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Weirdly to me, writing this book was enjoyable. I was happy to leave my 
thesis behind, and the strange world of autonomous driving seemed too 
strange a world to ignore. The projects that lie behind this book have 
taken it in many directions, few of which I necessarily anticipated. The 
book itself was largely written in Cologne in the summer of 2022 and 
then again in Manchester through the rest of 2022 and—intermit-
tently—throughout 2023. I never write as comfortably as I do when at 
home (wherever that may be) but have always enjoyed the feverishness of 
thinking and writing on the move. Accordingly, many of the arguments 
in the book came together whilst on the train as different parts of the 
Rhineland, the Siegerland, and the Ostsee zipped by.

Free from teaching in my first year at the University of Manchester 
allowed me to finish the project, for which I am grateful. I want to thank 
new colleagues in the Department of Art History and Cultural Practices 
(AHCP) for making the final stages of the book’s development possible, 
especially the digital media and culture team—Claire Reddleman, Luca 
Scholz, Łukasz Szulc, and Shuaishuai Wang—who have made integrat-
ing back into UK university life easy.

I am grateful to colleagues at the Centre for Interdisciplinary 
Methodologies (CIM) at the University of Warwick, where I first pre-
sented the skeleton of this project in 2016. I want to thank Sybille 
Lammes for early encouragement and Noortje Marres for the invitation 
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1
Introduction: The Making of Decisions 

and Technological Decisionism

This book is about the phenomenon of autonomous driving—not what 
it is from a strictly ‘technical’ perspective but where the dream of it has 
led us in recent years. It considers the ongoing, complex, costly, and con-
tentious quest to automate driving offering a sustained focus on the 
‘advance decisions’ deemed necessary to emulate the most ordinary of 
driving decisions, from turning a corner or merging onto a motorway, to 
stopping at traffic lights. This book considers how mapping, sensing, and 
algorithmic capabilities are gifted to autonomous vehicles through tech-
nical work performed by an array of actors in multiple locations: from 
computer science students performing data annotation work in industry-
funded research centres to software developers building image-based 
machine learning (ML) models at autonomous vehicle start-ups.

The book therefore intends to complicate, and question, typical under-
standings of autonomous driving by challenging the technological deter-
minism—and ‘decisionism’—that advocates offer of an inevitable, fully 
autonomous future. From the death of Elaine Herzberg in Tempe, 
Arizona, in 2018, to the suspension of Cruise’s operating licence in San 
Francisco in 2023, it is technological decisionism that best describes the 
operational ethics and logics of this mutating, nebulous, dream. The 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1749-1_1&domain=pdf
https://doi.org/10.1007/978-981-97-1749-1_1#DOI
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book attempts to offer a fuller, and perhaps counter-intuitive, picture of 
the communities invested in this story.

One of those communities is the automotive industry, and whilst I will 
return to car manufacturers throughout the book—especially in Chap. 
6—the industry, I argue here and throughout, has been both unwilling 
and unable to deliver such a future. Indeed, at various points throughout 
the last seven years, many have strived hard to prevent it from ever hap-
pening, whether through specific, strategic decisions, a lack of foresight 
and action, or the absence of certain kinds of skill and expertise. At the 
end of this introduction, I provide a bit more context as to why this is.

Instead, the book offers an understanding of autonomous driving from 
the perspective of a series of outside camps, each with their own motiva-
tion for bringing an autonomous future into being, and each with their 
own interest in seeing an end to the established automotive industry. In 
different ways and using different approaches, these outsiders have sought 
to cultivate a different sense of what autonomous driving might mean 
and entail.1 What connects them, despite their many differences, is a 
commitment to machine vision and automated forms of sensing as bases 
on which machinic forms of decision-making can be built.

The book offers a plural account of decision-making practices in a 
sensor-driven, ML-dependent algorithmic age. It does so by drawing on 
seven years of research on autonomous vehicles. The book argues that to 
understand the concomitant shifts in how we think, move, and act with 
machines—in which all manner of sensors, algorithms, devices, and plat-
forms are in action—they should be looked at through the lens of the 
decision, and how decisions are mapped, sensed, planned, simulated, 
secured, ‘relaxed’, executed, and—importantly—resisted. Decisions are 
themselves embedded within an array of human-machine practices, from 
the mapping of road data using ‘bolt-on’ consumer devices, to the calcu-
lation of road user trajectories in simulated software environments.

The book draws on a range of case studies from big tech companies 
(Waymo, Uber ATG), autonomous vehicle start-ups (Argo AI, Waabi), 

1 I use the terms ‘outsiders’ and ‘outside camps’ to refer to actors/groups who cannot be considered 
established automotive manufacturers but nonetheless have attempted to challenge the automotive 
industry through new technologies, strategies, and business models.

  S. Hind
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and university research initiatives (KITTI), to semiconductor chip man-
ufacturers (Taiwan Semiconductor Manufacturing Company [TSMC]), 
open-source projects (Comma), and anti-autonomous vehicle activist 
groups (Safe Street Rebel) all attempting to ‘disrupt’ the automotive 
industry in different ways. Thus, the book is hopefully a route through 
these various communities and their motivations, who barely agree on 
what autonomous driving means, let alone how to deliver it.

A great many of the technical processes and practices devised and 
deployed to help map, train, sense, simulate, and execute the decision-
making abilities of an autonomous vehicle or its underlying systems ordi-
narily constitute ‘boundary objects’ (Leigh Star & Griesemer, 1989; 
Leigh Star, 2010) in the most straightforward of senses—material entities 
offering interpretive flexibility to multiple, interconnecting groups work-
ing more-or-less collaboratively. Such entities—from ML models to bolt-
on driver-assist devices—are very much ‘the stuff of action’ (Leigh Star, 
2010, p. 603), more-or-less binding technical workers together.

Yet the purpose to which these material entities are put is less clear—
despite, in the most nominal of senses, being destined to help deliver the 
automation of driving. The ‘boundary work’ is fastidious, committed, 
and, as my outlining of the eras or ‘phases’ of autonomous driving later 
in the introduction suggests, wholeheartedly incremental. Yet so often 
and throughout these various communities and settings, the goal of such 
collaborative work is either wholly undetermined or wildly different from 
those in these other settings, equally committed to delivering autono-
mous driving.

Rather than considering this a threat to the emancipation of human 
drivers trapped in boring commutes, locked into big tech-driven eco-
nomic models, or the doubtful delivery of safer roads or fewer automo-
tive accidents, the book offers an insight into the state of technological 
decisionism in the contemporary world: powered by intersecting beliefs 
about the societal need to automate driving and how it might be done.

The remainder of this introduction is divided into three sections—
decisions, operations, phases—and a chapter outline.

1  Introduction: The Making of Decisions and Technological… 
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�Decisions

Decision-making in a computational context has a long history, espe-
cially in respect to machine vision and control. In recent times, Bader and 
Kaiser (2019) have discussed the organizational  nature of algorithmic 
decision-making and the role of interfaces in brokering human access to 
algorithmic decisions. Dencik and Stevens (2021) discuss the role of 
data-driven hiring systems in selecting job applications, designed to 
streamline decision-making for administrators and managers. Louise 
Amoore (2020) discusses the ethics of algorithmic decision-making, 
especially with regard to the ‘weightings’ within ML processes and the 
need to place moments of decisions ‘beyond doubt’ (Amoore, 2020, 
p. 147). For the purposes of this book, however, there are two trajectories 
worth outlining. Firstly, statistical ‘pattern recognition’ work beginning 
in the 1960s, laying the foundations for subsequent machine vision/ML 
work. Secondly, operational research (OR) and cybernetics work begin-
ning in the late 1950s, which revolutionized ideas around automated 
forms of decision-making.

�A History of Decisions

Statistical decision theory emerged as a new field of statistics in the late 
1930s, courtesy of Abraham Wald, and wartime operations research in 
the US (Mendon-Plasek, 2020). As Mendon-Plasek explains in his pre-
history of machine learning, decision theory made its way into early 
Optical Character Recognition (OCR) pattern recognition work, a key 
constituent in ongoing machine vision research.2 As he writes, ‘decision 
theory offered a ready-made toolkit that could compare engineered pat-
tern recognition systems in more meaningful ways using the concept of a 
“loss” function’ (Mendon-Plasek, 2020, p. 49), through the integration 
of so-called weights indicating accumulated loss (i.e. errors, correct 

2 CVPR, a significant annual academic conference in the world of computer vision, stands for 
‘computer vision and pattern recognition’. Work on computer/machine vision and pattern recogni-
tion, thus, can be considered as disciplinary bedfellows.

  S. Hind
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judgements) at each step along the decision-making process. More gener-
ally, Mendon-Plasek argues that:

Contemporary debates about the generalizability of machine learning in 
social decisions rehearses many of the same debates pattern recognition 
researchers had with each other in the 1960s about how to compare differ-
ent learning machines using different data sets. (Mendon-Plasek, 
2020, p. 57)

In short, that rather than the 1960s constituting an oft-considered ‘AI 
winter’ in which progress towards certain AI goals had stalled, work in 
pattern recognition can be seen as a precursor to later progress in machine 
learning itself. Especially, that is, with regard to the quest for generaliz-
ability, and generalizable methods that could be applied across institu-
tional contexts. Here, work on pattern recognition had contributed to 
the later, subsequent development of machinic approaches to decision-
making. Refracted through this earlier work in pattern recognition, sta-
tistical decision theory found new image-based applications. By making 
statistical use of prior observations in pattern recognition work, OCR 
researchers, as Mendon-Plasek (2020) argues, had all but invented super-
vised learning—a now-common ML and machine vision technique.

What this application of decision theory to OCR research did was 
enable the specificity of OCR work in each institutional domain it was 
then being applied in (i.e. in the postal service, education, US military) 
to be consolidated. In short, that such pattern recognition methods could 
offer a form of ‘generalization ability’ (Alpaydin, 2016, p. 40; Steinhoff 
& Hind, 2024) they were not previously capable of, with previously 
context-specific classification criteria (what Mendon-Plasek [2020, p. 48] 
calls ‘antithetical feature values’) now made comparable through the loss 
function. In work by Burroughs Corporation researcher CK Chow, a 
significant US computer company through the post-WWII era, the ‘opti-
mal possible performance for any system’ could now be compared with 
another ‘according to a particular decision criteria’ (Mendon-Plasek, 
2020, p. 50), as well as being able to pinpoint degradation issues associ-
ated with pattern recognition systems. Put simply, this is an early example 
of the ‘logic of domains’ (Ribes et  al., 2019) that has ensured the 

1  Introduction: The Making of Decisions and Technological… 
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formalization of AI as built on the implementation of generalizable meth-
ods to other applied areas or ‘domains’, including the development of 
autonomous vehicles with computer vision/pattern recognition 
capabilities.

Operational research (OR) and management cybernetics are also key 
antecedents to contemporary work on machine vision and machine 
learning (Pasquinelli, 2023). Stafford Beer’s Cybernetics and Management 
(Beer, 1959) and Decision and Control (Beer, 1995 [1966]) can be seen as 
foundational texts of such thinking. Both are applications of earlier work, 
such as Norbert Wiener’s Cybernetics (Wiener, 1973 [1948]), to contem-
porary business contexts, where computational systems were beginning 
to be used within firms for an array of different tasks, from stock-counting 
to payroll administration. What Beer envisioned was integrated systems 
for the automated making of decisions. OR was considered a scientific 
practice that could be applied to the business of contemporary firms and 
to the management of their various activities. More than this, it could 
help firms—and specifically their executives—make better decisions. As 
Beer wrote at the time, ‘the whole idea of using hard science as an intrin-
sic part of the managerial process is alien to many’ (Beer, 1995 [1966], 
p. 6), and thus, Beer and his contemporaries within the fledgling world 
of OR and management cybernetics were seen as outsiders: those with 
specific, perhaps even esoteric, scientific, or philosophical knowledge, but 
otherwise lacking business acumen or familiarity with the day-to-day 
decision-making of the firm.

As Beer considers, for individual managers, ‘insight, value judgment, 
flair, acumen, maturity and experience count’ (Beer, 1995 [1966], p. 6, 
authors’ emphasis). For firms with management teams, ‘the climate of 
opinion, fashion, reputation, maintenance of face, dominance and every 
kind of personal relationship also count’ (Beer, 1995 [1966], p. 6). Thus, 
as Beer suggests, replacing all these dimensions and dynamics of ‘frail 
humans’ with ‘infallible electronic computers’ (Beer, 1995 [1966], p. 6) 
was neither especially possible nor desirable.

Yet, Beer presented a situation—ostensibly one for a manager or man-
agement team—that depended on the making of a key decision. In this 
case, a decision is about a particular industrial plant or site with a collec-
tion of tools and pieces of necessary equipment within it. In a simple 

  S. Hind
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illustration of this situation, a manager might be tasked with drawing on 
the thoughts and expertise of relevant parties within the firm, from the 
engineers to accountants. The manager’s task, as Beer saw it, ‘with a deci-
sion to reach’ involved ‘rolling up all such small and isolated verdicts into 
a ball to produce a consolidated verdict about the relative merits of A and 
B “on the whole”, “in the long run”’ (Beer, 1995 [1966], p. 7, emphasis 
added). In making this ‘consolidated verdict’, managers would require 
‘plenty of judgement’ alongside ‘the weighing of evidence’ such that ‘it is 
almost a juridical proceeding’ (Beer, 1995 [1966], p. 7). This aspect of 
decision-making—of weighing and of weights—can be seen as integral 
to all kinds of decisions, whether human or computational.

Beer thus operationalized this dimension: ‘as situations become more 
complicated, so the problem of establishing an adequate scientific basis 
for decisions becomes greater’ (Beer, 1995 [1966], p. 8). Yet in under-
standing that ideal scientific conditions do not exist within such an eco-
nomic, organizational context, the manager ‘must use whatever 
information there is in an attempt to establish the probabilities that one 
[decision] is better than another’ (Beer, 1995 [1966], p.  8, authors’ 
emphasis). Here, the conditions of the making of the decision—what 
Beer refers to elsewhere as the ‘environments of decision’ (Beer, 1981 
[1972], p. 181)—are integral to how one reaches any such decision, by 
applying necessary weight to each implicated factor.

Further, that in evaluating the situation at hand, it may be necessary to 
look beyond it: ‘if there is nothing within the A/B situation to indicate 
which is the better choice, then we should look outside the situation’ 
(Beer, 1995 [1966], p. 8, authors’ emphasis). Here, context matters, and 
the wider environment of the decision should always be brought to bear 
on the making of the decision itself, even if ‘exterior’ to the situation at 
hand. Pithily expressed, decision-making is as much about not making a 
decision as making a decision, Beer tells his management audience.

The point Beer makes is that computers can help managers make ‘bet-
ter’ decisions, by performing this weighting and assessment of criteria 
more efficiently, and at scale, compared to managers on their own. Rather 
than OR or management cybernetics being considered a threat, Beer 
positions them as useful to their evolution into better managers in a com-
putational age—despite resistance. In this, Beer establishes the key tenets 

1  Introduction: The Making of Decisions and Technological… 
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of organizational decisions and decision-making (factors, information, 
weights/probabilities, situations, judgements/verdicts), and that manag-
ers in firms—alongside many more other people, as this book will 
detail—have their own beliefs about the capabilities of computational 
systems to make decisions either for them or instead of them.

�Theories of Decision-Making

In light of these trajectories, I want to consider what a theory of decisions 
and decision-making might now look like—not from a statistical or 
managerial standpoint, but from a machine vision perspective. 
Theoretically, such an approach would be indebted to German media 
scholar Florian Sprenger, whose work on ‘micro-decisions’ (Sprenger, 
2015, 2020, 2021) can be considered foundational. Building on 
Alexander Galloway’s work on internet protocols (Galloway, 2004), 
Sprenger considers micro-decisions as occurring at the ‘level of technical 
infrastructures’ (Sprenger, 2015, p. 20), constituting the ‘nodes of net-
works’ (Sprenger, 2015, p. 20) like the internet itself, that function as 
tiny interruptions managing the flow of data through such networks. As 
Sprenger contends:

In terms of the logic of decision-making, the basis of all computers and 
their networks is not only structured on the level of binary code but also on 
that of the protocols that produce connections and disconnections, partici-
pation and non-participation. (Sprenger, 2015, p. 21)

Micro-decisions consequently underpin computation as its networked 
form is known and understood today. The key differences I want to make, 
however, are two-fold.

Firstly, that the approach in the book does not exclusively work with 
the notion of temporality and the temporal dynamic of decisions, nor 
that there is a specific interest in the ‘micro-’ decision occurring beneath 
the level of human attention and response. As Sprenger more recently 
writes in relation to the autonomous vehicle, the temporal form of the 
micro-decision ‘is an effect of the relation between the sheer number of 

  S. Hind
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calculations and the velocity of automated processing’ (Sprenger, 2021, 
p. 160) in any given situation. The ‘intervals’ of the micro-decision, thus, 
‘are too short for human attention’ (Sprenger, 2021, p. 106). Here, whilst 
the book draws at times on a similar literature around the temporality of 
decision-making, via Katharine Hayles’ idea of ‘cognitive assemblages’ 
(Hayles, 2017; Hind, 2022), like Sprenger (2021) himself, the book does 
not exclusively focus on temporality as a quality of a decision.

But secondly, that the approach centres the making of decisions rather 
than the decision, per se. In this, decisions are always ‘made’, usually 
through entrenched, repeated, encultured, sedimented actions that can 
be understood as specific kinds of decision-making practices, necessarily 
with their own dynamics, features, and operative components. For 
instance, in how remote ‘mobility managers’ might be imagined to be 
able to intervene in the decision-making of autonomous vehicles (Hind, 
2022). Indeed, that they can both be specified and located within the 
kinds of case studies the book considers, as well as classified to some 
degree based on what the decisions are designed to enact and how they 
are executed. As Sprenger (2021, p. 170) considers in relation to machines, 
‘we need a conceptual framework [of decisions] that helps us understand 
their mode of power’.

Considering the notion of the decision a little more, Andew Dwyer 
suggests algorithms don’t, or can’t, make decisions which are instead a 
‘distinctly human practice’ (Dwyer, 2020, p. n.p.). In this, Dwyer under-
stands calculations as different from the making of decisions, following 
Derrida (1992), in which ‘calculation can form part of a decision, but is 
not equivalent to it’ (Dwyer, 2020, p. n.p.).

In this, it is best to be clearer about what kinds of decisions—and spe-
cifically machine vision, ML-based decisions—are being discussed. In the 
book I am primarily interested in decisions that do not, necessarily or 
always, surface above the technical system in question. In these instances, 
decisions (strictly only calculations, in Dwyer’s formulation) are not 
always made by human operators at the moment of execution. Whilst 
they may be programmed or otherwise designed by engineers, developers, 
or other technical workers in advance to make such decisions (and as 
such satisfy Dwyer’s definition above), at their literal, situational execu-
tion—say at a road junction or at the point of the merger of two 
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lanes—such decisions are made by the relevant mapping, sensing, plan-
ning, and control modules of the autonomous vehicle in question. Here, 
I would argue that these decisions are executed by a machine, as well as 
ordinarily made by engineers, developers, or other such technical workers 
responsible for designing, training, testing, and running the machine.

Most importantly, following Mackenzie (2017) and Roberge and 
Castelle (2020) decision-making in an ML context can be understood as 
navigational, in that it extrapolates and projects itself into future states. 
Within an autonomous vehicle context, this is most evident in the steps 
along the ML ‘pipeline’ (see later) that come after perception and object-
recognition, namely ‘forecasting’ and ‘motion planning’. In these naviga-
tional steps, the focus of Chap. 5, ML models must learn to accurately 
predict the future state of actors, including the ‘ego vehicle’ they support. 
In this a model must contend with a vast volume of possible trajectories 
and future states, according to parameters set by ML practitioners. Thus, 
decision-making, or the execution of decisions, does not end in a single, 
final outcome: ‘the decision’. Instead, decision-making must always work 
along a navigational path, finding the best way to proceed, having taken 
account of the possibly converging paths of other actors in the world. 
This is what Roberge and Castelle (2020, p. 13) refer to as machine learn-
ing’s ‘quest for agency’, that ‘machine learning models are readymade as 
(semi-)autonomous’ in which the ‘act of classification, whose accuracy is 
optimized during training, can become an act of decision-making during 
deployment’ (Roberge & Castelle, 2020, p.  13). In other words, that 
‘machine learning culture is more directly involved with the possibility of 
taking action’ (Roberge & Castelle, 2020, p. 13, authors’ emphasis) as 
compared with other algorithmic techniques.

Roberge and Castelle (2020) use Latour (1986) to refer to the ‘cascade’ 
of decision-making moments or instances, whilst one could also talk of 
their concatenation, in that decision-making moments generate the spark 
for subsequent concatenated, decision-making moments. Rather than 
spontaneous or organically initiated moments, however, ML models rely 
on calculable pathways or trajectories along which decisions actualize. 
Virtual environments, naturally, are crucial agents in such work, provid-
ing the space for such concatenations to occur, but also the space for 
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trajectories to be optimized, and re-optimized, played, and re-
played (with).

Florian Jaton (2021, p. 23), following the work of French cognitive 
scientist Jacques Theureau (2003), talks similarly of ‘courses of action’. 
Here, Jaton focuses on the ‘accountable chronological sequences of ges-
tures, looks, speeches, movements, and interactions between humans and 
nonhumans whose articulations may end up producing something’ (Jaton, 
2021, p. 23, authors’ emphasis). Part of Jaton’s reasoning for using a more 
‘generic definition’ (Jaton, 2021, p. 23) to consider algorithmic work is 
that it helps ‘resist the supposed abstraction of computer science work’ 
(Jaton, 2021, p. 23) in which proponents are prone to mystifying rather 
than clarifying the work undertaken, playing up its novelty rather than 
establishing similarities or lineages with prior or parallel work.

Offering examples of courses of action that ‘produce something’ Jaton 
mentions ‘a piece of steel, a plank, a court decision, an algorithm’ (Jaton, 
2021, p. 23), however with cascading decision-making moments, or a 
concatenation of such events, these things likely result in further enac-
tions rather than discrete or boundable objects. In this, it might even be 
unwise to draw on Jaton’s definition of activities as sets of ‘intertwining 
courses of actions sharing common finalities’ (Jaton, 2021, p. 23) if refer-
ence to ‘finalities’ is objectionable, even if Jaton’s decision to foreground 
doing (ground-truthing, programming, etc.) rather than being (ground-
truth, programme) echoes the move I make in this book from decisions 
to decision-making.

�Decisions: Advance, Deferred, 
Distributed, Discretionary

This is primarily why I am interested in ‘decision-making’ rather than 
decisions, per se. The term has a manifold connotation that considers 
both a decision as made (produced, manufactured) as well as executed 
(enacted, completed). In this the human work required to gift an autono-
mous vehicle decision-making capacities as well as the machinic capability 
to enact those decision-making capacities at any given moment are both 
acknowledged. In this, I talk expressly about ‘advance decisions’ made in 
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advance of executed driving decisions (turning, merging, stopping), in 
order for these decisions to be made—or, indeed, to not be made. I talk 
in Chap. 5 about how decisions are often ‘deferred’, rolled into continu-
ous, iterative, feedback loops of decision-making.

For Sun-ha Hong ‘predictive systems, by definition, reconfigure the 
existing distribution of decision-making relations’, asking ‘which parts of 
the decision are considered sufficiently unknowable that they are open to 
(unequal) negotiation’ (Hong, 2022a, p.  6)? Likewise, that ‘prediction 
serve to reallocate discretionary power across different actors, and addi-
tionally to obfuscate the continuing role of discretionary power in 
decision-making’ (Hong, 2022a, p.  6, authors’ emphasis). For Hong, 
‘discretion … describes the always unequal distribution of the power to 
define the situation’ (Hong, 2022a, p. 6, authors’ emphasis), the question, 
however, is how or whether discretion works at all in ‘closed-loop’ 
decision-making, where algorithmic outputs aren’t presented to discre-
tionary actors but continuously fed back into and fuelling more decision-
making. Where, if at all, does this discretionary power lie? As Hong 
(2022a, p. 8) reiterates:

Prediction grammatises – renders flexibly replicable, habituates, provides a 
template for – a widespread extraction of discretionary power: the spaces of 
practical ambiguity, the gap between rule and case, the moments of situa-
tional judgment, that were always unequally distributed across different 
subjects in the first place. (Hong, 2022a, p. 8)

Alongside this question of how decision-making relations are distrib-
uted, John Law also writes that ‘decision making … may be understood 
as the performance of certain forms of overlapping distribution’ (Law, 
2002, p. 146). In this, the distribution of decision-making is greater than 
the allocation of decisions as if they were goods or objects to hand out. 
Here, ‘distributions resemble one another or may at any rate … be made 
to resemble one another’ (Law, 2002, p. 146, authors’ emphasis). Talking 
specifically about political decisions rather than technological ones, per 
se, Law considers how decision-making assumes strategic importance and 
through which some form of masking or camouflage allows certain deci-
sions to blend into one another, or present as singular instead of multiple.
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Accordingly, decision-making practices can be understood as ordinar-
ily involving the enaction, or deployment, of various kinds of tricks and 
tactics that resist an instrumentalized reading of the pure, rational, com-
putational execution of decisions. In other words, that there are other 
things going on when decision-making takes place, beyond, although 
routinely in service to, the strict making of decisions.

One other aspect of the distribution of decision-making that Law con-
siders is how ‘“options” are brought into being’ (Law, 2002, p. 147), dis-
tributing ‘that which is possible, and that which is not’ (Law, 2002, 
p. 147). In technical terms—something that will be considered at various 
points in this book—the phrase ‘options’ might be substituted for ‘param-
eters’. Thus, parameters—settings that establish the operational limits of 
certain kinds of simulations, for example—distribute but also encode, 
‘that which is possible, and that which is not’ (Law, 2002, p. 147). Or 
more precisely, drawing on the relevant history of pattern recognition: 
that which is statistically likely, and that which is not. Yet perhaps unlike 
other possible options not considered that are ‘removed from the uni-
verse of possibilities’ or indeed might not even have been ‘conceived as 
options in the first place’ (Law, 2002, p. 147), the setting of technical 
parameters can be understood as theoretically endlessly modifiable.

Here, parameters play the role of setting the limits of the conditions to 
be tested. Where there may be greater similarities is in the practice of set-
ting those limits, of what to include and exclude, what to studiously 
ignore, or unknowingly discount. Everywhere in the development, test-
ing, and deployment of autonomous vehicles exclusionary practices can 
be found, and everywhere evidence of the actualization of the restrictive 
qualities of parametrization can be witnessed. Although sometimes arbi-
trary, such decisions are routinely driven by computational, and thus 
political, constraints: the hard limits of mobile hardware carried within 
an autonomous vehicle, as well as the reputational limits of vehicle safety 
data carefully released to the general public. This is broadly what Ludovico 
Rella understands as the ‘material political economy of the epistemology 
of computation’ (Rella, 2023, p. 1).
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�Decisionism

I want to refer to the proliferation of machine vision/ML-dependent 
decision-making as ‘technological decisionism’ (Parisi, 2017). 
Technological decisionism refers to how decisions are valued only for 
their determination of clarity rather than correctness, what Bessner and 
Guilhot (2019) call, in broader terms, a ‘decisionist imagination’.

Firstly, that in order to enact and enable control over forms of life, one 
must first fabricate, and then encode, decisions within the fabric. In this, 
social, cultural, political, or technological processes that may not have 
required decisions, nor the making of decisions, are reformatted through 
decision-making architectures imposed upon them. Secondly, that this 
encoding of decisions must necessarily be delivered and buttressed by 
autonomous systems, such that one is able to ensure the making of deci-
sions is carried out within an operational vacuum (e.g. the AI ‘pipeline’ 
without any exhaust or outlets), free of bias, free of motive, and free of 
alternative ideas and ideologies about the form of life subject to decision-
ism, in which the setting, management, and making of decisions follow a 
prescribed path.

For Sun-ha Hong, this maps onto how predictive policing tools and 
similar algorithmic decision-making systems ‘institute a particular deci-
sion about how futures must work’ (Hong, 2022b, p.  384, authors’ 
emphasis) and how future life must be constructed. The power of these 
efforts is not in ‘proving’ the validity of decisionism as a worldview or 
orientation, as Hong suggests, but in demonstrating it ‘by offering share-
able and visceral experiences that [are designed to] impart a different way 
of seeing’ (Hong, 2022b, p. 386). This book is, inter alia, about such 
demonstrations of technological decisionism, as they abound in the 
world: from the responsibility of Waymo vehicles, to the ‘vibes’ sought by 
Comma users.

As Parisi continues:

Machine-learning algorithms do not simply perform nonconscious pat-
terns of cognition about data, exposing the gaps in totalizing rational sys-
tems, but rather seem to establish new chains of reasoning that draw from 
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the minute variations of data content to establish a machine-determined 
meaning of their use. (Parisi, 2017, p. n.p., emphasis added)

Here, returning to Roberge and Castelle (2020), the power of the 
chains, cascades, and concatenations of decision-making, and the enforc-
ing of such reasoning upon different domains and lifeworlds are funda-
mental to understand. Machine learning’s recursive ‘quest for agency’ 
(Roberge & Castelle, 2020, p. 13) leads it to imposing—or constantly 
seeking to impose—itself on situations otherwise nominally open to 
alternative logics and forms of reasoning.

