one could
place on a single integrated circuit was doubling every year.” By sketching
out this rate on a piece of semilog graph paper, he “predicted that by the mid-
1970s one could buy a chip containing logic circuits equivalent to those used
in a 1950s-era mainframe” (Ceruzzi 2003, 217). This rather specific estima-
tion of market-driven forces and technological possibility was popularized as

Slowdown 143

Moore’s Law. As the microchip became smaller through the design efforts of
its engineers (who were driven by market competition), computers featured
an accelerating computer power. This resulted in our computers, phones,
and other devices running thousands of times faster than they did before.
While critics of Moore saw that various fundamental physical constraints
(such as the diameter of a hydrogen atom) would “interrupt the straight
line that Moore observed” (Ceruzzi 2003, 585), Moore’s Law nevertheless
became central in highlighting the logic of acceleration dominating the com-
puter industry from the twentieth century up until the present.

Another logic of speed within the software industry comes from the
update culture. As I mentioned in previous chapters, commercial software
is a product that can, especially through networked technologies, be con-
stantly updated: “New media live and die by the update: the end of the
update, the end of the object” (Chun 2017, 24).

Consequently, if software is meant to be updated, and there are two or
more groups of people updating their software at the same time for profit,
one could say that an inevitable race begins to see who can develop software
the fastest. As operations management researchers explained, “dilatory soft-
ware development can devastate the bottom line and shake the boardroom”
(Blackburn et al. 1996, 1). From the perspective of a commercial software
manager, updating fast is key.

Yet, paradoxically, building computer software and hardware quickly
in order to produce fast products has sometimes slowed us down. For
example, in the 1960s, the software industry faced a chronic “software crisis”
(Ensmenger and Aspray 2002), stemming from the acceleration of software
production and its too-hasty evolution for the infrastructure that contained
it. Computing innovation was moving too quickly, causing a huge shortage
of workers (Ensmenger 2010).

There were also other moments in history when speedy software design
got us into trouble. Who can forget the Y2K hysteria in 1999, which arose
from the fear that the speed of innovation in software development (specifi-
cally the adoption of IPv6, the new internet addressing standard) would
cause total collapse of our critical infrastructures? Or the British Royal Mail
software scandal, when the Horizon IT software system had an accountancy
“bug,” which resulted in over seven hundred postal workers being falsely
accused and prosecuted between 2000 and 2014? These are merely a few in
a multitude of incidents in which the speed of software development and the
belief in flawless speedy software have messed with the software product,
and in turn, messed with society.

144 CHAPTER 5

This brief overview serves as a way of understanding that a narrative
that values speed and speediness looms over the software industry. Instead
of fulfilling this dream of acceleration, corporate software environments
and their products experience various temporal orders that slow us all
down. This chapter will provide a few examples from the field to explain
the types of temporal orders inherent in programming. I will illustrate
how slowdown works in software development, explaining what exactly
slows down programmers with the examples of legacy code, the halting
and scraping of projects, and blocks that bring projects to a halt. I will also
explain a bit more about what slows down a navigation system, an issue
that is often linked to the way in which programmers attempt to deal with
these slowdowns.

Spaghetti Code and Time Travel

Let’s rewind a year back to my first summer of fieldwork. I was on the third
floor of the MiddleTech office building, which featured the same aqua-blue
walls and gray carpets found on all the other floors. The open-office con-
cept grouped small clusters of six developers in desks pushed together in
a rectangular shape. This was the front-end team, who, as you recall, were
building navigation software for either an Android phone, an iOS phone,
or a Web site (and were thus grouped into teams according to the platform
they were working on).

Amira and Otavio were on the iOS team, and they quickly became the
developers who were closest to me. Amira was one of only a handful of
women programmers working in the front-end team at MiddleTech. She
was shy and soft-spoken but always had a heartfelt curiosity about what I was
researching. She had been in Germany for only four months before I met
her, and one afternoon over lunch, she explained how she managed to
leave Alexandria and her freelance software development work in Egypt.
She was alone in a foreign country and missed her mother and sisters the
most. But what she loved about living in Berlin was the fact that she could
take long walks on her own: “Like, just walk around the streets on my own.
I had never experienced that. As a woman living in Egypt, you take taxis
everywhere, and if you walk, you do so briefly, always chaperoned by a
man.” She explained that in Berlin she could get out and go to the park and
spend her weekends exploring the city. She also taught me that a woman
engineer in the Middle East, unlike in Europe or North America, is not
an anomaly. Women made up the majority of software engineers in Egypt

Slowdown 145

because software development is so “clean”—meaning free of any contact
with men. She thought about her mother and father, who feared that if she
became an architect or an industrial designer, she would have to interact
with men—with construction workers, technicians, or foremen. These jobs
weren’t considered safe. And Amira added, “my parents are very protective
and worried about me. But not in software engineering. It’s just so clean.
The whole environment is considered so clean.”

Life in Berlin still had its challenges for Amira, however small. For one,
she was still trying to find a voice among her developer colleagues, who
were mostly men. To her, finding her voice meant having the courage to
speak up and tell her colleagues that what they were building could be done
differently. Even though she was new to the company, she had experience
and wanted to share it, but she felt things moved too quickly for her, and
everyone was too loud. She liked speaking slowly, quietly, and didn’t have
it in her to speak up. She feared that she would just sound awkward.

Otavio became a bit of a mentor for her, although she admitted that she
often knew a lot more than the developers around her, including him. Otavio
came from Porto Alegre in Brazil and moved to Berlin from San Francisco
after working at Hewlett Packard (HP), building the company’s photo app.
After the app was shut down, Otavio lost his job and visa in San Francisco
but said that “it was time to get out of SF anyways” due to its difficult socio-
economic and housing situation. When working at HP, he was dealing
with “huge technical infrastructure.” He explained, “my role was building
a small little component that was tucked away in the monstrosity of this
one-million-dollar project. Nobody ever saw what I was doing because it
was this one invisible project. But now they can see it. They can see what
I’m building. And better, I can see what I’m building. I can use what I’m
building, which is even better.”

As a front-end developer, he preferred working on an aspect of software
that relates to the user because, “after all, computers, in the end, don’t
care,” implying that the user, in fact, does care. He loved being able to
build something that “mothers can use.” This desire to build something for
mothers to use and understand was not only a desire to build something of
use to users but also seemed like a desire for recognition and for the ability
to become visible in a profession that is largely invisible to users. Program-
ming is mostly a thankless, faceless, fameless job. But front-end develop-
ers would often take out their phones and point out a tiny little feature
on the app they were building and say, “I built that. I did that. This is my
piece of software.” In these moments of showing and pointing, they gained

146 CHAPTER 5

notoriety as artifact-rousers, as agents, as magicians who made something
out of nothing. I noticed that many developers liked watching my reaction
to their work. It would actualize their artifact-in-the-world and legitimize
their work as being of use.

I started going for lunch regularly with Amira and Otavio, about once a
week. Some of their colleagues would occasionally join. Sometimes I would
go out with just Amira. She and Otavio were working on a feature called the
home button, which they were grappling with for a while. It was a specific
feature in the mobile phone app that would bring the user home, a task that
involved merging all sorts of data points, including the user’s address as well
as their given location. It didn’t seem too difficult, but their work was very
slow. They started nearly half a year before I joined them but still had not
completed the project.

The slowness of their work stemmed from a variety of factors. Firstly, it
had to do with various forms of legacy code. We already know a lot about
legacy code, which I discussed in chapter 3. In this chapter, I am revisiting
it to see how it affects the temporal orders of software work—how it forces
developers to go back and forth in time, working their way through different
moments and different coding styles in the present and past. Legacy code “is
composed of multiple lifetimes of different parts of the system—hardware,
software, code, organizational processes, programming languages, institu-
tions, careers—all of which are entangled and are aging or obsolescing at
different rates” (Leavitt Cohn 2016, 1513). These different lifetimes and rates
of aging is what also influences slowdown.

This infrastructural decay is at times highly frustrating for developers
as it makes them feel that they cannot move forward as the code they are
faced with limits what they can build on top of it (for example, by ignoring
the legacy code or not cleaning it up or refactoring it, the developers run
the risk of their software collapsing altogether). At other times, legacy code,
much like a road that has already been paved once, makes software devel-
opment much more predictable for the developer, providing more stable
foundations and resulting in fewer crashes and breakdowns. Any software
developer will tell you that legacy code determines how they work. It also
shapes or limits the speed of their engineering process—what they can and
cannot do with their new code.

To illustrate this in my field, developers like Otavio and Amira told
me that they have to slow down their own work in order to travel back
in time and work on old code. This “time travel” is about understanding
the mentality of a previous developer, their design choices, and the various

Slowdown 147

entanglements resulting from their design choices. Developers told me that
they feel as though they are mind-reading, trying to understand the logical
order that previous programmers were working through.

Throughout many of their workdays, Amira and Otavio had to focus
on combining old code with new and managing software change in ways
that interoperate with legacy systems. This is work that Marissa Leavitt
Cohn calls “keeping software present” (2019, 427). In this work, Amira
and Otavio interact with the past, with the ghosts of programmers who
came before them and the creativity and sloppiness they left behind. As
we know, at MiddleTech, a finished product takes roughly forty-four
weeks, and Week 44 is known as “feature-complete day,” meaning that
all features or changes created by individual teams should be finished and
merged into the code base. Yet, while developers like Amira and Otavio
do work within this time frame, their time sometimes goes backward
in the sense that they have to rewind and work with old code, code that
not only holds them in place but forces them to look back and work on
something that was built years before. In these instances, when working
with spaghetti code, they aren’t innovating and moving forward but rather
slowly digging and attempting to figure out what is going wrong or not
making sense.

This “work of keeping software present (maintaining its currency, know-
ability, relevance)” highlights the constant tension between the new, speedy
innovation-driven software and the old software, which constantly has to
be brought up to speed so to speak. It is not just software workers’ social-
ity, their multiple moments of competition and negotiation over how to
optimize a feature, and their dependence and synchronization with live,
real-world traffic systems that slow them down but also their interaction
with “software’s lived durations” (Leavitt Cohn 2019, 426).

These moments of moving backward that Amira and Otavio experience
when working with spaghetti code are present in all legacy work. More
explicitly speaking, the amount of legacy code in a system has a direct impact
on how software is built. Older companies like MiddleTech are bound to
have a large stack of code (called a legacy stack) piled up under them, often
using older programming languages, older programming methods, and
foreign design choices. As one of my informants explained, these older,
“dinosaur” companies have a hard time innovating and moving with the
demands of the technology market, mainly because they focus their efforts
backward in time on maintenance and refactoring or adapting older code
to fit a new system.

148 CHAPTER 5

Halting and Scrapping

I kept in touch with Amira and Otavio, and the following summer during
my fieldwork we went out for lunch. We sat in a sushi restaurant around the
corner from the office, and I felt that pang of nostalgia that many ethnogra-
phers feel when reconnecting with their informants after leaving the field.
A year had gone by since my fieldwork ended and a lot had changed. I was
surprised to hear that the entire mobile and web app of MiddleTech had
been scrapped, along with the teams I had been working with during my first
summer of fieldwork in 2016. Only twenty developers kept their positions
in order to keep the app running in maintenance mode, which meant that
the app would remain as is and not receive any new features.

Amira and Otavio started telling me that they were, in fact, happy the
entire project had been scrapped. Years of work, including their home but-
ton project, went into the ether. They had spent hours thinking about their
code, fixing things, tweaking things, cleaning up spaghetti code. So much
time was wasted, I told them. But they didn’t see it that way. They told me that
software changes all the time, and the demands of the market also change.
Developers can’t get too attached to their product because it will soon be
gone. Otavio experienced this with the HP app he was building in San Fran-
cisco, which no longer existed. It was just part of the profession. Software,
for Amira and Otavio, was temporary and disposable. Building a piece of
software took a long time, sometimes years, but the product of this work
could be thrown away, leaving nothing behind. In a large company like
MiddleTech, a project can be scrapped for various reasons. Firstly, a cus-
tomer might disapprove of it. Secondly, it can happen because the users dis-
like it: Various forms of market research and so-called “A/B testing” (where
one section of users gets one version of the app, and another group gets
another version) reveal that the feature is not being adopted by the user for
various reasons. Thirdly, project scrapping comes from internal factors: for
example, if the company wants to rebrand itself and go in another design
direction, where certain features are no longer necessary.

Other forms of scrapping that happen in corporate software environ-
ments include team scrapping, where an entire team stops working on
something and has to pivot to work on something else. Team scrapping
also happens for various reasons. Firstly, a company like MiddleTech can
acquire a software team and their product: let’s say, a small start-up of ten
people based in Tel Aviv, who built a successful product that helps optimize
a routing system. MiddleTech acquires this app and either uses their team’s

Slowdown 149

innovation internally to strengthen their own product or scraps the product
entirely in order to squash the competition. These ten workers in Tel Aviv are
either assigned to another project, or they can be made redundant due to the
lack of synergy with the rest of the MiddleTech office. (Note that letting go of
these workers is easier if they are not yet employed by MiddleTech, or were
originally based in another country like Israel, which is often the case.) Team
scrapping also happens if a company like MiddleTech wants to rebrand itself
in a much larger way and no longer needs a particular product. This hap-
pened to Amira and Otavio. In the time between my fieldwork with them and
our lunch the following year, not only was their home button scrapped, but
MiddleTech decided to stop producing a user-facing mapping app for mobile
devices. Hundreds of developers were moved around as their projects were
scrapped. After this happened, Amira and Otavio, like most of the develop-
ers in the front-end team, were redistributed throughout the company into
other teams. Some built internet-of-things technologies, and others built
indoor maps. But as you can imagine, scrapping a project or a team means
that a multitude of people have to start over, which involves retraining and
doing additional research and planning—things that take time.

The process of scrapping projects and teams was in complete contrast to
the efficiency and speed-obsessed managers and their methods of production
described in the last chapter. On the one hand, companies like MiddleTech
attempt to create rapid and reactive forms of software delivery and promote
a certain commercially driven narrative that software has to be produced
quickly, and that speed is of utmost importance to beat the competition. So,
on the one hand, a defining characteristic of the software industry is its treat-
ment of time as a scarce good, whereby methods are implemented to foster
a categorical economization of time; yet, on the other hand, a programmer’s
time is often completely wasted, as in the case of Amira and Otavio’s proj
ect. Programmers are told time is valuable, while years of software work is
thrown away in the blink of an eye or with the loss of a customer.

Blocked and Waiting

Until this point, we learned that developers are slowed down by going back
in time when working with legacy code, and that their work slows down
when projects are halted and scrapped. Another common issue is being
blocked, a term used by both programmers and managers when work can-
not get done for some reason. A block might happen because the legal team
is stalling a project for legal reasons, more information from a customer is

150 CHAPTER 5

needed to complete something, a key programmer is sick, or a problem is
too tricky. When fixing bugs, developers can be blocked from getting to
the core of the problem because a fix is too complicated, the piece of soft-
ware where the bug is located is too entangled with another piece of code,
or the person who created the bug in the first place is away. Fixing one
end would mean taking apart another end. Some developers explain that
blocks arise because of “a design defect inherited from others,” meaning
another team, years ago, designed something in a way that causes a bug
to occur in the current code (as I said, code is entangled with other legacy
code). Blocks also arise when developers do not want to do the work that
their product owners ask them to do because it’s too tedious, too tricky, or
too hard. In another instance, Ori was attempting to complete a research
project that used the personal mobility data of MiddleTech’s users, but he
was blocked from moving forward with the project while waiting for legal
approval from the company’s privacy team. Other blocks include waiting
for code review from other programmers or approval from a team leader to
ship a finished product.

I would often notice programmers loitering around in the kitchen or
browsing the internet. When I asked them what they were doing, they would
say they were blocked for one of these reasons. This process of waiting
around is again at odds with the narrative that software has to be produced
quickly and efficiently. While some blocks happen in microprotest, to pro-
crastinate or find an excuse not to work, I observed that most blocks are the
inevitable result of working in a complex team that is building a complex
system.

Waiting is deeply entangled with digital media. As users, we often refresh
our screens, buffer, or wait for updates. Infrastructural latency is also some-
times built into our devices where there is a “commodification of waiting.”
Neta Alexander gives the example of “Apple’s annual launch of the latest
version of its iPhone, or Facebook’s decision to slow down a ‘security check’
feature to convince users that it is thorough and therefore trustworthy,” cases
in which “false latency is therefore a feature, rather than a bug, of the digital
infrastructure” (Alexander 2020, 28). Being blocked and kept waiting are
not only part of the story of how users engage with software but also how
producers of our software become entrenched in a culture of waiting around.

One of the developers in the back-end routing team once explained that
“there is a concept of undone work,” where a programming sprint is over,
and a product needs to be shipped, but work is not done because it’s blocked
by various people or factors (for example, a team is waiting for approval or

Slowdown 151

information from the product owner, the privacy team, etc.). This undone
work then goes back into the so-called backlog of code work, waiting to be
unblocked during the next sprint and software update.

This process of waiting around, being blocked, and leaving undone work
means that once a deadline approaches, programmers have to compromise
and either finish the project without the component they were waiting for,
completely amend the project, or omit something from their final project,
leading, again, to good-enough software. Thus, blocked and undone work
is part of the culture of good enoughness.

Different Programmer Times

When speaking of the speeds of software development, it’s also important
to mention that corporate programmers’ time is valued differently by their
employer in relation to their job description or status, and the speed at which
they work is different too. There are also moments when time speeds up for
some and slows down for others. Time can be treated as a value or a com-
modity at one moment, while in the next, entire projects can be scrapped,
thus wasting time.

FIG. 5.4 Blocked tips in the lunchroom

152 CHAPTER 5

For example, a software developer like Pedro would rarely look at his
watch to make sure his project was finished on time. Pedro’s colleague
explained that he didn’t need a ticket system in his team: “We develop fea-
tures more long term. It takes us a longer period of time to find a solution.”
Pedro explained that the development process for him includes “design
debates,” which take time, with a lot of back-and-forth discussions between
developers. Pedro reads, researches, and tests; sometimes the test doesn’t
work, so he goes back to thinking and reading. He said, “The data scientist’s
job is so vague. We don’t really have a clear problem. It would be like ‘Make an
ETA that’s better than Google.’ But what does ‘better’ mean? What are they
doing that we can or cannot do? This takes a lot of research to get precise.”

Pedro, as a researcher, had the privilege of going at his own speed
because of his research role. The privilege to slow down doesn’t happen
only in relation to the software project one is building. Sometimes, dif
ferent paces of work emerge because there is a different level of attention
that employees can give to their work. Let me illustrate this with another
example. I attended one of the breakfast demos of the routing and naviga-
tion team. It was Thursday morning in early August and the atmosphere in
the large conference meeting room was quite relaxed and friendly. Everyone
was spreading camembert and prosciutto onto their fresh breakfast rolls
and sitting around in a circle chatting. As I mentioned in one of the last
chapters, these meetings were an important ritual of team-building. The
minutes before the demo were as important as the demo itself, with develop-
ers awkwardly standing around having breakfast and forming pseudofriend-
ships that would, in the end, fill the room with a team-like spirit. It is already
telling that these particular workers had the opportunity to slow down and
hang out for an hour eating breakfast together, while others, like those in
Charlie’s team in Bangalore, did not.

After it was over, I walked upstairs and saw Youssef, Pedro’s colleague and
a research-based developer who was just unpacking his bag. He had clearly
just arrived at work, skipping the breakfast demo altogether. I asked him why
he wasn’t there. Youssef replied, “Oh, I don’t go to those kinds of things.”

The last time we met, Youssef told me about his wife and child and how
they were away for three weeks without him after flying back home. This
was the fifth time they returned to Syria since the war started. He was origi-
nally supposed to go with them but was advised to stay in Berlin, out of fear
that the regime would recruit him into the army. I could see that his atten-
tion, his care or affective labor was placed less on his work at MiddleTech
and more on his family’s needs. Here, Youssef was able to come to work at

Slowdown 153

his own speed and not attend the company demo because of the status of his
software development position.

Not only are there different temporal cultures among developers within
MiddleTech, but different global work cultures have different approaches
to software project deadlines stemming from work competition, company
culture, or the necessity (or lack thereof) to prove oneself out of fear of los-
ing one’s position. Charlie more recently explained that he had two develop-
ers from Bangalore working on his team. He was surprised that they had a
completely different approach to efficiency and speedy project delivery. He
said, “They were like ‘We can do this overnight!’ And I was like ‘Or you can
take four days?’ Their work culture is just used to fast delivery and intense
competition.”

How time is experienced by software developers depends on their global
economic status (as in the case of the outsourcing team), and various divi-
sions of labor, which are generally either more creative or more mechanical,
repetitive, and focused on maintenance work. Not all developers’ time is
equal both in terms of the type of work they do and the amount they are paid.

As Amrute highlighted, Indian programmers in particular feel they
are hired especially for the purpose of bringing work in on schedule, leav-
ing their “German counterparts surprised as to why they work so hard”
(Amrute 2016, 103). While not written explicitly into their contract, some
of Amrute’s respondents engaged in long work hours as they felt it was
expected of Indian programmers precisely because they had been brought
in to produce reliable code on time.

Conclusions

All these moments of slowing down—going backward to work on legacy
code, scrapping or halting projects, being blocked and standing in place,
or even caring for one’s family or enjoying the privilege of a long lunch or
breakfast gathering—also affect the routing and navigation user or driver.
If we travel back to the parking lot scene with Pedro, our game in the Lan-
caster parking lot showed that what happens to developers directly affects
how software will run, resulting in moments of software refreshing, waiting,
updating, and processing. These moments, which I unpacked in detail over
the last pages, have the potential to shift the temporal order of a mobility
system that promises speed and efficiency.

If we circle back to the game cards that Pedro and I created, we’ll notice
that on the first card, Pedro came up with an example that read,

154 CHAPTER 5

You are driving a car that has an older MapNavi map version. This map
uses an older technology of processing new changes to the road called
“batch processing.” This means that any changes to the road must go
through a long validation process (checking if the map data is up-to-date
and correct) with your map validation team back at the MapNavi office.
Thus, your map routed you to a road that closed two weeks ago. Penalty:
Wait back for ten seconds as your car gets rerouted.

Pedro explained that some cars still use older software, while others
use newer software. An older MiddleTech map version processes changes
to road data through batch processing. Batch processing takes more time,
so any changes to the road must go through a long testing or authentica-
tion process to find out if the map data being used is up-to-date and cor-
rect. There are currently more modern or faster ways of validating new
map data, but batch processing is still widely used. While roads are being
updated, and new road data is quickly flowing into the MiddleTech system,
an older legacy component slows down the system. This slowness, in turn,
can slow down traffic, for example, if a car takes the wrong turn onto a closed
road (as the playing card suggests), thus affecting the driver.

The following is another example of how programmers’ work can directly
affect the user. Another playing card reads,

Oh no! Your traffic rules have changed. But it’s August, and half of
MapNavi’s map validation team (the team responsible for checking if
the map data is up-to-date and correct) is on vacation and hasn’t pro
cessed the change yet. The change: A left turn is not allowed on the street
you are driving on. At this junction, you can either turn right or continue
straight. Penalty: Wait back for thirty seconds.

While being on vacation might seem completely arbitrary, software,
much like writing, can be deeply personal. When somebody like Pedro works
on a project and then leaves the office for a week to go on a football-vacation-
in-Manchester-turned-parking-lot-hangout-with-weird-ethnographer, his
fellow programmers might have to wait around until he returns to process
the change. And it’s not just vacation. As I tried to illustrate in this chap-
ter, slowdowns also happen due to personal factors. When Youssef is too
concerned with his personal life to care about thoroughly reviewing his
colleagues’ code, mistakes can also happen.

Moreover, our apps, like our routing and navigation software, rely on live
data fed to the software team via regular updates. In the case of MiddleTech,

Slowdown 155

this data might be information about new traffic rules sent from the traffic
ministry of Bavaria. In this instance, there are at least three (or even more)
temporal orders at play: the temporality of a city’s urban development,
the temporal orders of travel through a given region (like Bavaria), as well
as the temporal orders of the software developer’s work and personal/leisure
time. These all intermingle and mutually influence one another.

Each of the twenty-four playing cards Pedro and I came up with was just
the tip of the iceberg in a slew of events that can mess up a software’s ETA
system. This brings me to one of my main points in this chapter: The story of
infrastructural latency, infrastructural decay, and infrastructural slowdown
is complete only if we also talk about where this slowness originates and
take into account the various temporal orders at play, both in the use of
software as well as in software production. The temporal orders of software
development greatly affect the temporalities of mobility software, as well
as the temporality of a user’s mobility. This slowness is deeply entangled in
good-enough software development, which then results in good-enough
navigation software that gets us from point A to point B—we hope.

Too often as users, we start to detach ourselves from what really hap-
pens behind our screens, imagining that bugs or glitches just happen or are
inherently part of the infrastructure: The cloud is updating our software, or
a bug came out of nowhere and created a glitch. Yet the reality is that the
temporal orders of software production directly impact glitches and break-
downs. My fieldwork and my discussion with Pedro illustrated that the rout-
ing and navigation back-end developers who work on an ETA system also
experience a lot of slowness and waiting in their work, which then directly
affects the slowdown, waiting, and breakdown of the software itself and its
ETA system. To study mobilities, we must focus on both the fast and slow
lanes of social life (Sheller and Urry 2006). An ETA is, thus, a sociotechnical
object that involves a temporal assemblage of a variety of factors, including
the developers’ slowdowns and accelerations, and a software artifact that
encapsulates good enoughness, both in how it was made and how it func-
tions for its users.

One can now piece together how the entire ETA game experience mir-
rored the same moments of waiting, confusion, and breakdown that are
experienced when driving and building software. What mobility systems and
software systems have in common is that they both battle various cultures
of speed that are inherent within their systems.

Pedro’s and my ETA game cards highlighted the actual issues and prac-
tices that happen when building software. So when we ask ourselves what

156 CHAPTER 5

slows down an ETA, we will also get answers to a broader question of
what slows down a software project. Not only does stuff not go according
to plan (as I highlighted in chapter 2), but the process of software devel-
opment involves multiple temporal forces—sometimes accelerating, but
at other times slowing down, stuttering, moving in reverse, or completely
coming to a halt in breakdown, shifting the pace of any idealized or desired
technological progress. These temporalities often happen simultaneously
and on different scales.

This chapter used routing and navigation software as a metaphor for
what also happens during software production. Neither the culture of speed
and efficiency in software production nor the logic of speed and efficiency
in navigation software creates a constant improvement in the efficiency of
movement or software innovation. Much like how drivers are faced with traf-
fic jams, breakdowns, delays, waiting, and time wastage, software develop-
ment is also inherently slow, blocked, moves backward into legacy code, and
stutters. Software development is an inherently slow process, functioning
within a contrasting culture of seamless agility and digital acceleration.

There are thus a number of mixed messages and tensions when it comes
to how software is produced and the temporal orders in which it is produced.
On the one hand, programmers understand that development needs to hap-
pen quickly, but they are also forced to slow down because of the material
resistance of software and/or the social factors surrounding it.

This chapter shows how slowdown is the precursor to good enoughness:
Faced with moments of halting, waiting, stopping, or canceling, program-
mers have to compromise on their initial ideas and release good-enough code.

Over two years later, long after our ETA game parking lot adventure,
I wrote to Pedro to check up on him. He recalled the weirdness of our ETA
game, replying, “That campus was somewhat empty for some reason, and
that I wasn’t entirely sure whether I was helping or not—this was mainly
where the cluelessness stemmed from . . . ​I couldn’t figure out the inter-
section between my expertise, that activity, and, say, digital sociology, and
at some point just gave up trying to figure that out and just rolled with it.
I thought maybe this was akin to you sitting beside me while I debugged
some complex algorithm, which related to my experience, not knowing
exactly why I was doing that and how.”

157

Conclusion

Two years after my fieldwork ended at MiddleTech, I boarded the train from
my new home in Switzerland, got off in Berlin, and took a taxi directly to
the Prater, an expansive beer garden in the Prenzlauerberg district. Now
seemingly devoid of much overt political action, the Prater was once the
meeting ground for the German left: in the late 1860s, it was the location of
the festivities celebrating the foundation of the General German Workers’
Association, Germany’s first labor party.

That evening, the ghosts of former revolutionaries and activists were
replaced by teenagers, tourists, and locals rubbing shoulders in a postpan-
demic frenzy during happy hour. You could tell it was one of the warmest
evenings of the year. I stopped at the entrance to look around for my party.
I scanned the crowd and found Ori sitting next to Pierre and Charlie, with
a group of MiddleTech software developers huddled around, drinking and
clinking glasses. Some of them I knew, and some of them were people I had
never seen before.

We were all there for Ori, Pierre, and Charlie’s joint MiddleTech farewell
party. Each of them had acquired jobs in different places and was moving
on from the company to work elsewhere. Ori decided to try out life back
home in Tel Aviv and got a job with one of the Big Tech companies there,
which he had interviewed arduously for. Pierre, Ori’s former boss in the
R&D group and one of the most talented researchers at MiddleTech, got a
prestigious research job at another Big Tech office in Zurich. Charlie, on the
other hand, decided to stay in mobility technologies but got a job working

158 Conclusion

for a rising new German ride-sharing start-up. None of them was staying at
a quiet Medium Tech company.

With the same nervousness I felt during my first day of fieldwork, I waved
at the table, which was packed with around fifteen software developers,
designers, and product owners, and Charlie came up to greet me with a
warm hug. During the COVID-19 pandemic, Charlie, Ori, and I started
a biweekly online reading group with a few other colleagues, reading vari
ous books about computing cultures. We had all become quite close, but it
was one of the first times that I had seen him face-to-face in years.

I took a seat at the long wooden beer garden table next to Anton, a Slo-
venian researcher and data scientist whom I met during his time working in
Ori and Pierre’s team, but who had since moved on to work for a financial
technology (Fintech) start-up. Anton started telling me about his new job,
and I found it striking how naturally we both fell back into our researcher-
interlocutor roles. He knew I’d be interested in hearing about the type of
problems he was facing when automating financial transaction software with
a machine learning system he didn’t fully understand. I sat listening to him,
wishing I had brought my notepad. I felt a nostalgic yearning to do more
fieldwork.

I got up for some more beers and sat back down next to Ori and Pierre.
On the other side of me sat a new group of about four software developers and
designers I didn’t know. They were older, maybe in their mid- to late forties,
and had been working at the company for a long time. Some of them had
been there for over fifteen years. Ori and Pierre introduced me to them as
“somebody who researched us for a few years and is writing a book about
us.” Looking skeptical, they started asking me questions: “Why did you
research MiddleTech? What’s so exciting about software developers? Did
you finish your book yet? What was your main takeaway?”

I admit I was not prepared for the most obvious question a software
developer at MiddleTech would ask when first meeting me. But I started
to explain to them, slowly and delicately, how my book circled around the
idea of good enough:

“Throughout my years studying you guys, I always felt that there was
another logic at work in software engineering. When you don’t know much
about software, you just think it’s a magical seamless object that is made in
quick sprints by hackers in hoodies trying to appease their Steve Ballmer or
Elon Musk–type bosses. But your work showed me . . . ​that, well . . . ​there
are software companies out there that just make software that’s just good
enough to function. Not perfect, not special, just . . . ​good enough.”

Conclusion 159

As soon as I said “good enough,” the guys started gasping. I heard semiof-
fended cries saying, “What!?” Some guys started laughing.

“I don’t want to offend you guys! I just mean that there is something
realistic about working in a good-enough way and making software that’s
good enough. Think of all the times you hacked something together to meet
a deadline or pushed code out without a feature or component because
you were blocked or didn’t understand something or couldn’t manage to
untangle some spaghetti code. Software is also meant to be good enough.
Because you can just go and update it later. No other object can be as regu-
larly updated as the software object!” Some of them nodded. “Also, there is
another side of good enough—it’s the good-enough work culture. Working
in a good-enough company gives you time to go home to your family and
not be stressed. It becomes just a job.”

I looked at one developer who was in his late forties and who had been
at the company for over ten years. Earlier, he had been complaining about
how mediocre MiddleTech had become, and I asked him, “For example,
why did you decide to stay for so long if MiddleTech is so mediocre? Why
are you still there?” He answered, “You’re right. It’s because it’s quite
relaxed. And familiar. I don’t really have to think about my job. And that’s
a good thing.”

“Exactly,” I responded. “Like, who has the energy to actually go work
at Microsoft or Google or some flashy new start-up?” I said, gesturing to
the other side of the table at the three guys leaving the company. The rest
chuckled a bit nervously.

While good enoughness is about being realistic with how a software
developer works and what type of software they can produce, I won’t deny
that there was a part of the concept that sounded offensive that evening.
While I might have been reading too much into the faces looking back at
me around the table, I sensed some of the developers felt a pang of jealousy
when looking over at Ori or Charlie’s good-bye glory.

The Silicon Valley work culture celebrates those who move on. Whether
at in-house barbecues on the MiddleTech roof or after-work beer garden
parties like the one I was sitting at, these are rituals celebrating success
and at times shaming those who stay behind. While this notion may seem
counterintuitive (why would a company celebrate those who leave?), the
farewell ritual communicates that individual workers are loved and cared for
(and will be missed), and if you work hard, you will be rewarded (whether
in the company or elsewhere with another job). It is also a ritual that high-
lights the mismatch of discourses circulating around the office: The ritual

160 Conclusion

appears to celebrate excellence and success (the value system of the Silicon
Valley), but it also speaks to the people who stand for preservation, mainte-
nance, and staying in place.

In describing this good-enough culture, it was my intention to highlight
an alternative and at times resistant narrative to the go-getter workplace,
which is so focused on achievement, excellence, efficiency, and improvement.
Especially under the light of these slogans of corporate success, there is a
tendency to look at good-enough culture and to understand it as subpar or
“mediocre.” Yet it is important that we take the terms “good” and “enough”
seriously. Good enough is still good. It’s not a failure or a falling behind (and
being left in the shadows of the Big Tech giants or start-ups). During that
biergarten good-bye party, I wanted to express to the guys sitting around
the table that the “good” in good enough is about sufficiency and a feeling
of adequacy. It is about their fluctuating negotiation between care for their
work and their software and, at times, a necessary compromise to move on
to care about something else. And the “enough” in good enough is, well,
enough. It is about both individually and collectively negotiating a limita-
tion to more innovation, more maintenance, or generally to more work. It
represents the easing of a tension that drives us, a cessation of our endless
illusion of endurance. Rather than moving fast and innovating, it is about
relinquishing and maintaining.