However, I diverge from Parisi (2017) in how the apparent ‘clarity’ of 
technological decisionism has given way to a splintered sense of decision-
making, whereby clarity is neither sought nor secured but necessarily 
masked. In other words, that technological decisionism needn’t always 
search for clarity, or at least surface or evidence such clarity or finality. 
Returning to Law (2002), machine learning routinely defers and distrib-
utes the making of decisions, such that whilst clarity might be sought, the 
search for it is hidden or blurred in some manner. This is not to say that 
‘indecision’ is favourable—certainly not when an autonomous vehicle on 
a public road blocks a junction—but that the deferral of the decision is 
deemed desirable in some sense. No decision is ever final, but that does 
not necessarily make it contestable. As the book will hopefully show, pre-
cisely because each decision-making moment is provisionally assured, it 
is provisionally able to suspend the prospect of contestation indefinitely.

Louise Amoore similarly examines the rise of ML-driven decision-
making (Amoore, 2022). Here, Amoore considers first how ‘rules-based 
computation and decision was critical to the formation of postwar inter-
national liberal order’ (Amoore, 2022, p. 26), asking ‘what happens when 
the machine learning function displaces it?’ (Amoore, 2022, p. 26). More 
specifically, Amoore is concerned with how ML ‘functions’ become the 
mechanisms through which political orders are now generated, as opposed 
to rules-based algorithmic processes, dominant before the emergence of 
machine learning. What Parisi calls technological decisionism is reframed, 
or refocused down a level, to the functional operation of any ML system 
itself, as well as the relationship(s) formed between such systems and the 
political entities or bodies increasingly dependent on them for 
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decision-making. As Amoore concludes, ‘in a sense, machine learning’s 
raison d’être is to generate outputs that are in excess of the formulation of 
rules’ (Amoore, 2022, p. 26), operating in a space where the ontological 
order and arrangement of objects in the world are governed by an unruly, 
calculative process.

In this, Amoore also suggests that what makes machine learning differ-
ent is that it proceeds from (desired) target to input(s) and layers, rather 
than from input and rules to output, ‘abductively working back to adjust 
the parameters of [a] model in order to converge on the target’ (Amoore, 
2022, p. 28). This is what she refers to as ‘retroactive design’ (Amoore, 
2022, p. 28). It is this inversion of the ordinary decision-making process, 
in which the ‘end target’ becomes the ‘starting point’ (Amoore, 2022, 
p. 28), that ‘significantly reconfigures the relationship between the for-
mulation of a political problem and the proposition of a solution’ 
(Amoore, 2022, p. 28). It is also a key feature of technological decision-
ism, in which the reaching of a decision takes precedent (Fig. 1.1).

This technological decisionism, however, can also be seen as a modula-
tion of decentralized computational networks, what Matteo Pasquinelli 
(2021), through a reading of Friedrich von Hayek’s theory of markets, 
calls ‘mercantile connectionism’ (Pasquinelli, 2021, p.  161). Here, he 
understands Hayek’s theory of market activity as involving the acquisi-
tion of knowledge ‘through the act of classification or pattern recogni-
tion’ (Pasquinelli, 2021, p.  162) before, neurologically, ‘a topology of 

Fig. 1.1  Diagram of machine learning’s abductive decision-making. (Source: 
adapted from Amoore, 2022)
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connections to take decisions’ (Pasquinelli, 2021, p. 162) is determined. 
As Pasquinelli contends, ‘eventually, in Hayek’s political intention, con-
nectionism and neural networks provide a relativist paradigm to justify 
the “methodological individualism” of neoliberalism’ (Pasquinelli, 2021, 
p. 162) itself. Connectionism, thusly—the foundational theory of con-
temporary machine learning—likewise undergirds and provides a neuro-
logical, ‘natural’ justification for neoliberal market activity.

Amoore (2022) also considers the art and act of decision-making in a 
slightly different register, returning to the allure of technological deci-
sionism. In this Amoore explains how algorithms are considered to work 
rationally and logically, expelling any ‘unreason’ (Amoore, 2020, p. 110) 
from the systems through which they operate. Yet as Amoore contends, 
contemporary ‘accounts of moral panic amid the madness of algorithms’ 
(Amoore, 2020, p. 110) and their unintended effects, forget that unrea-
son is central to computational logic itself, as well as the ‘capricious incal-
culability within our twenty-first-century modes of algorithmic decision’ 
(Amoore, 2020, p. 110). In other words, that far from acting sensibly and 
rationally, algorithms—and especially ML models—incorporate all kinds 
of ‘madness’. Ostensibly, like the madness of markets themselves, as 
Pasquinelli’s reading of Hayek’s connectivism might have it.

As Amoore eloquently puts it, such algorithmic ‘decisions are mad 
because they can never fully know the consequences and effects of their 
own making’ (Amoore, 2020, p. 112), operating blissfully, yet logically 
unaware of the effects their calculative actions have on, and in, the world 
itself. It is the algorithm-as-aberration, or the moral panic of algorithms, 
that is frequently invoked in the world of autonomous driving, each time 
in doing so serving to erroneously demarcate the sensible, reasoned 
decision-making of particular ML models-in-action and those that have 
erred, or strayed, from their rational foundations.

As Chap. 5 argues, considerable energy is dedicated to testing the 
thresholds at which ML algorithms begin to act a little too imaginatively, 
or carelessly, for the chosen task. What this book hopefully offers, there-
fore, is an account of how certain people—engineers, programmers, soft-
ware developers, and the like—have applied the kind of moral algorithmic 
judgement that Amoore unpacks. In short, to examine the role of the 
algorithmic judgements made by practitioners as they work on, and with, 
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autonomous vehicles, and to offer ‘an insight into how the algorithm 
enrols and deploys ideas of unreason to function and to act’ (Amoore, 
2020, p. 117). As Amoore sums it up: ‘the unreason and the excess are 
not aberrations at all’ for the ML models they power, ‘but are the condi-
tion of possibility of action’ (Amoore, 2020, p. 119). What space is there, 
or indeed, what appetite is there, for a level and kind of algorithmic 
experimentation that risks the making of such unreasonable decisions not 
just in public but on the social road? What price is paid for the ML 
model’s errant sense of adventure, as Amoore (2020) would have it? What 
do the decision-makers decide? Conversely, following Andrejevic (2019), 
who decides the decision-makers?

�Operations

Methodologically, the book offers an ‘operational analysis’ of the phe-
nomenon of autonomous driving. This approach centres on a critical 
evaluation of the technical operation of autonomous vehicles and the 
work underpinning this operation. Drawing on, and synthesizing, differ-
ent methodological approaches—technography, operational analysis, the 
study of situations—the book is indebted to the work of others who have 
considered the construction and calibration of technological operations 
in innovative, and inventive, ways.

�Technography and Techniques

Taina Bucher’s (2018) use of technography aids, for instance, the ‘map-
ping [of ] the operational logics of algorithms’ (Bucher, 2018, p.  60). 
Technography, for Bucher, ‘is a way of describing and observing the 
workings of technology in order to examine the interplay between a 
diverse set of actors (both human and nonhuman)’ (Bucher, 2018, p. 60). 
Here, Bucher is not alone in offering a definition of technography. As she 
states, Grant Kien has previously described it as an ‘ethnography of tech-
nology’ (Kien, 2008), whilst Steve Woolgar suggested it offered a way to 
‘tease out the congealed social relations embodied within technology’ 
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(Woolgar, 1998, p.  444) requiring, in his words, ‘sustained empirical 
study in technical settings’ (Woolgar, 1998, p. 444).

In the French tradition François Sigaut considers technography as an 
‘anthropology of technics’ (Sigaut, 1993, p.  422) and as a method to 
establish ‘technical facts’ (Sigaut, 1993, p.  424) through the study of 
‘technical acts’ or operations where an operation is ‘someone doing some-
thing’ engendering ‘material change’ that can be ‘usefully observed’ 
(Sigaut, 1993, p. 425). As Sigaut continues, such technical acts or opera-
tions typically occur ‘as parts of a sequence that can be called a “path”’ 
(Sigaut, 1993, p. 423) such as the brewing of beer, the making of shoes, 
or the processing of cereals. In the case of brewing beer, such paths, as 
Sigaut explains, include saccharification and fermentation, which cannot 
ordinarily be skipped or avoided. As Sigaut continues:

In Europe, the brewing of beer is preceded by growing barley and hops and 
culturing yeast [other paths]; it demands a variety of devices that have had 
to be made by the corresponding craftsmen; it burns fuel, and so on. Step 
by step we realize that all the paths present in any one society are interwo-
ven, in some way or other, into a sort of network, which is in fact the eco-
nomic organization of that society. (Sigaut, 1993, p. 426, authors’ emphasis)

Similar to Bucher, Bernhard Rieder offers a study of ‘algorithmic tech-
niques’ (Rieder, 2020) such as machine learning, through the Simondonian 
notion of ‘mechanology’ (Simondon, 2017). In co-authored work, a syn-
thetic approach to studying ‘algorithmic systems’ (Rieder & Skop, 2021, 
p. 4) is offered, indebted both to Bucher and Rieder’s own work, in order 
to account for the distributed operation of ‘machine moderation’ (Rieder 
& Skop, 2021, p. 2) on the web. Van der Vlist et al. likewise employ a 
technographic approach to study the emergence of ‘big AI’, enabling a 
‘detailed examination of the material aspects of technology by directly 
reading various publicly available documents generated by and related to 
technical systems’ (Van der Vlist et al., 2024, p. 4). For Hind et al. (2024), 
technography offers the opportunity to study the role of ‘challenges’ in 
catalysing the development of AI products and systems.
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�Operations and Operational Analyses

Whilst the origins of the study of computational operations are traceable 
back to OR in both military (1940s) and business (1950s–) contexts, 
only recently have scholars returned to the question of operations and 
how to study them. The impulse has evidently been the rise of AI, 
machine learning, and the automation of the production of images 
(Pasquinelli, 2023). For media scholars long versed in various kinds of 
representational, semiotic, and visual/textual analyses, this returning 
interest has stimulated new theoretical and methodological approaches 
for understanding the ‘politics’ of automated operations (Mezzadra & 
Neilson, 2019).

Kathrin Friedrich and AS Aurora Hoel deploy an operational analysis 
to ‘systematically observe and critically analyze … [the] situated, inter-
ventional and multilayered entanglements’ (Friedrich & Hoel, 2023, 
p. 50) of digital media applications such as clinical imaging systems. As 
they contend, ‘media researchers are increasingly faced with shifting 
entanglements between physical and virtual layers of operations and 
interventions  – with systems where human and non-human agencies 
intertwine and intra-act in often seemingly inscrutable ways’ (Friedrich 
& Hoel, 2023, p. 51). In this, media researchers are necessarily forced to 
understand how typical media research objects (images, video frames) are 
enrolled into automated processes, ordinarily hidden from view.

To understand these processes better, Friedrich and Hoel consider the 
media integral to the operation of such systems as ‘adaptive mediators’ 
(Friedrich & Hoel, 2023, p. 51). Here, Friedrich and Hoel build on sub-
stantial work into the ‘operational’ nature of media and, specifically, an 
operational reading of images (Farocki, 2004) and data (Walker Rettberg, 
2020). As they further state, following Simondon (2017), ‘[i]n their role 
as adaptive mediators … technical objects enact a new resolution of the 
human-world system, a material reconfiguration of the world that releases 
new potentials for perception and action’ (Friedrich & Hoel, 2023, 
p. 56). In their function as adaptive mediators, operational media act as 
engines within the world, offering enactive possibilities in near-infinite 
circumstances.
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For Mezzadra and Neilson, there is an interest in how the ‘operative 
dimensions of capital and capitalism … “hit the ground”’ (Mezzadra & 
Neilson, 2019, p. 2), where the ‘operative surface’ (Mezzadra & Neilson, 
2019, p. 3), across which capitalist processes go to work, is ‘neither merely 
terrain nor land’ (Mezzadra & Neilson, 2019, p. 3) but an enmeshing of 
‘spatial, social, legal, and political formations’ (Mezzadra & Neilson, 
2019, p. 3). Thus, following Friedrich and Hoel’s (2023) formulation, a 
‘media operation’ is a ‘technologically mediated action or procedure 
where symbolic and virtual resources are gathered to effect changes in the 
physical environment’ (Friedrich & Hoel, 2023, p. 53). With AI and ML 
models increasingly constituting the general foundations of capitalist 
processes and labour—what Matteo Pasquinelli refers to as the ‘automa-
tion of automation’ (Pasquinelli, 2023, p. 246)—media operations can 
now be understood to be driving capitalism itself, enmeshing these vari-
ous formations across its operative surface.

Friedrich and Hoel consider how ‘[r]esearch on media operations often 
requires what we call an empirical encounter through which media schol-
ars make themselves familiar with the media application under investiga-
tion, and just as importantly, with its context of use’ (Friedrich & Hoel, 
2023, p.  52, authors’ emphasis). What such an ‘empirical encounter’ 
requires, however, is some kind of organizational device to structure it. 
Friedrich and Hoel term such a device ‘operative moments’ (Friedrich & 
Hoel, 2023, p. 60) which, for Noortje Marres (2020), might be under-
stood as a computational ‘situation’ or for Karin Knorr Cetina (2009), a 
‘synthetic situation’. Marres affirms the ‘constitutive role of computa-
tional settings, like electronic trading platforms, and digital media archi-
tectures, such as Skype, in the organisation of situations’ (Marres, 
2020, p. 5).

Whether a ‘moment’ or a ‘situation’, what is important is how systems 
are constructed and calibrated for use. Indeed, that whilst Friedrich and 
Hoel also acknowledge the need to ‘pay due attention to the situations in 
which media operations unfold’ (Friedrich & Hoel, 2023, p. 57), Marres 
(2020) is more explicit in how situations are actively, and knowingly, cul-
tivated. In this, operative moments do not magically or passively occur 
but are conscientiously generated with purpose and intent. In other 
words, that, as the book will explore, practitioners are actively involved in 
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developing strategies to generate specific kinds of (calibrated) situations, 
cultivating new operational conditions. This purposefulness is intrinsic to 
how decisions are made, and decision-making proceeds.

Adrian Mackenzie, in his detailing of the work of ‘machine learners’, 
also develops an approach he calls an ‘archaeology of operations’ 
(Mackenzie, 2017, p. 9), paying ‘attention to the specificity of practices’ 
that ‘is an elementary pre-requisite to understanding human-machine 
relations and their transformations’ (Mackenzie, 2017, p. 9). Attending 
to these operations allows Mackenzie to consider machine learning ‘as a 
form of knowledge production and a strategy of power’ (Mackenzie, 
2017, p. 9) in the way that it carves out categories and differences through 
classificatory processes. A repeat interest throughout this book is the 
manner in which such cleavages are made in the domain of autonomous 
driving. These classificatory operations underpin the decision-making 
power of autonomous vehicles.

As Chap. 4 will detail, any operational analysis of autonomous driving 
must start from acknowledging its interoperability, and thus that any 
operational analysis necessarily demands an interoperational analysis. 
This matters because it shifts a focus away from the centre towards the 
edges, from systems or system components or modules to system connec-
tions: those critical contact points—especially so in automated and 
autonomous systems—that demand but don’t always offer stability, secu-
rity, or seamlessness. It is at these critical contact points, as the book will 
explore, where decisions crystallize.

Methodologically, the decision can be understood as a specific compu-
tationally organized situation composed for the purposes of executing an 
action or set of actions. As an adaptation of Marres (2020), I am specifi-
cally interested, therefore, in how decision-making situations are enacted, 
and how these various mapping, training, sensing, planning, securing, 
relaxing, executing, and resisting phases are integral to the operation, and 
interoperability, of autonomous vehicles. The decision, therefore, is an 
entry point or cut into these operational phases, allowing one to bring 
these various components of data, model, operation, practice, path, net-
work, and system together. Through the making of decisions, the actual-
ization of the qualities of the autonomous vehicle becomes observable, at 
least provisionally.
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In this, the book does not offer a straightforward ethnography of 
autonomous vehicle design or development but a methodological per-
spective centred on articulating how decision-making is practised, per-
formed, and refined in a machine vision context. This ‘operational 
middle-range approach’ (Friedrich & Hoel, 2023, p. 52) is taken to best 
ameliorate the limitations of operational media, images, and data them-
selves, ordinarily preventing the kind of accessibility afforded by repre-
sentational media.

�‘Pipelines’

Typically, an operation might be understood as ‘a straightforward relation 
of cause and effect, input and output, that can be tracked according to 
the model of classical mechanics’ (Mezzadra & Neilson, 2019, p. 67). 
The idea of the pipeline is a critical organizational tool and metaphor for 
the development of autonomous vehicles, following the above, as wit-
nessed in the flowchart of the software system underpinning the winning 
vehicle in the 2007 DARPA Urban Challenge, ‘Stanley’ (Fig. 1.2).

Thus, the ‘pipeline’ is used within the book as a methodological device 
in order to follow the sequential stages along which various decisions are 
carried out, from mapping, training, sensing, and simulating, to secur-
ing, relaxing, and resisting. However, as Thylstrup suggests, ‘traceability’ 
is a ‘mechanism that can allow individuals and organisations to forensi-
cally “follow” data along a life cycle or value chain invok[ing] an imagi-
nary of linearity’ standing ‘at odds with the cultural complexities of the 
ethics of machine learning and the role of data sets within it’ (Thylstrup, 
2022, p. 664). Whilst data might be understood to flow seamlessly from 
one stage to another, and that with this seamless flow the significance of 
each stage can simply be ‘read off’, such linearity is indeed a construction. 
As Mezzadra and Neilson agree:

However automatic or given the results of an operation might appear to be, 
when we look at it from this perspective, there is always a back story, a 
drama of fictions and tensions in which the efficacy of the operation 
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Fig. 1.2  Stanley processing ‘pipeline’. (Source: Thrun et al., 2007)

appears far more fragile and elusive than might otherwise be assumed. 
(Mezzadra & Neilson, 2019, p. 67)

The chapters within attest to the methodological artifice of the pipe-
line metaphor, with some actors within the fields of machine learning 
and autonomous driving necessarily noting so. Neither in theory nor in 
practice is machine learning, or the automation of perception and 
decision-making, a linear process. As such, the book narrates the moments 
at which this linearity is deliberately challenged or otherwise threat-
ened—the ‘drama of fictions and tensions’ Mezzadra and Neilson talk of. 
Indeed, that for some practitioners the enduring imaginary of the AI 
pipeline itself might, arguably, be the biggest threat to the delivery of 
autonomous vehicles altogether.
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�Phases

The book is not intended to be a ‘complete’ history of autonomous driv-
ing, nor really a history at all. Nevertheless, in the process, it has been 
conceptually valuable to develop an understanding of the eras or ‘phases’ 
of the development of autonomous driving. In this short history, the first 
DARPA Grand Challenge in 2004 is generally considered to have started 
the commercial race, funded by the US Defense Advanced Research 
Projects Agency (DARPA). In this early ‘robotic’ phase, autonomous 
driving was principally an off-road pursuit, centred around competing in 
these so-called grand challenges, and ensuring vehicles completed an 
assault course of sorts.

It is possible to trace the seeds of this initial phase of autonomous driv-
ing back even further to 1983, at the birth of a DARPA programme 
called the Strategic Computing Initiative (SCI), which ran for 10 years 
before being cancelled by the Clinton administration (Roland & Shiman, 
2002). Designed to deliver ‘machine intelligence’, the SCI incorporated 
multiple interconnected, parallel, projects intended to produce concrete 
military systems concerning autonomous movement, battlefield manage-
ment, and simulation (Roland & Shiman, 2002). One such project was 
the Autonomous Land Vehicle (ALV) programme, an early autonomous 
military vehicle, designed to ‘take the next step to high-level, real-time, 
three-dimensional IU [image understanding]’ (Roland & Shiman, 2002, 
p. 220). Built through a partnership between various public and private 
actors—Carnegie Mellon University (CMU), General Electric, 
Honeywell, and Columbia University—the ALV was given its debut in 
May 1985, ‘successfully navigating a 1,016-metre course in 1,060 sec-
onds’ (Roland & Shiman, 2002, p. 228), better than anything that had 
come before it. Despite the early success, the project was cancelled in 
1988 as the SCI faced scrutiny over standardization and compatibil-
ity issues.

As Chap. 2 discusses, the 1990s can be considered a dormant period 
for autonomous driving, punctuated only by CMU’s continued develop-
ment of their Navlab vehicles—successors, of a kind, to the ALV (Roland 
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& Shiman, 2002). Only in the 2000s did interest return: the 2004 
DARPA Grand Challenge—dubbed the first ‘great robot race’ (Buehler 
et al., 2007)—saw 106 original applicants each tasked with navigating a 
150-mile off-road course in the Mojave Desert in California. In the end 
only 15 teams participated for the US$1million cash prize, with CMU’s 
Red Team vehicle ‘Sandstorm’ winning, despite only managing to negoti-
ate 5% of the total distance. Subsequently referred to as the ‘debacle in 
the desert’ (Hooper, 2004, p. n.p.), it was far from a success, either for 
DARPA or for the winning team, notably a previous partner in the ALV 
programme.

Despite this, two further iterations were organized, including a 2005 
edition in which five teams managed to complete a 132-mile course 
across similar desert terrain, with Stanford University’s Stanley Racing 
Team winning in 6 hours 53 minutes with Stanley, and teams from CMU 
finishing in second and third (Buehler et al., 2007; Thrun et al., 2007). 
Following a two-year break, the competition re-emerged as the 2007 
DARPA Urban Challenge, with teams now competing to complete an 
‘urban’ rather than off-road course, including obeying all California state 
driving regulations. CMU’s Tartan Racing vehicle ‘Boss’ completed the 
course quickest, with Stanford’s Racing’s ‘Junior’ vehicle finishing sec-
ond. This was the first time, as DARPA remarked, that ‘autonomous 
vehicles [had] interacted with both manned and unmanned vehicle traffic 
in an urban environment’ (DARPA, 2007, p. n.p.). Across three itera-
tions, only teams from either CMU or Stanford had claimed the first prize.

The second ‘benchmark’ phase saw a shift away from robotics research 
towards the setting of technical ‘benchmarks’ to establish the commercial 
development of autonomous vehicles and ensure the comparability of 
autonomous driving methods. Key moments in this era that ran from 
2009 to 2018 include the launch of Google’s self-driving car project in 
January 2009 (led by Chris Urmson, Team Tech Lead of Tartan Racing, 
winners of the 2007 DARPA Urban Challenge, assisted by Sebastian 
Thrun, Stanley Racing Team’s lead), the release of the Kitti Vision 
Benchmark Suite (2012), and the launch of Comma openpilot (2016) 
(Table 1.1).

The third, ongoing ‘incremental’ phase, is committed to the incremen-
tal development of ML methods used for autonomous driving. Key 
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Table 1.1  Key dates in the development of autonomous driving, 1985––2023

Date Event Era Key term Notes

May 1985 Autonomous 
Land Vehicle 
(ALV) 
demonstration

Robotic Strategic 
computing

ALV project 
cancelled in 
1988

March 13, 
2004

First DARPA 
Grand 
Challenge

Terrain No winners

October 8, 
2005

Second DARPA 
Grand 
Challenge

Won by Stanford 
Racing Team, 
led by 
Sebastian 
Thrun, 
ML-driven 
approach

November 
3, 2007

DARPA Urban 
Challenge

Urban Won by Tartan 
Racing, Chris 
Urmson Team 
Tech Lead, 
funded by 
CMU/GM/
AnnieWAY by 
KIT DNF

(continued)

moments in this period include the release of Waymo Open Dataset in 
August 2019, the launch of Waymo ‘Virtual Challenges’ in March 2020, 
and the acquisition of Uber ATG by Aurora (now lead by Chris Urmson) 
in December 2020. Cruise’s suspension of robotaxi services in San 
Francisco (2023) might be seen as an end to this incremental phase, as I 
detail in the final chapter.

The book also narrates the transition across a threshold in the develop-
ment of autonomous vehicles: before the fatal Uber ATG crash in Tempe, 
Arizona, on March 18, 2018, that killed Elaine Herzberg, and after. It is 
this moment that I argue marks the end of the benchmark era and the 
beginning of the incremental era. Herzberg’s death was the first recorded 
fatality involving an autonomous vehicle, anywhere in the world. A full 
investigation was conducted by the US National Transportation Safety 
Board (NTSB) into the cause of the crash, producing a final report on 
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Table 1.1  (continued)

Date Event Era Key term Notes

January 
17, 2009

Google self-
driving car 
project 
launches

Benchmark Project Led by Urmson

March 20, 
2012

Kitti Vision 
Benchmark 
Suite released

Street 
benchmarking

Co-author was 
Raquel 
Urtasun, 
co-developed 
by KIT team

February 
2, 2015

Uber and 
Carnegie 
Mellon 
University 
announce 
‘partnership’

Strategic 
collaboration

Uber acquire 
talent en masse 
from CMU 
Robotics 
Institute

February 
20, 2016

Cityscapes 
dataset 
released

Semantic TU Darmstadt, 
Max Planck 
Institute for 
Informatics, 
Daimler AG 
collaboration

September 
13, 2016

Comma One 
launched at 
Disrupt SF

Open Cancelled a 
month later, 
after NHTSA 
special order

November 
30, 2016

Comma 
openpilot 
launched

Publicly released 
on Github

December 
13, 2016

Waymo launches Platform Official spin-off 
from in-house 
Google project

March 19, 
2018

Fatal Uber ATG 
crash in Tempe, 
Arizona

Street testing Raquel Urtasun 
was Uber ATG 
Chief Scientist 
and Head of 
Research

(continued)
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Table 1.1  (continued)

Date Event Era Key term Notes

August 21, 
2019

Waymo Open 
Dataset 
released

Incremental Data First release of 
training 
dataset by solo 
commercial 
operator

March 19, 
2020

Waymo OD 
Virtual 
Challenges 
launched

Competition First public 
challenges by 
solo 
commercial 
operator

December 
7, 2020

Aurora acquires 
Uber ATG

Consolidation Aurora founded 
by Urmson

June 14, 
2021

Waabi launched Simulation Founded by 
Urtasun

July 31, 
2021

Comma three 
launched

Device class Compatible with 
over 200 
vehicle models

June 28, 
2022

Major Cruise 
outages in San 
Francisco

Live Greatest public 
fleet-wide 
technical error 
to date

August 10, 
2023

CPUC approves 
Cruise 
operations 
without 
restriction in SF

Authorization CPUC regulates 
services and 
utilities across 
California

October 
24, 2023

California DMV 
suspends Cruise 
operation 
permits in SF

Suspension California DMV 
registers motor 
vehicles and 
issues driving 
licences across 
California

November 19, 2019 (NTSB, 2019). On September 15, 2020, the vehicle 
operator (VO) behind the wheel of the vehicle at the time of the crash, 
Rafaela Vasquez, was charged with negligent homicide (Dungan, 2020). 
On December 7, 2020, Uber agreed a deal to sell their autonomous vehi-
cle operations, Uber ATG, to Aurora—a fellow autonomous vehicle 
firm—valuing it at $10billion (Korosec, 2020). The book thus argues in 
different ways that the development of autonomous vehicles has been 
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fundamentally changed by the events in Tempe in 2018, with continuing 
operators forced into various levels of introspection. Hence, the rise in 
incrementalist thinking within the industry after 2018, and the birth of 
a new era of autonomous driving.

Nonetheless, before Tempe and after Tempe are not especially sharp 
distinctions. Key events following the crash itself have reshaped the field 
along the way, from the publication of a preliminary report into the crash 
by the NTSB on May 24, 2018 (Krishna, 2018) followed by the final 
report 18 months later, then the decision to charge Vasquez 10 months 
after, arguably culminating in the sell-off of Uber ATG at the end of 
2020 (Smiley, 2022, 2023). Connectedly, the crash, reports, indictment, 
and sale constitute significant moments at which the trajectory—and 
ultimately, the promise—of autonomous driving changed course. The 
book is thus an attempt to narrate this course, as well as exploring the 
other parallel trajectories along which fellow operators have themselves 
travelled. Chapters 5, 6, 7, and 8 all concern the consequences of the fatal 
crash in various ways, focusing on technical developments, key actors, 
and public discourses that I argue would not have occurred without the 
crash on that fateful day in Tempe, Arizona, in 2018.

�Chapter Outline

As the start of this introduction contended, the book offers an insight 
into the ‘advance decisions’ deemed necessary to automate driving. In 
this, it is worth establishing what the book isn’t about. Firstly, it is not 
really about the automotive industry. From early in the research process, 
it became apparent that the quest to automate driving was not being 
conducted by traditional automotive manufacturers. Wedded to estab-
lished relationships with technology suppliers and bound by safety regu-
lations and common industry practices, car manufacturers were neither 
interested in offering, nor able to offer, the dream of autonomous driv-
ing. Chapter 6, on the semiconductor ‘chip crisis’, is the only exception.

Whilst many advanced driver-assistance systems (ADAS) have been 
launched by car manufacturers over recent years, including Volvo’s 
vaunted ‘moose vision’ (Adams, 2017), these incremental systems have 
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not been the landmark, game-changing, epoch-defining, advancements 
promised by a fully autonomous future. Instead, they were decidedly 
incremental offers: the kinds of systems used to tempt customers to buy 
upgrades to base vehicle models on display. Despite genuinely intriguing 
speculative proposals, such as Nissan’s Seamless Autonomous Mobility 
project (Hind, 2022), most automotive manufacturers stuck to what they 
knew: a combination of aforementioned ADAS alongside concept cars. 
Rarely ever constituting concrete blueprint for future vehicle models, 
concept cars are used by manufacturers as embodiments of future-forward 
thinking—the direction of travel for the automotive brand, and little 
else. This mobilization of a ‘technological sublime’ (Hildebrand, 2019) is 
part of the standard automotive playbook.

Secondly, the book isn’t really about autonomous vehicles, per se—and 
certainly not about ‘cars’. No single chapter examines any actually exist-
ing autonomous vehicle, what it is, and what it can do. More accurately, 
the book is about the myriad forms of technical work being executed to 
ideally, possibly, hopefully deliver a form of autonomous driving in the 
future. Even the final chapter on autonomous vehicle passenger services 
(AVPS) in San Francisco is not really concerned with the vehicle as a 
singular, material object—but the regulatory and practical battles con-
cerning it. Even more so, the book does not intend to tell a story about 
cars in any meaningful sense. Despite a sustained theoretical focus on 
decision-making—all leading up to the moment of executing live 
manoeuvres on the road itself—the book deliberately focuses on the dif-
ferent kinds of (technical) decisions being made in advance of such 
moments. Indeed, rather than just a heuristic device, the book mirrors 
the material efforts of engineers, annotators, vehicle operators, regulators, 
enthusiasts, and activists on the ground—few of which (besides avid par-
ticipants in the Comma project or test vehicle operators) are actually ever 
concerned with, or get close to, the act of driving itself. Even in such 
cases, the car itself recedes from view, dissolved into material components 
and systems each tweakable, modifiable, and optimizable to offer a greater 
affective ‘autonomous’ driving experience.

Chapter 2 considers the role of mapping in the development of auton-
omous vehicles, offering a comparison between two firms—Uber ATG 
and Waabi—taking different paths to establishing the cartographic 
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coordinates of their respective enterprises. Considered a fundament for 
such work, autonomous vehicle developers must concern themselves 
with building ‘operational design domains’ (ODDs), mapping the full 
geographic extent of their autonomous vehicle operations, down to the 
final millimetre. Far from a purely scientific endeavour, defined only by 
safety protocols or technical requirements, the setting of ODDs—most 
certainly in the case of Uber ATG—are informed by economic decisions 
concerning viability, scalability, and profitably. This fastidious ODD 
work—manual route driving, data tagging, domain building—crystal-
lizes the search for viable future autonomous ride-hailing markets. Other 
operators, however, offer a different cartographic approach, less con-
cerned with the mapping of geometric phenomena. Waabi’s stated ‘map-
less’ approach to autonomous driving, although far from a-cartographic, 
demonstrates a sensor data-driven approach seeking to eradicate pesky 
errors that enter into the developmental pipeline at the mapping stage. 
These attempts to offer innovative solutions to traditional engineering 
problems—such as the modular, ‘software stack’ approach—are typical of 
the competitive nature of autonomous driving.

Chapter 3 examines two training datasets—the KITTI Vision 
Benchmark Suite and Waymo Open Dataset—constituting key mile-
stones in the ‘ground truthing’ of autonomous vehicles. Launched only 
seven years apart, each dataset is nonetheless markedly different, consti-
tutive of very different moments in the development of autonomous 
vehicles—what I have called here the benchmark and incremental phases 
of autonomous driving. Often taken-for-granted, training datasets are 
integral components in the development of autonomous vehicles, critical 
to the building of ML models that underpin their executive functions. 
Only ever as useful as the classification and annotation work performed 
on them, autonomous vehicle training datasets—such as the KITTI 
Vision Benchmark Suite and Waymo Open Dataset—demonstrate great 
variety in composition, technical set-up, source data, and volume, 
amongst many other things. The KITTI Vision Benchmark Suite, 
launched in 2012, offered the first real-world benchmarks for the com-
parison of machine vision systems used in autonomous driving settings. 
An emerging interest in ‘interesting-ness’, typified by Waymo engineers’ 
repeated emphasis on scenario diversity within such datasets, similarly 
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defines the incremental era of autonomous driving, committed to refin-
ing extant machine learning and machine vision techniques.

Chapter 4 explores the ‘sensor strategies’ being devised to optimize 
object-recognition processes, critical to gifting autonomous vehicles their 
perceptive qualities. Although such sensor work is already necessary for 
the capture of ML training data in the first instance, novel methods and 
approaches are likewise required in order to improve what researchers call 
the ‘online’ (i.e. real-time) capabilities of their object-recognition sys-
tems. Drawing on work on the ‘operational’ nature of digital images and 
data, the chapter considers how machine vision researchers, such as those 
at Argo AI, are engaged in various efforts to rationalize the object-
recognition process. Offering practical examples of the need for ‘interop-
erability’ between different stages in the autonomous vehicle 
decision-making process, such work demonstrates the need for interoper-
ability on different technical, epistemological, and organizational levels. 
Practical examples encountered during autonomous driving and machine 
vision workshops include innovative, interstitial techniques to upgrade 
lidar to a fully 3D sensing format, and ‘dynamic scheduling’ techniques 
to balance quick and accurate image understanding. In both cases the 
chapter understands such work as integral to ‘finessing’ the interoperabil-
ity of autonomous vehicle systems, ensuring ingested sensor data is pre-
pared for subsequent stages in the decision-making pipeline.

Chapter 5 details the work undertaken by Waymo—Google/Alphabet’s 
autonomous vehicle division—to demonstrate the safety of their autono-
mous vehicles. Through analysis of two documents, the chapter considers 
how Waymo has publicly reported so-called contact events—the com-
pany’s euphemism for incidents and crashes involving Waymo vehicles. 
Beginning in 2020, Waymo published a report detailing 47 contact 
events involving Waymo vehicles undergoing testing on public roads. 
Twenty-nine were considered ‘simulated events’, incidents that would 
have happened if a human operator had not assumed control. Generated 
instead within in-house simulation software, Waymo’s revealing of such 
work constituted an important milestone in the post-Uber ATG crash 
autonomous world, suggesting that the incident had forced a change in 
Waymo’s public documentation of the crash worthiness of their own 
vehicles. A subsequent report in 2023 further demonstrated Waymo’s 
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efforts to document their own safety protocols around the testing of 
autonomous vehicles. Centred only on actual contact events (rather than 
simulated ones), the report chronicles 20 incidents that Waymo vehicles 
were implicated in from September 2020 to January 2023. Derived from 
two different test locations—Phoenix, Arizona, and San Francisco—the 
data is intended to show the lengths the company has gone to classify 
contact events, developing a ‘conflict typology’ comprising of 16 such 
types of possible interactions between the Waymo vehicle and other road 
users. The chapter argues that Waymo, through such classification work, 
is effectively able to apportion blame away from their own vehicle, sur-
mising that all other road users (and sometimes, inanimate objects) are 
responsible for the recorded encounters. As examples of ‘deferred’ 
decision-making—shifting the meaning of such incidents into the future, 
and away from Waymo—algorithmic ‘doubt’ is used as an eminently use-
ful, reputational resource to control the significance of such events as 
documented, discussed, and circulated in the public arena.

Chapter 6 explores how different critical components of autonomous 
vehicles are ‘secured’ through a range of techniques. In the first instance, 
the chapter considers how the decision-making capacities of autonomous 
vehicles are dependent on them operating as ‘unfamiliar’ forms of sover-
eign actors, following Bratton (2016). In such cases, the autonomous 
vehicle offers a kind of ‘functional sovereignty’ (Pasquale, 2017), derived 
through the software that underpin them, to which other parties are sub-
ject. Firms in such cases, as becomes apparent in subsequent chapters, 
have been able to carefully manage access to underlying decision-making 
data—even if compelled to release it for regulatory reasons. The second 
part of the chapter focuses on efforts to secure a piece of computational 
hardware critical for the development of autonomous vehicles: the semi-
conductor chip. The ongoing ‘chipification’ (Forelle, 2022) of automo-
bility has led to an increased demand for semiconductors within the 
automotive sector over the past few years, culminating in a Covid-19 
pandemic induced ‘chip crisis’. Exposing vulnerabilities in the global sup-
ply chain of the semiconductors, the chip crisis surfaced reliance on one 
particular company: the Taiwan Semiconductor Manufacturing 
Company (TSMC), the world’s leading chip fabricator. Through an anal-
ysis of TSMC and the global semiconductor chip market, the chapter 
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considers how the European Union (EU) has relaxed rules around state 
aid intended to boost future capacity in chip fabrication in the EU bloc. 
Dependent upon a form of economic exceptionalism unique to eastern 
Germany, the chapter examines how firms such as Intel are ‘onshoring’ 
chip production for the benefit of (German) carmakers.

Chapter 7 shows how an open-source driver-assistance start-up called 
Comma is attempting to ‘make driving chill’ through a form of empow-
ered individualism. Understood as a contemporary manifestation of the 
‘Californian ideology’ (Barbook & Cameron, 1996), the Comma project 
offers a rather unique alternative to either a tech-driven dream of autono-
mous driving or the automotive industries’ offer of assistive driving. 
Fostering an active, online community of users, Comma can be under-
stood as an interesting mutation of open-source ethics, a derivation of 
McKenzie Wark’s (2004) idea of the ‘hacker class’. Cultivating a wide 
range of antagonists—from ‘conehead’ engineers at Waymo, to tradi-
tional car manufacturers—the Comma community fosters a kind of 
‘spiritual communion’, in which members share experiences of using 
their Comma devices. Committed to a ‘culture of testing’, members hap-
pily compose notes on how to calibrate their devices, report unknown 
device bugs, document their experiences in video and photographic form, 
and ultimately, take pleasure from being in control of the automation of 
their own vehicle. In such instances, as the chapter contends, Comma 
draws on, and extends, an electronic form of libertarianism lost to plat-
form capitalism.

Chapter 8 considers the nascent rise of anti-autonomous vehicle activ-
ism in San Francisco. Centred on Cruise’s lengthy battle to receive per-
mission to operate autonomous vehicle passenger services (AVPS), the 
chapter considers how resistance to autonomous vehicles has slowly fer-
mented. Connecting opposition back to the infamous protests against 
‘Google buses’ shuttling workers to big tech campuses in the early 2010s, 
the chapter narrates the story of initial regulatory forms of resistance to 
AVPS operations in San Francisco. After calls by municipal transporta-
tion bodies for an ‘incremental’ approach to the public rollout of AVPS 
operations, resistance abruptly moved out of a regulatory domain in July 
2023 with the launch of a campaign by an activist group called Safe 
Street Rebel. During a ‘Week of Cone’ called for by the group, Cruise 
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vehicles became paralysed by humble traffic cones placed on the hood of 
each vehicle. Despite such efforts—the first, sustained street-based oppo-
sition to autonomous vehicles anywhere in the world—after a six-hour 
hearing, Cruise’s application for expanded AVPS operations were 
approved—only for them to be swiftly suspended following implication 
in a road traffic accident. The following month, Cruise CEO Kyle Vogt 
resigned, bringing an apparent end to a tumultuous period in the rollout 
of AVPS operations in San Francisco—and possibly, to autonomous 
vehicles, full stop.

Together, the book offers a composite insight into the multiplicity of 
efforts to deliver autonomous driving—in some form, somewhere—to 
the general public. In so doing, it offers an opportunity to consider how 
these efforts have required huge amounts of investment and labour, with-
out much to show for it—with numerous actual and reputational casual-
ties along the way. Affording a critical view of the last 10 years of the 
desire to automate driving offers an insight into the efforts big tech firms 
and comparative start-ups have gone to apply AI and ML techniques to 
the human, thoroughly modern, and undeniably routine task of driving.
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2
Mapping Decisions: The Promise 

of Mapless-ness

This chapter examines how mapping decisions are made and the chang-
ing nature of mapmaking and cartographic data collection in the world 
of autonomous driving. Whilst the automation of driving also likely 
spells the end of automotive navigation in its current form, the chapter 
considers how curious innovations in the production, and collection, of 
cartographic data are critical to delivering autonomous vehicles.

The chapter distinguishes between two types of cartographic practice: 
the setting of operational design domains (ODDs) and the collection of 
semantic user data. On the one hand, geometric data offers a granular 
record of fixed objects within the driving environment, from lane widths 
to curb edges. On the other hand, semantic data provides an aggregate 
record of driving behaviour, from collated vehicle speeds to average stop-
ping positions. Whilst the former is required to establish the outer (legal) 
limits for driving—the ODD—the latter is deemed necessary to estab-
lish, and ultimately emulate, human driving norms and behaviours. The 
chapter will focus on two cases: now-defunct Uber ATG’s map-based, 
rule-dependent approach to autonomous driving and Waabi, an autono-
mous vehicle start-up led by former Uber ATG chief scientist, Raquel 
Urtasun who have developed the concept of ‘mapless’ driving (Casas 
et al., 2021).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1749-1_2&domain=pdf
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What is interesting about these cases is the extent to which the map-
ping of physical phenomena either containing specific road information 
(road signs, speed limit signs) or not (curbs, road markings) is far from 
the full extent of the mapping exploits undertaken by autonomous vehi-
cle firms. Indeed, in both, a range of strategies to map actions, movements, 
activities, and experiences are witnessed—offering what fellow operator 
Mobileye calls a ‘semantic level’ understanding (Hind & Gekker, 2024). 
Each of these cases, representative of efforts more broadly, is therefore 
primarily interested in mapping the social life of the road. As a result, they 
must grapple with the social dynamics and particularities of driving, and 
the differences between how and where people actually drive, in order to 
provide a ‘ground truth’ for their autonomous vehicle systems. It is the 
mapping of these social, semantic elements that can be considered the 
firmer ‘ground’ for such truth-making practices—even more so than the 
fixed, geometric elements delineating the asphalt and concrete of the 
roads themselves.

This marks a shift in what cartography is and what kinds of carto-
graphic work are being performed in the twenty-first century. In these 
cases, ‘mapless’ mapping is not only alive but has established itself—cer-
tainly within the domain of autonomous driving—as the principle form 
of cartographic work in the present. Mapless mapping, as the oxymoron 
suggests, isn’t interested in producing maps as readable outputs—or any-
thing that especially looks or functions like one. Instead, mapless map-
ping is most interested in forming cartographic impressions based on the 
mapping of actions, movements, activities, and experiences. These carto-
graphic impressions are designed to impress themselves on, and express 
themselves in, the machine learning (ML) models iteratively informing 
the future decision-making qualities of autonomous vehicles. Without 
doing so, they would fail to emulate the behaviours of the human drivers 
they wish to imitate.

  S. Hind
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�Automotive Navigation

Whilst the humble road map, or a satnav, might be considered as singu-
larly important to automotive navigation, the map itself has not always 
been integral to automotive navigation.

Tristan Thielmann, for instance, has considered the role of ‘photo-auto 
guides’ as early forms of ‘augmented’ automotive navigation devices 
(Thielmann, 2016). By superimposing orientational text and arrows on 
photographs or moving images, photo-auto guides (such as those pro-
duced by Rand McNally & Company) were intended to reassure drivers 
as to their movement along a designated, predetermined route. Designed 
to be used ‘en route’ rather than as reference maps, they can be considered 
non-digital ‘turn-taking machine[s]’ (Singh et al., 2019, p. 287) meant to 
alleviate ‘wayfinding troubles’ (Singh et  al., 2019, p.  288) that might 
ordinarily arise during an unfamiliar journey.

As practical devices, only reaching their full utility upon a particular 
driving situation or route, photo-auto guides can be understood as ‘onto-
genetic’, ‘enacted to solve relational problems’ (Kitchin & Dodge, 2007, 
p. 335) such as the ‘“gap” between a plan for a route composed in advance 
and an ongoing journey that attempts to follow the plan’ (Singh et al., 
2019, p. 288). A term favoured by French philosopher Gilbert Simondon 
(2017), ontogenesis refers to an object’s (contingent, speculative) unfold-
ing or becoming, in contrast to the idea of ontology (being, form). In 
cases of navigational use, therefore, devices like the photo-auto guide can 
be thought of as enacting a generative possibility because, until the point 
of navigational requirement—and even within it—the guide itself has 
the capacity to actualize its navigational capacities or tendencies in par-
ticular ways, showing itself to be useful on this bend in the road or at that 
junction. If the guide contains a mistake or an imprecise description of 
the route ahead, then the guide’s navigational actualities might shrink or 
reform, or its capacities might fail to be realized at all.

As Thielmann suggests, these guides can be understood as ‘operative’ 
in two senses: firstly, in that the photographs themselves are ‘subjected to 
operative changes through information being embedded in their surface’, 
and secondly, in that the photographs are integrated into ‘part of an 
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operative practice: the practice of autonavigation’ (Thielmann, 2016, 
p. 162). This operative practice of auto(motive) navigation is an example 
of the ontogenesis of cartographic calculation (Hind, 2020). In this, nav-
igational practice is determined both by the ‘capture’ of objects or activi-
ties (subsequently generating geometric or semantic data), as well as the 
‘addition’ of more, new, or different renderings of the world into it. In 
short, that any and every navigational device is constantly involved in the 
push-and-pull of extracting things out of, as well as adding things into, 
the world. Differences between navigational devices (paper maps, photo-
auto guides, satnavs, map apps) therefore do not lie, per se, in whether 
one is nominally extractive or additive, but in how (and often where) 
these extractive and additive moments are executed.

Thus, whilst some might mourn the ‘lost art’ (Fisher, 2013, p. n.p.) of 
map reading with the rise of autonomous driving, the history of automo-
tive navigation suggests that map reading itself has always shifted and 
morphed, both in terms of the constituent ‘map’ being read, and the map 
‘reading’ as a specific set of skills, enacted whilst driving. Navigational 
information is still being captured, but in different ways, for different 
purposes and for different users. As such, automotive navigation can be 
divided into different temporal phases I call here: route, general, posi-
tional, and executive. These later eras (positional, executive) overlap to 
some degree with the phases of autonomous driving presented in the 
introduction (robotic, benchmark, incremental).

The early ‘route’ phase, from 1880 to 1945, can be considered the era 
of photo-auto guides and graphical road maps tied to specific routes or 
journeys from A to B (Schulten, 2000; Thielmann, 2016). The mid-phase 
from 1945 to 1990 can be considered the ‘general’ road atlas era, where 
entire national and international road atlases, complete with exhaustive 
visual and indexical records of roads and road-related services, could be 
found (Harley, 1989; Akerman, 2006; Wood, 2010). Both phases pre-
date the development of autonomous vehicles in any real sense, although 
the emblematic navigational technologies of these eras—the photo-auto 
guide, the road atlas—can be considered extensions of the ‘driver-car’ 
(Dant, 2004) or ‘car-driver’ (Sheller & Urry, 2000) assemblage (Fig. 2.1).

The late ‘positional’ phase, from 1990 to 2009, can be considered the 
era of the satnav, as standalone and in-built satellite navigation systems 

  S. Hind
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Route
(1880-1945)

General
(1945-1990)

Positional
(1990-2009)

Robotic 
(1983-2009)

Benchmark 
(2009-2019)

Executive
(2009-

present)

Incremental 
(2019-

present)

Phases of autonomous driving

Phases of automative navigation

Fig. 2.1  A timeline of automotive navigation and autonomous driving

began to be integrated into cars (French, 2006; Wilken & Thomas, 2019; 
Hind, 2019). As the table in the introduction suggests, efforts to auto-
mate driving were largely dormant through the 1990s, whilst the satnav 
era of automotive navigation blossomed. The reasons were arguably two-
fold. Firstly, due to the more successful development of networking tech-
nologies. As Roland and Shiman wrote, early internet pioneers such as 
the US Defence Advanced Research Project Agency’s (DARPA) Barry 
Leiner ‘chose not to seek SC [Strategic Computing] money for network-
ing’ even though it was ‘clearly infrastructure of the kind envisioned in 
the SC plan’ (Roland and Shiman 2002, p.  110). DARPA’s Strategic 
Computing Initiative (SCI), in which the Autonomous Land Vehicle 
(ALV) project was housed, did not involve the development of network-
ing technologies that ‘would ultimately contribute to the creation of the 
Internet’ (Roland and Shiman 2002, p. 110). As the SCI fell apart at the 
end of the 1980s, interest in networking technologies soared, with devel-
opment of the internet absorbing DARPA’s own ARPANET in the 1990s 
(Roland and Shiman 2002).

Secondly, the discontinuation of ‘Selective Availability’ (SA), which 
had previously limited satellite navigation—specifically, the US Global 
Positioning System (GPS)—to military use (Clinton, 2000). As the origi-
nal White House press release noted, ‘the technology that makes this 
extraordinary technology [GPS] possible grows directly from our past 
research investments in basic physics, mathematics, and engineering sup-
ported from NSF, DARPA, NIST and other Federal agencies over a 
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period of decades’ (Clinton, 2000, p. n.p.). Thus, after the subsequent 
failure of the SCI, DARPA committed to advancing GPS technologies—
arguably one of many limitations in the earlier efforts to automate driv-
ing through the ALV project in the SCI. As the press release contends, 
switching off SA would ‘have immediate implications in areas such as … 
car navigation’ (Clinton, 2000, p. n.p.). Here:

Previously a GPS-based car navigation could give the location of the vehi-
cle to within a hundred meters. This was a problem, for example, in areas 
where multiple highways run in parallel, because the degraded signal made 
it difficult to determine which one the car was on. Terminating SA will 
eliminate such problems, leading to greater consumer confidence in the 
technology and higher adoption rates. It will also simplify the design of 
many systems (e.g. eliminate certain map matching software) thereby low-
ering their retail cost. (Clinton, 2000, p. n.p.)

Thus, the ‘termination’ of SA, as the press release puts it, not only cre-
ated the conditions for a new market for GPS applications but for the 
start of this positional phase of automotive navigation.

The year 2009 onwards can be considered the ‘executive’ era, with 
automotive navigation being increasingly supported by an array of assis-
tive technologies from social navigation apps such as Waze (Hind & 
Gekker, 2014) to advanced driver-assistance systems (ADAS) designed to 
offer advanced forms of vehicle control. This is arguably where the devel-
opment of automotive navigation technologies and the development of 
autonomous vehicles begin to fuse, with the launch of Google’s Self-
Driving Car project (Harris, 2014a, 2014b). It is at this point—as 
Google’s autonomous vehicle project gets off the ground—that journalist 
Adam Fisher speculates that the map might well end up being ‘fully 
absorbed into the machine’ (Fisher, 2013, p. n.p.).

With this background to automotive navigation in mind, this chapter 
proceeds to document what mapping work looks like in this new age. In 
particular, it considers how ‘operational design domains’ (ODDs)—a 
functional territory designed to establish the outer operational, legal, and 
economic limits of an autonomous vehicle—constitute a cartographic 
‘ground truth’. Yet ODDs are not the only way in which such mapping 
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work has been incorporated into the development of autonomous vehi-
cles. In contrast, so-called mapless approaches to autonomous driving do 
not, necessarily, require the ongoing collection and synthesis of carto-
graphic or geometric data pertaining to general driving environments, 
captured through cartographic technologies, but rather through sensing 
technologies. This mapless approach to autonomous driving is driven by 
the need for interoperationality (Hind, 2023), through which geometric 
and semantic data must impress themselves on, and express themselves in, 
ML models, in the way that Matteo Pasquinelli and Vladan Joler under-
stand machine learning as an ‘instrument of knowledge magnification’ 
(Pasquinelli & Joler, 2020, p. 1263). In such cases the map neither disap-
pears nor is silently subsumed into the machine, but operates as a ghostly 
presence within it.

�Operational Domains, Viable Terrains

For many autonomous vehicle firms, establishing an ODD is critical. 
ODDs constitute the outer operational limits of an autonomous vehicle. 
They can be considered the ‘global map’ on which the autonomous vehi-
cle must drive. Any terrain outside of the ODD is entirely out of bounds, 
with the vehicle unlikely to be able to traverse an environment it lacks the 
basic coordinates for. In the words of Uber ATG—Uber’s now defunct 
autonomous vehicle division:

Before beginning any self-driving testing we establish the ODD. The ODD 
describes the specific conditions under which the self-driving system is 
intended to function, including where and when the system is designed to 
operate. The parameterization is not only designed to address the perfor-
mance of the base vehicle platform but also system level capabilities, envi-
ronmental scenarios, and appropriate self-driving system responses. (Uber 
ATG, 2019, p. 29)

An ODD can be considered a form of ‘ground truthing’ in itself, dif-
ferent from the strict machine learning definition of the term, but still 
critical to the development of autonomous vehicles. Without this global 
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map (the ground truth) the vehicle has no ultimate sense of where it is 
driving, even before the addition of other road users. Here, Uber ATG 
conceive of such work as a ‘parameterization’, that is as a process of estab-
lishing operational parameters in which their test vehicles must operate. 
Alongside referring to the operation of the vehicle, parameterization has 
a mathematical definition. In such cases, parameterization involves the 
process of training an ML model to perform in a particular manner, 
through refining and optimizing the way it interprets and acts on the data 
it is fed (Mackenzie, 2017). In these cases, Uber ATG might be said to 
have been demonstrating a kind of ‘multi-scalar’ sensibility, engaging in 
parameterization both at the level of the model and the operational 
domain. Indeed, that the practice of model parameterization—typically 
a process of adjusting ‘weights’ and ‘biases’—itself weighs on the param-
eterization of the ODD. In effect, therefore, that ODD parameterization 
involves the assessment of different weights attached to the input data 
used to determine a viable (profitable) ODD for Uber ATG.

In a second safety report released in 2020, Uber ATG outline a three-
stage process involved in designing an operational domain: ‘identify, 
characterize, and constrain’ (Uber ATG, 2020a, p. 22).1 At the time a 
division of the ride-hailing service, Uber, Uber ATG thus designed the 
ODD with future ride-hailing services in mind, stating:

We begin by identifying specific geographies where we would like to ulti-
mately deploy self-driving vehicles on the Uber network by taking into 
consideration a number of factors, including the regulatory environment 
and areas where we can extend our network’s reach to better serve riders. 
(Uber ATG, 2020a, p. 23)

The setting of the ODD is an economic decision, driven by the 
demands and intentions of the parent company (Uber) its design serves. 
There is no pure, scientific ‘ground truth’ in which the geographical 

1 Uber ATG first released a safety report in 2018, contained within documentation released during 
the NTSB investigation into the fatal Uber ATG crash in Tempe, Arizona, in March 2018 (Uber 
ATG, 2019). The original 2018 safety report contains 70 pages, compared to a total of 89 in the 
updated 2020 version. A blog post announced the release of the second safety report (Uber 
ATG, 2020b).

  S. Hind



51

extent of a specific area is mapped and determined viable from a strict 
safety or operational perspective. Uber ATG further make this calcula-
tion based on ‘using data from sources such as Uber’s existing lines of 
business [i.e. taxi rides], Uber ATG’s internal domain characterization 
process, and information layers of our high-definition maps’ (Uber ATG, 
2020a, p.  23). In this, whilst an ODD can be considered a complete 
geographical area with perimeter coordinates, an ODD in Uber ATG’s 
case is built from route data upwards, that is that a viable ODD is based 
on rider data derived from Uber’s ride-hailing service. In this, a dense, 
entangled ride-hailing network would arguably provide a good basis for 
the setting of Uber ATG’s ODD. In other words, the identification of an 
ODD not only functions as a form of market research but more precisely 
as a crystallization of the search for viable future markets in themselves 
(Fig. 2.2).

The second stage involves characterizing the ODD. According to Uber 
ATG, this involves five separate tasks including, ‘leveraging externally-
sourced data’, ‘driving the area manually’, ‘adding data tags’, ‘synthesizing 
the tagged data’, and ‘creating representative simulation and track tests’ 
(Uber ATG, 2020a, p. 24). In short, once an ODD has been identified, 
Uber ATG need to actually map the area in question, adding a greater 
level of cartographic depth and understanding, through repeated manual 
drives, and through specifying ‘attributes of road design’ such as ‘road 

Fig. 2.2  The ‘brain’ of an Uber self-driving vehicle. (Source: Uber ATG, 2019)
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geometry or curvature’ (Uber ATG, 2020a, p. 24). Characterizing the 
ODD involves collating the geometric data that is needed to underpin 
their test operations, alongside additional necessary data annotation pro-
cesses. Whilst this data annotation work is integral to the building of ML 
models, as will be discussed in the next chapter, it is also critical to the 
mapping of the ODD itself. To reiterate: ‘characterizing’ the ODD is 
considered here as a secondary stage in the design of the operational 
domain, where the mapping of geometric features follows the processing 
of semantic features. Here, the ‘ground truth’ is derived principally from 
the latter, supported and validated by the former. In other words, this 
constitutes the formation of a ‘map-territory’ (Hind & Gekker, 2019, 
p. 141) designed from the semantic (social) ground up.