In this concluding chapter, I will present the conditions of good enough-
ness, drawing on what we learned from MiddleTech. I have split this chapter
into four sections: The first section will illustrate the diverse and complex
fields where good enoughness plays out. To explain this, I introduce what
I call “constellations” within which an actor negotiates what good enough-
ness is at any given moment. I then move on to complicate these constella-
tions, showing that good enoughness is achieved in a negotiation between
various constellations and cannot be achieved in isolation. The third section
will highlight why and how good enoughness is under threat, namely by the
forces of capitalism that work against its logic. The fourth section will return
to our party in the biergarten to explore how good enoughness is stabilized
while being under constant threat of extinction. While we will encounter
new theoretical themes and analyses here, I deliberately saved these until
the end in order to let each chapter’s empirical descriptions stand on their
own and work their way into various directions of the reader’s thoughts.
Coming back to the theme of good enough here will hopefully help readers
“discern what is at stake politically and normatively for my informants”
(Vogel 2021, 62).

Conclusion 161

Constellations of Good Enoughness

In this book, I demonstrated that good enoughness is a negotiated prac-
tice that is informed by unfolding constellations of actors (both human and
nonhuman) interacting with one another at any given moment. As I draw
this story to a close, I’d like to end by giving an overview of these constella-
tions and highlighting that good enoughness arises in many fields and work
practices beyond just software. The concept of the “constellation of good
enoughness” might help us in this final endeavor and allow us to understand
what “good enough for what” and “good enough for whom” can mean at any
given moment. I define “constellation” as a set of relations between human
actors (for example, the programmer) and other human actors (for example,
other programmers), imagined actors (for example, a client whom one has
never met), or nonhuman actors (for example, code). For instance, as we
witnessed at MiddleTech, a programmer is faced with different constella-
tions of relations that determine good enoughness on a daily basis—other
programmers, their colleagues, their customers, their code, and beyond—
and each of these constellations has different notions and thresholds of what
good enough means. Taking the viewpoint of programmers at MiddleTech,
I’d like to highlight eight constellations that we came across in earlier chap-
ters, in which good enoughness was negotiated:1

The first constellation of good enoughness unfolds in relation to one’s
status as an employee, where the worker negotiates, in practice, if they are
a good-enough programmer for the company. When hired, a corporate soft-
ware developer signs a contract with the employer that delineates the labor
power sold for a specific amount of time (for example, thirty-six hours).
Work contracts set expectations about the kind of work and length of work
that a programmer should carry out. Yet, in a culture of flexible work hours,
contracts set certain expectations that are then interpreted by the program-
mer. Ori, when asked, said that there was nothing in his contract about the
quality of his work, the length of his work breaks, or his intensity of work.
Thus, we can assume that if nothing is explicitly stated in Ori’s and his col-
leagues’ work contracts, what happens during their workday must still be
negotiated. Here, I mean how much labor power their workday entails, how
fast their code has to be written, how much time is spent writing code or

1. I define these constellations from the perspective of the programmer, although good
enoughness can also be approached from the perspective of other actors such as the product,
the customer, or the company, which, for the sake of keeping my argument brief, I don’t do here.

162 Conclusion

in meetings, what counts as a work break, what is an acceptable length for
a work break, how much overtime is expected, and generally how much
“filling-up of the pores of the working-day” (Marx 1990, 534) is required.
In short, how much labor power is expended during a given workday differs
from worker to worker and company to company and must be negotiated.

The second constellation arises between the programmer and the client,
where the programmer negotiates whether what they are making is good
enough for client X or meets their expectations.2 While these contracts
with the client are signed by the company rather than the programmer, they
greatly affect the programmer’s work. Much like the previous constellation,
this one also involves a contract outlining what has to be worked on and
under what deadline but still leaves a lot of room for negotiation. As I showed
in earlier chapters, MiddleTech might get a contract to carry out a software
project for a German car company. This contract also has certain deadlines
and delineates what is to be produced (for example, software for an electric
vehicle), which then influences the type of contractual pressure a manager
places on their workers (for example, “this software product has too many
bugs, which is not good enough for the customer,” or “we are not working
fast enough for the customer,” or even “ignore the bugs, this software is
good enough, we have to ship it now to the customer!” etc.). Additionally,
certain contractual requirements can shift if deadlines and specifications
are updated by the customer. The programmer has an imagined relation to
the client, as well as those brokered through other employees, such as the
program managers like Charlie. While they never meet their clients, pro-
grammers at MiddleTech often speak about them in relation to the software
they are building, worry about them, or argue about what they need.

The third constellation emerges in the relation between the programmer
and the product they work toward building or maintaining—where the pro-
grammer or manager involved negotiates whether or not the product they are
building is good enough as a software artifact. At MiddleTech, the routing and
navigation team would (implicitly and explicitly) ask the following questions:
Is the software product safe enough? Robust enough? Bug-free enough? Is the
software of good quality? We might recall Aseem being in this exact situation:
He had an imagined solution to an EV routing system, but instead of pursuing
this solution, his colleagues resorted to (in his view) “hacky solutions” and
shipped the project to the customer in a half-baked state. Here, Aseem worried

2. As we might recall, at MiddleTech, this relation was mediated through the programmer’s
manager or the team’s product managers.

Conclusion 163

about the quality of the product and had a different product standard of good
enoughness compared to his colleagues. The product relation also includes
imagining how the product will be used in the world by the user. In the case
of MiddleTech, not ensuring a software product is good enough can have
dramatic results: bad navigation software can lead at its worst to catastrophic
incidents (Lin et al. 2017). In turn, good enoughness can mean that, most
likely, no one will get hurt.

The fourth constellation relates to the programmer’s professional ethos,
where they negotiate if what they are building will be good enough to be
respected professionally by their peers. The sense of professional ethos, or
what Noble (2011) calls “professional habit,” which informs technical and
scientific work itself, affects not only the “lives of technical people but their
imaginations as well, their notion of what is possible” (Noble 2011, 43). The
so-called “engineerial mindset” is part of a professional ethos of building
something solid, well crafted, safe, and sometimes even exciting, complex,
interesting, new, or disruptive. This ethos is often acquired through their
professional communities (their teammates, hackathons, conferences and
congresses, and platforms like Slashdot or Hacker News) or formal training
(university, workshops, coding camps, etc.). Within the Open Source com-
munity, this comes to the fore especially clearly. When developers add to
an open source project, the open source community will evaluate program-
mers’ work according to a certain standard of participating in the project.
Here, programmers will ask themselves if what they are contributing is good
enough to adhere to a set of shared goals (Kelty 2008).

The fifth constellation relates to the affordances of their tools, which
inform a certain standard of use. As we encountered, the Scrum board, the
Gerrit ticketing system, and the software within which developers write
their code (IDE) have certain frames, protocols, requirements, and stan-
dards of “good” use. For example, within the programmer’s development
environment, programmers have to negotiate whether their code is good
enough. If the code has mistakes, the IDE highlights them in red or often
does not allow the programmer to keep writing. Here, it’s harder for a pro-
grammer to get away with writing bad or wrong code, but they can get away
with something that is good enough in a certain frame of the IDE.

The sixth constellation is a set of relations with the programmer’s col-
leagues, where the programmer negotiates whether they are a good-enough
coworker: whether they are helpful to others, whether they evade work at
the expense of others, etc. This includes a relationship with current col-
leagues and future colleagues. As Leavitt (2019) explained, working with

164 Conclusion

code involves working across time, meaning that whatever a developer
writes today will also interact with other developers in the future through
their legacy code. As I also mentioned, lines of code have documentation
attached to them, including the developer’s name. Thus, many programmers
do not want to leave behind bad code for others to deal with as it becomes
obvious, via the documentation, who wrote the faulty code.

Beyond their workplace, programmers are entangled in constellations
that produce their own fields of negotiation of what is good (enough) or
not. The seventh constellation unfolds between family and friends, involv-
ing strong affective ties and care work (Abel and Nelson 1990) in particu
lar. The work assessments of what is good enough for now arise because a
programmer has to leave a project in order to engage with other relations:
programmers go on vacation, have to leave work earlier to pick up their kids
from school, or feel like going out for a beer with friends on a Friday after
noon. When accountable to their work, to the product they are building, or
to their professional ethics, programmers are faced with these other forces
that help them negotiate the question, “Is this product or is my work good
enough for now, so that I can leave to be a good-enough family member or
friend?” As we might remember, Marek, a web developer, half-jokingly once
confessed that on Fridays, when he feels like leaving work and running off
for a beer, he quickly goes through the code review system and just adds +2,
+2, +2 to all the tickets waiting to be reviewed. Here, Marek was compromis-
ing his professional ethics and, perhaps in the long run, on the quality of his
software product to engage with his friends on a Friday afternoon and be a
good friend or colleague.

The eighth is a constellation relating to an envisioned “good life,” where
developers negotiate the leisure time they engage in, in order to achieve
a sense of meaning, pleasure, and participation in a social life outside of
work (McKenzie 2016), as well as the social status and cultural capital that
come with it. This includes various forms of leisure, such as going out with
friends, engaging in clubs or sports, or participating in political or civil soci-
ety organizations. Amrute, for example, highlighted how Indian program-
mers in Berlin push back against certain work demands and do not let work
encroach on leisure time, which enforces their middle-class imaginary of a
good life (Amrute 2016). This dynamic is fueled by class politics, which are
situated in India just as much as in Berlin. Aseem’s desire to engage in his
photography club in order to meet new people and not be deemed a lonely
geek programmer was also part of this constellation. This meant that work
was sometimes dropped, and software projects were left in a good-enough

Conclusion 165

state, in order for Aseem to leave work for a photography club meeting.
The opposite is also possible: programmers might also deem their personal
life good enough for now and pass on a party with friends, while working
overtime at the office.

These eight constellations, which I presented from the perspective of
the programmer only, are not an exhaustive list. If we take the perspective
of the company or the manager at MiddleTech, further constellations might
arise (such as the existence of other competitors, libel laws, company audi-
tors, or privacy regulations, etc.). In short, this preliminary outline does not
give an understanding of good enough in its full intricacy.

The Dynamics of Good Enoughness

We now have a partial idea of the enormous complexity that good enough-
ness entails in a corporate context such as MiddleTech. While simply asking
“good enough for whom” or “good enough for what” is a start, it is not . . . ​
well . . . ​good enough(!), as there are so many “whoms” and so many “whats”
that interact with each other and have to be negotiated at the same time.

That said, each of the aforementioned constellations comes with inter-
nal tensions, and further tensions arise between various constellations. Our
analysis here would be half-baked if we reduce this complex landscape to one
constellation—let’s say, we took the first constellation around class struggle
and subsumed the manifold struggles in the other constellations to the logic
of this one constellation. We’d risk overlooking the fact that programmers
do not judge only what is good enough in relation to their employer but
rather judges what is good enough through the conflicting constellations
between their employment, their product, their professional ethos, their
obligations to their families, etc.

One way of describing this conflicting dynamic is through the notion
of care: at any given moment, a programmer has to care for one thing (for
example, picking up a child from school) and compromise on care for
another (for example, finishing a software feature). We can understand
care as maintaining a focus on one constellation and compromise as pausing
an abundance of care in a way that allows the other constellation to function.
Actors must individually and collectively balance how much care is neces-
sary and how much compromise is possible at any given moment within and
between these constellations. It takes both care and compromise to decide
that something is good enough: care for good software means sometimes
compromising on a client deadline (that is, “our relationship with our client

166 Conclusion

doesn’t have to be great: it can be good enough”). The opposite can also hap-
pen: care for a client deadline can mean compromising on software (that is,
“Well, this project can be just good enough for now because we have to meet
our deadline and care for the needs of our client”). Good enough is not the
same as striking or “quiet quitting” because compromising is really about
pausing (not completely halting) care for one relation to care about another.3

The type of care one gives to any given constellation at any one time
fluctuates and differs from programmer to programmer. In my own field,
Youssef the data scientist defines his sense of what good-enough work output
is when he shows up to work and skips the team breakfast demo. He knows
his management accepts the vagueness of his role as a researcher and, quite
often, the vagueness of his work output. While not done explicitly, Youssef
judges what good enough is or is not. He will skip the team demo because
his contract doesn’t delineate his engagement in these types of events,
and his research will be good enough to present to his colleagues and man-
agement at a later stage. In another situation, Charlie decided to stay at work
late to “firefight” and fix a few bugs because he understands his software
project well enough to know that it will cause bigger mishaps if he just leaves
the bugs running. Different workers judge, at different moments and based
on their job descriptions and contracts, their relationship to their product,
what is happening in their private lives, and their professional ethics. They
also judge how they distribute their care and compromise in relation to their
own expectations, their contract obligations, and their product’s limitations.
Some people have more agency over how they distribute their care (for
example, researchers like Youssef whose work is not quantified or monitored
using the Scrum or other methodologies), and others have less agency (for
example, Charlie’s team, whose members had to finish a product for their
customer by a certain deadline).

When becoming accountable to any of these constellations (for example,
to the product they are building, to their professional ethics, etc.), dynamic
forces other than care and compromise come to the fore as well: program-
mers also cooperate with others, compare themselves to others, and are
already part of various relational networks that help them negotiate what
good enough is for that given moment or task. In short, it’s not enough to

3. “If Your Co-Workers Are ‘Quiet Quitting,’ Here’s What That Means,” Wall Street Journal,
https://www​.wsj​.com​/articles​/if​-your​-gen​-z​-co​-workers​-are​-quiet​-quitting​-heres​-what​-that​
-means​-11660260608.

https://www.wsj.com/articles/if-your-gen-z-co-workers-are-quiet-quitting-heres-what-that-means-11660260608
https://www.wsj.com/articles/if-your-gen-z-co-workers-are-quiet-quitting-heres-what-that-means-11660260608

Conclusion 167

define good enough for what and for whom, but each of these constellations
is further negotiated through various dynamic forces.

For example, no single actor has full agency over which constellation to
engage in at a particular time. Good enoughness is a collective endeavor, one
that includes not only programmers but their managers, customers, imagined
users, as well as the material object of software and other tools that call out
for care at any given time. When negotiating good enough, this collective
all works together, stresses together, fixes code together, all in the name of
gaining a cooperative sense of what is good enough to ship to completion.
This collective negotiation is sometimes done explicitly through something
like the Gerrit code review through which, as we learned, programmers col-
lectively review one another’s code and decide what is good enough and
what isn’t (by asking, “Will this piece of code create a bug? Will this line of
code crash the system?”). In other instances, a consensus of good enough is
implicitly stabilized through mutual trust (between managers and software
developers, between customers and managers, etc.) that a piece of code will
run properly, or that a software project will be good enough to function.

When figuring out whether something is good enough, programmers will
compare themselves to others. This comparison sometimes resembles what
Groth (2019b) would call a sort of competition to be mediocre. Again, this
comparison can be made explicitly through certain metrics like KPIs, where,
as we might recall from my introductory chapter, managers quantify and visu-
alize the “bug velocity,” showing how many bugs each team produced. More
frequently, a comparative good enough emerges in an implicit way, where vari
ous collaborative forms—discussions with other programmers, pair program-
ming, hackathons and fixathons, code review, code documentation (where
programmers reveal who wrote what line of code on their IDE), or other team
events—all create a sense of what one programmer is doing in comparison
with other programmers. Questions such as, “Am I slower or faster than the
rest?” or “Do I produce more bugs than the others?” or “Is my code as robust
as my colleague’s?” might lead a programmer (or a programmer’s colleague
or manager) to decide if their work is good enough or too good or too bad in
comparison to the work of their colleagues.

Good enoughness is also affected by the amount of agency an actor has
to act, as good enoughness is often imposed through certain constraints.
With an “imposed” good enough, software workers experience external con-
straints that enforce a good-enough product, no matter their intentions, the
intentions of their team, their contract, their professional ethics, and so on.
Remember when Ori was attempting to complete a research project that

168 Conclusion

used the personal mobility data of MiddleTech’s users, but he was blocked
from moving forward with the project while waiting for legal approval from
the company’s privacy team? Not only software but privacy regulations, legal
regulations, deadlines, the downsizing of teams, the scrapping of projects, the
material constraints of code, and other blocks and slowdowns can cause proj
ects to remain good enough. Despite even the worker’s best efforts, sometimes
the material condition of the product being built or the infrastructure within
which it is embedded causes the product to be just good enough. As we have
learned, software contains an inherent resistance to the logics of excellence
and efficiency (through, for example, its complexity, breakdown, unpredict-
ability, and slowdown). Moments when software developers are faced with
legacy code, spaghetti code, monolithic software architectures, hard-to-find
bugs, messy databases, or code that’s not been properly optimized are just a
few examples of a long list of product-oriented reasons that a project will stay
good enough (and not excellent).

Throughout any of these constellations, the practice of judging a good-
enough piece of software or good-enough work output also requires imag-
inary relations, which can inspire empathy: it forces the programmer to
imagine the customer, the user, the manager, fellow programmers, and so
on. In these imaginary relational practices, the programmer, either alone
or collectively with colleagues, has to negotiate and predict that something
is good enough in the eyes of the client, manager, user, other colleague,
etc. This then sets the stage for a specific social gesture that combines an
understanding of the other (What will they think?), and when it comes to
software, a confidence in one’s own expertise (that is, “This piece of software
won’t hurt anyone!”), with a certain utilitarian attitude (that is, “More work
on this piece of software would be a waste of my time/more work on this
would not really make it that much better”).