In the final stage before testing can begin, the ODD must be ‘con-
strained’ so that the prototype vehicle is prohibited from driving within, 
and also beyond, specific areas or spaces of the ODD (i.e. pavements or 
the next city), or limited from driving at particular speeds within it. For 
instance, as they write, ‘our self-driving system is prevented from driving 
in geographical areas outside of the ODD via geofencing techniques that 
impose a system prohibition on driving across the geofence’ (Uber ATG, 
2020a, p. 25). The same techniques can be used to impose restrictions on 
how the vehicle drives in particular areas, ‘at the lane level based on a set 
of configurable ODD elements, e.g., road speed, road type, and traffic 
control devices’ (Uber ATG, 2020a, p. 25).

Uber ATG also write that whilst these constrain/prohibit techniques 
are ordinarily enacted prior to testing, as part of establishing the ODD, 
they are also enacted during tests themselves by employees known as 
‘Mission Specialists’.2 These workers are ‘trained on governing ODD, and 
are prepared to take manual control of the vehicle when presented with a 
scenario or conditions not included in the relevant ODD’ (Uber ATG, 
2020a, p. 25). In short, that these workers help to prevent the vehicle 
from going rogue when ‘off-map’ phenomena present themselves. In such 
instances, the information generated by such an event ‘then initiates a 
process by which a live operational constraint or crew notification may be 

2 In other material, Mission Specialists are more plainly referred to as ‘vehicle operators’ (VOs), see 
Hind (2022).
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created and distributed to the [autonomous vehicle] fleet with an appro-
priate solution, such as precluding certain future encounters with the 
location’ (Uber ATG, 2020a, p. 25). Here, the suggestion is that each 
off-map object, phenomena, or location is ideally then incorporated into 
the ODD or definitively excluded. In each case, the heretofore unknown 
feature becomes knowable, ready to be responded to in future cases, by all 
vehicles.

As Denis Wood has considered, there has always been a politics to 
mapping specific automotive environments: ‘that the choice to map Tibet 
as Chinese reveals a political attitude is something many will readily con-
cede, but all choices are political and it is no less revealing to choose to 
map highways, for this too is a value’ (Wood, 2010, p.  77, authors’ 
emphasis). In his reading of a public transportation guide in the US state 
of North Carolina, in which he suggests the ‘reek of special assistance is 
like sweat’ (Wood, 2010, p. 77), Wood writes that ‘there is nothing of 
this tone on the highway map’ (Wood, 2010, p. 77). The highway map 
does not need to be requested, ‘it, after all, is … a natural function of the 
state’ (Wood, 2010, p. 77, authors’ emphasis):

Everything conspires to this end of naturalizing the highway map (even the 
map of public transportation), of making the decision to produce such a 
map seem less a decision and more a gesture of instinct, of making the 
map’s cultural, its historical, its political imperatives transparent: you see 
through them, and there is only the map, innocent, of nature, of the world 
as she really is. (Wood, 2010, p. 77)

The development of autonomous driving both builds on, and some-
what departs from, this ‘instinctive’ impulse. Firstly, that highways are 
considered a ‘pure’ unimpeded driving environment already cleared of 
the messiness of the world, vulnerable road users, and unpredictable oth-
ers. As a result, the highway constitutes a quasi-laboratory space for the 
testing of autonomous vehicles, with few(er) obstacles to classify and 
negotiate, and long stretches without the need, essentially, to make the 
kinds of decisions autonomous vehicles struggle with (Hind, 2019).

Yet, secondly, as a result of this, the highway also represents only a 
small part of the driving experience for many drivers who, on most days, 

2  Mapping Decisions: The Promise of Mapless-ness 



54

do not have to negotiate a four-lane highway or drive from city to city. 
Instead, the automobile is used to drive from the suburbs into a small 
town, to an office car park, or an out-of-town supermarket. For many 
(but not all) people, this ordinarily does not involve driving on a highway 
but on other types of roads where there is a greater mix of road users, a 
greater number of possible obstacles to negotiate, and therefore a far 
more complex array of risks any autonomous vehicle must in some sense 
calculate.

Thus, whilst mapping highways might indeed be a ‘natural function of 
the state’, as Wood (2010, p. 77) writes, it isn’t necessarily the natural 
function of the autonomous vehicle company. Instead, determining 
ODDs becomes the natural function of the autonomous vehicle firm, 
making economic calculations concerning questions of financial ‘viabil-
ity’ and market ‘sustainability’. Highways might well work their way into 
these calculations, but, ultimately, it is a question of whether the inclu-
sion of highways into the ODD of an autonomous vehicle firm succeeds 
in passing a viability test first.

For Tesla, manufacturer of a problematic ‘autopilot’ feature within 
their vehicles, highways have constituted a principle viable typology 
(Hind, 2019). For Waymo, the more intricate lattice of (sub)urban roads 
have constituted their ‘primary test environment’, despite (or perhaps 
because of ) exhibiting ‘a rather more unruly set of social phenomena’ 
(Hind, 2019, pp. 411–412). For Uber ATG, in the business of develop-
ing an autonomous ride-hailing service, the case is built on the basis of 
Uber’s existing operational markets. Some places are more viable, and 
more valuable, than others. Mapping these ‘viable’ and valuable spaces, 
therefore, is a critical part of the autonomous vehicle process.

�Semantic Semantics

As Alex Gekker and I have considered, other autonomous vehicle players 
also recognize the critical importance of establishing ‘detailed semantic 
understanding of how people usually drive’ (Hind & Gekker, 2024, 
p. 3715, emphasis added), in addition to collecting details on the external 
laws that permit them to drive. Yet, collecting this semantic-level data is 
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somewhat novel from a cartographic perspective, new also from an auto-
motive perspective, although similar in type to behavioural data broadly 
collected through digital devices and platforms. In other words, the desire 
to collect ‘detailed semantic understanding of how people usually drive’ 
is connected to the appetite for the collection of semantic-level data on 
all kinds of everyday human behaviour, from exercising to shopping. 
What is different here, I argue, is that this data has immediate operational 
valuable rather than indirect or latent circulatory value, that is that it is 
being collected and used by autonomous vehicle firms precisely because 
it offers an understanding of ordinary driver behaviour that can be emu-
lated in a resultant autonomous vehicle. That is, rather than being used 
for commercial data-based advertising opportunities or user surveillance 
(Gekker & Hind, 2020).

For firms such as Mobileye, this involves developing something called 
‘Road Experience Management’ (REM), a process through which the 
firm extracts semantic data from real drivers. As an established ADAS 
manufacturer—devices that attach to the dashboard of a vehicle, acting 
as a warning system for drivers—it has been able to amass huge volumes 
of data from users to build their autonomous vehicle platform. In the 
words of their CEO, Amnon Shashua, these largely unsuspecting ADAS 
users comprise ‘millions of harvesting agents’ (Mobileye, 2021, p. n.p.) 
around the world, providing Mobileye with a unique position in the 
industry of being able to capture data from drivers irrespective of car they 
drive, as Hind and Gekker (2024) contend.

Yet, what makes the autonomous vehicle start-up Waabi different from 
Mobileye is that it can’t rely on millions of pre-existing users of in-house 
devices, already in the cars of drivers the world over. Neither can it rely 
on a fleet of vehicles to generate such data—Waabi doesn’t possess the 
kind of capital available to big tech competitors like Waymo and (previ-
ously) Uber ATG, that makes running a fleet of test vehicles feasible. As 
a result, it has had to think creatively about how it resolves certain ques-
tions about the acquisition of both geometric and semantic data. Their 
solution? To extract geometric and semantic data directly from lidar itself 
(Casas et al., 2021), skipping both an ODD phase where geometric data 
is collected independently from semantic data and any pre-processing of 
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lidar data in advance of extracting semantic-level insights. It is this I turn 
to next.

�(The Promise of) Mapless-ness

In the case of Waabi, engineers have developed an alternative to ‘high-
definition’ (HD) maps called MP3: an ‘end-to-end approach to mapless 
driving’ (Casas et al., 2021, p. 1), where MP3 stands for ‘map, perceive, 
predict and plan’ (Casas et al., 2021, p. 1).3 This approach differs from 
HD map techniques containing ‘rich semantic information necessary for 
driving’ (Casas et al., 2021, p. 1), such as those by Mobileye, Uber ATG, 
or mapping firm HERE. Following the MP3 approach, ‘scene representa-
tions’ that feed into motion planning are driven by the live extraction of 
‘meaningful geometric and semantic features from … raw sensor data’ 
(Casas et al., 2021, p. 1). In short, that Waabi envisage both mapping 
and sensing as taking place in tandem and in real-time; rather than 
mapping taking place prior to any live sensing, as is common in other 
HD map approaches. In this sense, the sequential ordering of mapping 
and sensing operations—reflected in the ordering of the chapters in this 
book—is only correct for some operators in the domain. For Waabi, 
there is no sequential ordering, only parallel ingestion (Fig. 2.3).

3 The original technical explication of MP3 by Sergio Casas and colleagues (Casas et al., 2021) was 
written whilst all three authors worked for Uber ATG. All three authors now work for Waabi whilst 
two hold academic positions at the University of Toronto (Urtasun and Casas).

Fig. 2.3  ‘Map, perceive, predict and plan’: The architecture of Waabi’s MP3 
model. (Source: Casas et al., 2021)
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This is why Waabi considers such an approach to be essentially ‘map-
less’: no HD, granular maps of pre-existing road infrastructure, or seman-
tic levels are produced in advance of a vehicle being autonomously driven. 
As Casas et al. (2021, p. 1) contend, ‘heavy reliance on HD maps intro-
duces very demanding requirements for the localization system, which 
needs to work at all times with centimeter-level accuracy’ without fear of 
an accident. In such cases, the vehicle in question senses the environment 
and calculates possible path trajectories in relation to already mapped 
phenomena. Autonomous vehicle trials, the likes of which have been seen 
on the streets of Pittsburgh and Tempe, Arizona, are typically as interested 
in establishing ODDs as they are in testing, improving, sensing, and 
decision-making itself.

Why is Waabi’s foregrounding of a ‘mapless’ approach to autonomous 
driving important to understand? Firstly, that despite being explicit about 
such, they aren’t necessarily the only operator to offer such an approach. 
As I will examine in Chap. 7, open-source manufacturer Comma utilizes 
an ‘end-to-end approach’ (E2E), meaning that their ML models are 
driven by vehicle data they ingest (from devices purchased by users) and 
nothing else. Whilst a mapless approach has arguably been less common 
in the industry, it avoids the endless rule-setting and codification that has 
plagued other autonomous vehicle set-ups.

What the mapless approach offers is the possibility to streamline oper-
ations. The chapters in this book, loosely, reflect the modular operations 
that are executed when autonomous vehicles make decisions. What 
Waabi want to effectively do is to cut out one such module: the part 
where they must exhaustively map an ODD. Not only does this process 
naturally take time, labour, and considerable resources, but it also must 
be repeated iteratively to ensure the ODD matches external reality. Any 
slippage between these two—a road made one-way only, a cycle lane 
installed—and the autonomous vehicle relying on an outdated ODD 
obviously becomes a huge danger to other road users. Waabi’s mapless 
approach, in theory, skips this step and avoids having to deploy vehicles 
to establish the geometrics of an area prior to operation. Instead, as artic-
ulated before, it folds this work into subsequent phases of operation, 
namely the ML model training phase.
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Urtasun justifies this approach—which is not without considerable 
risk—by arguing that one of the main hurdles in the development of 
autonomous vehicles is a modular approach to system design favoured in 
the tech industry. Whilst I will return to this in Chap. 4 in relation to 
sensing and sensor work, Urtasun argues that most technical solutions to 
extant developmental problems ordinarily involve the formation of addi-
tional groups of engineers, and the construction of additional modules, 
to fix the problem (Urtasun, 2021). As she explains:

If you think about the traditional software stack, there are a couple of 
advantages. But also, there are some issues. The system is easily interpreta-
ble, and it’s very easy to incorporate prior knowledge. Engineers can, for 
example, tune the cost of the motion planner in order to reflect their intu-
itions about the task of driving. However, if you look at how this is typi-
cally deployed or worked on in industry, you’re going to have teams of 
hundreds of people – in some of the companies more than a thousand – 
working on this piece of software. So, you end up with teams of work in 
silos, in small pieces, and there is no really holistic view into how to solve 
these tasks as a single system, which is extremely important to do, for such 
a complicated task as self-driving. (Urtasun, 2021, p. n.p.)

Thus, the unwieldly, modular, work involved in developing autono-
mous vehicles comes to weigh heavily on the speed, and productivity, of 
the outputs being generated:

Furthermore, typically the software stacks don’t look as pretty as a few 
lambda functions … instead it’s an extremely complicated system, where 
every time there is an issue on the road basically you tackle one more model 
and one specific thing, and it looks more like an if-then statement than 
anything else. Also, the fact that there is no ability to train this end to end, 
you end up basically with many little interfaces between the different mod-
els, and as a consequence if you have a mistake, it’s very hard to actually … 
correct this mistake. Instead, you have this cascading issue as you go 
through the software stack. Engineers typically are pretty unhappy because 
developer productivity is very low, because there is no automation, basi-
cally, you have to tune one thing at a time, and every time that you make a 
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change in one of the models, you will have to change everything else. 
(Urtasun, 2021, p. n.p.)4

The alternative to this, as Urtasun contends, is an E2E or ‘mapless’ 
approach: ‘sensors in, driving commands out’ as Urtasun (2021) puts it:

The advantage of this is super simple. A few lines of code will do it … the 
other advantage is that you’re going to train the system for the end task of 
driving. Now, the difficulty of this problem is that really there is no inter-
pretability. In the system if there is something wrong, you’re going to have 
an issue explaining why that is the case. Also, it’s very difficult to incorpo-
rate prior knowledge, and the assumption is that you’re going to observe 
phenomena, and you’re going to have data for all the things that might 
happen, and then basically, you’ll learn from it. But as we know, it’s poten-
tially unethical to collect data where you have near misses or accidents. So, 
this is not a solution either. (Urtasun, 2021, p. n.p.)

Yet, Urtasun isn’t especially happy with one key aspect of this strictly 
E2E approach: that isolating and understanding any inherent issues are 
made harder by developing a single ‘sensors in, driving commands out’ 
model. Thus, she offers a third solution, a kind of qualified E2E—still 
mapless—approach, that attempts to resolve some of these interpretabil-
ity issues encountered with a single ML model:

So, the type of technology we’ve been developing … is something that 
incorporates the advantages of these two approaches, without incorporat-
ing the disadvantages. In particular, it’s going to be one model, and you’re 
going to be able to incorporate prior knowledge, and it’s going to be inter-
pretable, and you’re going to be able to explain why the system decides to 
do a particular manoeuvre. However, it’s going to be an end-to-end trainer, 
so you have all these advantages of being able to have more complex func-
tions, even for example, when you’re doing the motion planner model, you 
can actually get access to the raw data, which is potentially very, very, 
important  – so you don’t have these cascading mistakes. (Urtasun, 
2021, p. n.p.)

4 Lamba or ‘anonymous functions’ are algorithmic processes used for simple expressions and as such 
can be used variously in computer programming.

2  Mapping Decisions: The Promise of Mapless-ness 



60

Urtasun’s articulation of Waabi’s approach to autonomous driving can 
be understood as a drive for interoperationality (Hind, 2023), in which 
raw cartographic data in both geometric and semantic form are not only 
vital for the technical work of model building but also for the interpret-
ability of such model building. Whereas a modular approach leads to 
infinite ‘little interfaces’ and ‘cascading errors’, as Urtasun explains, a 
single model built direct from mapping and sensing data to driving com-
mands only serves to obfuscate, and complicate, proceedings. If things go 
wrong, where can one find the error? An E2E trainer—ideally, if not 
actually—that is both (a) holistic and (b) explainable is, in Waabi’s world, 
the best of both these worlds. It is thus a promise: of mapless mapping 
where mapping and sensing data, geometric and semantic data, must 
impress themselves on, and express themselves in, ML models. Getting 
the model to fully express those impressions to engineers when things go 
wrong, is precisely the challenge.

‘As an instrument of knowledge’, Pasquinelli and Joler (2020, p. 1265, 
authors’ emphasis) write, ‘machine learning is composed of an object to 
be observed (training dataset), an instrument of observation (learning 
algorithm) and a final representation (statistical model)’. Urtasun’s efforts 
are an attempt to fine-tune the relationship between these three compo-
nents: the training dataset, the learning algorithm(s), and the statistical 
model(s). Indeed, where things are even trickier for Urtasun and her 
team, is that there are necessarily multiple ‘final representations’, each—
once connected together, fused and interoperable—liable to generate 
‘cascading errors’. Yet, Urtasun’s holistic quest, embodied in the architec-
ture of Waabi’s MP3 model, still runs the risk of delimiting a necessary 
kind of explainability for which the ‘many little interfaces’ are surpris-
ingly good at surfacing. Here, the streamlining of operations always runs 
in tension with interpretability and accessibility of the model. To run 
with the pipeline metaphor: it’s like a sewage system without an inspec-
tion hole.

Following Pasquinelli and Joler’s analogy, ‘the information flow of 
machine learning is like a light beam that is projected by the training 
data, compressed by the algorithm and diffracted towards the world by 
the lens of the statistical model’ (Pasquinelli & Joler, 2020, p. 1265). This 
is why both Urtasun (2021) and Casas et  al. (2021) emphasize the 
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importance of ‘injecting prior knowledge’ into the models being built: 
the original projections must shine brightly and be directed accurately 
even before they are compressed and diffracted. Yet ‘sensors in, driving 
commands out’ isn’t quite as straightforward as would be hoped, and yet 
as Urtasun (2021) suggests, ‘it’s very difficult to incorporate prior knowl-
edge’ if there are all sorts of necessary—practical, ethical—qualifications 
to incorporating such.

It is worth saying a little more on Urtasun (2021) and Casas et al.’s 
(Casas et  al., 2021) proposed mapless solution to the modularity of 
model development on one side and a lack of interpretability on the 
other side. As Urtasun’s (Urtasun, 2021) ‘sensors in, driving commands 
out’ quip suggests, the only data that enters the model is raw sensor data. 
It is from this lidar data that both geometric and semantic features are 
extracted. This differs from a map-based approach because geometric 
data is ordinarily collected through the establishment of an ODD, not 
extracted from lidar data itself. From here, ‘voxelized’ lidar data forms the 
input for a backbone network. Next, aforementioned ‘scene representa-
tions’ are generated through two processes: the generation of (a) an 
‘online map’ meant to encode the fabled ‘prior knowledge’ of human 
drivers and (b) a ‘dynamic occupancy field’, recording the position and 
velocity of other ‘dynamic objects’ on the road, that is other road users. 
From here the online map and dynamic occupancy field—both only gen-
erated from lidar data—are fed into a ‘motion planner’ used to set 
‘kinematically-feasible trajectories’ (Casas et  al., 2021, p.  5) for the 
autonomous vehicle itself.

Yet, even a mapless vision contains maps. Firstly, the Waabi team 
explicitly acknowledge the role of off-the-shelf ‘course road network’ 
maps (Casas et  al., 2021, p.  1) for final vehicle routing purposes, for 
which they don’t—sensibly—propose a mapless alternative. Yet, as seen 
from the above description of the MP3 model, the engineers also talk of 
an ‘online map’ integral to the representation of the ‘swarming social real-
ity’ (Hind, 2019, p.  412) within which the autonomous vehicle must 
inhabit. Here, whilst the engineers don’t qualify the ‘mapiness’ of their 
mapless approach for a second time, it becomes obvious that—some-
where down the line—maps find a way of inserting themselves back into 
the equation, best equipped (sometimes, if not all the time) to render and 
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represent phenomena in what the technical paper refers to as ‘BEV’: engi-
neering shorthand for ‘bird’s eye view’.

To return to the original critique of the ODD-reliant, modular, ‘tradi-
tional software stack’ approach Urtasun (2021) makes, the main problem 
is compartmentalization: of the work being performed, of the errors sur-
faced, of the solutions found, of the overall decision-making system 
designed, and ultimately, of the exasperation felt. HD maps are the 
embodiment of this compartmentalization: labour-intensive to create, 
and unwieldy to manage and update. Yet as I’ve unpacked in detail before 
(Hind, 2023), developing technical solutions to extant problems in 
autonomous driving always consists of computational trade-offs, often 
between speed and accuracy. In the case of Waabi’s MP3 model, they 
must live with a lack of so-called ‘HD maps’ from start to finish, con-
stantly finding alternatives and solutions to that which they provide. This 
forms a kind of interoperational ‘drag’ on proceedings all the way through, 
from being unable to exploit lane geometry to lane sequency. This drag 
ultimately constitutes an ongoing cost or tariff on the development pro-
cess, as well as a looming reality not yet touched upon: that an ODD-
dependent autonomous vehicle system is seen by regulators as being the 
safest approach to autonomous driving. With ‘mapless-ness’ either comes 
fearlessness or recklessness, another tension at the heart of the pursuit to 
automate driving.

�Conclusion

In this chapter I have chronicled the efforts of two firms involved in map-
ping the spaces of autonomous driving. In the first instance, I have dis-
cussed the work of Uber ATG—previously Uber’s autonomous vehicle 
division—to develop so-called operational design domains or ODDs. 
Considered a kind of ‘ground truth’, ODDs are meant to establish the 
outer operational limits of autonomous vehicles undergoing testing. As I 
have argued, however, Uber ATG’s development of ODDs is not a ‘pure’ 
scientific pursuit, but one guided principally by the search for viable 
future markets. Here, the objective of developing autonomous ride-
hailing services doesn’t just seep into the technical work of determining 
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the ODD but is the driving force behind it. This search for viable ter-
rains, thus, consequently bends all other features towards this goal—from 
the leveraging of external data to the precise mapping of roadside curbs. 
All this mapping work—from data annotation to data synthesis—crys-
tallizes the search for viable markets.

In the second instance, I have discussed the work of a different com-
pany altogether—an autonomous vehicle start-up called Waabi. Founded 
by Uber ATG’s former Chief Scientist, Raquel Urtasun, Waabi doesn’t 
have what others like Uber ATG or Mobileye possess: access to huge vol-
umes of pre-existing data. In order to deal with these and other deficien-
cies, Waabi offers a vision of a ‘mapless’ world, where autonomous vehicles 
ingest, and operationalize, sensor data on the fly. Designed to side-step 
the issue of a lack of pre-existing data, Waabi’s approach is also designed 
to tackle another problem: that building an autonomous vehicle system 
is a ‘modular’ affair, destined to generate cascading errors. Removing a 
mapping phase entirely from this process is Urtasun’s solution bundling 
mapping and sensing phases together as one. The result is an innovation: 
a kind of ‘mapless mapping’ generated through cartographic impressions 
destined for their expression in resultant ML models.
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3
Training Decisions: Ground-Truthing 

the Interesting

This chapter is concerned with how training datasets are composed and 
‘put to work’. In this case, training datasets do not exist on their own as 
discrete entities. Instead, training datasets—as their names suggest—are 
necessary components for training machine learning (ML) models. 
Training datasets, thus, are understood within the ML community as a 
so-called ground truth, representing the known, and foundational, statis-
tical terrain upon which ML algorithms learn to operate. Once such a 
model has been trained, using a particular training dataset, it is ostensibly 
ready to be applied on new data that may or may not share a resemblance 
with the training dataset it has been trained on. As a result, practitioners 
training ML models look to utilize a training dataset that can be said to 
be both large enough to incorporate enough, repeat variations of situa-
tions relevant to the application context, and diverse enough to incorpo-
rate a variety of situations relevant to the same context.

In the case of autonomous driving, this ordinarily translates into (a) a 
volume of familiar road ‘scenes’ and environments, from highways to 
urban junctions and (b) a variety of possible situations a vehicle is likely 
to encounter at any given time. In summary, that training datasets in 
autonomous driving are valued for their size and diversity. Whilst this is 
something it shares with other domains in which ML is being applied, 
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these situations are naturally unique to a world of driving, as opposed to 
those might occur at an international border or in the supermarket. It is 
this interleaving of the general and the specific that this chapter will 
consider.

In this, questions of ‘overfitting’ (where an ML model performs well 
on a training dataset but poorly on new data) and ‘underfitting’ (where 
an ML model performs poorly on both training data and new data) 
underpin an understanding of how an ML model performs in relation to 
training data. Both situations are undesirable and can be resolved in 
numerous ways, in order to achieve a desired ‘fit’.

In addition, a suite of technical considerations such as sensor type 
(lidar, camera), sensor combination (lidar and camera, lidar and radar), 
and computational hardware, as well as some understanding of how the 
training dataset has been aggregated, combine to give value to the train-
ing dataset itself. However, as this chapter will consider, training datasets 
are ordinarily considered as ‘given’ inputs when ML work is being per-
formed, only ever the ground (truth) on which the models are produced. 
In this, not only may they be rarely questioned, but as particular datasets 
are used, and re-used, their validity or their ground-truthiness hardens. 
This chapter, therefore, will consider two particular training datasets 
within the autonomous driving world that have ‘hardened’ to different 
degrees: the KITTI Vision Benchmark Suite, first released in 2012, and 
Waymo Open Dataset, publicly released in 2019.

In recent years, two sets of authors have written similar statements 
regarding AI and the use of training datasets. Firstly, Nick Srnicek has 
argued that thanks to the spread of the ‘data-centric business model’ 
(Srnicek, 2022, p. 248) led by platform firms such as Google/Alphabet, 
‘the problem of how to bootstrap [AI systems] from no data is, simply 
put, increasingly less of a problem’ (Srnicek, 2022, p. 248). Following 
this argument, collecting data for the purposes of training ML models in 
a range of cases is now considered less of a burden than before. Indeed, 
that with KITTI, Waymo Open Dataset (mentioned by Srnicek), and 
many others such as Motional’s NuScenes (fully released in 2019) and 
Argo’s Argoverse (2019), the autonomous driving domain is now replete 
with training datasets.
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Secondly, Kate Crawford and Trevor Paglen have suggested that thanks 
to decades of machine vision research, ‘challenges such as object detec-
tion and facial recognition have been largely solved’ (Crawford & Paglen, 
2019, p. n.p.). At least, that is, according to the ‘art of inevitability [that] 
recurs in many AI narratives, where it is assumed that ongoing technical 
improvements will resolve all problems and limitations’ (Crawford & 
Paglen, 2019, p. n.p.). Following this argument, AI practitioners believe 
that the underlying, core aspects of machine vision tasks like object detec-
tion have largely been figured out, and that with each successive year, 
technical progress—largely incremental in form—will continue to 
be made.

Srnicek’s restating of this typical claim shouldn’t, however, be read as 
an uncritical adoption of one such AI narrative (‘we have all the data we 
need for machine vision’) but an identification of the stated shift in inter-
est, emphasis, and focus, by AI firms towards computation and labour. 
Here, with data collection and aggregation ‘resolved’ for all intents and 
purposes, attention has moved on to how to use it. Crawford and Paglen’s 
(Crawford & Paglen, 2019, p. n.p.) question of whether ‘the challenge of 
getting computers to “describe what they see” will always be a problem?’ 
is rarely considered in a domain like autonomous driving, singularly 
committed to delivering incremental performance gains in object-
recognition processes.

The chapter proceeds by first establishing the status of training datasets 
as objects of critical inquiry, before considering the role of classification 
and ground-truthing in their use in training ML models. The chapter 
then moves on to compare the KITTI Vision Benchmark Suite and 
Waymo Open Dataset, two training datasets each representative of a dif-
ferent era—benchmark, incremental—of autonomous driving. In this, 
the chapter examines the significance of ‘interesting-ness’ as a sought-
after quality by machine vision researchers, a quest as seemingly endless 
as it is challenging.
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�Training Datasets

As Nanna Bonde Thylstrup writes, up until recently, datasets—training 
or otherwise—‘have been allowed to lead a quiet existence as unassuming 
data feeding into fantastic new artificial intelligence (AI) inventions’ 
(Thylstrup, 2022, p. 656). In particular, Thylstrup suggests that datasets 
used for AI purposes have largely, and only, been considered as ‘opera-
tional instruments’ (Thylstrup, 2022, p. 656) rather than as critical, epis-
temological spaces. In this section then, I attempt to balance an interest 
in training datasets as operational instruments and the work performed 
on, and with them, with offering an account of training datasets used 
within the domain of autonomous driving that understands them as par-
tial, constructed, synthetic objects.

To surface the training dataset as a contestable space, Thylstrup makes 
a connection to critical archival studies, which has sought to challenge 
‘traditional perceptions of archives as holders of truth’ (Thylstrup, 2022, 
p. 657), drawing on how archives can be understood as ‘iterative spaces 
in which we repeat, rehearse, re-encounter and re-member the past as 
present’ (Thylstrup, 2022, p. 658). Whilst this is offered as a critical, and 
therefore necessarily counter-, understanding of how archives operate, at 
the stage of their composition, training datasets are often encountered in 
this manner also. In the labelling of training data for autonomous driv-
ing, as I will discuss later, annotation work is itself defined by a certain 
‘recursivity’ in which annotators return to their annotation work in dif-
ferent ways, for instance, to evaluate the quality or accuracy of their work, 
or to re-establish, or to redefine, annotation protocols. As Thylstrup later 
acknowledges, research disciplines are just as engaged in ‘calls for data set 
context’ (Thylstrup, 2022, p. 661) as those involved in activist work, and 
these ‘organizational and conceptual reconfigurations [that] have trans-
formed the value and mobility of data sets’ (Thylstrup, 2022, p. 661).