Good Enoughness under Threat

That afternoon in the Prater Biergarten, I felt a clear contrast between Ori,
Charlie, and Pierre, who were celebrated for moving on from MiddleTech, and
the people who were staying behind, accepting their position as veterans of
MiddleTech. These two groups, to me, represented two contrasting logics
at play at a company like MiddleTech: on the one hand, there were those
who represented the dominant discourse of success; on the other hand,
there were those who had to justify their reasons for staying behind and not
succeeding, in light of this dominant discourse. Ori admitted to me that he

Conclusion 169

wanted to leave because it was “not okay” to stay at a company for so long,
and he felt like he was staying stagnant by sticking around at MiddleTech.
Here, the logic of ambition was at play. Improvement through upward mobil-
ity, change, and personal growth were important, versus staying still in a
good-enough job.

Good enoughness is always under threat of being subsumed by the logics
of postindustrial capitalism, and in a way, when you state that something is
good enough, you imply that it could be better (somehow). The way in which
achieving good enoughness becomes a constant negotiation between care
(for a piece of software, for a project, etc.) and compromise (for a customer’s
deadline, for leaving work early, for a team member’s idea, etc.) helps high-
light the underlying tensions of capitalism. On the one hand, MiddleTech
was filled with the pressure to uphold a fast-paced, innovation-oriented work
ethic in sync with a global capitalist logic. Awesomeness and not mediocrity
has certainly become one of the overarching values in corporate culture that
has stayed with modern companies for the past century.4 Working in any
company has become about striving for excellence: about adapting to the
market, being reactive, constantly innovating, and incessantly wowing and
amazing others, and, of course, succeeding at what you do and moving on.
On the other hand, good enoughness is real. Many MiddleTech employees
are interested in staying around and maintaining software while moving
between various constellations of good enoughness all the time, caring about
certain relations while compromising on others.

These two contrasting logics function together under one roof at Mid-
dleTech. This is something Nancy Fraser describes as an inherent contradiction
of care within the capitalist structure: “On the one hand, social reproduc-
tion is a condition of possibility for sustained capital accumulation; on the
other, capitalism’s orientation to unlimited accumulation tends to destabilize
the very processes of social reproduction on which it relies. This social-
reproductive contradiction of capitalism lies at the root of the so-called crisis
of care” (Fraser 2016, 100). Throughout these past years, I encountered the
software industry’s obsession with eliminating the good-enough culture,
both in my interactions with managers in my field and in industry books
written in the past half-century, which grappled with the various moments
of complexity or lethargy that led to a good-enough software culture.

4. Adrian Chiles, “When Did Everything Become ‘Awesome’ and ‘Amazing’? I Blame the
Americans,” https://www​.theguardian​.com​/commentisfree​/2022​/sep​/01​/when​-did​-everything​
-become​-awesome​-and​-amazing​-i​-blame​-the​-americans.

https://www.theguardian.com/commentisfree/2022/sep/01/when-did-everything-become-awesome-and-amazing-i-blame-the-americans
https://www.theguardian.com/commentisfree/2022/sep/01/when-did-everything-become-awesome-and-amazing-i-blame-the-americans

170 Conclusion

While good enoughness cannot be reduced to the relations between
employee and company, this first constellation plays a special role because
it is the one that makes good enoughness most fragile, the one where it is
attacked the most. With every new wave of unionization, we can witness a
pushback from large corporate tech companies (Boewe and Schulten 2017),
and antiunion rhetoric can begin to mix with antigood-enough sentiments
too. In a more recent study on the unionization efforts in the global high-tech
sector in Israel, some workers and managers feared unionization because
“work councils would encourage mediocrity, since it would . . . ​undercut
management’s ability to dismiss under-performing workers in order to
improve the firm” (Fisher and Fisher 2019, 318). These workers believed that
work councils could “undermine the value of excellence,” and they perceived
councils as organizations that “protected failing workers, and objected to
this based on a radical meritocratic ethos that argues that talented workers
do not need a union at all” (318).

This effort to overcome good enoughness is rooted in an inherent desire
to make capitalism work more seamlessly through boasting narratives of
excellence, improving “creativity,” squashing union activity, and exploiting
personal quests of ambition. Therefore, capitalist logic will always under-
mine any good-enough solutions because niche situations like the one at
MiddleTech are very hard to come by and, per system design, are meant to
be broken apart. And once they are disrupted, this compromise that works
for so many—for the ones who stay or who stayed for a long time—will not
last.

MiddleTech teaches us that regardless of the efforts of these cheerlead-
ers of capitalism to abolish good enoughness, it will continue to exist under
certain conditions and in opposition to certain capitalist logics. The culture
of good enough can’t be sought out or abolished by any programmer or
manager but is the result of a deep intermingling of software and sociality,
which emerges in certain places over time. A company like MiddleTech
doesn’t strive to be good enough, nor can it try to abolish good-enough
culture. No amount of rebranding or off-site weekend workshopping can
help make or break good-enough software culture. As my book has shown,
good-enough software is a culture that emerges over time and in the right
conditions.

Good enoughness is thus a concept that is full of contradictions and will
always undermine itself by evoking its own opposite, thus never staying
stable on its own. In short, it is a concept that needs to be achieved, to be
made and remade through various practices that fight capitalist logic.

Conclusion 171

Good Enough Is Here to Stay

If the dominant postindustrial capitalist logic desires an excellent and
not a good-enough worker, the question remains: How do workers stabilize
their good-enough condition?

While I found very little evidence at MiddleTech of explicit class politics
in the narrower Marxist sense, one answer to this question could be wit-
nessed in the achieved stability of good enoughness, where a certain form
of middle-ground stability becomes a goal in itself (Groth 2020a).

What I mean here is that knowing when something is good enough to
finish, or good enough not to fail, is a collective and learned skill that is deli-
cately negotiated and achieved over time. As we’ve seen in earlier chapters,
teams of programmers work together for months, if not years, to push out
code that’s good enough not to disappoint the customer, not to drive a car
off the road when given a certain route, and not to embarrass their manager.
So, more specifically, understanding the limits of what is “good” and what is
“enough” is an achieved collective skill. While they might not consciously
realize it, software developers are connected by this knowledge, involved
in their collective achieved stability.

Software workers also stabilize good enoughness through a technical
dependency on good enough. As I’ve explained in the past chapters, soft-
ware cannot be perfect in practice due to certain forms of complexity and
constraint in software production (in particular with its update culture),
software’s architecture, and how software functions. As Collins et al. (1994)
and Yourdon (1995) highlighted, software projects can’t be awesome or per-
fect because of the material resistance of software. All the sketches, plans,
and theoretical blueprints might point to a perfect project, but once faced
with the infrastructure of the material and social world, software will fail
(Jackson 2014), and as a result, it will always be just good enough to func-
tion, with lots of mishaps and bugs popping up along the way. Programmers
know this, and no desire to escape and follow the light into bigger and better-
paid tech companies will help get around the fact that any software project,
anywhere, will always be just good enough.

Good enoughness also prevails at MiddleTech through the notion of
reasonableness. As I highlighted in my introductory chapter, Collins et al.
argued that the software industry should “encourage reasonable expecta-
tions about software capabilities and limitations” (1994, 89), both among
users and producers of software. This call to be “reasonable,” as Collins and
his colleagues explain, is about understanding “how good is good enough,”

172 Conclusion

a responsibility that lies in the hands of the software provider or the pro-
grammers and their team. It is also a way of defending one’s position against
a capitalist discourse (that is, “because how awesome can software be any-
way?”). Knowing what is reasonably good enough is learned, meaning that
software developers acquire expertise over the years of working with soft-
ware and understand that the boundaries between what is reasonably good
enough and what is not good enough can lead to critical, at times danger-
ous, software failure. It is important also to add that this collective learned
negotiation of what is “reasonable” or not doesn’t have to be so clean-cut,
polite, and safe. Software developers also acquire a sensibility of what is
good enough to get away with, which can also entail a more risk-taking
gamble, where the outcome of one’s actions is not so clearly known as the
term “reasonable” might suggest.

Another related way that the good-enough condition perseveres is through
the commons and collegiality of good enough. This is a form of sociality
where a group of people—in our case, engineers—find a sense of social belong-
ing and collegiality (Bachmann 2014) in a workplace commons (Korczynski
and Wittel 2020) where their colleagues have a similar goal of maintaining a
state of good enoughness. In this sense, the achievement is not moving on to
bigger and better Big Tech worlds or creating one’s own start-up, but sticking
together to practice good enoughness. As Silvia Gherardi explained, “learn-
ing how to do and learning how to be are part of the same social process, and
a community of practitioners can be read as the enactment of a locus not
only of identity, belonging and engagement but also of socio-technological
knowledge” (2009, 110). In other words, programmers collectively learn
the process of programming something in a good-enough way, push back
against deadlines, and do quick code reviews in order to go out for beers.
This is all part of the tricks-of-the-trade of the workplace commons and
enforces their sense of belonging and engagement in their sociotechnical
worlds. Negotiating, discussing, arguing, laughing at late deadlines, sneering
at faulty code, or posting memes about the impossibility of solving spaghetti
code—things we observed in the past chapters—all make up the collegiality
of good enough.

Software developers additionally stabilize their good-enough condi-
tion through the notion of contentment. In contrast to workers who com-
petitively strive to advance in their fields, workers who orient themselves
“towards the middle” do not seek the best but rather a medium position,
“a ‘good average’ or a ‘happy medium’ with which one is content (or claims
to be content)” (Groth 2019a, 31). This is a sentiment of good enough where

Conclusion 173

people justify their position against their dominant workplace ideology by
being happy with being in the middle, where a certain form of middleness
ensures calmness, low risk, or restraint. I remember that during a lunch
break, Pierre, Ori, and Charlie were laughing at their US office for pushing new
hoodies on them. Their argument for not getting new hoodies and getting
hyped by more company team spirit was that one hoodie was enough. They
already had one hoodie, so why get more? This “enoughness” is about being
sufficient. For those coming from the sustainability corner of science, good-
enough culture—one that promotes slowdown, modesty, or mediocrity—
might remind us of the recent discussion around the economic theory of
degrowth. This approach, generally derived from economics and sustainability
studies, understands that the world is in a period of economic stagnation and
sees that there are limits to growth. Thus, degrowth is, among other things,
about “maintaining prosperity without growth” (D’Alisa et al. 2014, 54),
based on a democratically led shrinking of production and consumption and
acceptance of the slowdown or exhaustion of technical innovation. Although
degrowth is unlikely to be a widespread ethos anytime soon, old aging soft-
ware companies can embrace their inertia and stability and accept that their
enterprise is not based on producing endless wasteful apps and speedy inno-
vations but instead on providing stable infrastructure.

This sentiment is also shared by those who study maintenance work,
who showed us that focusing on the way in which our existing technologies,
inventions, and infrastructures “get put back together” through the everyday
work of maintenance, caretaking, and repair is a welcome alternative to the
stress caused by a delusional culture of industriousness and competition
(Denis et al. 2016; Mattern 2018; Vinsel and Russell 2020). If we fit good
enough into the discourse around maintenance, we can see that within a
good-enough culture, software developers are resisting shiny innovation
and overproduction and focusing on the task at hand. Making a judgment
that something like software is good enough to be released into the world
also gives software workers a repair-oriented perspective: Imperfect, good-
enough software will be released into the world and will come back with
bugs, which is okay because software developers will be around to fix it.

Yet another way of preserving a good-enough culture is through a belief
that being good enough can ensure a sense of freedom from excellence. What
I mean here is that building software in a good-enough way also absolves the
software developer of the pressure to strive for perfection and the pressure not
to fail. Striving to be awesome can lead to stress for the software providers and
disappointment for the users and customers. Leaving something good enough

174 Conclusion

is a freeing gesture, absolving the developer from the strict focus on perfec-
tion and excellence. This type of approach is not uncommon in approaches to
parenthood, where a “good enough mother” (Winnicott 1953 in Ratnapalan
and Batty 2009, 239) is freer and more relaxed than a mother who constantly
strives for her vision of perfection. This is an illustration of how good enough
can create a better experience for all involved: The mother reduces her pres-
sure to achieve the impossible, and the child is then listened to.

Additionally, and somewhat related to the former, is that programmers
preserve a good-enough culture by making it part of their lifeworlds. Being
good enough can also be associated with the state of mediocrity, which,
as Groth (2019a) highlighted, is increasingly becoming a positive point of
reference in different fields of practice. Keeping up with the midfield, earn-
ing a middle-range income, or being part of the middle class are powerful
models for socioeconomic behavior and lifeworld interpretations (Groth
2019a). Perhaps it became a postpandemic trend, perhaps the younger gen-
eration cares more about the climate crisis than their day hustle, but since
I began writing this book, various journalists and authors started talking
about the good-enough job (Stolzoff 2023), where Gen Z workers were reject-
ing the idea of going above and beyond in their careers, happy to do just
the bare minimum to get by, caring about their own well-being and that of
their colleagues before profit or advancement. If we care about our own
well-being as workers, we won’t have a problem shipping a good-enough
project at 5 p.m. rather than working late to improve upon it. Because why
not? In a good-enough culture, the workday is over, the software is good
enough to run, and we would rather spend time with our families or friends
or caring about our own health and happiness.

Yet the most obvious way of keeping good enough alive at the workplace
is to not openly speak out about good enoughness. Speaking out about a cul-
tural practice that challenges a dominant discourse is bound to be criticized.
MiddleTech employees know that good enoughness exists but consciously
choose to ignore its existence. The silence around good enoughness remains,
for now, a crucial part of good enoughness.

Good-bye MiddleTech

Three months after the MiddleTech good-bye party in Prater’s Biergarten,
I called Ori and Charlie to find out how they were doing in their new jobs.
Ori was already three months into his Big Tech job in Tel Aviv, and I would
get photos of him on the beach or short video messages of him strolling down

Conclusion 175

the streets on warm evenings wearing his usual button-down vintage shirts. He
explained, with a bit of excitement, that he hadn’t done that much in the past
few months. Describing his Big Tech workday thus far, he said that it was over-
flowing with a variety of corporate events and social gatherings: onboarding
meetings, frequent rooftop parties celebrating a company achievement or
holiday, and colleagues coming back from vacation and sharing treats around
the office. “There is just a lot of social activity all the time, so it’s quite hard to
get any work done,” explained Ori. The days he worked from home were the
most productive. He didn’t know if this buzz around the office was due to
the Israeli social culture or just the culture around the Big Tech office. Their
company kitchens are run by one of Israel’s top chefs, and he is regularly invited
to different food tastings and other events. He boasted that there is even a
“bring-your-friend-to-work” scheme, and the office is filled with friends and
family members roaming around. While his company life is incredibly social,
his software work is done completely alone. He was hired to develop a special
machine learning tool for a specific branch of the Big Tech product, and the
software he builds assists teams in Singapore and London (teams that he says he
barely interacts with). Nobody really watches over his work, and if the software
he builds goes wrong, nothing critical will happen—no driver will swerve off
the road; no parent will be late to pick up her kid from school.

Charlie, on the other hand, started working in a much smaller hyped Ger-
man ride-sharing start-up where the “stakes were higher.” He described
the culture in his office as being “intense” and “driven to achieve.” He had
already experienced his colleagues coming in at 7 a.m. to fix something. He
was recently required to work on the weekends during a “crisis.” “We all get
stressed because we own the end-to-end. So it’s like we own the stress. We
don’t sell our technology for somebody else to build it into their system and
just ignore the pressure of our system potentially failing. There is a higher
bar,” he explained. His fellow product owners were also very ambitious.
While at MiddleTech he stood out as somebody smart, at his new start-
up he felt he blended in with the crowd of ambitious, young go-getters,
and he constantly had to prove himself. “I sometimes miss the laziness of
[MiddleTech] . . . ​Last week I was exhausted . . . ​but I am also much more
challenged.” While Charlie didn’t regret moving to his start-up, he did so
knowing he would have to work harder and be more engaged, giving up
his propensity for good enoughness.

Ori and Charlie helped highlight that good enoughness is everywhere.
Whether surrounded by good enoughness in Big Tech companies (as in
Ori’s case), or nostalgically longing for a culture of good enoughness (as

176 Conclusion

in Charlie’s case), the tension between good enoughness and the drive for
excellence and achievement is one that exists in many software companies.
Ori had encountered a work culture where the bar of good enoughness
seemed to be set even lower in Israel, a place that has become known in the
global tech industry as a hotspot for ambitious tech culture, whereas Charlie
had encountered the bar of good enoughness that was significantly raised in
a German start-up firm operating in the same industry. I would like to high-
light that there wasn’t a presence or absence of good enoughness in either
the Israeli-based Big Tech or the German start-up company but rather dif
ferent (and contrasting) constellations, different internal balances between
constellations, and different balances between constellations.

While this book was about a specific company in a specific region of the
world, building a specific type of software, my hunch is that good enough-
ness is everywhere. More optimistically, I believe that the capacity to pre-
serve a good-enough culture in which slowness and care overcome our
desires to build fast and break things is a sociotechnical achievement that
allows for workers to have certain freedoms and for software to be cared for
and maintained. This is a call for the acceptance of one of the many fallacies
of capitalism in which acceleration and innovation inadvertently lead to
slowdown and maintenance.