As Thylstrup thus defines it, a critical reading of training datasets in 
AI work:

Collectively points to data sets as a central and relational object of concern 
in machine learning, offering close readings of how data sets are collected, 
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organised, distributed and deployed, as well as explorations of their aes-
thetics and affective compositions. (Thylstrup, 2022, p. 659)

What is important in this case, then, is how training datasets are put 
to work along the autonomous vehicle pipeline, settled between previous 
stages of cartographic, semantic, and sensor data collection and the devel-
opment of ML models themselves. Here, training datasets are the lynch-
pin or the interface between data collection, on one side, and AI 
deployment on the other. Without training data being compiled and 
annotated, machine learning cannot proceed. As such, and as I explore 
throughout the book, I understand the work performed on such data, 
and the work to certify it as training data, as necessary to securing the 
interoperability of autonomous vehicles.

Much of the work undertaken in this vein, therefore, is principally 
focused on smoothing, and formatting data, so that their provenance can 
be assured but ultimately forgotten about or backgrounded. 
Interoperability necessarily depends on this stated givenness, but that 
givenness requires knowledge of their construction to be erased. Training 
datasets, ultimately, are meant to become given, and this chapter will 
consider how this givenness is secured in the context of certain founda-
tional datasets such as KITTI, and being sought by new ones, such as 
Waymo Open Datasets.

This specific sense of interoperability I refer to here, of the interopera-
tionality required of data as it flows through an ML pipeline, is not, 
necessarily, the same definition as used by others. As Thylstrup also writes, 
‘as data sets become more interoperable and more easily shared, parti-
tioned and modified, they also increasingly challenge complete removal’ 
(Thylstrup, 2022, p. 662). In this, Thylstrup understands interoperability 
as the interchangeability and ‘swap-ability’ of datasets, able to be plugged 
into a different ML process and context without hassle or issue. This is 
what one might call a horizontal interoperability in which the same train-
ing data can, hypothetically at least, be used in different AI pipelines or, 
perhaps, even whole domains altogether. In the case of the KITTI train-
ing dataset to be discussed, this horizontal interoperationality has been 
designed-in from the beginning to the extent that the training data is 
designed to be used in any ML workflow, standardized format, and 
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industry-standard software. This is a form of interoperability that differs 
from kind I work with here, of vertical or linear interoperability in which 
training datasets, as well as all other modular operations, connect to other 
modules concerning mapping, sensing, motion planning, and the like.

�Classifying, Annotating

Training datasets are important for machine learning because they estab-
lish the ‘ground’ on which it operates, whilst enabling a form of interop-
erability between dataset and pipeline. But the training dataset attains its 
own power through its ability to classify and categorize. ‘If we understand 
machine learning as a data practice’, as Adrian Mackenzie (2017, p. 9) 
implores us to, ‘then differences associated with machine learners in the 
production of knowledge should be a focus of attention’ (Mackenzie, 
2017, p. 9). These differences ‘are an operative concern’, then, ‘because 
many machine learners classify things’ (Mackenzie, 2017, p. 9), such that 
ML processes can be defined as ‘classifiers’ in themselves for the work 
done to sort and differentiate.

Bowker and Leigh-Star previously suggested that ‘few have looked at 
the creation and maintenance of complex classifications as a kind of work 
practice’ (Bowker & Leigh Star, 1999, p. 5), despite the moral and cul-
tural forces that not only power them but bake them into ‘the modern 
information technology world’ (Bowker & Leigh Star, 1999, p. 5). Thus, 
as Bechmann and Bowker (2019) have considered, such classification 
work is integral to the seemingly autonomous characteristics of contem-
porary machine learners. Here, data collection, data cleaning, and model 
training are all considered classificatory steps in the ML process, where 
machine learners might simply ‘assume’ or ‘derive’ a priori categories 
from ‘institutionalized or accepted knowledges’ (Mackenzie, 2017, 
p. 10). More than this, and perhaps much closer to a specific understand-
ing of how machine learning works probabilistically and iteratively, that 
machine learners ‘invent or find new sets of categories for … particular 
purpose[s]’ (Mackenzie, 2017, p.  10). These categories, with specific 
applications in mind, are always therefore domain dependent.
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Yet, as Crawford and Paglen contend, training datasets ‘share some 
common properties’ (Crawford & Paglen, 2019), regardless of context or 
domain. The key property they all share is that the data within them is 
labelled and categorized, often referred to in technical literature as being 
‘annotated’ and sorted into ‘classes’. For machine vision purposes, train-
ing data annotation is a process through which the spatial extent of any 
given feature or object within the data itself is recorded. For 2D camera 
data in the context of autonomous driving, this would ordinarily consist 
of a set of datapoints that constitute the outline of a particular object in 
the immediate environment, depending on the precision of the annota-
tion work, and the specified granularity of the annotations. By way of 
example, the Cityscapes Dataset, compiled by researchers at TU 
Darmstadt, Daimler AG, Max Planck Institute for Informatics, and TU 
Dresden, consists of 5000 images with ‘fine’ annotations and 20,000 
images with ‘course’ annotations (Fig. 3.1) (Cordts et al., 2016).

In addition, on a level up from annotation, or a step after labelling, is 
the sorting of annotated objects into categories or classes. In the case of 
the Cityscapes Dataset, there are 30 such classes, ranging from road, side-
walk, parking, and rail track (grouped under ‘flat’) to car, truck, bus, on 
rails, motorcycle, bicycle, caravan, and trailer (grouped under ‘vehicle’) 
(Cityscapes, 2022). Each class also contains a definition delimiting what 
is included within each class, as opposed to another. The road class, for 
instance, is defined as:

Part of ground on which cars usually drive, i.e. all lanes, all directions, all 
streets. Including the markings on the road. Areas only delimited by mark-
ings from the main road (no texture change) are also road, e.g. bicycle 
lanes, roundabout lanes, or parking spaces. This label does not include 
curbs. (Cityscapes, 2022, p. n.p.)

Whilst the traffic sign class (grouped under ‘object’) is defined as:

Sign installed from the state/city authority, usually for information of the 
driver/cyclist/pedestrian in an everyday traffic scene, e.g. traffic signs, park-
ing signs, direction signs – without their poles. No ads/commercial signs. 
Only the front side of a sign containing the information. The back side is 
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Fig. 3.1  Difference between course (top) and fine (bottom) annotations in the 
Cityscapes Datasets. (Source: Cityscapes, 2022)

static. Note that commercial signs attached to buildings become building, 
attached to poles or standing on their own become static. (Cityscapes, 
2022, p. n.p., authors’ emphasis)

What is notable in both is that the respective definitions attempt to 
provide an exhaustive list of all possible types of instances within each 
class (all lanes, all directions, traffic signs, parking signs, etc.), whilst also 
mentioning objects or instances that might, without a definition, have 
been included within each class, for example curbs or commercial signs.
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In other definitions, such as the one for car, it is specified that if any 
one particular vehicle cannot be distinguished from another (‘if the 
boundary between such instances cannot be clearly seen’), then ‘the whole 
crowd/group is labeled together and annotated as group, e.g. car group’ 
(Cityscapes, 2022, p. n.p.). Thus, whilst specific vehicles may indeed be 
independent objects, they might be treated as a group of objects if the 
scene captured cannot identify the spatial extent of each particular object.

As Jaton’s (Jaton, 2021) interlocutors in an AI lab contend, ‘saliency 
detection’, a specific image segmentation process for determining the 
most salient object in an image, entails making a ‘really fuzzy decision’ 
(Jaton, 2021, p. 71) even if the rote segmentation of all objects in the first 
place is rather less critical. Yet, in segmentation work in the domain of 
autonomous driving, even this initial annotation/segmentation work is 
important: the difference between the hood of a vehicle being delineated 
or not, or the back wheel of a bicycle being fully traced or not. Here, each 
applied domain—as well as the algorithmic process itself—starts to weigh 
upon the task-at-hand.

This is one of the many ways in which ‘ontological politics’ (Mol, 
1999; Law, 2002) enters into the world of machine vision and autono-
mous driving: how the world is divided up, and what these divisions are 
subsequently referred to as. It is, in other words, a process of ‘ground 
truthing’ by which the true ground, that is the foundational basis on 
which ML modelling proceeds, is established.

�Ground Truth, Tasks, and Metrics

Ground-truthing is a cartographic term, deriving from the process of 
verifying information at a specific location. Ground-truthing is thus a 
‘localized’ process, by which human bodies and eyes can be used to ‘cali-
brate’ remotely captured and collected data (Gil-Fournier & Parikka, 
2021, p. 2). By way of example, one might collect vegetation data using 
aerial lidar, providing the operators with a large volume of land use data 
otherwise impossible to collect. In order to validate such data or provide 
a greater contextual understanding of the remotely collected data, the 
operators might head to a particular site captured in the (remote) data. 
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Here, ground observation is a way of providing a direct, empirical account 
of the phenomenon captured. It is a term, and a process, commonly used 
by Geographical Information Science (GIS) and remote sensing practi-
tioners. Much work in critical GIS has focused on the epistemological 
differences between forms of localized ground-truthing and remote posi-
tivist methods (Robbins, 2003).

That the term and practice of ground-truthing is also present and 
active in ML communities is interesting. Here, with no ‘outside’ world to 
be captured, ground-truthing in machine learning takes the form of a 
completely computational relation. Ground-truthing, in this sense, does 
not involve practitioners making their way to the site of the underlying 
data in order to visually, directly observe it (as remote sensors might do), 
but of statistically relating modelling work in relation to the so-called 
‘ground truth’ of the training dataset, established as the foundation on 
which ML work can be built. Once rendered as an input for model train-
ing, there is little interrogation of training data itself, be it source or sub-
sequent shape. But without the training dataset as a ground truth, there 
is no way in which a specific ML model or method can be judged as 
accurate or, indeed, successful as a method. The training dataset as a 
nominally certified stable, and accurate, ground offers that possibility.

Thus, a divergent critique of the politics of ground-truthing emerges 
between cartographic and AI settings. In critical GIS, ground-truthing is 
often (erroneously) valorised for its localized ‘unmediated’ epistemology 
(Gil-Fournier & Parikka, 2021, p. 1255), in contrast to the distant, tech-
nological eyes of remote sensing, lacking context, removed from place. 
Yet in ML contexts, ground-truthing contains precious little of this epis-
temological dimension, rendered instead as an operational necessity. 
Whilst ground-truthing is also fully operationalized in remote sensing 
processes as well, it retains this critical dimension to those in and around 
the discipline itself.

This is perhaps where the work of Thylstrup (2022) and others is 
instructive: an attempt to offer a critical perspective on training datasets 
at the point in which they enter the AI system ostensibly from the out-
side world.

As Jaton (2021) considers, ground-truthing is dependent upon two 
parts: a training (data)set and an evaluation (data)set. The training set is 
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used to train the algorithm to perform the task in hand (e.g. categorizing 
road users), whilst the evaluation set is used to judge its accuracy in doing 
so. As a result, neither dataset should contain datapoints present in the 
other, which would otherwise present a false picture of the performance 
of the ML model: fully overlapping training and evaluation sets would 
unsurprisingly yield a fully 100% accuracy rate, as the model would be 
evaluated using the same datapoints (images, etc.) as that which it was 
trained on. If released into the wild to be used on entirely new scenes and 
scenarios, there would be no sense whatsoever of its capabilities. Indeed, 
without further refinement it would likely perform poorly, subject to 
‘overfitting’—well-attuned only to its training data.

As each domain of object-recognition is somewhat unique, with spe-
cific kinds of objects needing to be classified, such ‘high-level detection 
algorithms’, as Jaton (2021, p. 55) refers to them, are necessarily ‘task-
specific’ (Jaton, 2021, p. 55) or task-orientated. Here, performance met-
rics or otherwise ‘precision and recall metrics’ (Jaton, 2021, p. 55) are 
critically important for determining the accuracy, and hypothetical 
usability or viability, or particular methods. Hence also the continued 
thirst for large, well-annotated training datasets in each particular 
domain: high-level detection algorithms that work in one domain (e.g. 
medical imaging) have little hope of working well in another (driving).

�Locating Critique

What is perhaps different about training datasets compiled for autono-
mous driving purposes is that certain critiques of the way training data is 
collected, annotations performed, and assumptions are made, do not 
necessarily hold. To begin with, training datasets compiled for autono-
mous driving do not have a primary interest in recording faces, and there-
fore, little interest in tracking things like emotions or concern the array 
of racial, ethnic, national, professional, or behavioural categories that 
Crawford and Paglen discuss in reference to the ‘canonical training set’ 
(Crawford & Paglen, 2019, p. n.p.) ImageNet.

These training datasets are connected, however. Firstly, training datas-
ets designed specifically for autonomous driving are indeed interested in 
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object classification, as discussed before. Secondly, that training datasets 
designed for autonomous driving applications might be used in concert 
with neural networks ‘pretrained’ on non-domain specific training datas-
ets such as ImageNet. ML model diagrams contained within the techni-
cal papers submitted to autonomous driving machine vision challenges 
routinely show methods using pretrained neural networks on novel train-
ing data (Hind et al., 2024).

What is a critical aspect to consider, then, is that motion planning 
training datasets (those comprising annotated data of vehicle trajecto-
ries), offer a calculation and categorization of certain fixed properties of 
an individual road user/object (a car, a sign), but under certain categories 
(e.g. vehicle), their capacities as a potentially moving object. Elaine 
Herzberg was killed by a developmental autonomous Uber ATG vehicle 
partly on the evidence of her not being classified as a particular kind of 
moving road user (cyclist, rather than pedestrian), meaning that her actu-
alized capacity as a pedestrian-walking-with-a-bicycle was neither cap-
tured nor classified, nor were her movements predicted or acted upon. 
Herzberg was therefore not killed because she was not ‘correctly’ classified 
as a pedestrian, but as a pedestrian with the actualized capacity to move 
across the road in a particular manner, in a particular location, at a par-
ticular speed, and in combination with other objects.

Thus, in the domain of autonomous driving, critique must be located 
at two moments in the compilation of training data: firstly, in the consti-
tution of perception training data, and secondly, in the composition of 
motion planning training data. Whilst training datasets designed for the 
development of autonomous vehicles are often referred to in the singular 
(e.g. Waymo Open Dataset), they ordinarily contain two types, meant 
for the recognition of objects as well as the tracking of objects. These two 
practices are intertwined, without which an autonomous vehicle could 
not function. In this, one might directly counter the observation that ‘the 
material force of categories appears always and instantly’ (Bowker & 
Leigh Star, 1999, p. 3) and suppose almost the opposite: that the material 
force of the categories constructed by training datasets appear only some-
times and with delay.

The associated ML modelling performed for each is necessarily differ-
ent too, as a result of the different calculative tasks at hand. Thus, whilst 
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the locus of responsibility can be shifted towards motion planning errors 
in the case of Herzberg, this should not be at the expense of removing all 
responsibility from the categorization/recognition locus entirely. Indeed, 
that following the pipeline metaphor, that without the erroneous, egre-
gious, misclassification of Herzberg as simply ‘other’ rather than a pedes-
trian, the system would not have been capable of further miscalculating 
her trajectory resulting in her death.

�KITTI Vision Benchmark Suite Versus Waymo 
Open Dataset

The chapter compares these two training datasets, the KITTI Vision 
Benchmark Suite and Waymo Open Dataset, for multiple reasons.

Firstly, the KITTI dataset was released prior to, laid the groundwork 
for, and arguably stimulated the recent commercial interest in autono-
mous driving. The KITTI Vision Benchmark Suite, as the name suggests, 
was central to what I call here the ‘benchmark era’ of autonomous driv-
ing. The Waymo Open Dataset, by comparison, was released 10 years 
after the founding of Google’s autonomous vehicle project (in 2009), 
three years since the founding of Waymo itself (in 2016), and one year 
after the fatal Uber ATG crash in Tempe, Arizona (2018) (Waymo, 
2019). The KITTI dataset can be understood as the foundation for the 
early commercial development of autonomous driving, with the Waymo 
datasets understood as a (rather than the) basis for a ‘platformized’ ver-
sion of autonomous driving (Hind & Gekker, 2024, Hind et al., 2022), 
built on the mobilization of open data for commercial development, and 
the use of external, competitive labour to achieve technical gains on ML 
tasks related to ‘perception’ (machine vision, object-recognition, seman-
tic labelling, 2D, 3D) and motion (planning, forecasting) (Hind et al., 
2024). In short, the Waymo Open Dataset can be considered the founda-
tion for the ‘incremental era’ of autonomous driving, driven by these 
platformization attempts.

The KITTI dataset was compiled by researchers funded by the 
Karlsruhe Institute of Technology (KIT), Germany, and the Toyota 
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Technological Institute at Chicago  (TTIC), USA, two renowned aca-
demic computer science institutions. In contrast, the Waymo datasets 
contain data collected by Waymo’s own developmental autonomous 
vehicles, compiled by an in-house team.

There is also a subtle difference in the name of each project. Rather 
than a dataset, per se, KITTI is described as a ‘benchmark suite’. 
Benchmarks are a way of comparing the performance of different ML 
methods, by establishing a common dataset each method can use to 
determine comparative performance. If different methods are trained 
using different datasets, comparing performance is difficult. Thus, estab-
lishing the KITTI Vision Benchmark Suite was driven by the apparent 
dearth of ‘visual recognition systems’ (Geiger et al., 2012, p. 3354) being 
used in robotics research, attributed to the ‘lack of demanding bench-
marks that mimic’ (Geiger et al., 2012, p. 3354) real-world scenarios. In 
contrast to existing datasets derived from laboratory settings, KITTI 
offered a set of benchmarks in real-world, on-road settings, arguably for 
the first time in autonomous driving research.

The technical set-up and platform for each project was also marginally 
different. For the KITTI team, this involved equipping a single host vehi-
cle—a mid-2000s Volkswagen Passat B6—with ten different sensors, 
including a single ‘laser scanner’ or lidar (Geiger et al., 2023b). Waymo, 
on the other hand, were able to draw on a fleet of vehicles, including a 
hybrid Chrysler Pacifica minivan which was retired in 2023 having been 
used since 2017 (Korosec, 2023) and electric Jaguar I-PACE models 
launched in 2018 (Waymo, 2018), both equipped with five lidar sensors 
and five high-resolution cameras (Sun et  al., 2020). Whilst Waymo 
attached sensors to the front, sides, and rear of the vehicle, the KITTI 
team placed all ten sensors on the roof of their Volkswagen Passat. 
Although Waymo had previously used off-the-shelf Velodyne lidar sen-
sors, the same HDL-64E model as used by the KITTI team (Amadeo, 
2017), it switched to developing in-house sensors around 2017 
(Ross, 2019).
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�Ground-Truthing the Domain

The KITTI dataset is derived from data captured in the city of Karlsruhe, 
in the south-west of Germany. Whilst described as a ‘mid-size city’ by the 
team behind KITTI (Geiger et  al., 2023a, p. n.p.), its population of 
308,000 can be considered small by both US and Chinese standards, two 
countries now driving commercial autonomous vehicle work. In com-
parison, the original release of the Waymo Open Dataset covered three 
US cities/urban areas: San Francisco (California), Phoenix (Arizona), and 
Mountain View (Google/Alphabet HQ) (Sun et al., 2020). After updat-
ing the datasets in 2021 and 2022, the data now additionally covers Los 
Angeles (California), Detroit (Michigan), and Seattle (Washington). All 
data comprising the public release of Waymo Open Datasets is derived, 
therefore, from US cities/predominately urban areas.

KITTI was also, arguably, the first dataset used for autonomous driv-
ing research that derived source data from a mix of lidar sensors and 
cameras. As Geiger et  al. noted at the time, ‘visual sensors are rarely 
exploited in robotics applications: Autonomous driving systems rely 
mostly on GPS, laser range finders, radar as well as very accurate maps of 
the environment’ (Geiger et al., 2012, p. 3354). Thus, KITTI ushered in 
a new era of autonomous driving research less dependent on cartographic 
technologies and more dependent on sensor technologies, where data is 
collected from an assemblage of sensor and camera systems for the first 
time in an on-road, rather than off-road, environment. Interestingly, this 
was five years after the same KIT team had finished last in the 2007 
DARPA Urban Challenge, with their vehicle AnnieWAY. The data for 
the KITTI dataset was collected by the same AnnieWAY vehicle, their 
Volkswagen Passat B6.

Particular individuals have played a significant, recurring, role in the 
development of autonomous driving. Raquel Urtasun is one such indi-
vidual. A co-author of the technical paper explaining the KITTI dataset 
in 2012 (Geiger et al., 2012), and previous TTIC employee, Urtasun was 
the former Chief Scientist and Head of R&D at Uber ATG (2017–2021), 
having launched Waabi in 2021, as Chap. 2 details. The technical paper 
introducing the KITTI dataset (Geiger et al., 2012) is also arguably the 
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most cited in the autonomous driving domain, having been referenced 
13,130 times.1 It is also, by some margin, each of the co-author’s (Andreas 
Geiger, Philip Lenz, Raquel Urtasun) most cited articles. In other words, 
it is a foundational technical paper describing the foundational machine 
vision dataset in the autonomous driving community.

There is also a substantial difference in the comparative size of the 
amassed datasets. The KITTI dataset consisted, at the time of launch in 
2012, of 389 stereo and optical flow image pairs, 22 3D stereo image 
sequences totalling 39.2 km, and over 200,000 3D object annotations in 
what they describe as ‘cluttered scenarios’ (Geiger et al., 2012, p. 1) with 
up to 15 vehicles and 30 pedestrians in any one image. According to the 
KITTI team’s own comparisons, no other dataset up until that point had 
captured more than 6.4 km of stereo sequences (the ‘Málaga 2009 data-
set’ collected by researchers at the University of Málaga) (Blanco et al., 
2009), and only one team at the Technical University of Munich (TUM) 
had generated more sequences (27–22), although critically, these had 
only been generated indoors rather than on public roads (Sturm, 2017). 
Thus, while the KITTI dataset was by no means the first such dataset, it 
established a new benchmark for autonomous vehicle training datasets. 
By comparison, when first launched in 2019, the Waymo Open Dataset 
consisted of 1150 scenes—what the KITTI team call scenarios—each 
totalling 20 seconds. This constituted a 50-fold increase in available 3D 
stereo scenes/scenarios for training. The Waymo dataset comprises 12 
million 3D bounding boxes compared to 80,000 in the KITTI dataset, 
constituting 6.4 hours of captured data (Sun et al., 2020).

�Excavating the Interesting

Most notably, Waymo claimed that the original Open Dataset was ‘15x 
more diverse than the largest camera+LIDAR dataset available’ (Sun 
et  al., 2020, p.  1) based, that is, on a particular geographical metric 
devised by Waymo to evaluate scenario diversity. Here ‘dataset diversity’ 
is not a term explicitly used by the KITTI team, whereas Waymo refer to 
urban/suburban distinctions, ‘time of day diversity’ (Sun et  al., 2020, 
p. 5) and scenes ‘selected from many different parts’ (Sun et al., 2020, 

1 At the time of writing (December 20, 2023).
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p.  5) of Phoenix (40  km2 total), San Francisco, and Mountain View 
(36km2 combined). In the conclusion to their technical paper, the Waymo 
authors once again state that the Open Dataset is ‘significantly larger, 
higher quality, more geographically diverse than any existing similar 
dataset’ (Sun et  al., 2020 p.  8), with an unrivalled level of so-called 
domain diversity (Sun et al., 2020, p. 8) amongst the captured data from 
the three aforementioned locations. Whilst the KITTI team do in fact 
talk about diversity, this strictly concerns the technical work being per-
formed: (a) in relation to selecting a subset of the training dataset for 
evaluation purposes and (b) in relation to the metrics used to perform 
such evaluation. Thus, diversity is present in four senses: sensor diversity, 
domain diversity, evaluation diversity, and metric diversity. All these are 
brought to bear on the datasets in fascinating ways.

This emphasis on diversity, diverse environments, and diverse condi-
tions is also matched by an interest in ‘interactive situations’ and ‘inter-
esting interactions’ (Ettinger et  al., 2021, p. 1). In this, the quality of 
‘interesting-ness’ is derived from the manner in which different objects or 
agents represented in training data interact with each other, critical ‘to 
develop motion planning models’ (Ettinger et al., 2021, p. 1). As Waymo 
researchers have suggested, ‘of particular importance are interactive situ-
ations such as merges, unprotected turns, etc., where predicting individ-
ual object motion is not sufficient’ (Ettinger et al., 2021, p. 1). Likewise, 
they talk of ‘mining for interesting scenarios’ (Ettinger et al., 2021, p. 3), 
suggesting that such scenarios are buried beneath a greater volume of 
scenarios deemed ‘not interesting’ at all. As Ramon Amaro suggests, with 
the help of Jiawei Han et al. (2011), this search for interestingness ‘reveals 
the fragility of machine perception as a function of human desire and 
expectation’ (Amaro, 2022, p. 123). Not all patterns are interesting, as 
Han et al. (2011) likewise contend, and certain methods might be used 
to help determine interestingness in ML datasets. These include objective 
methods such as associational rule support (number of connections) and 
associational rule confidence (degree of certainty of connection), each 
establishing thresholds regarding associations between entries in a data-
set. Interesting scenarios, therefore, might be statistically determined: 
those where rule support or confidence values surpass a set threshold of 
interaction between objects or agents. Likewise, more subjective methods 
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might help to determine whether patterns or associations are ‘unexpected’ 
or ‘actionable’ (Han et al., 2011, p. 22) and hence deemed interesting.

Scott Ettinger, lead author of the Waymo motion forecasting technical 
paper where the notion of interesting-ness is discussed, was a member of 
the winning 2005 DARPA Grand Challenge team, Stanford Racing 
Team (Thrun et al., 2007), demonstrating the certain continuity between 
these otherwise distinct phases or eras of autonomous driving. The train-
ing dataset, therefore, can be understood as a ‘device’ for the ‘automated 
production of interested readings of empirical reality’ (Rieder, 2020, p. 252, 
authors’ emphasis), where the empirical substrate to be worked upon is 
considered interesting enough to constitute an empirical reality underfoot.

Interestingness can be understood as not only a variation of the theme 
of dataset diversity but another way of talking about ‘edge cases’ in train-
ing datasets. Edge cases are instances that are not common to a particular 
dataset, only likely to be expressed in very particular, extreme, or ‘edge’ 
situations. Whilst uncommon, edge cases assume great importance 
within the development of autonomous vehicles, particularly because of 
their ability to cause great harm if actually expressed.

Part of this quest for interestingness—to produce ‘interested readings 
of empirical reality’—also pertains to the interactions themselves. Whilst 
it may be relatively straightforward to consider what kinds of interactions 
occur in driving situations, differentiating between and quantifying types 
of interactions is altogether more difficult. Here, the same Waymo 
researchers draw on work by colleagues on ‘conditional behaviour predic-
tion’ (CBP) (Tolstaya et al., 2021) to determine the ‘degree of influence’ 
(Ettinger et  al., 2021, p. 7) one agent has on another. What this ulti-
mately means is that interestingness is defined through a quantification 
of interaction itself. Interestingness is complexity, where complexity is 
the extent to which multiple agents are said (quantified) to be interacting 
with each other.

Neither training dataset, in some cases quite literally, is a static proposi-
tion. Whilst the KITTI dataset was launched in 2012, now over 12 years 
old, new benchmarks comprising of 200 training scenes and 200 test scenes 
were released in 2015 (Geiger et al., 2023c). One key difference was that in 
contrast to the (static) images pairs from 2012, these constituted ‘highly 
dynamic scenes’ (Menze & Geiger, 2015, p.  1), consisting of moving 
images. Whilst drawn from the same raw KITTI dataset from 2012, these 
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new benchmarks constituted an important development, allowing other 
researchers to use such benchmarks to train their own motion planning 
models, what the authors refer to in the technical paper as ‘object scene 
flow’ (Menze & Geiger, 2015, p. 2). In 2015, this work was decidedly new, 
with the authors contending that ‘none of the existing optical flow or scene 
flow methods [were] able to cope with the extreme motions produced by 
moving objects in some of our scenes’ (Menze & Geiger, 2015, p. 7). By 
comparison, Waymo’s Open Dataset has been updated multiple times, 
ordinarily in line with each annual Open Dataset Challenge. In 2021, they 
published a motion dataset to compliment a perception dataset, in 2022 
they added additional labels to both existing datasets, and in 2023 they 
announced the inclusion of more sensor data, new features to the datasets, 
and an entirely new ‘modular data format’ to more ‘efficiently access and 
explore [the] data’ (Waymo, 2023, p. n.p.).