Paradoxically, while also being an achievement, good enoughness can
often be a privilege. This is the case not only for workers who get away with
doing a good-enough job, which is possible in a culture that provides safe
working environments, and have been able to gain employment at a com
pany like MiddleTech. Another point of privilege here is the mere possibil-
ity to achieve good enough in any relation or production process, breaking
through a threshold of just being “bad” or constantly failing. Whether practi-
cally or just subjectively, the experience that one is “never good enough,”
or that the object one is working on should be good enough but is instead a
failure, is not an uncommon feeling. This inability to be good enough or to
judge what is good enough might have to do with one’s class background,
the forms of discrimination somebody is experiencing, or one’s access to
education. Underfunded care work, for example, is a notorious example of
work that leaves its workers in a constant state of not being able to deliver
good-enough care.5 In software development, I can also speculate that an

5. For example, in her ethnographic research of nursing home workers in the United Kingdom,
Eleanor Johnson described the “shortfall” of funding, leading to care workers merely “getting
the job done,” which in turn led to damaging impacts on residents and care workers (2022, 7).

Conclusion 177

outsourcing team in Krakow or Bangalore, working to meet deadlines and
fearing for their job security, can feel that their work is never really good
enough for their employer.

While our past was rooted in expansion and the demand for bigger, bet-
ter, and greater, it is my hope that the skills and tactics of good enoughness
will be necessary to build a livable future. Resistance to the narratives of
capitalism can include care, compromise, balance, safety, contentment, or
collegiality. Knowing how to be good enough can give us the skill to maintain
our infrastructures and keep them running and stable. Accepting a good-
enough work culture can be productive as it leaves time for the realignment
of power relations, and the reconfiguration of what is important at a given
moment. What I aimed to illustrate is the overarching need for managers,
workers, and software users to accept the inherent bugginess and lethargy
of working with technical systems. It was my hope for us to get out of the
mindset that traps us into thinking that new technology will be able to
save us from the problems of older technology. Doing so can help us embrace
endurance over newness, maintenance and repair over quick innovation,
and prepare us for a highly adversarial world that is yet to come. A good-
enough future would be a substantial feat, and getting there would have to
entail the art of being good enough.

179

AFTERWORD

Good Enough beyond MiddleTech

Although my research was centered around one specific corporate software
development office, during the process of writing this book, I was bom-
barded by examples of how good enoughness—as both a way of making
software and a work practice—existed beyond the walls of MiddleTech.

During the first few months as I started writing this book, Ori sent
me a discussion thread he found on Hacker News, one of the sites many
developers I encountered enjoyed reading with their morning coffee.
For some software engineers and other techies, the Web site is the front
page of the internet: a simple compendium of news sites, opinions, and
hacker-related factoids posted by users, all organized into one list. The
list is organized by popularity and shifts by popularity on a daily basis.
On April 7, 2021, Ori sent me a post that was getting significant traction
that day. I am including it here in its entirety (with original spelling and
grammar retained). It read:

Hey HN [Hackernews],
I’ll probably get a lot of flak for this. Sorry.
I’m an average developer looking for ways to work as little as

humanely possible.
The pandemic made me realize that I do not care about working any-

more. The software I build is useless. Time flies real fast and I have to
focus on my passions (which are not monetizable).

Unfortunately, I require shelter, calories and hobby materials. Thus
the need for some kind of job.

180 AFTERWORD

Which leads me to ask my fellow tech workers, what kind of job (if
any) do you think would fit the following requirements:

– 	 No / very little involvement in the product itself (I do not care.)
– 	 Fully remote (You can’t do much when stuck in the office. Ideally

being done in 2 hours in the morning then chilling would be
perfect.)

– 	 Low expectations / vague job description.
– 	 Salary can be on the lower side.
– 	 No career advancement possibilities required. Only tech, I do not

want to manage people.
– 	 Can be about helping other developers, setting up infrastructure/

deploy or pure data management since this is fun.

I think the only possible jobs would be some kind of backend-only
dev or devops/sysadmin work. But I’m not sure these exist anymore, it
seems like you always end up having to think about the product itself.
Web dev jobs always required some involvement in the frontend.

Thanks for any advice (or hate, which I can’t really blame you for).
—LMUEONGOQX (APRIL 7, 20211)

Both the post and the comments that responded to it (over a thousand—a
lot for one post on the site) were a testament to what I have been hinting at
all along in this book: that good enoughness exists not only in MiddleTech
but is everywhere: in lmueongoqx’s world, and in the lifeworlds of the thou-
sands of developers in San Francisco, Tel Aviv, Bangalore, and beyond who
responded to this post.

This post, and the responses that followed, were laced with a multitude
of meanings. Hacker News is an online space that celebrates engineerial
culture, promoting mostly the success of technological perfection, celebrat-
ing new forms of innovation, or sharing tips on how to complete a project
or learn something. The purpose of the site is to promote hacker culture. In
lmueongoqx’s post, he expresses an appeal and even suggests that there is an
art to being average. On the one hand, lmueongoqx seemed to be honestly
asking for advice and honestly searching for a different way of working as an
engineer. On the other hand, lmueongoqx’s question and its answers (which
I will get to below) were laced with cynicism, as if these programmers were
responding to the shattering of a taboo that usually prevented them from
speaking out about their slowness, slacking, and good-enough work culture.

1. Hacker News, Apr. 7, 2021, https://news​.ycombinator​.com​/item​?id​=26721951.

https://news.ycombinator.com/item?id=26721951

GOOD ENOUGH BEYOND MIDDLETECH 181

Implicitly, this post denounced the mainstream engineering culture, which
they normally believed in and were supposed to follow on Hacker News
within their work practices and beyond.

Coincidentally, this post spoke to various moments in my field, where
the escape from good enoughness (and into the arms of Big Tech or start-
ups) was celebrated. If we look more closely into some of the meanings
behind this post, we’ll notice that the celebratory ritual is somehow flipped
on its head: The programmers who stay at MiddleTech, who engage in good-
enough jobs, and who are able to get away with making good-enough soft-
ware, are celebrated as the winners or achievers. Yet with every sentence
these Hacker News programmers write, you can see how this approach goes
against the discourses of excellence that inform their field and reveals a back-
stage reality of a work culture that normally remains hidden.

Good-Enough Job Tactics

As I read Hacker News, it was as if the results of my ethnographic research
were mirrored in programmer message boards beyond the corridors of
MiddleTech. The comments were uncanny. They resembled the practices,
experiences, and conversations I had observed.

I noticed too that the advice for lmueongoqx was practical and quite
tactical—almost summarizing the various experiences of the developers at
MiddleTech. By “tactical” I mean having a practice-based orientation, the
way in which de Certeau defined “everyday practices” and “ways of operat-
ing” as “tactical in character” (de Certeau 1984, xix). While I won’t share
the entire list, I grouped the comments into two different tactical themes
that make direct connections to my other chapters, addressing what good-
enough work in software development entails.

The first theme of advice for lmueongoqx circles around “tactics” for
identifying the type of company to work for and the kind of job that allows
a worker to “not care” at work. The second set of themes can be grouped
around the “tactics” of engaging in a good-enough job, where programmers
suggested ways for lmueongoqx to engage in good-enough practices while
already at the workplace. I will include these comments below, again retain-
ing their original spelling and grammar.

Regarding the former set of advice on accessing a good-enough job,
some highlighted that start-ups are not recommended as “the owners watch
costs like hawks and there’s zero chance of slacking off.” Rather, older,
more established, “medium-sized” companies are best because they have

182 AFTERWORD

a “local monopoly” and aren’t really forced to “compete in their market”
and “have had dominance for more than a decade” (Hacker News, April 8,
2021). The user recommending medium-size companies; XCoderX, added
that the best companies are the ones whose “business model does not
depend on innovation or moving fast . . . ​The development dept. is known
for saying ‘good things take time’ because they can afford to.” Another
user, Hamcha, added, “If you’re a developer in a big/mid company (or a
consultant regardless of company size) your input to the product will be
minimum to non-existent. And even if it wasn’t, maybe the problem at
the base is something you don’t believe is worth solving or being solved
properly.” These comments resonated with how I characterized Medium
Tech companies as those that structure their workdays around mainte-
nance and repair rather than around innovation. The sentiment among
these Hacker News programmers was that environments that focus on
maintenance and repair give rise to a culture of “mellow and chilled co-
workers” rather than “career-hungry overachievers”—a phenomenon that
was present at MiddleTech.

A different user, burnoutguru, highlighted the importance of work-
ing in an older, “stagnant” company, explaining, “[I’m a] Senior DevOps
Engineer at a mid-sized, stagnant Californian ‘startup’ . . . ​My last three
jobs were at companies which were 10–15 years old, had burned through
$75m–$150m in VC and had flat revenues of $12–$15m for years . . . ​The
thing about companies this size is you have a good sized team managing
a medium workload and very low expectations.” As I noted in chapter 1,
Medium Tech software companies can be characterized by their age and
the older software assets they hold. While older companies in any industry
are often replaced by new ones that build better or more innovative prod-
ucts, there are a select few that keep surviving for years as the company is
able to build up a stable revenue from a software product that is embedded
in the market (for example, the routing and navigation system in German
vehicles). This lack of pressure to build a flashy, innovative product leads
to a good-enough product.

Additionally, some of these comments noted the link between the age
and size of the company and its propensity for promoting good-enough
work cultures. In particular, many of lmueongoqx’s advice-givers noted that
a culture of underachievement could be found in companies that are “mid-
sized and older.”

While I characterize MiddleTech as the older, less sexy software com-
panies building more invisible products, providing a “medium workload

GOOD ENOUGH BEYOND MIDDLETECH 183

and very low expectations,” many developers on Hacker News also wrote
about the BigTech/FAANG (Facebook, Amazon, Apple, Netflix, Google)
companies. These companies are also older, and some of their departments
and teams are also slower and focus more on maintenance than on inno-
vation. Some Hacker News users wrote that these companies have gotten
so big that it has become easy to “fall through the cracks.” Natch wrote,
“Work at Google. They seem to have many thousands of people who do
very little. Just look at their product quality.” Others, like Quartus, suggest
going for larger, more “dinosaur” companies, writing, “Try some of the old
school tech companies: Cisco, Oracle, IBM, etc.” These larger companies
get “so big” because they hold a monopoly on a certain software product.
As I mentioned throughout this book, MiddleTech builds a stable product
with a “local monopoly,” meaning that not many other companies have such
a robust mapping engine and have mapped the world to the same extent as
MiddleTech. This monopoly gives MiddleTech an edge on the market, mean-
ing that they do not have to be “innovation-driven” but rather maintenance-
driven, making sure they keep the dominance that they have had for more
than a decade by maintaining and repairing an existing product. This logic is
precisely what helps drive BigTech/FAANG companies too, also fostering
a good-enough work ethic.

Good-Enough Work Tactics

In addition to this advice on finding a good-enough job, hundreds of pro-
grammers gave lmueongoqx precise tactics for engaging in good-enough
work practices while at his good-enough job. I chose a select few themes
(which often repeated themselves throughout the Hacker News posts) and
grouped them into work tactics for creating a good-enough culture in a
commercial software company. While seemingly cynical and offered with
a sense of humor, these “tactics” help highlight that good enoughness is a
real practice at the tech workplace, resonating with many programmers
in their everyday corporate environments. Again, the cynical and jokey
tone of these “tactics” doesn’t mean that they aren’t real but rather helps
highlight the taboo of actually speaking out about good enoughness. If we
link these tactics with what we’ve learned throughout these chapters, we’ll
find that they resonate with real backstage practices that are not usually
openly discussed.

The first tactic involves helping others all the time: “Pick a role where
spending time on other people’s tasks is justified. During stand-ups when

184 AFTERWORD

you have to explain what you did, you can say that you worked on your own
thing, and that you helped the other person. This is not just a way to cheat:
I care more about what I do, if I’m helping someone who cares more. I
invented this coping strategy at points where I didn’t care at all myself.”2 This
resonates with many moments we encountered in the past chapters. Pedro,
my Lancaster ETA data scientist, once explained the other side of the coin:
that you get “punished” for caring because people are so often unloading
their own work on those who do “care”: “Developers are punished for being
caring: for reading e-mails, for doing more experiments, for being involved.
If you do not care, you are allowed to be in your corner and just plug away at
whatever it is you are assigned to do. But if you care, you will keep getting
more problems to solve. I’m the type of person who cares, but I just have to
start saying ‘no’ and stop caring.” Care here is like a ball that keeps bouncing
back and forth between programmers, stopping with the programmer who
is actually willing to do more work. Many programmers know this, and as
Pedro explained, deflect their care onto somebody else to “hide in a corner.”

The second tactic involves working “in research, where the final product
is vague and intangible . . . ​Pick more research-y tasks: People don’t know
exactly what to expect, the work isn’t as easily quantified. So when you spend
longer or don’t have as much to show for it, that may make sense.” Here,
we can recall engineers like Youssef, Ori, and Pedro, who often embraced a
very different work speed than other more product-driven developers. As
I also suggested, having a lot of revenue based on older assets meant that
MiddleTech did not worry about wasting it on employees who did nothing
at all. Simultaneously, many of the teams at MiddleTech didn’t work on
maintaining their software assets but were employed to research and test
new map-related business ideas. These business ideas did not necessarily
have to provide any financial returns because the cash-cow map software
was securing the majority of the employees’ salaries. As many researchers
in particular weren’t building anything tangible that needed to be finished
by a certain time, it was easy to lose track of an employee.

Another tactic that can lead to management losing track of its workers
(and the worker thus getting away with working on a good-enough level) is
to first “work diligently for a while and then become invisible. You have to
work for some time and then count on ‘falling into the cracks’—landing in
a place where there’s less work than people capable of doing it.”

2. All quotations from the Hacker News post come directly from Hacker News and were
gathered in Apr. 2021.

GOOD ENOUGH BEYOND MIDDLETECH 185

This relates to a fourth tactic, which suggested working with clueless
managers. “Select somewhere with a new CTO/tech lead: They’re super
busy learning how to juggle management and mentoring, so if you’re stuck
onboarding for more time than normal, they won’t blame you. This may
sound leechy, but just make sure you provide some kind of value to everyone
else other than your full attention.” In many places in this book, particu-
larly in chapter 4, “Managing Good Enoughness,” I explored the knowledge
divide between the programmers and their managers, where management
was often left clueless as to what was being built and how long the proj
ect would actually take. Working at a good-enough company should be
understood as an interplay of understanding and misunderstanding, com-
munication and miscommunication, and knowing and not knowing. This
interplay of understanding relates to a fifth tactic that I highlighted above,
which involves blinding management with vague language around “digitiza-
tion” and technosolutionism: “Show off your AI and offer to ‘digitize’ their
workflow across the board? Could make big bucks off of that.”

Moments of going backward to work on legacy code, scrapping proj
ects and halting, or being blocked and standing in place are also part of
the practice of knowing and not knowing characterizing software work.
A sixth tactic that I could identify within the Hacker News post suggested
“getting blocked”: “Pick a role where you’re constantly blocked by other
people. So, working in a big company, where every function (renting a
[virtual machine], setting up a [database] schema) . . . ​is centralized in one
team, possibly overloaded and not too competent . . . ​These folks can take
months to complete simple tasks and you can always say you can’t move for-
ward until they deliver.” In particular in chapter 5, “Slowdown,” I explained
that being blocked and kept waiting is not only part of the story of how
users engage with software but also how producers of our software become
entrenched in a culture of waiting around.

Complexity is also an underlying theme in good-enough software devel-
opment, and another tactic that the Hacker News engineers identified was
to get entangled in complex chaos: “Work in an integration-heavy project.
If your codebase calls 8 different systems in your company, they will all fail,
have incomplete documentation, unresponsive teams etc. and will result
in a lot of waiting and lost time on your end (which is what you’re after).”
At MiddleTech (or any large software company) we noted that projects get
so complex, so intricate, and involve so many layers of code and so many
ideas that they stop being understandable. Creating software is always, in
some way, about encountering ideas beyond one’s capacity, and it demands

186 AFTERWORD

care and time that do not fit into a speedy mode of production, leaving the
developer building merely good-enough software.

As I also discussed in chapter 1, “Welcome to MiddleTech,” good-enough
corporations are often “anarchic organizations” (Cohen, March, and Olsen
1972) characterized, among other things, by organizational complexity that
neither employees nor their managers can fully comprehend. Somewhat
related to the anarchic organization is the Hacker News tactic that suggests
choosing a large and dysfunctional company: “If the organization is big
enough and dysfunctional enough, your absence will not be noticed for
long periods of time. Just make sure whenever you are seen you have the
appearance of being in a huge rush.”

Anarchic organizations, and in particular knowledge organizations like
software companies, also feature work that is defined in vague terms. Vague-
ness was also very ingrained within the work practices of our MiddleTech
programmers, with vague, highly subjective methods of estimating the
amount of time that a project will take to complete. Vagueness can also be
achieved, as another tactic suggested, by gaining expertise in a very “eso-
teric or depreciated” programming language. With nobody knowing how
to control a worker using an outdated language, “you may only be asked to
help once a month (or even once a year) but when they need you they really
need you, and are willing to pay handsomely.” As we recall, particularly in
the chapter on how stuff goes wrong, product owners, managers, and pro-
grammers give one another, as well as their customers, vague and subjective
estimations about how long a software project will take, or what needs to be
done to finish a project. These vague estimations are an integral part of how
different parties interact in good-enough software cultures.

It is worth noting that the Hacker News comments included tactics that
I did not witness at MiddleTech, highlighting other significant tactics
that were perhaps more prevalent in other corporate fields. For example, as
one Hacker News engineer suggested, making oneself available in an emer-
gency is also key: “Show high effort once in a while: This counts against not
making an effort, but people will remember you for fixing things when it
matters, and they tolerate you working at your own pace most of the time.”
Others suggested finding a job based on repetition and then automating
this repetition: “If you found a job that required a lot of repetitive manual
tasks and you could write a little program or script and automate it (and not
tell the company that you did so) you would suddenly find yourself with a
lot of free time.” Some of these additional tactics help highlight that good
enoughness exists beyond MiddleTech and encompasses various practices

GOOD ENOUGH BEYOND MIDDLETECH 187

dependent on the software being made and the way software production
is organized. While this book is a focused study of a mid-sized company in
Berlin, I have no doubt that programmers and their colleagues in all sorts of
tech companies across the globe are practicing these tactics of good enough-
ness and coming up with more every day.

—Paula Bialski
May 1, 2023 (the German Labor Day)

189

REFERENCES

Abbott, Andrew. 2014. The System of Professions: An Essay on the Division of Expert Labor. Chicago:
University of Chicago Press.

Abel, Emily K., and Margaret K. Nelson, eds. 1990. Circles of Care: Work and Identity in Women’s
Lives. Albany: State University of New York Press.

Alexander, Neta. 2020. “The Waiting Room: Rethinking Latency after COVID-19.” In Pandemic
Media, edited by Philipp Dominik Keidl, Laliv Melamed, Vinzenz Hediger, and Antonio
Somaini, 25–31. Luneburg, Germany: Meson Press.

Allaire, Yvan, and Mihaela E. Firsirotu. 1984.“Theories of Organizational Culture.” Organization
Studies 5, no. 3: 193–226.

Alpert, Avram. 2022. The Good-Enough Life. Princeton, NJ: Princeton University Press.
Alvesson, Mats. 2004. Knowledge Work and Knowledge-Intensive Firms. Oxford: Oxford University

Press.
Ames, Morgan G. 2019. The Charisma Machine: The Life, Death, and Legacy of One Laptop per

Child. Cambridge, MA: MIT Press.
Amrute, Sareeta. 2016. Encoding Race, Encoding Class: Indian IT Workers in Berlin. Durham, NC:

Duke University Press.
Anders, Gerhard. 2015. “The Normativity of Numbers in Practice: Technologies of Counting,

Accounting and Auditing in Malawi’s Civil Service Reform.” Social Anthropology / Anthro-
pologie Sociale 23, no. 1: 29–41.

Bachmann, Götz. 2014. Kollegialität: Eine Ethnografie Der Belegschaftskultur Im Kaufhaus [Col-
legiality: An ethnography of workplace culture in a department store]. Frankfurt am Main:
Campus Verlag.

Barbrook, Richard, and Andy Cameron. 1996. “The Californian Ideology.” Science as Culture 6,
no. 1: 44–72.

Barley, Stephen R. 2005. “What We Know (and Mostly Don’t Know) about Technical Work.” In
The Oxford Handbook of Work and Organization, edited by Stephen Ackroyd, Rosemary Batt,
and Paul Thompson, 376–403. Oxford: Oxford University Press.

Barley, Stephen R., and Beth A. Bechky. 1994. “In the Backrooms of Science: The Work of
Technicians in Science Labs.” Work and Occupations 21, no. 1: 85–126.

Berlant, Lauren. 1998. “Intimacy: A Special Issue.” Critical Inquiry 24, no. 2: 281–88.
Beverungen, Armin. 2019. “Executive Dashboard.” In Oxford Handbook of Technology, Media and

Organization, edited by Timon Beyes, Robin Holt, and Claus Pias, 225–37. Oxford: Oxford
University Press.

Bietz, Matthew J., Toni Ferro, and Charlotte P. Lee. 2012. “Sustaining the Development of Cyber-
infrastructure: An Organization Adapting to Change.” In Proceedings of the ACM 2012 Confer-
ence on Computer Supported Cooperative Work, 901–10. New York: Association for Computing
Machinery.

190 References

Bijker, Wiebe E., Thomas P. Hughes, and Trevor Pinch. 1989. The Social Construction of Techno-
logical Systems: New Directions in the Sociology and History of Technology. Cambridge, MA:
MIT Press.

Blackburn, Joseph D., Gary D. Scudder, and Luk N. Van Wassenhove. 1996. “Improving Speed
and Productivity of Software Development: A Global Survey of Software Developers.” IEEE
Transactions on Software Engineering 22, no. 12: 875–85.

Blunden, Bill. 2003. Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code.
New York: Apress.

Boenig-Liptsin, Margarita, and J. Benjamin Hurlbut. 2016. “Technologies of Transcendence at
Singularity University.” In Perfecting Human Futures, 239–67. Wiesbaden, Germany: Springer.

Boewe, Jörn, and Johannes Schulten. 2017. The Long Struggle of the Amazon Employees. Berlin:
Rosa Luxemburg Stiftung.

Boltanski, Luc, and Eve Chiapello. 2018. The New Spirit of Capitalism. New Updated ed. London:
Verso Books.

Bowker, Geoffrey C., and Susan Leigh Star. 2000. Sorting Things Out: Classification and Its Con-
sequences. Cambridge, MA: MIT Press.

Braverman, Harry. 1974. Labor and Monopoly Capital: The Degradation of Work in the Twentieth
Century. New York: Monthly Review Press.

Brooks, Frederick P., Jr. 1995. The Mythical Man-Month: Essays on Software Engineering. Anni-
versary ed. Boston: Addison Wesley Longman.

Burawoy, Michael. 1982. Manufacturing Consent: Changes in the Labor Process under Monopoly
Capitalism. Chicago: University of Chicago Press.

Burke, Ronald J., Marina N. Astakhova, and Hongli Hang. 2015. “Work Passion through the Lens
of Culture: Harmonious Work Passion, Obsessive Work Passion, and Work Outcomes in
Russia and China.” Journal of Business and Psychology 30, no. 3: 457–71.

Casper, Steven. 2007. Creating Silicon Valley in Europe: Public Policy towards New Technology
Industries. Oxford: Oxford University Press on Demand.

Certeau, Michel de. 1984. The Practice of Everyday Life. Berkeley: University of California Press.
Ceruzzi, Paul E. 2003. A History of Modern Computing. Cambridge, MA: MIT Press.
Cervone, H. Frank. 2011. “Understanding Agile Project Management Methods Using Scrum.”

OCLC Systems & Services: International Digital Library Perspectives 27, no. 1: 18–22.
Chandra, Vikram. 2014. Geek Sublime: The Beauty of Code, the Code of Beauty. Minneapolis: Gray-

wolf Press.
Chun, Wendy Hui Kyong. 2017. Updating to Remain the Same: Habitual New Media. Cambridge,

MA: MIT Press.
Clark, Timothy, and Graeme Salaman. 1996. “The Management Guru as Organizational Witchdoc-

tor.” Organization 3, no. 1: 85–107.
Cohen, Michael D., James G. March, and Johan P. Olsen. 1972. “A Garbage Can Model of

Organizational Choice.” Administrative Science Quarterly 17, no. 1: 1–25.
Coleman, Enid Gabriella. 2012. Coding Freedom: The Ethics and Aesthetics of Hacking. Princeton,

NJ: Princeton University Press.
———. 2014. Hacker, Hoaxer, Whistleblower, Spy: The Many Faces of Anonymous. London: Verso

Books.
Collins, W. Robert, Keith W. Miller, Bethany J. Spielman, and Phillip Wherry. 1994. “How Good

Is Good Enough? An Ethical Analysis of Software Construction and Use.” Communications
of the ACM 37, no. 1: 81–91.

Cooley, Mike. 1980. “Computerization Taylor’s Latest Disguise.” Economic and Industrial Democ-
racy 1, no. 4: 523–39.

References 191

Courpasson, David, Françoise Dany, and Stewart Clegg. 2012. “Resisters at Work: Generating
Productive Resistance in the Workplace.” Organization Science 23, no. 3: 801–19.

Crain, Marion, Winifred Poster, and Miriam Cherry. 2016. Invisible Labor: Hidden Work in the
Contemporary World. Berkeley: University of California Press.

Cram, David, and Paul Hedley. 2005. “Pronouns and Procedural Meaning: The Relevance of Spa-
ghetti Code and Paranoid Delusion.” Oxford University Working Papers in Linguistics, Philology
and Phonetics 10: 179–210.

Csikszentmihalyi, Mihaly. 1997. Finding Flow: The Psychology of Engagement with Everyday Life.
New York: Basic Books.

D’Alisa, Giacomo, Federico Demaria, and Giorgos Kallis. 2014. Degrowth: A Vocabulary for a New
Era. London: Routledge.

Darr, Asaf, and Chris Warhurst. 2008. “Assumptions, Assertions and the Need for Evidence:
Debugging Debates about Knowledge Workers.” Current Sociology 56, no. 1: 25–45.

Darrah, Charles N. 2001. “Techno-missionaries Doing Good at the Center.” Anthropology of Work
Review 22, no. 1: 4–7.

Deal, Terrence E., and Allan A. Kennedy. 1983. “Corporate Cultures: The Rites and Rituals of
Corporate Life.” Business Horizons 26, no. 2: 82–85.

Denis, Jérôme, Alessandro Mongili, and David Pontille. 2016. “Maintenance & Repair in Science
and Technology Studies.” TECNOSCIENZA: Italian Journal of Science & Technology Studies
6, no. 2: 5–16.

Doane, Janice L., and Devon L. Hodges. 1992. From Klein to Kristeva: Psychoanalytic Feminism
and the Search for the “Good Enough” Mother. Ann Arbor: University of Michigan Press.

Douglass, Bruce Powel. 2015. Agile Systems Engineering. Waltham, MA: Morgan Kaufmann.
Downey, Gary Lee. 1998. The Machine in Me: An Anthropologist Sits among Computer Engineers.

London: Routledge.
du Gay, Paul. 1991. “Enterprise Culture and the Ideology of Excellence.” New Formations 13,

no. 1: 45–61.
Dunbar-Hester, Christina. 2019. Hacking Diversity: The Politics of Inclusion in Open Technology

Cultures. Princeton, NJ: Princeton University Press.
Dybå, Tore, and Torgeir Dingsøyr. 2008. “Empirical Studies of Agile Software Development:

A Systematic Review.” Information and Software Technology 50, no. 9–10: 833–59.
Edgerton, David. 2008. The Shock of the Old: Technology and Global History Since 1900. London:

Profile Books.
Engelbart, Douglas C. 1961. “Games That Teach the Fundamentals of Computer Operation.” IRE

Transactions on Electronic Computers EC-10, no. 1: 31–41.
Engels, Franziska, Alexander Wentland, and Sebastian M. Pfotenhauer. 2019. “Testing Future

Societies? Developing a Framework for Test Beds and Living Labs as Instruments of Innova-
tion Governance.” Research Policy 48, no. 9, 103826: 1–11.

Ensmenger, Nathan. 2010. The Computer Boys Take Over: Computers, Programmers, and the Politics
of Technical Expertise. Cambridge, MA: MIT Press.

———. 2015. “ ‘Beards, Sandals, and Other Signs of Rugged Individualism’: Masculine Culture
within the Computing Professions.” Osiris 30, no. 1: 38–65.

Ensmenger, Nathan, and William Aspray. 2002. “Software as Labor Process.” In History of Comput-
ing: Software Issues, edited by Ulf Hashagen, Reinhard Keil-Slawik, and Arthur L. Norberg,
139–65. Heidelberg, Germany: Springer.

Ereiz, Zoran, and Denis Mušić. 2019. “Scrum Without a Scrum Master.” Paper presented at the
2019 IEEE International Conference on Computer Science and Educational Informatization
(CSEI), Kunming, China, August 16–18. 1

192 References

Farman, Jason. 2017. “Repair and Software: Updates, Obsolescence, and Mobile Culture’s Operat-
ing Systems.” Continent 6, no. 1: 20–24.

Feathers, Michael. 2004. Working Effectively with Legacy Code. Upper Saddle River, NJ: Prentice
Hall Professional.

Feyerabend, Paul. 1993. Against Method. London: Verso.
Fisher, Ben, and Eran Fisher. 2019. “When Push Comes to Shove: Dynamics of Unionising in

the Israeli High-Tech Sector.” Work Organisation, Labour & Globalisation 13, no. 2: 37–56.
Fisher, Eran, and Ben Fisher. 2019. “Shifting Capitalist Critiques: The Discourse about Unionisa-

tion in the Hi-Tech Sector.” Triple C: Communication, Capitalism & Critique. Open Access
Journal for a Global Sustainable Information Society 17, no. 2: 308–26.

Foroohar, Rana. 2021. Don’t Be Evil: The Case Against Big Tech. New York: Penguin Random House.
Forstie, Clare. 2017. “A New Framing for an Old Sociology of Intimacy.” Sociology Compass 11,

no. 4: e12467.
Forsythe, Diana. 2001. Studying Those Who Study Us: An Anthropologist in the World of Artificial

Intelligence. Stanford, CA: Stanford University Press.
Fraser, Nancy. 2016. “Contradictions of Capital and Care.” New Left Review 100, no. 100: 99–117.
Freudendal-Pedersen, Malene, and Sven Kesselring, eds. 2017. Exploring Networked Urban Mobili-

ties: Theories, Concepts, Ideas. New York: Routledge.
Gherardi, Silvia. 2009. Organizational Knowledge: The Texture of Workplace Learning. Hoboken,

NJ: John Wiley & Sons.
Goldstine, Herman Heine, and John von Neumann. 1947. Planning and Coding of Problems

for an Electronic Computing Instrument 1–3, Part 2. Princeton, NJ: Institute for Advanced
Study.

Goodwin, Charles. 1994. “Professional Vision.” American Anthropologist 96, no. 3: 606–33.
Graeber, David. 2018. Bullshit Jobs: A Theory. London: Penguin Random House UK.
Graham, Stephen. 2005. “Software-Sorted Geographies.” Progress in Human Geography 29, no. 5:

562–80.
Graham, Stephen, and Nigel Thrift. 2007. “Out of Order: Understanding Repair and Maintenance.”

Theory, Culture & Society 24, no. 3: 1–25.
Green, Ben. 2020. The Smart Enough City: Putting Technology in Its Place to Reclaim Our Urban

Future. Cambridge, MA: MIT Press.
Gregg, Melissa. 2011. Work’s Intimacy. Cambridge, MA: John Wiley & Sons.
Groth, Stefan. 2019a. “Of Good Averages and Happy Mediums: Orientations towards an Average

in Urban Housing.” In The Vulnerable Middle Class? Strategies of Housing in Prospering Cities,
edited by Johannes Moser and Simone Egger, 29–48. Munich: utzverlag GmbH.

———. 2019b. “Wettbewerb Ums Mittelmaß? Kompetitive Orientierungen Im Breitensportlichen
Rennradfahren” [Competition for mediocrity? Competitive orientations in recreational racing
cycling]. In Auf Den Spuren Der Konkurrenz. Kultur- Und Sozialwissenschaftliche Perspektiven,
edited by Karin Bürkert, Alexander Engel, Timo Heimerdinger, Markus Tauschek and Tobias
Werron, 199–219. Münster: Waxmann Verlag GmbH.

———. 2020a. “Comparison as Reflective and Affective Practice: Orientations towards the Middle
in Recreational Road Cycling.” Cultural Analysis 18, no. 1: 63–75.

———. 2020b. “Mitte und Mittelmass: zwischen privilegierter Gleichheit und kompetitiver Dif-
ferenz” [The middle and mediocrity: between privileged equality and competitive difference].
Bulletin Schweizerische Akademie der Geistes-und Sozialwissenschaften (SAGW) 1: 45–47.

Groth, Stefan, Karl Braun, Johannes Moser, and Christian Schönholz. 2019. Zwischen Ermögli-
chung und Begrenzung: Zur subjektiven Plausibilisierung des Mittelmaßes als normative Ori-
entierung [Between enabling and limiting: On the subjective plausibility of mediocrity as a
normative orientation]. Marburg, Germany: MakuFEE.

References 193

Gürses, Seda, and Joris Van Hoboken. 2017. “Privacy after the Agile Turn.” In Cambridge Handbook
of Consumer Privacy, edited by Jules Polonetsky, Omer Tene, and Evan Selinger, 579–601.
Cambridge: Cambridge University Press.

Haigh, Thomas, and Mark Priestley. “Innovators Assemble: Ada Lovelace, Walter Isaacson, and
the Superheroines of Computing.” Communications of the ACM 58, no. 9 (2015): 20–27.

Halpern, Orit, and Robert Mitchell. 2023. The Smartness Mandate. Cambridge, MA: MIT Press.
Hasse, Raimund, and Eva Passarge. 2015. “Silicon Valley und sonst nichts Neues? Biotechnologie

in der Schweiz als Beispiel für neue Organisationsformen und deren Legitimierun” [Silicon
Valley and nothing new anywhere else? Biotechnology in Switzerland as an example of new
organizational forms and their legitimation]. Zeitschrift für Soziologie 44, no. 1: 6–21.