�Incremental Gains

One final aspect is the labour involved in annotating the respective data-
sets to allow their interesting qualities to be surfaced. Whilst many train-
ing datasets are annotated by forms of piecemeal, distributed, online 
labour, the canonical datasets in the domain of autonomous driving have 
typically been annotated by associated researchers, rather the external 
workers. As Cordts et al. write, on the Cityscapes Dataset:

Our 5000 fine pixel-level annotations consist of layered polygons … and 
were realized in-house to guarantee the highest quality levels. Annotation 
and quality control required more than 1.5h on average for a single image. 
Annotators were asked to label the image from back[ground] to 
front[ground] such that no object boundary was marked more than once. 
Each annotation thus implicitly provides a depth ordering of objects in the 
scene. (Cordts et al., 2016, p. 3214)

The same can be said for the Waymo Open Dataset, compiled and 
annotated in-house, as well as the other autonomous driving training 
datasets listed in Table 3.1. What is interesting to note, therefore, is that 
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Table 3.1  A comparison between autonomous driving datasets

Dataset name
Funders/
organizations Volume Data type Task

Collection 
method

Cityscapes 
Dataset

TU Darmstadt, 
Max Planck 
Institute for 
Informatics, 
Daimler AG, TU 
Dresden, German 
Federal Ministry 
for Economy and 
Technology 
(BMWi)

5000 (images 
fine)

20,000 
(images, 
coarse), 
~1000 
(video, fine)

Camera, 
video

Semantic 
understanding

Single vehicle

KITTI Vision 
Benchmark 
Suite

Karlsruhe Institute 
of Technology 
(KIT), Toyota 
Technological 
Institute at 
Chicago (TTIC)

194 training 
scenes, 195 
test scenes 
(2012), 200 
training 
scenes, 200 
test scenes 
(2015)

Stereo 
camera

Perception 
(object-
recognition)

Single 
‘AnnieWAY’ 
Volkswagen 
Passat B6

Waymo Open 
Dataset

Waymo (Google/
Alphabet)

1000 driving 
segments, 
12 million 
3D labels, 
1.2 million 
2D labels 
(2019)

Lidar, 
camera

Perception, 
motion 
planning

Modified fleet 
(Jaguar 
I-Pace, 
Chrysler 
Pacifica)

Argo 
Argoverse

Argo AI, Carnegie 
Mellon 
University (CMU), 
Georgia Institute 
of Technology 
(GT), Ford

300,000 
5-second 
scenarios

Lidar, 
360°, 
stereo 
camera

3D tracking, 
forecasting

Modified fleet 
(Ford Fusion 
Hybrid)
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Location(s)
Release 
Date Updates

Autonomous 
driving project 
application Technical paper

Technical 
paper 
citations

50 cities (Germany, 
Switzerland)

20/02/2016 2020 Various Cordts et al. 
The 

Cityscapes 
Dataset for 
semantic 
urban scene 
understanding

(2016) 
9266

Karlsruhe (Germany) 20/03/2012 2015 Various Geiger et al. 
 Are we 

ready for 
autonomous 
driving? The 
KITTI Vision 
Benchmark 
Suite

(2012)
13130

San Francisco, Phoenix, 
Mountain View, 
Kirkland (original, 
2019), Los Angeles, 
Detroit, Seattle (added, 
2021)

21/08/2019 2021, 
2022, 
2023

Waymo Sun et al. 
Scalability in 
perception for 
autonomous 
driving: 
Waymo Open 
Dataset

(2020) 2097

Pittsburgh, Miami 
(original, 2019), Austin, 
Washington DC, Palo 
Alto, Detroit (added, 
2021)

19/06/2019 2021 Argo AI Chang et al. 

Argoverse: 3D 
tracking and 
forecasting 
with rich maps

(2019) 
1130
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the work underpinning these datasets is not derived from platform labour, 
or piecemeal labour, in the form that has come to be associated with 
training datasets—even if the ML model training work has become exter-
nalized, subject to platformized relations (Hind et al., 2024).

This annotation work is therefore not the kind of distributed, online 
‘micro-work’ others have uncovered in the automotive industry, con-
nected to training voice assistants (Tubaro & Casilli, 2019), even though 
it can be considered a derivative form of such ‘computer-supported on-
demand low-valued work’ (Jaton, 2021, p. 66). Indeed, it is perhaps best 
thought of the other way around: that in-house annotation work can 
reasonably be understood to be the precursor to, and foundation for, the 
subsequent distribution and platformization of AI annotation work. As 
AI moved out of the laboratory and into the workplace, so annotation 
work found a new home elsewhere: predominantly, although not exclu-
sively, in the homes of women in the global south, Latin America, and 
countries with enduring postcolonial legacies (Tubaro et al., 2022; Viana 
Braz et al., 2023).

Yet, due to the stated importance of the annotation work at hand, ‘to 
guarantee the highest quality levels’, the work undertaken to annotate 
images for autonomous driving is typically carried out by those with a 
pre-existing knowledge of the subject area and an ongoing interest in 
ensuring the quality of annotations, beyond piecemeal payment. In other 
words, that the annotators are, in principle, also the machine learners, 
and rather than being alienated from one side of the equation, annotators 
know precisely what the later, realizable value of their annotation work is, 
and what their annotations are going towards. As often stated, micro-
workers commonly do not know why they are extracting information 
from image inputs, nor what their annotation work is necessarily going 
towards. Whilst sometimes meaning can be deduced by workers, some 
annotation work is plainly mystifying (Tubaro et al., 2020). In the case of 
KITTI and Waymo Open Datasets, this ‘AI preparation’ work, as Tubaro 
et al. (2020, p. 5) understand it, offers a vastly different experience for 
those annotating. It is also, as one might expect, work being undertaken 
by those paid vastly higher amounts, essentially on computer science 
PhD stipends or scholarships, funded in part by big tech  or 
automotive firms.
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But what is the value or need for surfacing the interesting qualities of 
the respective training datasets? Increasingly, as the Waymo Open Dataset 
demonstrates, it is to deliver incremental gains in the performance of ML 
models. Aided by their Waymo Open Dataset Challenges (2020–2023), 
their training datasets have offered the possibility to deliver small, but no 
less significant, performance gains on object-recognition related tasks 
(Hind et al., 2024). Put to work, Waymo’s Open Datasets provide the 
empirical foundation on which such model training is done, structuring 
competition between rival model development teams. Here, incremental 
gains are delivered in respect to certain object-recognition metrics such as 
‘average precision’ (AP), used to assess the accuracy of the ML-based 
object-recognition techniques developed. Relatively small gains in the 
accuracy of winning methods in the annual Open Dataset Challenges 
were recorded, despite a huge number of varied entrants (Hind et  al., 
2024). As a team of computer scientists considered following the end of 
a precursor competition, such challenges pose the risk of ‘reduc[ing] the 
diversity of methods within the community’ as truly novel methods are 
jettisoned ‘before they have the chance to mature’ (Everingham et  al., 
2015, p. 133). Concentration in both available training datasets and ML 
models trained on them ultimately entrenches incrementalist 
approaches—a hallmark of the current era of autonomous vehicle 
development.

�Conclusion

This chapter has narrated the development of two autonomous vehicle 
training datasets, the KITTI Vision Benchmark Suite and Waymo Open 
Dataset. Whilst just two amongst many others, these training datasets 
represent key milestones in the development of autonomous vehicles. 
The KITTI Vision Benchmark Suite laid the groundwork for the testing 
of object-recognition and motion planning systems from the early 2010s 
onwards. Waymo’s public release of their Open Dataset in 2019 can be 
seen as a landmark in the platformization of autonomous driving (Hind 
et al., 2022).
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Across these datasets and timeframes, however, are a shared interested 
in the interesting. Training dataset diversity, as this chapter has argued, is 
a critical, ongoing concern for machine vision researchers working in the 
domain of autonomous driving. How this diversity is expressed—whilst 
sharing generalities across domains—is specific to the particularities of 
designing object-recognition and motion planning systems for navigat-
ing driving environments. In this, the search for dataset diversity is 
expressed through references to diverse situations, scenes, and scenarios 
with the desire for so-called interesting interactions to be represented 
within such datasets. Everything from the location of the original capture 
of training data—be it Karlsruhe, Germany, or Phoenix, Arizona—to the 
volume of recorded segments of video footage has a role in ensuring max-
imum diversity in the datasets being composed.

Invariably, however, as the ‘mining’ metaphors employed by some 
researchers suggest, the search for interesting interactions requires consid-
erable work. In other words, driving manoeuvres deemed valuable by 
engineers—from merges to unprotected turns—or driving encounters 
between different road users (pedestrians and cars, cyclists and cars) do 
not always present themselves within the data but must be expressed and 
surfaced. Lacking a workable volume of these interactions in the datasets 
being used to train object-recognition and motion planning ML models, 
greater risks in real-world scenarios (and real-world interactions) are inev-
itably generated down the line.

Thus, different kinds and levels of training data work are important, 
from the fastidious work of annotating training data to the beneficial 
quantification of interactivity. In each case, ‘mining for interesting sce-
narios’ (Ettinger et al., 2021, p. 3) always requires a substantial pool of 
able and willing ‘miners’, those equipped to implement routine processes 
as well as develop novel methods and strategies for designing autono-
mous vehicle systems.
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4
Sensing Decisions: Perceiving, 

Classifying, Finessing

As the previous chapter considered, autonomous vehicles are reliant upon 
training datasets to provide a ‘ground truth’ for their eventual operations. 
Such training datasets themselves—like the KITTI Vision Benchmark 
Suite—have necessarily been compiled with the help of vehicles equipped 
with an array of sensors able to capture the training data itself. A consid-
erable amount of labour is subsequently involved in calibrating, annotat-
ing, and making available such training data to those that want to use it. 
Their broad aim is to train image-based machine learning (ML) models 
to recognize objects—a process that underpins simulation work to follow.

This chapter will consider the ‘sensor strategies’ devised by these 
machine vision researchers to improve the performance of computational 
tasks concerning perception and classification. Returning to the intro-
duction, the chapter explores how this ‘sensor work’ is not only integral 
to the future operation of autonomous vehicles but critical to ensuring 
the uninterrupted flow of sensor data from module to module, site to 
site. In this, sensing decisions enable the fundamental ‘inter-operability’ 
of autonomous vehicles, with the ‘finessing’ (Fisch, 2018, p. 29) of spe-
cific machine vision strategies, techniques, and methods part-and-parcel 
of delivering autonomous driving.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1749-1_4&domain=pdf
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Sensor data—whether in the form of radar returns, lidar point clouds, 
camera images, or other externally captured, internally transmitted, 
data—is integral to the decision-making capabilities of autonomous 
vehicles. Data generated and processed by an oft-dizzying array of sensors 
nominally allows any such vehicle to perceive the environment around it, 
in which sensor data is generated by different sensor types (lidar, radar, 
camera, etc.) and sensor units (Velodyne HDL-64E, etc.), in different 
sensor data formats. Some sensing systems (such as radar) allow vehicles 
to perceive more distant phenomena, whilst others (such as lidar) facili-
tate depth perception or enable the recognition of specific objects (such 
as cameras). This is what I have called the composite and distributed nature 
of sensing (Hind, 2022).

I begin by drawing on literature within media studies on the produc-
tion of ‘operative images’ (Farocki, 2004; Hoel, 2018; Distelmayer, 2018) 
and ‘operational data’ (Walker Rettberg, 2020), categories distinct from 
so-called representational images or data through their utilization within, 
and by, technological systems. Following the above, however, I argue that 
sensor data used in the training of ML models should instead be con-
ceived as interoperable and integral to the interoperation of autonomous 
vehicles—rather than simply being understood as ‘operative’ or opera-
tional, per se. I discuss what is meant by interoperability, with respect to 
autonomous vehicles, and outline the levels or stages of such interopera-
tion, necessarily involving interoperability at both technical and epis-
temic levels (Wilmott, 2016, 2020).

To evidence this I draw on participant observation of two machine 
vision events: a virtual summit called ‘Machines Can See’ held in June 
2020, and a ‘Workshop on Autonomous Driving’ (WAD) hosted in June 
2021, as part of the annual Computer Vision and Pattern Recognition 
(CVPR) conference, a premier academic conference in the world of 
machine vision. At both events cutting-edge object-recognition work was 
presented, including techniques such as ‘3D object detection’ and ‘stream-
ing perception’ that I understand as enabling greater interoperability 
within autonomous vehicles.

As a way to understand these techniques, I draw on the work of anthro-
pologist Michael Fisch (2018), suggesting that machine vision experts 
‘finesse’ interoperability; employing and refining certain skills learnt in 
their time as researchers in the field.

  S. Hind
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�Operational: Images, Data, Clouds

Sensor data generated by autonomous vehicles is formatted in particular 
ways. Whether as radar returns, point clouds, or video frames, this sensor 
data can be said to become ‘operational’ (Mackenzie & Munster, 2019; 
Walker Rettberg, 2020), generating ‘operative images’ (Farocki, 2004; 
Hoel, 2018; Distelmayer, 2018) derived from such sensor data. In other 
words, they are enrolled into the machinic capacities of autonomous 
vehicles, such that without them, they cease to operate—effectively, effi-
ciently, or safely: offering what Luciana Parisi (2020, p. 3) refers to as a 
‘cybernetic model of steering conduct’. In this section, then, I discuss the 
significance of ‘operations’ and how sensor data is made operational in 
autonomous vehicles.

As Jill Walker Rettberg (2020) suggests, ‘operational data’ can be cat-
egorized in two ways. Firstly, data can become operational as it is de-
personalized, anonymized, and aggregated. For example, in how tracking 
data generated by Strava users is packaged and sold to cities through a 
programme called ‘Strava Metro’ (Walker Rettberg, 2020, p. 8). Here, 
whilst such data is still visible to individual users through their own dash-
boards in a more ‘representational’ form, affecting and modulating the 
future possible activities of Strava users, ‘the representations are not the 
end goal’ (Walker Rettberg, 2020, p. 8). Instead, this data is made use of 
operationally, say, ‘as city planners use data from Strava users to redesign 
the city to encourage or alter the usage patterns they observe’ (Walker 
Rettberg, 2020, p. 8). In this, the data becomes somewhat detached from 
this original, representational use; circulating in other ways as it is com-
bined and connected with other sources. Most notably, this data becomes 
operational in how it is used by other kinds of human actors such as the 
city planner or the transport official, who might come to rely on such 
data to make strategic decisions regarding city zoning or the installation 
of bike lanes.

Secondly, data can become operational when it is principally used by 
machines. For example, in how tracking data generated by Strava users 
‘can be used as data sets for systems [to] calculate the best route for a self-
driving car’ (Walker Rettberg, 2020, p.  9), dependent perhaps on 
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‘changing traffic patterns at different times of the day’ (Walker Rettberg, 
2020, p. 9). What is different here is that such operational data is ‘algo-
rithmically processed … with little human involvement’, with ‘no need 
for human-readable representations’ (Walker Rettberg, 2020, p.  9). 
Indeed, that such data assumes a machine-readable form and is used for 
various, possible ML tasks, acting as training data on which to train algo-
rithms to act in particular ways when faced with similar data ‘in the wild’. 
Whilst I want to argue here that even operational data in this second 
sense retains a considerable element of human involvement, either 
through forms of ‘supervision’ (Hind, 2019) or more fully through a 
‘finessing’ of interoperability, Walker Rettberg’s categorization helps to 
pull apart the different ways in which data can be seen to be made 
operational.

Operative images are set in contrast to representational images—land-
scape paintings, still life, or even selfies, perhaps. These images, created in 
various media—paint, pencil, pixel—are not in any sense ‘working 
images … tied to specialized tasks’ (Hoel, 2018, p. 12). They are princi-
pally aesthetic objects, reflective of places, things, or people. This is not to 
diminish or erase the obvious work involved in creating such images. But 
in comparison, operative images are integral to the operation of particu-
lar processes within the machine age in ways that representational images 
are not. Indeed, that such images are created by, and principally intended 
for, machines—whether in the form of drone strikes, facial recognition 
processes at the border, or entry to a sporting or music event. Here, the 
aesthetic dimension of the image recedes (although does not entirely dis-
appear), to be usurped by a strictly instrumental requirement, to which 
the image’s operational dimension, and meaning (Bunz, 2019), is critical. 
Instead, through processes of deep learning, algorithmic systems ‘pick 
apart any given image into component shapes, gradients, luminosities, 
and corners’ (Parisi, 2020, p. 5), generating a different kind of demon-
strably non-representational value. Whilst the human is never completely 
taken out of the loop, with machinic processes still requiring human 
involvement, the ‘involvement’ entailed looks distinctly different, as 
types of machine supervision proliferate.

However, the argument I want to make is not that all sensor data gen-
erate operative images. Sensor data is neither an operative image in itself 

  S. Hind



99

nor necessarily an ‘image’ at all—requiring substantial processing and 
formatting to be turned into anything resembling such. With lidar data, 
for instance, ‘point clouds’ are generated, but only through the help of 
secondary software. Even then, it is not at all clear if such point clouds 
satisfy all criteria as an image but instead may be considered as ‘opera-
tional clouds’, as Amoore (2018) or Halpern (2014) might consider 
them. In any case, the images produced that purport to show lidar-in-
action, are dressed up, coloured, and calibrated for human eyes, as in 
some techniques (Hind, 2023). They are an attempt to translate point 
clouds into representational images, rather than an acknowledgement of 
their operative functionality.

To illustrate this, consider the HDL-64E, a lidar unit manufactured by 
Velodyne, whose founders (David and Bruce Hall) had entered the 2005 
DARPA Grand Challenge, using a vehicle equipped with a prototype 
lidar sensor which later evolved into the HDL-64E (Velodyne, 2017, 
2021). The unit itself is capable of producing ‘viewable data’ (Velodyne, 
2019, p. 9) without prior configuration or calibration. Indeed, that it will 
‘start scanning and producing data packets’ (Velodyne, 2019, p. 9) from 
the moment it is plugged in. However, in order to actually view such 
data, ‘point-cloud processing data viewer software’ (Velodyne, 2019, 
p. 9) is required. Conveniently, such software is included in the box, in 
the form of Velodyne’s own Digital Sensor Recorder (DSR) application, 
but more experienced users can elect to develop their own ‘application-
specific’ (Velodyne, 2019, p. 9) viewer. In any case, Velodyne’s standard 
DSR application ‘reads in the packets from the sensor over Ethernet, 
performs the necessary calculations to determine point locations and 
then plots the points in 3D on [a] PC monitor’ (Velodyne, 2019, p. 9). 
Two critical dimensions of such lidar data, distance and intensity, are 
both observable through such a viewer. Thus, the point cloud is only ever 
a product of interoperation between a lidar unit capable of capturing and 
storing the sensor data, and a viewing application capable of reading and 
rendering the sensor data. The point cloud or ‘operational cloud’ only 
ever crystallizes at the point at which the unit and viewer interoperate. 
Neither the unit in its operation is capable of rendering a point cloud 
(only capturing the constituent sensor data), nor the viewer capable of 
capturing the sensor data (only providing the environment in which to 
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render the sensor data). Either acting alone is otherwise useless at creat-
ing, or actualising, such a point cloud.

As Distelmayer (2018, p.  62) contends, ‘[o]perative images are … 
parts and thresholds of (at least) four types of mutually connected opera-
tions’. These types, he continues, involve operations between hardware 
and software, networked computers, computers and ‘non-computer 
forms’ (Distelmayer, 2018, p.  62), or humans and computers. For 
Distelmayer, then, operative images are part of what he calls ‘interface 
operations’ (Distelmayer, 2018, p. 62), connecting any one of the forms 
(software, hardware, networked computers, non-computer forms, 
humans). However, I argue here that operative images do more than 
work as thresholds or interfaces between other technical and non-
technical objects.

�Distributing Sensing, 
Formatting Interoperability

Instead, I want to argue that all sensor data generated by, and in, autono-
mous vehicles is both (a) interoperable (with the capacity to interoperate) 
and (b) interoperative (actually interoperating). In short, to operate is 
principally to interoperate. Without interoperation, operation itself can-
not occur: interoperation is the default operational state of any autono-
mous vehicle. Yet, as Hoel (2018, p. 12) has suggested, ‘the notion of 
operation is under-theorized as a media-theoretical concept, since in 
many cases it is simply imported from other research fields, such as com-
puter science’.

Interoperation can be understood as a specifically media-theoretical 
term, able to account for the work being performed to develop the object-
recognition capabilities of autonomous vehicles but also to connect a 
number of developmental problems—such as those discussed later—fac-
ing machine vision researchers. Rather than working with operative 
images ‘shielded from the human eye’ (Uliasz, 2020, p. 6), such practitio-
ners are exposed to them as they flow from system to system, that is in 
their interoperative capacity.

  S. Hind



101

An approach informed by Hoel’s (Hoel, 2018) concern, then, develops 
a terminology around interoperability and interoperation that can ground 
these higher-level, abstracted, concerns. A focus on interoperation estab-
lishes the autonomous vehicle as a principle site for the interoperation of 
sensing technologies, algorithmic processes, and the movement of physi-
cal components. Starting instead from the interoperation of these enti-
ties, rather than from specific sensing technologies (such as lidar), 
algorithmic processes (such as object-recognition), or physical compo-
nents (such as the steering wheel), removes the risk of overstating the role 
of any of these entities (as, say, off-the-shelf objects); foregrounding 
instead what they do in concert with each other. How, in other words, 
they might process, optimize, detect, and segment together rather 
than apart.

In this specific context then, I have defined interoperability as ‘the 
transmission of sensor data from one (sensing) system to other, connected 
systems deemed necessary for subsequent decision-making processes’ 
(Hind, 2023, p. 4) within any autonomous vehicle. Likewise that, unlike 
‘co-operation’ interoperability does not demand that respective sensing 
and decision-making systems work together ‘to achieve a mutual aim’ 
(Hind, 2023, p. 4) but ‘interoperate to achieve specific modular, or paral-
lel, goals such as detecting 3D objects or processing video frames’ (Hind, 
2023, p.  4). Here, as outlined in the introduction, such tasks can be 
considered part of an operational ‘pipeline’ along which sensor data flows.

The notion of interoperability arguably lies behind Mackenzie and 
Munster’s (Mackenzie & Munster, 2019) concept of ‘platform seeing’, 
where ‘massive flows and iterations of images across and within devices’ 
are facilitated by platforms and ML models, respectively, ‘plat-formatted 
in operation’ (Mackenzie & Munster, 2019, p. 9, authors’ emphasis). In 
such cases, like contemporary smartphone cameras, ‘seeing’ is not per-
formed by a single unit or component inside, capable of capturing images 
purely from within, as a property of the component itself. Instead, it ‘is 
performed by a multitude of human and computational agents whose 
“vision” passes across and along platforms, eluding any singular coordi-
nating position’ (Mackenzie & Munster, 2019, p. 9). For something like 
the Apple iPhone 14 Pro, this photographic capability is made possible 
only through a combination of different systems ranging from 

4  Sensing Decisions: Perceiving, Classifying, Finessing 



102

‘sensor-shift optical image stabilisation’ (OIS) to the company’s ML-driven 
‘photonic engine’ (Apple, 2023).

Mackenzie and Munster’s idea of being ‘plat-formatted’ is connected 
to the nature of formats and the practice of formatting more generally 
(Volmar et al., 2020). Here the sensing capacities of the smartphone are 
only made possible through ‘structural or programmatic relationships 
between individual elements and their organizational logic’ (Volmar 
et al., 2020, p. 8). Whether using the term ‘format’, ‘protocol’, or other-
wise, formatting requires the setting or calibration of different technical 
objects that, in some way, must interoperate with each other—a tape in a 
tape player, a CD in a CD player, a DVD in a DVD player. As Volmar 
et al. offer, a format describes a ‘coherent pattern of order and composi-
tion  – a standardized template for the organization of space, time or 
information according to some rhythmical, structural, aesthetic or volu-
metric rules’ (Volmar et  al., 2020, p.  14). Straightforwardly then, the 
smartphone camera is governed by a kind of platform logic that demands 
that seeing and sensing are carried out in a distributed fashion, requiring 
the equal formatting of each component connected within.

As Mackenzie and Munster affirm, smartphones do not create repre-
sentational images but are ‘entire sensing “platform[s]” capable of carry-
ing out the distribution and integration of different forms of processing’ 
(Mackenzie & Munster, 2019, p. 14). As they further contend, a smart-
phone’s image sensor ‘is itself already a mini-workstation for image pro-
cessing’ (Mackenzie & Munster, 2019, p. 14). In ‘recent high resolution 
digital cameras, sensors are panchromatic and arranged in an array’ 
(Mackenzie & Munster, 2019, p. 14). In such a case, the sensor ‘does not 
merely receive light but process light quantities alongside or in tandem 
with other information’ (Mackenzie & Munster, 2019, p. 14, emphasis 
added). As Mackenzie and Munster go on to write, smartphone image 
signal processors (ISPs) that manage smartphone camera-related prob-
lems (such as motion blur and low-light) are merely a ‘downsized itera-
tion of … image recognition processors for autonomous vehicles’ 
(Mackenzie & Munster, 2019, p. 16).

Beyond the distributed nature of sensing, Mackenize and Munster also 
consider developments in computation itself. Only through the develop-
ment of graphics processing units (GPUs), historically used for 
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processing computer game graphics, are smartphones able to ‘render 
images aggregately computable through massive calculative parallelism’ 
(Mackenzie & Munster, 2019, p. 17, emphasis added). This calculative 
parallelism enables ‘vast numbers of discrete arithmetic operations’ to be 
‘carried out in parallel lanes’ (Mackenzie & Munster, 2019, p.  17) in 
order to generate images. Not limited to the world of smartphone cam-
eras, finding computationally efficient ways to process huge volumes of 
sensor data is central to the work of machine vision researchers in the 
domain of autonomous driving.

Perhaps missing from Mackenzie and Munster’s account is an articula-
tion of the ‘contact points’ between operative elements. That what they 
call platform seeing is enabled through certain kinds, and levels, of 
interoperability. In addition, that the ‘distribution’ and ‘redistribution’ of 
sensing have a certain specificity, rather than simply involving a new mix, 
or rearrangement, of agents involved in this sensing. Where, in other 
words, is sensing distributed to? To what is sensing redistributed to? When 
is sensing distributed or redistributed? In the development of autono-
mous vehicles, these questions rarely receive the same answer. Sensing 
may rely on more ‘sovereign’ (Hind, 2022) systems such as lidar or engage 
other such sensing systems (such as radar) at certain distances. Moreover, 
that this interoperability—or, distributed sensing capacity—must be 
shaped, managed, optimized, and ‘finessed’ in order to be made (at least 
provisionally) operational. It must, in other words, be made to work.

As I have also suggested elsewhere, ‘interoperationality precedes opera-
tionality, rather than vice versa’ (Hind, 2023, p. 4). This means that the 
specific operation of certain systems does not occur before any subse-
quent interoperation with connected systems. Instead, ‘the interoperabil-
ity and interoperationality of each unit of sensor data must be ensured 
before any one system “operates”’ (Hind, 2023, p. 4). As a result, interop-
erability—as a matter of concern and as a practical task—must precede 
operability. Thus, ‘operability is dependent firstly on interoperability’ 
(Hind, 2023, p. 4).
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�Practising Interoperability

Accordingly, interoperability manifests differently in different cases, and 
thus, interoperation is not simply a binary proposition. Instead, interop-
eration is performed in various ways, with varying degrees of success. Yet, 
in all cases, systems dependent on interoperation are always more than 
the sum of their parts.

Thus, there is a technical interoperability, in which technical systems 
such as systems for generating point cloud data (lidar) or video footage 
(cameras) must be made to work together, or with other software, to 
make sense of raw data. This technical interoperability is what Distelmayer 
(2018) refers to as interrelations or thresholds: between hardware and 
software, computers and more computers, or computers and non-
computer forms. Yet, I argue that interoperations are different from inter-
relations or interfaces, in that these entities (and the data that flows 
through, and enlivens, them) are dependent on each other to function, 
and therefore deficient, or partial, without interoperation.

But there is also, following Wilmott (2016, 2020), an epistemic interop-
erability, requiring ‘discursive and linguistic compatibility in order to 
work’ (Wilmott, 2016, p. 8) or what Distelmayer (2018, p. 62, authors’ 
emphasis) again would call the interrelations between humans and com-
puters, concerning ‘[o]perations as us dealing with them’. For Wilmott, 
technical interoperability alone (such as a key card to open a gate) is not 
enough. Instead, technical interoperability also requires this epistemic 
interoperability which at some level (i.e. a discursive one) must be made 
interoperable, just like on a technical level. For instance, in how ‘the rela-
tionships between Spatial Big Data and cartographic reason as interoper-
able discursivities and logics enabled an ever-expanded ordering of spatial 
knowledge’ (Wilmott, 2016, p. 2), constituting a ‘desire to create interop-
erable systems (compatible systems) and increasingly universal narratives 
in universal languages’ (Wilmott, 2020, p. 20).

This claim to universality—in ‘360° sensing’, for instance—is rou-
tinely, and often casually, referred to by autonomous vehicle manufactur-
ers (Oxa, 2019), despite the modular, interoperable nature of both the 
technology and attendant discourses. As the specific processes hopefully 
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show, later, interoperability is dependent on an ‘unsettled relation’ (Azar 
et al., 2020, p. 5) between a technical dimension (‘the techne to make an 
image’ [Azar et al., 2020, p. 5]) and this discursive dimension (‘the socio-
cultural milieu that allows for certain technics, and images, to emerge’ 
[Azar et al., 2020, p. 5]), as various traditions within machine vision and 
computer science are mobilized. It is what Adelheid Voskuhl (2004, 
p. 415) has referred to in another context as ‘functional contingency’, in 
which the work done to achieve interoperability assumes a somewhat 
precarious, but nonetheless operational, form.

Thus, in the context of autonomous vehicles specifically, something 
like a situational interoperability exists, in which technical and epistemic 
interoperability is entwined. Here, the interoperability is not referencing 
a fundamental, technical interoperability or an off-the-shelf, plug-and-
play compatibility, but a continual, precarious practice (interoperation) 
that requires that two or more systems to interoperate. This shift from 
interoperability as (intended, desired, or actual) state to interoperation as 
continual practice allows one to study interoperation in action as it 
happens.

As Hoel (2018) intimates, there are many working theories about 
‘operations’ within technical disciplines like computer science. This is no 
less the case within the world of machine vision and, even more specifi-
cally, within the domain of autonomous vehicles. Here, ‘the history of the 
development of autonomous vehicle, stretching back to Stanley [DARPA 
Grand Challenge 2005 winner], Uber ATG, and Cruise, suggests that 
autonomous driving demands thinking and acting in an interoperational 
fashion’ (Hind, 2023, p. 4, authors’ emphasis).

Yet, whilst there is an acknowledgement that such work demands 
interoperability, leading autonomous vehicle engineers who spoke at the 
CVPR workshop (WAD) contended that much of this work takes place 
in a far more modular, silo-d, and sequential fashion. In her keynote 
speech, Raquel Urtasun, previous member of the KITTI team, and for-
mer Uber ATG chief scientist, spoke about her new autonomous vehicle 
project, Waabi (Urtasun, 2021). Carl Wellington, previously Perception 
Lead at Uber ATG and at Carnegie Mellon University’s (CMU) famous 
Robotics Institute, spoke about his work as Head of Autonomy at self-
driving start-up, Aurora (Wellington, 2021).
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Forecasting Motion Planning
Determine the course of action 
through that environment

Perception
Understand the environment 
and other actors

Fig. 4.1  A simple diagram of perception, forecasting, and planning. (Source: 
Wellington, 2021)

In different ways, both Urtasun and Wellington acknowledged this 
blind spot in contemporary software development. For Urtasun, the 
extant problem is that a ‘traditional’ approach to self-driving is executed 
through the ‘autonomy stack’ in which different modules are responsible 
for different tasks (Fig. 4.1)—modules that this book analytically repli-
cates to some degree, of mapping, perception, prediction, planning, and 
control. As Urtasun (2021) suggests, these modules ‘are not trained for 
end-task’ but for their respective module-dependent tasks. Accordingly, it 
means that this autonomy stack that Urtasun (2021) refers to is ‘devel-
oped in silos’.

The result is that the ‘small interfaces between modules results in cas-
cading errors’ (Urtasun, 2021) as one moves through this software 
stack—evidently a problem of interoperability between these modules or 
levels in the stack itself. Thus, ‘any technical solutions or methods devised 
to resolve problems related to the operation of these discrete [modules]’ 
(Hind, 2023, p. 4) necessarily involve building ‘more and more modules’ 
(Urtasun, 2021). In this, any ‘holistic view’ to delivering autonomous 
driving is deemed impossible, thanks to the entrenchment and familiarity 
of the module/stack approach.

Urtasun’s solution is an ‘end-to-end’ approach in which a ‘single AI 
system’ is developed, with ‘all modules trained for the end task’ (Urtasun, 
2021) rather than each module (mapping, perception, prediction, etc.) 
being training for specific modular tasks. Skirting around many of the 
connected problems with developing such an approach, Urtasun clearly 
suggests that interoperability is a necessary requirement for ‘solving’ 
autonomous driving.

Wellington thinks similarly, considering how his Aurora team might 
combine different modules, in the hope of smoothing (or wholesale 
removing) the interface between them. In particular, Wellington 
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introduces ways to combine perception and motion planning, with so-
called actor forecasting (Wellington, 2021) of the future states of road 
users in-between. Part of a reorganization of this work, as Wellington lays 
out, might involve ‘thinking about the perception forecasting problem as 
a single problem’ (Wellington, 2021), rather than as two distinct, none-
theless interconnected, problems. This is what Wellington straightfor-
wardly refers to as ‘joint perception and forecasting’ (Fig. 4.2), in which 
a combined model is built incorporating both stages of the traditional 
autonomy stack.

What is interesting is that Wellington, in addition to what he calls the 
‘left to right perspective’—joint, interoperable work done from the more 
foundational level (perception) to a higher level (forecasting)—one might 
also work from ‘right to left’ (Wellington, 2021). That is, by combining 
forecasting and planning modules instead. This ‘conditional forecasting’, 
as Wellington (2021) describes, results in decisions being made by the 
autonomous vehicle being fed or ‘passed back’ through the model to 
inform the forecasting work being undertaken. In both cases, Wellington 
is proposing innovative solutions to a lack of interoperability within the 
‘autonomy stack’ as Urtasun refers to it.

The source of these many of the interoperational problems identified 
by both Urtasun and Wellington lies in the richness of sensor data being 
collected on the move by, and in, a vehicle. The necessary, and variable, 
movement of an autonomous vehicle leads sensors (lidar, cameras, etc.) 
to endlessly capture new scenes requiring processing and begetting inter-
operation. At one moment, for instance, a vehicle may be moving along 
at 30 km/h, before accelerating to 50 km/h, and then slowing to 20 km/h. 
Throughout, the systems on-board an autonomous vehicle must be 
equipped to cope with this constant stream of sensor data being 

Forecasting Motion Planning
Determine the course of action 
through that environment

Perception
Understand the environment 
and other actors

Fig. 4.2  Joint perception and forecasting. (Source: Wellington, 2021)
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generated in, and through, movement, but also to process it quickly, effi-
ciently, and accurately in order to make critical control decisions such as 
to brake or swerve. Thus, mobility generates the sensor data necessary for 
further movement. However, it is only through interoperation that per-
ceptive issues arising from the capture of the data can be resolved, and 
without which mobility cannot be maintained.

�Finessing Interoperation

To avoid making a sharp distinction between different kinds, or levels, of 
interoperability, I draw on the work of anthropologist Michael Fisch. In 
his ethnography of the Tokyo commuter train network, Fisch (2018, 
p. 40) talks about ‘finessed interoperability’ in which excess and leeway are 
generated in such a system. He discusses how commuter train operators 
engage in so-called recovery driving (Fisch, 2018, p. 40) to make up for 
lost time mandated by allotted station ‘dwell time’ trains are expected to 
wait at each stop for. Here, interoperability is not considered as a strictly 
technical relation in which two devices or technologies speak to each 
other alone, but the way in which one technology (the commuter train) 
is operated in accordance with the rules and demands of the another (a 
schematic traffic plan-diagram known as a daiya in Japan). ‘For train 
drivers’, as Fisch (2018, p. 40) contends, ‘producing yoyū [leeway, space] 
demands a unique combination of intuition, technique, and attunement 
to the shifting conditions of operation’. Interoperability, then, is a kind of 
learned or programmed relation in which each interoperable component 
(machinic, human, or otherwise) becomes attuned and in sync with 
another. This interoperability is only made possible through a contingent 
settling of the relation between technical and discursive elements.

The terms interoperability and interoperation are a way to straddle, 
and make sense of, typically distinct concerns around sensing, decision-
making, and algorithmic systems. In doing so, the intention is similarly 
to extract the meaning of relevant terminology of computer scientists and 
machine vision experts, to afford a higher-level view of these motivations 
for greater interoperability, as voiced by the likes of Urtasun and 
Wellington. Whilst they each, at first, appear as technical issues to be 
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settled or resolved (or at least optimized), in being re-articulated as exam-
ples of interoperation-in-action, they instead appear as ‘sensor strategies’ 
in which the interoperability of relevant systems is finessed by interest 
parties, such as machine vision experts. That, in other words, it is through 
the finessed optimization of these processes (3D object detection, stream-
ing perception), autonomous vehicles emerge as particular socio-technical 
objects capable of sensing, and making sense of, the world.

These sensor strategies cannot, I argue, necessarily be seen as forms of 
AI ‘micro-work’ increasingly common in automotive settings (Hind, 
2021). None can be considered as comprising ‘small, fragmented tasks 
performed remotely online’, nor involve ‘mundane, repetitive, [or] atom-
ized’ labour (Tubaro & Casilli, 2019, p. 334) common to most forms of 
AI micro-work. To some degree, however, the work discussed here can be 
considered both reliant on such micro-work, say, in the labelling of 
images discussed in Chap. 3 but also ‘downstream’ of such work, in that 
they are nonetheless in some operational relationship, merely embedded 
at different stages, and in different locations, in the autonomous vehicle 
development process. As will be discussed later, the practice of ‘finessing’ 
interoperation hinges on the relative (professional) possibilities that 
machine vision researchers possess to explore solutions to extant compu-
tational problems. This practical latitude for problem-solving is not one 
common to most forms of micro-work which, instead, generally consist 
of strictly structured, and monitored, work practices. For instance, in 
how micro-workers are expected to categorize objects in a photograph 
according to formal, predetermined criteria. By contrast, as Fisch (2018) 
discusses, the art of finessing something (an act, a task, etc.) involves both 
skill and dexterity, as well as creative instinct and flair: what Voskuhl 
(2004, p.  406) has called ‘tinkering’ strategies, and what Agre (1997) 
understands as a tenet of AI work in general. As machine vision research-
ers working in AI research centres or automotive research and develop-
ment (R&D) facilities, such opportunities are typically more open 
to them.

This work is what Rieder refers to as ‘algorithmic techniques’ (Rieder, 
2020), where different ‘habitats’ offer the opportunity for some tech-
niques to ‘thrive’ rather than ‘whither’ (Rieder, 2020, p. 247). Here, the 
general goal is to ‘design a system that produces “good” results in the 
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domain of its application’ (Rieder, 2020, p. 252), with ML and machine 
vision processes explicitly developed to ‘produce operationally viable 
results rather than scientific models’ (Rieder, 2020, p. 257) whether for 
language, as Rieder writes, or for the general interpretation of images and 
objects. As Rieder understands it, such work functions as a ‘trading zone’ 
following Galison (1996), where ‘statistics and other areas of mathemat-
ics intermingle with ideas about language, information and knowledge as 
well as computing machinery, systems design, and the concrete and 
imaginary requirements of “knowledge workers” and “decision-makers”’ 
(Rieder, 2020, p. 258). Here, the habitat for such work is necessarily a 
hybrid one, where the finessing of inoperability is enabled through the 
setting of the conditions of the habitat in the first instance—of what can, 
and cannot, be done. As Rieder concludes, ‘knowing why a technique 
works well is not a fundamental requirement’ (Rieder, 2020, p.  259, 
authors’ emphasis), only that it does, in fact, work.

As Adam Sargent et al. (2021, p. 565) discuss, the finding of solutions 
to operational problems within such a context ‘highlights the complex 
human-machine configurations through which defects are perceived, 
identified and interpreted’. Professional engineers, in Sargent et al.’s case, 
in the US steel industry are engaged in ‘perceptual work’ involving ‘sens-
ing defects’, that does not simply correspond to the ‘internal processes of 
the engineer’ (Sargent et al., 2021, p. 565) but to the assemblage of sens-
ing technologies at their disposal that allows them to sense defects in 
steelwork and the steel production process. In the cases to follow, I 
emphasize how similar such perceptual work is performed, focused on 
the identification of operational errors (rather than defects, per se) in the 
machine vision-dependent processes. Here, errors or faults do not present 
themselves as things to be ‘fixed’ or successfully, and completely, eradi-
cated. Instead, such calculative errors can only ever be resolved in relation 
to any ‘desired outcome’ functioning as ‘the central locus of normativity’ 
as Rieder (2020, p. 252) writes.

Moreover, that there are perhaps two levels, or orders, of perceptual 
work being undertaken here. Firstly, that the work concerns machine 
vision and algorithmic systems capable of machine vision. In this, such 
systems obviously engage in their own ‘perceptual work’, recognizing and 
categorizing objects, segmenting lidar points, or generating path 
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trajectories of other road users. However, in much the same way in which 
the sensing of defects in the steel production process does not simply cor-
respond to the ‘internal processes of the engineer’ (Sargent et al., 2021, 
p. 565), neither does the sensing of potential risks on the road simply 
correspond to the ‘internal processes’ of the system. Instead, various 
parameters are played with, set, and programmed by the machine vision 
researchers, as Chap. 5 contends. Secondly, the machine vision work 
being undertaken also requires interpretive, evaluative, analytical work to 
make sense of the decisions being made by the perception system itself. It 
is this level that corresponds to the perceptual work discussed by Sargent 
et  al. (2021), nonetheless considerably shaped by the perceptual work 
undertaken by the perception system, and the relative agency and auton-
omy it has in performing its own work. It is arguably another example of 
the ‘unsettled relation’ (Azar et al., 2020, p. 5) between the technical and 
the discursive.

I now discuss two sensing processes that have required the invention of 
particular ‘sensor strategies’ to facilitate the intended interoperability of 
autonomous vehicles: 3D object detection and streaming perception. As 
outlined in the introduction, I encountered both of these techniques dur-
ing participation in two machine vision events: a virtual summit on com-
puter vision held in June 2020 called ‘Machines Can See’, and a 
‘Workshop on Autonomous Driving’ (WAD) held in June 2021, as part 
of the Computer Vision and Pattern Recognition (CVPR) conference. It 
is in these kinds of events where ‘cutting-edge methods, techniques, and 
approaches are shared with those working in related fields of computer 
vision and deep learning’ (Hind, 2023, p. 5), constituting important set-
tings where sensor strategies are shared with members of the wider 
machine vision community.

�3D Object Detection (Visibility Volumes)

3D object detection involves the capacity to detect and orient vehicles, 
and other road users, within 3D space. It is a critical capacity of all auton-
omous vehicle systems. Lidar is the most commonly used sensor technol-
ogy to enable this detection work to take place. Despite its many 
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advantages, lidar has one significant disadvantage: lidar points effectively 
destroy or omit data on phenomena behind each lidar point captured. 
Upon hitting an object, a lidar point is returned, meaning any secondary 
object hidden behind this initial object is not captured at all. The result is 
that the object from the capture scene is not represented in the data—
essentially destroyed within the dataset being generated.

As Hu et al. (2020, p. 2) write, ‘once a particular scene element is mea-
sured at a particular depth, visibility ensures that all other scene elements 
behind its line-of-sight are occluded’. As a result of this loss of data, ‘such 
3D sensored data might be better characterized as “2.5D”’ (Hu et  al., 
2020, p. 2). Naturally, hampered by lidar’s ‘occlusional’ capacities, any 
such autonomous vehicle making use of lidar ends up capturing any 
given scene in much lower fidelity (Fig. 4.3).

Accordingly, lidar is rendered as a far less interoperable medium as 
might otherwise be thought. Rather than being understood as the best of 
all available sensing options, its weaknesses as a data capture method are 
exposed. In such a case, lidar is shown to be an imperfect representation, 
not only failing to capture occluded objects but expunging them from 
the record altogether. This has significant repercussions for interoperabil-
ity. Any object-recognition system designed to ingest lidar data without 
any such remedy for its ‘2.5D’ nature risks the total ignorance of real-
world objects not translated into their lidar-dependent worlds. Whilst 
such objects might end up in the latter in subsequent frames (say as a car 
moves into shot), any such system would still be at an operational disad-
vantage, only capturing the existence of occluded objects at their moment 

Fig. 4.3  Examples of different 3D sensor data representations with ‘freespace’ 
visualized (right). (Source: Hu et al., 2020)

  S. Hind



113

of non-occlusion. Without such caution being taken, the vehicle runs the 
risk of reacting too slowly (or not at all) to objects moving from their 
occluded positions to visible ones.

Hu et al. (2020)—researchers at Argo AI in Pittsburgh, US—offer a 
solution referred to as ‘raycasting’. When a lidar point hits an object, it 
records a coordinate. When repeated in a so-called lidar ‘sweep’, a series 
of coordinates are recorded. In between the many lidar points, there is 
‘freespace’, where no such data is recorded at all. In generating a ‘3D 
voxel grid’ in which each coordinate is recorded as either ‘occupied, free, 
or unknown’ (Hu et al., 2020, p. 4), each coordinate within 3D space can 
be provided with a known value, regardless of whether a lidar point has 
hit an object or not. Referring to the output as a ‘visibility volume’ (Hu 
et al., 2020, p. 4), Hu et al.’s method can be considered a technique for 
producing fully 3D data—a remedy for the ‘2.5D’ lidar data originally 
captured.

Rendering lidar data in ‘full’ 3D form, assisted by the 3D voxel grid, 
offers a stronger form of interoperability between the original lidar input 
and a desired feature map output, required in the ML model process. 
Lacking a 3D voxel grid, lidar generates a coarse view of the world, able 
to capture the presence of some objects, but unable to make sense of 
occluded objects. In adding interstitial stages, Hu et al. are able to enhance 
and augment the perceptive qualities of lidar. In so doing, they produce a 
‘diagrammatic abstraction’ (Mackenzie, 2017, p.  55) eminently more 
useful for the ML-driven system they are building.

Returning to the question of how this affects the operational pipeline, 
having a record of what the researchers call a ‘visibility volume’ (in addi-
tion to lidar data) enhances the 3D object-recognition process. Using 
their approach on the NuScenes 3D detection dataset, a commonly used 
autonomous vehicle dataset, they achieve a mean average precision (mAP) 
score improvement of 4.5%—a standard metric for evaluating the per-
formance of ML-driven object-recognition processes (Hu et al., 2020). 
In particular, their model offers big improvements on detecting heavily 
occluded cars (0–40% visible), with significant implications for how an 
autonomous vehicle would react to a given scenario involving such 
road users.
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Understanding this conceptually, augmenting operability offers a rela-
tively straightforward way of ensuring wider interoperability. Indeed, this 
augmentation is itself already a fusion of kind at least in the second stage 
of the approach, as lidar point sweeps are combined by Hu et al. (2020) 
with the visibility volumes generated through their creation of a 3D voxel 
grid. Whilst these additions undoubtedly add greater complexity into the 
object detection/recognition process, they do so in order to properly 
account for deficiencies of lidar that will only be encountered later in the 
pipeline during forecasting and planning. Resolving these latent issues at 
this stage in the process only serves to strengthen later interoperability 
down the line.

�Streaming Perception (Dynamic Scheduling)

Streaming perception1 concerns the processing of video frames and the 
‘algorithmic trade-off’ (Li et  al., 2020, p.  1) between accurate image 
understanding and quick image understanding. Accuracy in such cases 
can be defined by achieving a certain threshold of objects correctly identi-
fied and categorized, and speed defined by the completion of a percep-
tion process in advance of subsequent phases of operation, such as motion 
forecasting and planning. A streaming perception process that is inaccu-
rate or too slow risks generating errors along the operational pipeline of 
an autonomous vehicle model. Managing this algorithmic trade-off 
between accuracy and speed is thus of great importance, despite the 
extant problems associated with doing so appropriately. The main com-
putational limitation in such a use case as autonomous driving concerns 
the ability for any such system to process a volume of sensor data, accu-
rately, at speed, or vice versa.

For example, if speed is privileged over accuracy in such a process, a 
cyclist might end up being mis-categorized as an ordinary vehicle and 
deemed by an autonomous vehicle to be moving at the (faster) speed of a 
vehicle rather than a bicycle. As a result, the cyclist might be at a higher 
risk of being hit by the autonomous vehicle, with the latter believing the 

1 Variously referred to as streaming processing optimization and streaming image understanding by 
Li et al. (2020).
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cyclist was travelling faster, and therefore out of the path of the oncoming 
autonomous vehicle. If accuracy is privileged over speed, whilst the cyclist 
in such a scenario might be correctly categorized, the result of the deci-
sion might be communicated too late to affect the execution of the 
manoeuvre needed to take account of them.

One of the solutions devised again by researchers at Argo AI in order 
to optimize streaming perception is something called ‘dynamic schedul-
ing’ (Li et  al., 2020, p.  1). Dynamic scheduling skips so-called stale 
frames that might otherwise be fully processed and evaluated under usual 
circumstances, even if these frames no longer correspond to the current, 
real-world state of the vehicle. Under these usual circumstances, the sys-
tem continues busying itself with analysing video frames regardless of 
whether they correspond to the real-world state of the vehicle, whether 
stale or ‘fresh’. Outside of this narrow computational concern, staleness 
matters. Processing video frames that no longer correspond to the state of 
the environment is evidently pointless, with each exact snapshot captur-
ing a moment lost in time. They are, so to speak, already in the rear-view 
mirror, images of other road users in past states, performing past 
manoeuvres.

In instructing the system to skip the evaluation of stale frames, dynamic 
scheduling readies the system for tackling imminent fresh frames, those 
that do correspond to the real-world state of the vehicle and therefore to 
any emergent risks that might present themselves on the road. In this, 
dynamic scheduling enables a certain level of breathing space, or compu-
tational capacity, unburdened with a never-ending stack of frames it is 
otherwise instructed to evaluate. As a result, the system is better prepared 
for fresh frames that do matter: images of other road users in current 
states, performing current manoeuvres, as well as possibly imminent 
ones too.

Yet, as Li et al. (2020, p. 2, emphasis added) write, ‘latency is inevitable 
in a real-world perception system’. In the above description of an ordi-
nary scheduling procedure, it is not that the system is purposely or know-
ingly evaluating stale frames, just that when it ‘takes a snapshot of the 
world at t1 … when the algorithm finishes processing this observation, 
the surrounding world has already changed at t2’ (Fig. 4.4). The question 
for Li and his colleagues, then, is how to optimize the processing of 
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Fig. 4.4  A simplification of the streaming perception process. (Source: Li 
et al., 2020)

streaming images such that the system is best able to comprehend any 
current situation (point B in Fig. 4.4), rather than any previous situation 
(point A in Fig. 4.4). In practical terms, this latency problem renders the 
vehicle ill-equipped to act but also react. As Li et al. (2020, p. 1) contend, 
‘[a] crucial quantity governing the responsiveness of [an autonomous] 
agent is its reaction time’.

What Li et al.’s solution or sensor strategy involves, then, is the parallel 
processing of frames, such that the system is able to tackle any new (‘fresh’) 
frame at the same time as any existing-going-stale frame. This is a version 
of what MacKenzie and Munster (2019, p. 17) have referred to as ‘calcu-
lative parallelism’. Any ordinary scheduling arrangement would simply 
queue each frame up sequentially until the system is ‘finished’ evaluating 
one, before moving on to the next. In this, dynamic scheduling involves 
a kind of computational multi-tasking, in which the system is designed 
to juggle the evaluation of more than one frame at a time. That is, rather 
than prioritizing sequential completion. The main operating principle 
behind dynamic scheduling is thus that ‘streaming perception requires 
understanding the state of the world at all time instants’ (Li et al., 2020, 
p. 2), such that the overriding aim of a system engaged in such perception 
should be ‘to produce accurate state estimations in a timely manner’ (Li 

  S. Hind



117

et al., 2020, p. 11). In other words, that if and when faced with other 
tasks (i.e. the processing of point A as in Fig. 4.4), the system must always 
prioritize the current situation; even, or especially, at the expense of ‘com-
pleting’ the processing of a prior frame in a sequence. Here, ‘completion’ 
is not considered a priority, less a distraction from the evaluation of the 
current state of the driving environment. Instead, using what Li et  al. 
(2020), p. 11) refer to as a ‘shrinking-tail policy’, an algorithm following 
a dynamic schedule is happy to ‘sit idle and wait’ (Li et al., 2020, p. 11) 
if the next available frame is already stale.

Dynamic scheduling is intended to smooth the interoperation between 
video input and classification outputs, meaning that critical processing 
capacity is not wasted by parsing ‘useless’ frames (Fig. 4.5). Underpinning 
this work is an implicit understanding that any delays or errors intro-
duced during the perception phase will have knock-on effects, undoubt-
edly resurfacing at either forecasting or planning stages if not at the point 
of vehicle control itself. What dynamic scheduling offers, therefore, is a 
re-constitution or calculation of the necessary ordering and pacing of 
interoperability. Rather than requiring some form of augmentation to 
facilitate interoperability between different phases of operation, like 
through the generation of visibility volumes, here the question is of when 
the same tasks might be best performed to facilitate interoperability, not 
whether additional tasks should be. Here, interoperability does not there-
fore necessarily just depend on adding or attaching things onto existing 
processes (or indeed, removing them entirely) but by re-designing their 
processual execution, relevant to the current situation.

Fig. 4.5  Dynamic scheduling. (Source: Li et al., 2020)
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�Finessing Scheduling

In this final part, I want to draw a further comparison between Li et al.’s 
articulation of the scheduling of video frames and Fisch’s (Fisch, 2018) 
discussion of the scheduling of trains on the Tokyo commuter train net-
work. Both concern methods to deal with systems that involve the man-
agement of things (frames, trains) that must be ‘processed’ quickly and 
efficiently. For system operators of Tokyo’s commuter train network, this 
involves managing the gap between a ‘painstakingly calculated, idealized’ 
schedule designed by professional rail technicians known as a ‘principal 
daiya’ and an ‘actual, “operational” (jisshi) daiya’ corresponding to the 
‘lived tempo of the city and train network’ (Fisch, 2018, p. 5). Together, 
as Fisch explains, the daiya assumes a ‘dynamic quality’ (Fisch, 2018, 
p. 5) as system operators seek to address the gap between the idealized 
and actual schedule. On Tokyo’s commuter train network, however, the 
task is not to reduce this gap—itself an impossible job as ‘operation 
beyond capacity’ is infamously the norm, as Fisch (2018, p. 5) explains—
but to actively manage it. For drivers, this involves ‘finessing the interval 
within the commuter train network’s margin of indeterminacy’ (Fisch, 
2018, p. 29, authors’ emphasis).

What seems evident within Li et al.’s work on dynamic scheduling is 
that something similar is at play, albeit with the explicit involvement of a 
technical actor. In this case, the machine vision experts play the role of 
the rail technicians, setting the parameters for an idealized scheduling of 
video frames. In place of Fisch’s commuter train drivers, however, is an 
algorithmic system, instructed to perform a set of evaluative tasks in a 
non-sequential, ‘dynamic’ manner. Here, the margin of indeterminacy of 
the Tokyo commuter train network with which drivers must learn to deal 
with is replaced in Li et al.’s work with a kind of evaluative incompleteness. 
The algorithmic system must likewise learn to de-prioritize the process-
ing of frames completely, and instead value liveness, the lived tempo of the 
autonomous vehicle in its environment (Fig.  4.6). Li et  al.’s system is 
expected to operate ‘on time’ in ways that Tokyo’s commuter train drivers 
are. Just as the latter deploy a number of ‘“speed up” strategies’ (Fisch, 
2018, p. 35), so Li et al. offer suggestions as to how the typical stages of 
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Fig. 4.6  Processing video footage from an autonomous vehicle. (Source: Li 
et al., 2020)

streaming perception (detection, association, forecasting) might be better 
integrated, ordered, or blurred to speed up the processing of frames.

Here, I argue that in emphasizing integration and the blurring of mod-
ule boundaries, Li et al. (2020) are principally concerned with, as well as 
trying to resolve, the question of interoperation. This interoperability is 
being tackled both at the level of modules within algorithmic processes 
(detection, tracking, and forecasting stages), but also between (concur-
rent, infinite) GPUs, and necessarily between algorithm and the sensor 
system feeding sensor data (in the form of static video frames) into the 
algorithmic process. The various techniques employed by Li et al. (mul-
tiple GPUs, module blurring, non-sequentiality) that together comprise 
what they call dynamic scheduling can be seen as a specific sensor strategy 
that deals—or attempts to deal with—the distributed perceptive capaci-
ties of autonomous vehicles, what MacKenzie and Munster (2019) call 
platform seeing.

As the above account hopefully shows, these various techniques involve 
the finessing of interoperation. As Fisch (2018, p. 31) explains:

To finesse something is to make it work when, logically, speaking, it should 
not. Finesse is about pulling something off against all odds. Invoking terms 
like flair, panache, or élan, finesse bespeaks a method irreducible to skill, 
expertise, or systematicity. Finesse transcends the logic of rational methods 
whereby cause and effect can be situated as calculable corollaries; it involves 
instead qualities like instinct, affect, and feeling – qualities that are embod-
ied, sensual, and informed by the precarious order of contextual relations … 
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More importantly, it suggests a relation that transpires as a kind of dialogue 
in the mode of technicity between provisionally stable processes rather 
than established and fixed ontologies.

In this, Li et al. are feeling their way towards a plausible, practical solu-
tion ‘good enough’ for the task-at-hand, or indeed, ‘better than’ an estab-
lished alternative. In this there are no logical ‘fixes’ that settle extant 
problems such as ‘how autonomous vehicles see’, only a more modest 
movement towards streaming perception itself.

�Conclusion

The cases I have explored in this chapter hopefully evidence what inter-
operation looks like in the wild, in respect to machine vision, in which 
interoperation is deemed necessary in order to resolve problems that arise 
with sensing itself. These are problems, I argue, that are not answered by 
not sensing or necessarily reducing reliance on sensing but are only be 
fixed through building complimentary systems such that they are made 
interoperable with these extra systems that work to identify, correct, and 
omit gaps and errors. All these cases have centred on the limitations of 
different sensing formats (video, RGB image, lidar), each themselves 
unable to process the data they capture and thus unable to address the 
limitations of their format alone, thus necessitating interoperation with 
systems that can and do. I have referred to the techniques that engineers 
use to resolve these questions as ‘sensor strategies’ in which they aim to 
finesse the interoperation of machinic systems.