Highsmith, James A. 2013. Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. New York: Dorset House Publishing.

Hochschild, Arlie Russell. 1983. The Managed Heart: Commercialization of Human Feeling. Berke-
ley: University of California Press.

Ingold, Tim. 2002. The Perception of the Environment: Essays on Livelihood, Dwelling and Skill.
London: Routledge.

Irani, Lilly. 2019. Chasing Innovation: Making Entrepreneurial Citizens in Modern India. Princeton,
NJ: Princeton University Press.

Jackson, Steven J. 2014. “Rethinking Repair.” Media Technologies: Essays on Communication, Mate-
riality, and Society: 221–39.

Jamieson, Lynn. 1988. Intimacy: Personal Relationships in Modern Societies. Cambridge, MA: Pol-
ity Press.

Jasanoff, Sheila, and Sang-Hyun Kim. 2015. Dreamscapes of Modernity: Sociotechnical Imaginaries
and the Fabrication of Power. Chicago: University of Chicago Press.

Johnson, Eleanor K. 2022. “The Costs of Care: An Ethnography of Care Work in Residential
Homes for Older People.” Sociology of Health & Illness 45, no 1: 54–69.

Kaldrack, Irina, and Martina Leeker. 2015. “Introduction.” In There Is No Software, There Are Just
Services, edited by Irina Kaldrack and Martina Leeker, 9–19. Luneburg, Germany: Meson Press.

Kameo, Nahoko. 2017. “A Culture of Uncertainty: Interaction and Organizational Memory in
Software Engineering Teams under a Productivity Scheme.” Organization Studies 38, no. 6:
733–52. https://doi​.org​/10​.1177​/0170840616685357. https://journals​.sagepub​.com​/doi​/abs​
/10​.1177​/0170840616685357.

Kelty, Christopher M. 2008. Two Bits: The Cultural Significance of Free Software. Durham, NC:
Duke University Press.

———. 2019. The Participant. Chicago: University of Chicago Press.
Kelty, Christopher, and Seth Erickson. 2015. “The Durability of Software.” In There Is No Software,

There Are Only Services, edited by Irina Kaldrack and Martina Leeker, 39–56. Luneburg,
Germany: Meson Press.

Kidder, Tracy. 1981. The Soul of a New Machine. New York: Penguin Books.
Kirchner, Jens, Pascal R. Kremp, and Michael Magotsch. 2010. Key Aspects of German Employment

and Labour Law. Berlin: Springer.
Knorr-Cetina, Karin. 1997. “Sociality with Objects: Social Relations in Postsocial Knowledge

Societies.” Theory, Culture & Society 14, no. 4: 1–30.
Korczynski, Marek, and Andreas Wittel. 2020. “The Workplace Commons: Towards Understand-

ing Commoning within Work Relations.” Sociology 54, no. 4: 711–26.
Kraft, Philip. 1979. “The Routinizing of Computer Programming.” Sociology of Work and Occupa-

tions 6, no. 2: 139–55.
Kunda, Gideon. 1992. Engineering Culture: Control and Commitment in a High-Tech Corporation.

Philadelphia: Temple University Press.

https://doi.org/10.1177/0170840616685357
https://journals.sagepub.com/doi/abs/10.1177/0170840616685357
https://journals.sagepub.com/doi/abs/10.1177/0170840616685357

194 References

———. 2009. Engineering Culture: Control and Commitment in a High-Tech Corporation. Pennsyl-
vania: Temple University Press.

Lafargue, Paul. 1883. The Right to Be Lazy. Auckland, New Zealand: Floating Press. http://
theanarchistlibrary​.org​/library​/paul​-lafargue​-the​-right​-to​-be​-lazy.

Larson, Selena. 2017. “Why Do Hackers Always Wear Hoodies? Behind the Stereotype.” CNN
Business, May 26.

Latour, Bruno. 1990. “Technology Is Society Made Durable.” Supplement, The Sociological Review
38, no. 1: 103–31.

———. 2005. Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford: Oxford
University Press.

———. 2013. An Enquiry into the Modes of Existence: An Anthropology of the Moderns. Cambridge,
MA: Harvard University Press.

Law, John, and Annemarie Mol. 1995. “Notes on Materiality and Sociality.” The Sociological Review
43, no. 2: 274–94.

Leavitt Cohn, Marisa. 2016. “Convivial Decay: Entangled Lifetimes in a Geriatric Infrastructure.”
In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social
Computing, 1511–23. San Francisco: ACM Digital Library.

———. 2019. “Keeping Software Present: Software as a Timely Object for STS Studies of the
Digital.” In DigitalSTS: A Field Guide for Science & Technology Studies, edited by Janet Vertesi
and David Ribes, 423–45. Princeton, NJ: Princeton University Press.

Leveson, Nancy G. 2016. Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge,
MA: MIT Press.

Levy, Karen. 2022. Data Driven: Truckers, Technology, and the New Workplace Surveillance. Prince
ton, NJ: Princeton University Press.

Levy, Karen E. C. 2016. “Digital Surveillance in the Hypermasculine Workplace.” Feminist Media
Studies 16, no. 2: 361–65. https://doi​.org​/10​.1080​/14680777​.2016​.1138607.

Lin, Allen Yilun, Kate Kuehl, Johannes Schöning, and Brent Hecht. 2017. “Understanding
‘Death by GPS’: A Systematic Study of Catastrophic Incidents Associated with Personal
Navigation Technologies.” In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, 1154–66. Denver, CO: ACM Digital Library. https://doi​.org​/10​.1145​
/3025453​.3025737.

Lupton, Deborah. 2014. Digital Sociology. London: Routledge.
Lynd, Robert Staughton, and Helen Merrell Lynd. 1929. Middletown: A Study in Contemporary

American Culture. New York: Harcourt, Brace.
Mackenzie, Adrian. 2006. Cutting Code: Software and Sociality. Vol. 30, Digital Formations. Frank-

furt am Main: Peter Lang.
———. 2017. Machine Learners: Archaeology of a Data Practice. Cambridge, MA: MIT Press.
MacKenzie, Donald, and Judy Wajcman, eds. 1985. The Social Shaping of Technology: How the

Refrigerator Got Its Hum. Milton Keynes, England: Open University Press.
Mahanti, Aniket. 2006. “Challenges in Enterprise Adoption of Agile Methods—A Survey.” Journal

of Computing and Information Technology 14, no. 3: 197–206.
Malaby, Thomas M. 2009. Making Virtual Worlds: Linden Lab and Second Life. Ithaca, NY: Cornell

University Press.
Marx, Karl. 1867. Das Kapital. Kritik der politischen Ökonomie [Capital: A critique of political

economy]. Buch 1, Der Produktionsprocess des Kapitals [Book 1, The production process of
capital]. Hamburg: Otto Meissner.

———. 1990. Capital. London: Penguin Classics.
Mattern, Shannon. 2018. “Maintenance and Care.” Places Journal, November. https://doi​.org​/10​

.22269​/181120.

http://theanarchistlibrary.org/library/paul-lafargue-the-right-to-be-lazy
http://theanarchistlibrary.org/library/paul-lafargue-the-right-to-be-lazy
https://doi.org/10.1080/14680777.2016.1138607
https://doi.org/10.1145/3025453.3025737
https://doi.org/10.1145/3025453.3025737
https://doi.org/10.22269/181120
https://doi.org/10.22269/181120

References 195

McGaughey, Ewan. 2016. “The Codetermination Bargains: The History of German Corporate and
Labor Law.” Columbia Journal of European Law 23: 135–76.

McKenzie, Jordan. 2016. “Happiness vs Contentment? A Case for a Sociology of the Good Life.”
Journal for the Theory of Social Behaviour 46, no. 3: 252–67.

Meadows, Donella H., Dennis L. Meadows, Jorgen Randers, and William W. Behrens. 1972. The
Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind. New
York: Universe Books.

Milo, Daniel S. 2019. Good Enough: The Tolerance for Mediocrity in Nature and Society. Cambridge,
MA: Harvard University Press.

Mitropoulos, Angela. 2012. “The Time of the Contract: Insurance, Contingency, and the Arrange-
ment of Risk.” South Atlantic Quarterly 111, no. 4: 763–81.

Morozov, Evgeny. 2013. To Save Everything, Click Here: The Folly of Technological Solutionism.
New York: Public Affairs.

Noble, David Franklin. 2011. Forces of Production: A Social History of Industrial Automation. Lon-
don: Routledge.

O’Donnell, Casey. 2014. Developer’s Dilemma: The Secret World of Videogame Creators. Cambridge,
MA: MIT Press.

O’Mara, Margaret. 2019. The Code: Silicon Valley and the Remaking of America. New York: Penguin.
Parmiggiani, Elena, Thomas Østerlie, and Petter Grytten Almklov. 2022. “In the Backrooms of

Data Science.” Journal of the Association for Information Systems 23, no. 1: 139–64.
Paulsen, Roland. 2015. “Non-work at Work: Resistance or What?” Organization 22, no. 3: 351–67.
Pelizza, Annalisa, and Rob Hoppe. 2018. “Birth of a Failure: Consequences of Framing ICT Projects for

the Centralization of Inter-departmental Relations.” Administration & Society, no. 50 (1): 101–30.
Peters, Thomas J., and Robert H. Waterman. 1982. In Search of Excellence: Lessons from America’s

Best-Run Companies. New York: Harper & Row.
Pettigrew, Andrew M., and Evelyn M. Fenton. 2000. The Innovating Organization. London: Sage.
Pfotenhauer, Sebastian, and Sheila Jasanoff. 2017a. “Panacea or Diagnosis? Imaginaries of Inno-

vation and the ‘MIT Model’ in Three Political Cultures.” Social Studies of Science 47, no. 6:
783–810. https://doi​.org​/10​.1177​/0306312717706110. https://journals​.sagepub​.com​/doi​/abs​
/10​.1177​/0306312717706110.

———. 2017b. “Traveling Imaginaries: The ‘Practice Turn’ in Innovation Policy and the Global
Circulation of Innovation Models.” In The Routledge Handbook of the Political Economy of
Science, 416–28. London: Routledge.

Pinch, Trevor. 2010. “The Invisible Technologies of Goffman’s Sociology from the Merry-Go-
Round to the Internet.” Technology and Culture 51, no. 2: 409–24.

Porter, Theodore M. 1995. Trust in Numbers: The Pursuit of Objectivity in Science and Public Life.
Princeton, NJ: Princeton University Press.

Posner, Miriam. 2022. “Agile and the Long Crisis of Software.” Logic Magazine no. 16. https://
logicmag​.io​/clouds​/agile​-and​-the​-long​-crisis​-of​-software​/.

Ratnapalan, Savithiri, and Helen Batty. 2009. “To Be Good Enough.” Canadian Family Physician
55, no. 3: 239–40.

Reckwitz, Andreas. 2017. The Invention of Creativity: Modern Society and the Culture of the New.
Cambridge, MA: Polity Press.

Reed, Michael I. 1996. “Expert Power and Control in Late Modernity: An Empirical Review and
Theoretical Synthesis.” Organization Studies 17, no. 4: 573–97.

Rising, Linda, and Norman S. Janoff. 2000. “The Scrum Software Development Process for Small
Teams.” IEEE Software 17, no. 4: 26–32.

Roberts, Lissa, Simon Schaffer, and Peter Dear, eds. 2007. The Mindful Hand, History of Science
and Scholarship in the Netherlands. Amsterdam: Edita Knaw.

https://doi.org/10.1177/0306312717706110
https://journals.sagepub.com/doi/abs/10.1177/0306312717706110
https://journals.sagepub.com/doi/abs/10.1177/0306312717706110
https://logicmag.io/clouds/agile-and-the-long-crisis-of-software/
https://logicmag.io/clouds/agile-and-the-long-crisis-of-software/

196 References

Rosa, Hartmut. 2013. Social Acceleration: A New Theory of Modernity. New York: Columbia Uni-
versity Press.

Ross, Andrew. 2004. No-Collar: The Humane Workplace and Its Hidden Costs. New York: Temple
University Press.

Rousseau, Denise. 1995. Psychological Contracts in Organizations: Understanding Written and
Unwritten Agreements. Thousand Oaks, CA: Sage Publications.

Russell, Andrew L., and Lee Vinsel. 2016. “Hail the Maintainers.” Aeon Online. https://aeon​.co​
/essays​/innovation​-is​-overvalued​-maintenance​-often​-matters​-more.

———. 2020. The Innovation Delusion: How Our Obsession with the New Has Disrupted the Work
That Matters Most. New York: Currency/Random House.

Russell, Bertrand. 1935. In Praise of Idleness. London: George Allen & Unwin Ltd.
Russell, Stewart. 1986. “The Social Construction of Artefacts: A Response to Pinch and Bijker.”

Social Studies of Science 16, no. 2: 331–46.
Salecl, Renata. 2011. The Tyranny of Choice. London: Profile Books.
Schaffer, Simon. 1994. “In the Know.” London Review of Books 16, no. 21 (November 10): 17–18.
Schimroszik, Nadine. 2015. Silicon Valley in Berlin: Erfolge und Stolpersteine für Start-ups [The

Silicon Valley in Berlin: Success and a steppingstone for start-ups]. Konstanz, Germany:
UVK Verlag.

Schwaber, Ken, and Mike Beedle. 2008. Agile Software Development with Scrum. Upper Saddle
River, NJ: Pearson Prentice Hall.

Sennett, Richard. 2008. The Craftsman. New Haven, CT: Yale University Press.
Serlin, Ronald C., and Daniel K. Lapsley. 1985. “Rationality in Psychological Research: The Good-

Enough Principle.” The American Psychologist 40, no. 1: 73–83.
Sheller, Mimi, and John Urry. 2006. “The New Mobilities Paradigm.” Environment and Planning

A 38, no. 2: 207–26.
Simon, Herbert A. 1956. “Rational Choice and the Structure of the Environment.” Psychological

Review 63, no. 2: 129–38.
Star, Susan Leigh. 1999. “The Ethnography of Infrastructure.” American Behavioral Scientist 43,

no. 3: 377–91.
Stolzoff, Simone. 2023. The Good Enough Job. New York: Portfolio/Penguin Random House.
Suchman, Lucy A. 1987. Plans and Situated Actions: The Problem of Human-Machine Communica-

tion. Cambridge, MA: Cambridge University Press.
———. 2007. Human-Machine Reconfigurations: Plans and Situated Actions. Cambridge, MA:

Cambridge University Press.
Sutton, Robert I., and Hayagreeva Rao. 2014. Scaling Up Excellence: Getting to More Without Set-

tling for Less. New York: Crown Business.
Taylor, Claire, and Tony Dobbins. 2021. “Social Media: A (New) Contested Terrain between

Sousveillance and Surveillance in the Digital Workplace.” New Technology, Work and Employ-
ment 36, no. 3: 263–84.

Thompson, Clive. 2019. Coders: Who They Are, What They Think and How They Are Changing Our
World. London: Picador.

Turk, Dan, Robert France, and Bernhard Rumpe. 2002. “Limitations of Agile Software Processes.”
Third International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Alghero, Italy, May 26–30, 43–46.

Turkle, Sherry. 1984. The Second Self: Computers and the Human Spirit. New York: Simon &
Schuster.

———. 2005. The Second Self: Computers and the Human Spirit. Cambridge, MA: MIT Press.
Turner, Fred. 2009. “Burning Man at Google: A Cultural Infrastructure for New Media Produc-

tion.” New Media & Society 11, no. 1–2: 73–94.

https://aeon.co/essays/innovation-is-overvalued-maintenance-often-matters-more
https://aeon.co/essays/innovation-is-overvalued-maintenance-often-matters-more

References 197

Ullman, Ellen. 1997. Close to the Machine: Technophilia and Its Discontents. San Francisco: City
Lights Books.

Veblen, Thorstein. 1921. The Engineers and the Price System. New York: BW Huebsch.
Vinsel, Lee, and Andrew L. Russell. 2018. “After Innovation, Turn to Maintenance.” Technology

and Culture 59, no. 1: 1–25.
———. 2020. The Innovation Delusion: How Our Obsession with the New Has Disrupted the Work

That Matters Most. New York: Penguin Random House.
Visaggio, Giuseppe. 2001. “Ageing of a Data-Intensive Legacy System: Symptoms and Remedies.”

Journal of Software Maintenance and Evolution: Research and Practice 13, no. 5: 281–308.
Vogel, Else. 2021. “Juxtaposition: Differences That Matter.” In Experimenting with Ethnography:

A Companion to Analysis, edited by Andrea Ballestero and Brit Ross Winthereik, 53–65.
Durham, NC: Duke University Press.

Wajcman, Judy. 2014. Pressed for Time. Chicago: University of Chicago Press.
Wajcman, Judy, and Nigel Dodd, eds. 2017. The Sociology of Speed: Digital, Organizational, and

Social Temporalities. Oxford: Oxford University Press.
Webster, Frank, and Kevin Robins. 1993. “ ‘I’ll Be Watching You’: Comment on Sewell and Wilkin-

son.” Sociology 27, no. 2: 243–52.
Weiss, Manfred, and Marlene Schmidt. 2008. Labour Law and Industrial Relations in Germany.