In this, machine vision researchers working in the domain of autono-
mous driving are enrolled within, and speak to, the wider machine vision 
community, as problem-solvers in which their efforts are (narrowly) ori-
ented towards the finding of technical solutions to ‘tricky problems’ that 
otherwise are meant to improve the sensing capacities of possible autono-
mous vehicles. In this, such problems are practically resolvable or opera-
tionally resolvable in that solutions can be ‘more-or-less’ found that could 
be, or are, acceptable to autonomous vehicle firms.
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Interoperability, I have argued, is integral to the comparative success of 
such efforts in which additional optimization, processing, detection, seg-
mentation, and augmentation are performed on sensor data generated by, 
and in, lidar point clouds and video streams. In the cases I have explored, 
this ‘substrate’ sensor data is considered valuable, that is ‘operational’, 
only through secondary optimization, detection, or processing, without 
which the sensor data falls below acceptable thresholds for usability.

Yet, as I have suggested, the cases I have described do not result in 
‘perfect’ solutions in which the sensing capacities are now deemed ‘accu-
rate’ or ‘perfect’. Indeed, all the cases discussed involved significant inter-
operational ‘trade-offs’ that come with integrating such secondary 
processes. These trade-offs are part-and-parcel of designing sensor sys-
tems for autonomous vehicles, in which sensor data is generated ‘on the 
move’ imposing computational constraints on how well or completely 
sensing can be performed.
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5
Demonstrating Decisions: 

Waymo’s World

In October 2020, Waymo lifted the lid on their autonomous vehicle 
operations in Phoenix, Arizona. Throughout 2019, and nine months of 
2020, their vehicles had been involved in 47 so-called contact events, 
across 6.1 million miles with a trained operator present, and a further 
65,000 miles (or roughly 3095 miles/month) without (Schwall et  al., 
2020, p. 1). These 47 incidents covered a range of different types of con-
tact, but of these 47, only 18 actually happened. The remaining 29 were 
‘simulated events’ predicted by Waymo’s own counterfactual calculations. 
In these cases, trained operators had assumed control before an actual 
incident had occurred, thus preventing any subsequent contact event. In 
so doing, Waymo engineers would then run their own simulation(s) to 
determine whether a contact event would have happened. In 2023, 
Waymo lifted the lid again, in celebration of 1 million ‘rider-only’ (i.e. 
autonomous) miles, further evidencing the occurrence of contact events 
across their respective fleets in Phoenix and San Francisco (Victor 
et al., 2023).

In this chapter I want to explore the significance of these ‘what if ’ sce-
narios and discuss how various kinds of calculations are not only central 
to testing the capabilities of autonomous vehicles but also, in their public 
release, central to demonstrating the safety of them too. In particular, I 
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want to focus on the design of algorithmic ‘path prediction’ processes 
meant to extrapolate intended road user trajectories. These simulated 
events constitute a novel kind of failure in the digital world: one that is 
paradoxically meant to document (present, probable) operational error 
and persuade of (future, possible) operational success.

In this, I argue that as these error events are only ever inputs for coun-
terfactual calculations, assessment of the decision-making abilities of 
such vehicles is never complete: what Aradau and Blanke (2021) consider 
as the ‘optimization’ of error. In this, decisions are never ‘placed beyond 
doubt’ (Amoore, 2020, p. 137), only ever deferred and thus never actu-
ally, definitively, reached. In such a formulation, crashes are only ever 
rendered a partial, correctible state: the raw data for iterative ‘what if ’ 
scenarios.

It is through this simulation work—through the deferral of deci-
sions—that Waymo manages or ‘suspends’ the meaning of autonomous 
vehicle crashes. By nominally demonstrating the safety of their autono-
mous vehicles in such a way, Waymo is able to engineer, in a quite literal 
sense, internal and ultimately public knowledge and understanding of 
Waymo vehicle’s decision-making abilities. In effect, to be able to control 
that knowledge of their capabilities that is produced, circulated, and vali-
dated. This is, in short, what I call here ‘Waymo’s world’.

Whilst arguably a new context, computer simulations have always 
been used to manage operational outcomes. Put simply, simulations are 
always a management tool and a tool for management to make opera-
tional decisions. In short, that simulation runs and iterations are, I argue, 
always infused with discursive management work in which the meaning 
and significance of the simulation outputs are always modifiable and 
modified, according to organizational interests. In the case of Waymo, as 
this chapter contends, simulations—these ‘what if ’ scenarios—are spe-
cifically used as a reputational resource, critical for demonstrating the 
safety of Waymo vehicles, and autonomous vehicles more generally.
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�Uber ATG: The Backstory

To start this story, it is necessary to return to 2018. As Elaine Herzberg 
was walking across Northbound Mill Avenue in Tempe, Arizona, she was 
hit and killed by a modified Volvo XC90 testing Uber ATG’s develop-
mental automated driving system (ADS), equipped with 20 ultrasonic 
sensors, 10 cameras, 8 radar sensors, and 1 lidar unit. The subsequent 
National Transportation Safety Board (NTSB) report into the crash, 
released in November 2019, revealed the harrowing details of the acci-
dent, that ‘in the 5.6 seconds before Herzberg was hit, she was classified 
by the ADS on ten separate occasions, with each classification yielding a 
different possible trajectory [or path] Herzberg might take across the road’ 
(Hind, 2022, p. 66, emphasis added). At no point did the ADS confi-
dently recognize Herzberg. To continue:

On the first occasion, Herzberg was detected by the radar system as a 
Vehicle. 0.4 seconds later, she was detected by the lidar system and deemed 
to be a static object, putting her into the category of Other. One second 
later she is classified again as a Vehicle, but nonetheless is still presumed to 
be static. 2.6 seconds before impact, the ADS reclassifies her for a fourth 
time; this time as a Bicycle, deciding the bicycle by her side is being ridden. 
With 2.5 seconds left the system finally predicts she is moving, yet only 
through an adjacent lane to the test vehicle. 1.5 seconds before impact she 
is again classified as Other, and all previous trajectories are ‘reset’. She is 
once again deemed to be a static object. At 1.2 seconds before impact she 
is reclassified for a final time, now as a Bicycle, with the ADS predicting she 
is in the direct path of the test vehicle. Now too late to safely execute an 
emergency avoidance strategy, the ADS initiates ‘action suppression’ 
designed merely to mitigate the effects of an impact. 0.2 seconds before 
Herzberg is hit, action suppression ends and the system issues an auditory 
warning. 0.02 seconds before impact, the vehicle operator (VO), Rafael 
Vasquez, takes control of the steering wheel; now powerless to prevent the 
fatal crash. (Hind, 2022, pp. 66–67)

Perhaps the most consequential part of the account above is that ‘1.5 
seconds before impact [Herzberg] is again classified as Other, and all pre-
vious trajectories are “reset”’ (Hind, 2022, p. 67). Thus, instead of the 
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ADS being able to incorporate what the NTSB report called user ‘track-
ing histories’—memory of the previous categorizations the ADS has 
made for the road user—into its calculations, each new categorization (as 
Vehicle, as Bicycle, as Other) generates an entirely new ‘path trajectory’ for 
the road user.

The significance of this is two-fold. Firstly, that the calculation of these 
path trajectories or ‘predictions’ constitutes the generation of what 
Waymo refers to as ‘what if ’ scenarios, that is possible future states of, and 
interactions between, an autonomous vehicle and other road users. It is 
through the simulation of these ‘what if ’ scenarios that the making of 
decisions is only ever deferred. But secondly, that in Uber ATG’s failure 
to design a system capable of incorporating user tracking histories, con-
sequently leading to the death of a pedestrian, they also severely dented 
wider public confidence in the safety of autonomous vehicles, both in the 
US and across the globe. The result was a concerted attempt by Waymo 
(amongst others) to begin to demonstrate the safety of their own autono-
mous vehicles. In order to do so with full control over such a demonstra-
tion, Waymo turned to the world of computer simulation.

�Simulation and the Management 
of Operations

The world of computer simulations can reasonably be said to have 
emerged through the discipline of operational research (OR), closely 
connected to cybernetics. OR, put simply, was the realization and deploy-
ment of cybernetic thinking within an operational context. As the Journal 
of the Operational Research Society (JORS) suggests, real-world applica-
tions of OR incorporate a whole breadth of areas of business and govern-
ment, from forecasting and inventory management to project management 
and scheduling (JORS, 2022). The specific environments in which OR is 
typically used include energy, finance, manufacturing, and transportation 
(JORS, 2022). The specific technical approaches that are ordinarily 
grouped under the OR umbrella include ‘decision support systems, 
expert systems, heuristics, networks, mathematical programming, 
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multicriteria decision methods, problems structuring methods, queues, 
and simulation’ (JORS, 2022, p. n.p.). In short, that OR is in part con-
cerned with the development of both (a) computer simulations and (b) 
systems for supporting decision-making processes.

It is this antecedent work within OR, operationalizing simulation pro-
gramming from the 1950s onwards, that can be brought to bear on con-
temporary simulation work carried out by Waymo. Using the first 
electronic stored-programme computers in the world, such as early mod-
els made by Ferranti, OR practitioners became simulation pioneers, 
developing prototypes for subsequent kinds of simulations beyond these 
original settings. This simulation work sought to offer an abstracted, 
exhaustive, environment in which different operational scenarios could 
be modelled and played out, designing many of the principles to be fol-
lowed later by the likes of Waymo in simulating, and predicting, the 
paths taken by road users within a particular driving environment. What 
I want to argue here is that Waymo uses simulations to actively manage 
reactions and responses to their test operations, in ways that are some-
what, but not entirely, novel.

The original context for this early computerized simulation work was 
United Steel, a steelmaking company based in South Yorkshire, UK, that 
later became nationalized as British Steel Corporation in 1967. Ten years 
prior, in 1957, United Steel set up the Department of Operational 
Research and Cybernetics, arguably the first company department dedi-
cated to cybernetics and OR in the world. Based at ‘Cybor House’ (stand-
ing for CYBernetics and Operational Research) in Sheffield, an 
interdisciplinary team of researchers, including ‘three psychologists, an 
anthropologist, two zoologists, a philosopher and a classicist – as well as 
the range of scientific disciplines more normally (now) associated with an 
Operational Research department’ (Hollocks, 2006, p.  19), began to 
explore the possibilities of applying new computational techniques to the 
steelmaking process. The new department was set up by Stafford Beer, 
who had convinced a hard-headed steelmaking firm to form a computa-
tional research and development (R&D) unit, composed of mysti-
cal minds.

In order to perform this experimental work, the unit acquired a 50% 
share in a Pegasus II computer, made by Manchester-based Ferranti, 
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ordered by the University of Sheffield (Hollocks, 2006). As Hollocks 
(2006) and Disley (1997) attest to, one of the most successful projects 
devised by the unit at Cybor House was a so-called General Simulation 
Program (GSP), designed to simulate every part of United Steel’s steel-
making process across sites in South Yorkshire and Lincolnshire. As 
Hollocks recounts, the General Manager of the Appleby Frodingham 
Works in the Lincolnshire town of Scunthorpe, George Elliott, in his 
own book, Practical Ironmaking (Elliot & Bond, 1959), had commented 
that ‘in spite of the fashionable worship of such things as Operational 
Research, Automation, Cybernetics and the other catch words which be-
devil industry, it is believed that the iron-works will be one of the last 
places where the practical man will be king’ (quoted in Hollocks, 2006, 
p. 20). In other words, that despite managing to convince United Steel’s 
senior management to fund Cybor House, many in the steelmaking 
industry were far from convinced that such computational research 
would be of actual, operational value.

Yet fairly quickly, United Steel became dependent upon the work of 
Cybor House and, specifically, the role of GSP in modelling United 
Steel’s different steelmaking plants. In the first instance, the development 
of GSP required the establishment of an operational ontology to refer to 
different parts of the steelmaking process. As the first version of the hand-
book supposed, GSP was designed to simulate ‘events’ where ‘there was a 
discrete change of activity’ (Tocher et al., 1959, p. 6) within the steelmak-
ing process. Generating these events, comprised of discrete changes of 
activity, were a ‘collection of machines’ each ‘capable of taking one of a set 
of clearly defined states’ (Tocher et al., 1959, p. 6). Each ‘cycle’ within the 
steelmaking process (e.g. the Bessemer cycle, casting pit cycle) thus com-
prises activities that are time-dependent (e.g. the pouring of molten steel) 
and a selection of ‘stores’ (e.g. casts) without a temporal dimension. 
Activities, in the words of the GSP handbook authors, were thus simply 
just ‘groups of machines in certain specified states’ (Tocher et al., 1959, 
p. 7). Connecting each stage of this overall process together, of course, 
was a sustained flow of metal, starting with the blast furnace iron and 
finishing with steel ingots (see Fig. 5.1). Put together, machines, events, 
activities, states, cycles, stores, and flows could be said to comprise the 
entirety of the steelmaking process to be modelled and thus simulated.
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Fig. 5.1  A simplified flow diagram of activities at an Acid Bessemer steel-making 
plant. (Source: Tocher, 1960)
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This operational ontology can be understood as an example of what 
Phil Agre later calls ‘grammars of action’ (Agre, 1994). In other words, 
that the researchers at Cybor House were engaged in ‘the practice of con-
structing systematic representations of organizational activities’ (Agre, 
1994, p. 108). As Agre intimates, efforts to map such activities were not 
necessarily new to the computer age but were clear descendants of time 
and motion studies devised for industrial purposes at the beginning of 
the twentieth century (McKinlay & Wilson, 2012). Despite, or really 
because of, this lineage, the computer became the ideal technology for 
employing ‘formal “languages” for representing human activities’ (Agre, 
1994, p. 108), such as the manufacture of steel. Establishing a ‘grammar’ 
of activities consisting of ‘minimum replicable units’ (Agre, 1994, 
p. 108)—say events, states, stores, and flows—would thus help to con-
struct such systematic representations. With or without computers, such 
work would help ‘bring to management’s notice’ any outstanding ‘redun-
dancies [or] other inefficient patterns of activity’ (Agre, 1994, p. 108). 
Yet, specifically with them, managerial decision-making could—in the-
ory, at least—take place with greater speed and efficiency.

It is not the purpose of this section to restate the principles of Agre’s 
(Agre, 1994) ‘capture model’ itself to which Agre argues grammars of 
action typically serve. Nonetheless, it is worth mentioning that the five 
stages of the model (analysis, articulation, imposition, instrumentation, 
and elaboration) can be said to have been readily applied to United Steel 
operations. Moreover, that GSP was principally responsible for enabling 
the ‘normative force’ (Agre, 1994, p. 110) of the operational ontology 
developed by the Cybor House team to map the company’s steelmaking 
operations. Through this initial mapping exercise, otherwise the building 
of a steelmaking ‘ontology’, United Steel managers were able to rational-
ize and streamline the steelmaking process across their many sites and 
steelplant types. In simulating the steelmaking process, United Steel 
managers were better placed to make executive decisions regarding the 
objectives of the firm itself, including decisions to optimize the running 
of the interconnected ‘machines’ within the steelmaking process or install 
new steelplant systems altogether.
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�Path Predictions: Actualizing the Virtual

One fundamental difference between the simulation work at United Steel 
and Waymo is the difference between the modelling of ‘discrete-event’ 
processes and ‘visual-interactive’ approaches (Steinhoff & Hind, 2024). 
Whilst steelmaking takes place in a linear, sequential fashion (albeit with 
interlocking cycles), the movement—and therefore the simulation—of 
an autonomous vehicle must incorporate near-infinite forking paths and 
interactions. Considered as early as the 1930s, this ‘field of safe travel’ any 
vehicle must proceed through ‘consists at any given moment, of the field 
of possible paths which the car may take unimpeded’ (Gibson & Crooks, 
1938, p. 454). As JJ Gibson and Crooks write, ‘we may assume that driv-
ing is a type of locomotion through a “terrain” or field of space’ (Gibson 
& Crooks, 1938, p. 454) and that ‘locomotion is therefore guided chiefly 
by vision’ with ‘this guidance … given in terms of a “path” within the 
visual field of the individual such that obstacles are avoided and the des-
tination ultimately reached’ (Gibson & Crooks, 1938, p. 454). Through 
what amounts to an operational ontology or grammar of action, ‘these 
concepts of terrain, destination, obstacle, collision and path should be 
applicable to any type of locomotion … [including] the operator of an 
automobile’ (Gibson & Crooks, 1938, p. 454, authors’ emphasis).

Central to simulating these forking paths and interactions—pivotal to 
‘all algorithmic arrangements’ (Amoore, 2020, p. 9)—are so-called path 
trajectories or path predictions. In short, algorithmic calculations that 
predict the future state, and location, of objects or road users in a wider 
driving environment. Most autonomous vehicle systems need to generate 
path predictions, and all that do, do so with the assistance of an array of 
sensors. Usually this is some arrangement of high-definition cameras, 
radar, and lidar in order to cover short-, mid-, and long-range distances 
and avoid any blind spots. Once sensor data is captured it tends to be 
processed by a ‘perception’ module in on-board software, which ‘detects 
and tracks individual actors and objects in order to generate estimates of 
their position, orientation, and velocity and register other attributes that 
may inform their future motion’ (Uber ATG, 2020, p. 29). Path predic-
tions usually appear in a ‘prediction’ module, ‘which applies different 
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models of behavior for different actor and object classes’ (Uber ATG, 
2020, p.  29, emphasis added). Quoting again from Uber ATG’s last 
Safety Report in 2020,1 before being sold to Aurora (Korosec, 2020):

The Prediction software considers and presents multiple anticipated motion 
paths for objects — i.e. possibilities of what the tracked ‘object’ might do 
next — to the Motion Planning software, including intents that the system 
predicts may put the actors or objects in the self-driving vehicle’s path, even 
when the self-driving vehicle has the right-of-way. The Prediction system 
seeks to determine the probabilities of multiple future paths for each actor 
in the scene. The Motion Planning system then uses these probabilities to 
effect an appropriate amount of caution in response to less predictable 
actors or objects. The system performs these predictions many times a sec-
ond so as actors change direction or intent the system continually reassesses 
their likely next move. (Uber ATG, 2020, p. 29).

A good example of what these predictions look like visually can be seen 
in work by Christian Pek and colleagues (Pek et al., 2020), on the use of 
formal verification techniques to guarantee the legal safety of autono-
mous vehicles when executing decisions. What is interesting here is how 
they bear a great resemblance to diagrams of the ‘fields of safe travel’ 
drawn by Gibson and Crooks (1938). In both cases, the authors establish 
an operational ontology/grammar of action in order to facilitate a predic-
tion of the future—safe—path of the vehicle (Fig. 5.2).

From an ethical perspective, rather than a strictly technical one, path 
prediction work might be mistaken for the infamous ‘trolley problem’, 
where a ‘consequentialist’ ethics engenders a binary approach to decision-
making (Ganesh, 2017). Proceeding instead in a probabilistic fashion—
where paths are weighted according to possible risk—this work instead 
typifies the ‘ontologically multivalent’ (Ganesh, 2022, p. 194) nature of 
path simulation. Pek et al. (2020) and others work on path predictions 
demonstrate this work in action.

1 A blog post announcing the publication of the report from the Uber ATG Safety Team can be 
found here: https://medium.com/@UberATG/uber-atg-releases-2020-safety-report-575db33f2bd7
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Fig. 5.2  A visual depiction of the ‘field of safe travel’. (Source: Gibson & 
Crooks, 1938)

In the scenario of a ‘jaywalking’ pedestrian (i.e. the same scenario as in 
Tempe, Arizona), the autonomous vehicle is depicted on the left of the 
image, with its own ‘intended’ trajectory projected through a single lane 
from left to right in black. Other road users/objects are present, including 
two trucks (larger blue rectangles), two pedestrians (blue dots) either side 
of the road, and one other (moving) vehicle in the other lane ahead (small 
blue rectangle). In this ‘fail-safe’ approach, predicted paths are calculated, 
generating predicted ‘occupancy sets’, larger areas where the other road 
users might plausibly be over the course of 7.8 seconds. With the high 
level of safety they employ in their modelling—arguably a higher level 
than present in the Uber ATG crash in 2018—any of the users in this 
scenario could end up occupying the corresponding areas in blue.
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In particular, the pedestrian crossing the road (ID 323  in Fig.  5.3) 
could occupy any point within the broad blue area extending from the 
right-hand side: on the pavement, in the same lane as the vehicle, in the 
parallel lane, next to one of the parked trucks, etc. Opting for a fail-safe 
approach, the vehicle can only proceed as far as the red line takes it, 
before encroaching the occupancy set of the jaywalking pedestrian. As 
they aptly remark:

Even though it is illegal for pedestrians to jaywalk [in some countries, i.e. 
USA and Germany], that is, to cross the road in the presence of traffic, 
pedestrians are occasionally inattentive and cross directly in front of pass-
ing vehicles. If the prediction of the autonomous vehicle does not include 
this behaviour, a fatal accident could occur. (Pek et al., 2020, p. 522)

Fig. 5.3  A visual depiction of a path trajectory taking account of a ‘jaywalking’ 
pedestrian. (Source: Pek et al., 2020)
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Thus, path predictions are not only critical to ensuring such incidents 
do not occur but also a particular part of the decision-making process 
through which potentially infinite outputs can be modelled. Here, the 
generation of safe path trajectories is conditional both on the validity of 
sensor data being fed through the operational ‘pipeline’ and the latitude 
with which occupancy sets are generated. Restricting something like the 
future ‘plausibility range’ an ‘errant’ pedestrian might wander into ordi-
narily produces an autonomous vehicle less equipped to deal with more 
unpredictable scenarios or less predictable road users. In other words, 
building an autonomous vehicle for a more rigid social environment, 
where other road users are liable to be seen to ‘err’ from established expec-
tations than in other scenarios or situations. Or, indeed, in situations or 
scenarios populated purely with human drivers, perhaps better equipped 
to deal with ‘errant’ behaviours. In this modelling work, questions of risk 
and safety are necessarily contingent on a range of possible factors from 
vehicle speed to user classification. In the following I will discuss the 
modelling conducted by Waymo and their specific delineation of so-
called contact events.

�Waymo Case: 2019–2020

Contact events are Waymo’s way of referring to accidents involving their 
autonomous vehicles, using a standard severity scale derived from the 
ISO on road vehicle safety (ISO 26262).2 The term itself engenders a 
discursive shift away from directly attributing blame, liability, and respon-
sibility, as well as immediately negative connotations associated with 
terms like crash, accident, and collision. In using the term contact event, 
Waymo already establishes a certain neutrality of relations between its 
vehicles and other affected parties. Used akin to something in particle 
physics, ‘contact’ between Waymo vehicles and other road users only 
seems to occur if two directionless, motivation-less, objects happen to 
come together.

2 From S0, ‘no injury expected’, to S3, ‘possible critical injuries expected’.
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Waymo divides these contact events into further categories: whether 
constituting ‘single vehicle events’ (i.e. the Waymo vehicle only) or ‘mul-
tiple vehicle events’ (i.e. involving the Waymo vehicle and other non-
Waymo vehicles). Different types of collision are also recorded, from 
those related to single vehicle events such as involving a ‘road departure’ 
(i.e. the Waymo vehicle leaves the road altogether), ‘striking a pedestrian/
cyclist’ or being ‘struck by pedestrian/cyclist’. Five different contact events 
are listed for multiple vehicle incidents including ‘reversing’ incidents, 
‘sideswipes’, ‘head-on and opposite direction sideswipes’, ‘read end’ inci-
dents (where another vehicle hits the back of the Waymo vehicle), and 
‘angled’ incidents (e.g. if another vehicle hits the Waymo vehicle coming 
out of a side street, etc.) (Schwall et al., 2020). As Taina Bucher considers, 
categorization work functions as a ‘powerful mechanism’, not only ‘in 
making data algorithm-ready’ (Bucher, 2018, p. 5) but consequently in 
making engineers, and other interested parties, ready and able to inter-
pret the actions of autonomous agents.

In the first ever public report on incidents involving Waymo vehicles, 
over 21 months from 2019 and the first nine months of 2020, 47 contact 
events were recorded (Schwall et al., 2020). Most were multiple vehicle 
events, according to Waymo’s classification, with the majority involving 
other vehicles either sideswiping the principle Waymo vehicle or hitting 
one from behind. However, in the events documented in the report, only 
18 of these 47 contact events actually happened. A subsequent 29 were 
simulated contact events that Waymo believes would have happened if a 
human operator did not assume control at the time. Out of these 29 
simulated events, 9 were sideswipes and 14 were angled incidents. No 
incidents at levels S2 or S3, the most critical levels on the severity scale 
were recorded, either actually or simulated, and a majority (30/47) were 
at level S0, that is that ‘no injury [was] expected’ (Fig. 5.4).

�Counterfactuals as Demonstration Devices

The distinction between actual and simulated contact events is signifi-
cant. The latter are the result of what Waymo researchers refer to as ‘coun-
terfactual (“what if ”) simulations’ (Schwall et al., 2020, p. 1). It is not a 
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Fig. 5.4  Classification of Waymo-involved collisions. (Source: Schwall et al., 2020)

method they suggest is the norm within autonomous vehicle testing but 
contend is a method ‘increasingly used’ (Schwall et al., 2020, p. 2) within 
this context, in order to ‘provide an opportunity to study what would 
likely have occurred in a specific scenario had the Waymo Driver [i.e. the 
vehicle] remained engaged’ (Schwall et al., 2020, p. 2).

Generating these ‘what if ’ scenarios, according to Waymo, is ‘signifi-
cantly more realistic’ (Hawkins, 2020, p. n.p.) than wholly ‘synthetic’ 
alternatives (i.e. those software-generated without a real-world trigger), 
and of course bear none of the immediate danger of actual crashes. 
Consequently, they are designed to constitute a central safety feature of 
Waymo’s autonomous vehicle testing programme.

Simulating, classifying, and publicizing these contact events are an 
attempt to demonstrate the safety of Waymo’s autonomous vehicle opera-
tions. In their own words, they write that ‘[t]he goal of this transparency 
is to contribute to broad learning with the industry, policymakers, and the 
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public; promote awareness and discussions; and foster greater public con-
fidence in automated vehicles’ (Schwall et  al., 2020, p.  11, emphasis 
added). The demonstration of the functionality of a specific technology 
here is nothing new, with a long history in modern science and technol-
ogy, from air pumps (Shapin & Schaffer, 1985) to vaccines (Latour, 
1988) to AI (Hong, 2022).

A large part of the need for such demonstration work is because of the 
contingency of the operations being simulated. Here, the operational 
ontology required for the simulation of the (open) path of a vehicle dif-
fers from the (closed) flow of molten blast furnace iron. Whilst there may 
be comparable direct risk to both operators (of autonomous vehicles and 
steel plants) in terms of operational inefficiencies or poor executive 
decision-making, only Waymo must publicly demonstrate the safety of 
their operations—hence the work being justified by appointed Waymo 
engineers.

The staging of contact events entails what Noortje Marres (2020, p. 8) 
has referred to as a ‘distinctive mode of publicity’ in which ‘contingent 
and contextual occurrences and encounters’ are deployed to reassure 
interested parties not simply that autonomous vehicles are nominally safe 
but that they are safer than the autonomous vehicles elsewhere—like those 
scrutinized in the NTSB report into the Uber ATG crash in March 2018. 
As Aradau and Blanke (2021, p. 2) help us to understand, contact events 
as particular kinds of automotive mistakes or errors are ‘not limited to 
laboratories or scientists’ debates, but [are] invoked in arguments that 
shape public debates’, in this case about the safety of autonomous vehi-
cles. The collection of this data and the running of counterfactual calcu-
lations can be considered a response by Waymo to the reputational 
damage done by Uber ATG in the year previous: data documented in the 
report begins on January 1, 2019, 11 months after the crash. Hence, one 
can consider this work as a re-staging or a re-situating of the public debate 
around the safety of autonomous vehicles.

In the released data, there are no incidents that either appear in more 
severe categories (involving possible critical injuries or death—as in the 
Uber ATG case) nor are there any recorded contact events involving the 
Waymo vehicle striking a pedestrian or cyclist (again, as in the Uber ATG 
case). This, I contend, is not coincidental but the result of Waymo 
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responding very specifically to the public debate that emerged in the 
aftermath of the 2018 crash, and the specific fear that pedestrians and/or 
cyclists would be most at risk from autonomous vehicles. Tellingly, the 
Waymo data suggests that other human drivers are the greatest such risk, 
with Waymo’s stated mission being ‘to reduce traffic injuries and fatali-
ties’ as well as ‘improve mobility for all’ (Schwall et al., 2020, p. 1).

Waymo’s addition of ‘human crash statistics’ to their own contact 
event data offers a favourable comparison between the (safer) Waymo 
Driver and other (more dangerous) human drivers. For instance, in how 
the registering of zero contact events in the two first categories of single 
vehicle events (‘road departure’ and ‘striking a pedestrian/cyclist’) are said 
to ‘combine to contribute approximately 60% of all human-driven fatal 
collisions on sub 45mph urban roadways both nationally and within the 
Maricopa County, Arizona, where Waymo’s ODD [operational design 
domain] is located’ (Schwall et al., 2020, p. 6) (Fig. 5.5).

These different elements are representative of what Gregg Culver 
(2018, p. 145) has called the ‘profound escapism’ that autonomous vehi-
cles will ‘usher in an era of fatality-free automobility’. In contrast to