Austin, TX: Wolters Kluwer.
Weizenbaum, Joseph. 1976. Computer Power and Human Reason: From Judgment to Calculation.

San Francisco: W. H. Freeman.
Wiener, Anna. 2020. Uncanny Valley: A Memoir. New York: MCD Books.
Willmott, Hugh. 1993. “Strength Is Ignorance; Slavery Is Freedom: Managing Culture in Modern

Organizations.” Journal of Management Studies 30, no. 4: 515–52.
Winner, Langdon. 1993. “Upon Opening the Black Box and Finding It Empty: Social Construc-

tivism and the Philosophy of Technology.” Science, Technology, & Human Values 18, no. 3:
362–78.

Winnicott, Donald W. 1987. Babies and Their Mothers. Edited by Clare Winnicott, Ray Shepherd
and Madeleine Davis. Reading, MA: Addison-Wesley Publishing Company.

Wittel, Andreas. 1997. Belegschaftskultur Im Schatten Der Firmenideologie. Eine Ethnographische
Studie [Workplace culture in the shadow of company ideology]. Berlin: Edition Stigma.

Woodworth, Warner, and Reed Nelson. 1979. “Witch Doctors, Messianics, Sorcerers, and OD
Consultants: Parallels and Paradigms.” Organizational Dynamics 8, no. 2: 17–33.

Yourdon, Edward. 1995. “When Good Enough Software Is Best.” IEEE Software 12, no. 3: 79–81.
Zelizer, Viviana A. 2005. The Purchase of Intimacy. Princeton, NJ: Princeton University Press.
Zuboff, Shoshana. 1988. In the Age of the Smart Machine: The Future of Work and Power. New

York: Basic Books, Inc.

199

INDEX

CAE (formerly Canadian Aviation
Electronics), 34

capitalism, 169–170
care: compromise and, 47, 63, 165–168;

crisis of care, 169; work tactics and, 184
certifications, requirements of, 9
change, 148, 168–170
Cisco, 183
clients, 162
Close to the Machine: Technophilia and Its

Discontents (Ullman), 50–51
closeness to software, 49–51, 53, 58–61, 64
cloud storage, 70–71, 87
code and coding: abstractions and, 53, 111;

appeal of, 45; art of, 3, 104–105, 121–123;
bugs, 11, 31, 55; code reviews, 2, 56–57,
59, 92–94, 167; coding style, 55–56;
fixathons, 75; hacks, 56, 85–86; history
of, 30n, 113–114; IDEs and, 50, 58, 163;
legacy code, 53, 80, 86–91, 90f, 146, 164;
monkey coding, 31, 62; open-source
code, 66, 163; personal factor, 57–58;
power and, 53; programming environ-
ments, 50–51; requirements of, 51; rough
hacks, 56; slow code, 57, 58–59; spa-
ghetti code, 86, 147; style of, 57–58; test-
ing, 56, 58–59; updates, 9, 13, 69–71, 143.
See also software production

Cohn, Marisa Leavitt, 6, 34, 89, 90, 147
collective practices: coordination, 54–55;

negotiation, 167; process of, 5; standards,
63. See also teams

Collins, W. Robert, 13
communication, nodding, 74
company size: accountability and, 27; assets

and, 33–34
comparisons, 167
competition, 133
compromise, care and, 47, 63, 165–168

abstractions, 53, 111
accountability, company size and, 27
Achievements and Objectives (As & Os), 116
affective domain, corporate culture and, 8
agency, 167–168
Agile, 10, 116
Alexander, Neta, 150
Alphabet, popular discourse and, 26
Amazon: Amazon Web Services (AWS),

70, 87; employees, 101–102; Leadership
Principles, 100–101; popular discourse
and, 26; size of, 183. See also Big Tech

ambition, 168–169
anarchies, organized, 68
Apple: popular discourse and, 26; size of,

183; waiting and, 150. See also Big Tech
artifacts, software as, 146
assets, company size and, 33–34
at-will employment, 39
automation, 186
averageness, fieldwork and, 24–25

back-end developers, 29–30
balance, 101
Ballmer, Steve, 23
batch processing, 154
Berlin, Germany, 36–37
Big Tech: popular discourse and, 26; privi-

lege and, 62; size of, 183; social activity
and, 174–175

Bijker, Wiebe, 46
blocked work, 149–151, 151f, 185
Blunden, Bill, 86, 87
bots, 63
British Royal Mail software scandal, 143
Brooks, Frederick, 12
bugs: causes of, 55; fixing, 11; outsourcing

and, 31. See also code and coding
Buscher, Monika, 132

Note: Page numbers followed by an ‘f ’ refer to figures.
Page numbers followed by an ‘n’ refer to notes.

200 INDEX

concentration, 52
Confluence, 59–60
constellations of good enoughness, 161–165
contentment, 172–173
controversies, technological systems and, 67
coordination, 54–55
corporate culture: overview, 6; differences in,

36–37; excellence and, 7–8; inequalities in,
31–32; passion and, 23–24; reality of, 11–12

The Craftsman (Sennett), 51
creativity, 46–47, 52, 63
crisis of care, 169
critical rationalism, 98
Csikszentmihalyi, Mihaly, 52
culture, 74
culture of uncertainty, 127–129
customers: Amazon, 100–101; MiddleTech,

104

data scientists, 29, 30, 50
decision-making process, 14
degrowth, 173
demonstrations (demos), 75, 105–106
design defects, 150
dev drop procedure, 73
DevOps teams, 31
disruption, innovation and, 39
distractions, 51–54
documentation, 164
Du Gay, Paul, 8
dynamic data, 79
dynamics of good enoughness, 165–168

Edgerton, David, 35
efficiency, speed and, 133
Electronic Numerical Integrator and

Computer (ENIAC), 142
embeddedness, 34
emergencies, 186
emotional expression, 23–24
employees: agency of, 167–168; Gen Z work-

ers, 174; losing track of, 183, 184; manage-
ment and, 102–104; monitoring of, 60;
unionization of, 170; work contracts and,
161–162

energy consumption, 71
engine rial mindset, 163
The Engineers and the Price System (Veblen),

128–129
Ensmenger, Nathan, 90, 113–114
environments, 50–51, 52, 58, 163
equality, 31–32
estimates, 82–84, 127
ETA game, 136–141, 137f, 139f, 140f, 153–154

excellence: freedom from, 173–174; good
enoughness and, 168–170; notions of, 7;
vs. reality, 11–12

expert knowledge, 110–112
exploitation, 101–102

FAANG (Facebook, Amazon, Apple, Netf-
lix, Google) companies. See Big Tech

Facebook: popular discourse and, 26; privi-
lege and, 62; privilege of good enough
and, 16; size of, 183; waiting and, 150.
See also Big Tech

farewell rituals, 159–160
FastMap, 26–27
Feathers, Michael, 88
feature-complete day, 95, 147
Feyerabend, Paul, 98
fieldwork, averageness and, 24–25
firefighting, 95–96
fixathons, 75
flow, 51–54, 62
fluid participation, 68
Foxconn Technology Group, 26
Fraser, Nancy, 169
front-end developers, 29
frustration, 78–80
Fugaku Supercomputer, 142
full-stack developers, 29

Gen Z workers, 174
German labor laws, 40
Gerrit, 59, 91–94, 167
Gherardi, Silvia, 172
GIT and git blame, 59–61
Global South, 62, 177
goal-oriented uncertainty, 128
Goldstine, Herman, 30n
good enoughness: overview, 1, 13–15, 158–160;

code reviews, 92–94; collegiality of, 172;
constellations of, 161–165; contentment
and, 172–173; dynamics of, 165–168; fire-
fighting and, 96; methodologies, 129–131;
privilege and, 16–17, 176–177; slowdown
and, 134; stability of, 171–174; threats to,
168–170; types of, 15–17

good life, 164–165
Google: PageRank algorithm, 34; popular

discourse and, 26; privilege and, 62; priv-
ilege of good enough and, 16; size of, 183;
20 percent rule and, 36. See also Big Tech

growth, 173

Hacker News, 163, 179–180
hacks, 56, 85–86

INDEX 201

halting projects, 148–149
handwork, 30
hardware, 143
Harvard Business Review, 7
headphones, 51–52
headwork, 30
house metaphor, 55
“How Good Is Enough: An Ethical Analy

sis of Software Construction and Use”
(Collins et al.), 13

Hughes, Thomas, 46

IBM, 183
IDEs (integrative development environ-

ments), 50, 58, 163
IEEE Software, 13–15
imaginaries, 37–38
improvement: ideology of, 9–11; vs. reality,

11–12
In Search of Excellence: Lessons from Amer

ica’s Best Run-Companies (Peters and
Waterman), 8

inequality, 31–32
information-control systems, 112
inheritance, 87
innovation: stages of, 46; technology hubs

and, 38–39
instability, 70
Intel, 26, 142
internet revolution, 69
interruptions, 51–54
invisibility of software, 32–33
ISO (International Organization for

Standardization), 9

Jira, 106, 116, 120–121, 120f
job hunting, 181–183
job security, 40
job titles, 30

Kameo, Nahoko, 127–128
Knorr-Cetina, Karin, 48
knowledge: expert knowledge, 110–112;

knowledge silos, 75–76; of managers, 185;
myth of knowing, 81–82, 97–98; types of,
71–74; vs. understanding, 80–82

KPIs (key performance indicators), 10–11
KPMG, 38
Kraft, Philip, 114
Kunda, Gideon, 19

labor laws: Germany and, 40; at-will
employment, 39

labor unions, 170

Latour, Bruno, 67
Law, John, 47
legacy code, 53, 80, 86–91, 90f, 146, 164
leisure time, 164–165
Leveson, Nancy, 80–81
Linden Labs, 116
Lynd, Robert S. and Helen Merryll, 24

maintenance mode of work, 148, 173
Malaby, Thomas, 116
managers and management: challenges

of, 121–123; demonstrations (demos),
105–106; expert knowledge and, 110–112;
information-control systems and, 112;
knowledge of, 185; literature, 7; meetings,
119–125; methodologies used by, 10, 112,
126–127; power and, 110, 112, 122; pro-
grammers and, 102–104, 113–114; Scrum
and, 10, 115–118, 119f, 123–127; Tarzan and,
125–126; team reshuffles, 105–110, 110f;
tools, 60. See also software production

material consciousness, 51
materiality, 47–49
mediocrity, embracing, 1, 174
Medium Tech companies: overview, 26;

good enoughness and, 181–182; invisibil-
ity of, 33; revenue of, 35

meetings: stand-ups, 10, 73–74, 119–125;
team-building and, 152

metrics, 9
Microsoft: passion and, 23; popular dis-

course and, 26
MiddleTech: age of, 33–36; averageness

of, 24–25; corporate culture of, 23–24;
customers, 104; fieldwork at, 2–4; invis-
ibility of, 33; location of, 39; office build-
ing, 22; organization of, 29; purpose of,
68; Scrum and, 117–127; size of, 27; social
culture of, 28; software work at, 35

Middletown: A Study in Contemporary
American Culture (Lynd and Lynd), 24

“Mobile Utopias” conference, 132–133.
See also ETA game

mobilities, 141–142
Mol, Annemarie, 47
monkey coding, 31, 62
monopolies, 183
Moore’s Law, 142–143
music, 52
myth of knowing, 81–82, 97–98
The Mythical Man-Month (Brooks), 12

negotiation, 167
Netflix, 183. See also Big Tech

202 INDEX

No-Collar (Ross), 113–114
nodding, 74

object-centered sociality, 48, 62
The Office (TV show), 25n
open-source code, 66, 163
optimization, 14, 134–135, 138
Oracle, 183
organizational memory, 128
organized anarchies, 68, 186
outsourcing, 31–32, 66
ownership, 27

PageRank algorithm, 34
passion, 23–24
patching, 86
performance indicators, 10–11
performative gestures, 74
personal factor in coding, 57–58
Peters, Thomas J., 8
Pinch, Trevor, 46
“Planning and Coding of Problems for an

Electronic Computing Instrument”
(Goldstine and von Neumann), 30n

power: code and, 53; managers and, 110, 112,
122; team reshuffles and, 110

privacy officers, 29, 32
privilege: company size and, 34; flow and,

62; good enoughness and, 16–17, 176–177
problems, 76–80
productivity, 142
professional ethos, 163
professional vision, 48
programmers, management and, 102–104
programming. See code and coding

Rao, Hayagreeva, 8
rationalism, 98
reality, vs. excellence and improvement, 11–12
reasonableness, 171–172
recognition, code and, 3
repetition, 186
research work, 184
Ross, Andrew, 113–114
Russell, Andrew L., 5

safety standards requirements, 9
Salecl, Renata, 12
Samsung Electronics, 26
San Francisco, California, 36–37
satisficing, 14
Scaling Up Excellence: Getting to More With-

out Settling for Less (Sutton and Rao), 8
scrapping projects, 148–149

screen-tilting, 122
Scrum, 10, 115–118, 119f, 123–127
Second Life, 116
Sennett, Richard, 51
sensory engagement, 33
Silicon Valley: identity of, 38–39; work ethic

of, 3, 36–37
Simon, Herbert, 14
skill-driven uncertainty, 128
Slashdot, 163
slow code, 57, 58–59
slowdowns: batch processing and, 154;

blocked work and, 149–151, 151f, 185;
good enoughness and, 134; legacy code
and, 146; mobilities and, 141–142; scrap-
ping projects, 148–149; time travel and,
146–147; undone work and, 150–151;
vacations and, 154; waiting around and,
149–151, 151f. See also temporal orders

social life, 164–165
sociality of software: overview, 46–47; close-

ness and, 49–51, 53, 58–61, 64; collective
coordination and, 54–55; flow and, 51–54,
62; object-centered sociality, 48, 62

software companies: culture of, 74; knowl-
edge silos in, 75–76; as organized anar-
chies, 68, 186

software production: agility in, 115–116;
change and, 148; collective practice of, 5;
complexity of, 5–6, 15, 29, 35, 80–81, 185;
components of, 50; constellations within,
161–165; firefighting, 95–96; history
of, 113–114; house metaphor, 55; speed
and, 142; stereotypes, 2–3; task-based
fragmentation in, 114; teams, 78–80.
See also code and coding; managers and
management

software systems, invisibility of, 32–33
software-as-a-service, 69, 71
software-driven uncertainty, 127–129
spaghetti code, 86, 147
speed: efficiency and, 133; software produc-

tion and, 142; updates and, 143
stability, 70
stability of good enoughness, 171–174
standards and certifications requirements, 9
stand-ups, 10, 73–74, 119–125
start-ups, 34, 58, 175–176, 181
storytelling, 17
stutters, 141
subjective estimation, 82–84, 127
Suchman, Lucy, xii, 61
Superstore (TV show), 25n
surveillance, 60

INDEX 203

sustainability, 173
Sutton, Robert, 153–153

Taiwan Semiconductor Manufacturing Co.,
Ltd. (TSM), 26

Tarzan, 125–126
task-based fragmentation, 114
Taylor, Frederick Winslow, 111
team reshuffles, 110f
teams: comparisons and, 167; constellations

within, 163–164; frustration and, 78–80;
meetings and, 152; team reshuffles,
105–110; team scrapping, 148–149.
See also collective practices

Tech Giants, popular discourse and, 26
technological artifacts, 46–47
technology, shortcomings of, 4
technology innovation hubs, 38–39
technology-in-use, 35
temporal orders, 55, 69, 133, 144–146,

155–156. See also slowdowns
Tencent Holdings, 26
threats to good enoughness, 168–170
thumb estimates, 82–83
time and time management, 82–84, 127,

151–153
time travel, 146–147
T-shirt size estimates, 83
Turkle, Sherry, 51
20 percent rule, 36

Ullman, Ellen, 50–51, 53
uncertainty, 127–129

unclear technology, 68
understanding, vs. knowledge, 80–82
undone work, 150–151
unionization, 170
updates: good enoughness and, 13; improve-

ment and, 9; role of, 69–71; speed and,
143. See also bugs

vacations, 154
vagueness, 186
Veblen, Thorstein, 128–129
Vinsel, Lee, 5
visibility of software, 32–33
vision, 48, 85–86
von Neumann, John, 30n

waiting around, 149–151, 151f
Waterman, Robert H., 8
Willmott, Hugh, 8
Winnicott, Donald, 14
‘work at will’ states, 39
work contracts, 161–162
work ethic, 3
work tactics, 183–186
Working Effectively with Legacy Code

(Feathers), 88
work-life balance, 101, 164–165, 174
workspaces, 49, 72
writing process, 49

Y2K, 143

Zuckerberg, Mark, 70

A NOTE ON THE TYPE

This book has been composed in Adobe Text and Gotham.
Adobe Text, designed by Robert Slimbach for Adobe,
bridges the gap between fifteenth- and sixteenth-century
calligraphic and eighteenth-century Modern styles.
Gotham, inspired by New York street signs, was designed
by Tobias Frere-Jones for Hoefler & Co.

	Cover
	Contents
	Illustrations��������������������
	Acknowledgments
	Introducing Good Enoughness
	1. Welcome to MiddleTech
	2. Software’s Sociality
	3. Where Stuff Goes Wrong
	4. Managing Good Enoughness
	5. Slowdown
	Conclusion�����������������
	Afterword: Good Enough beyond MiddleTech���
	References�����������������
	Index������������

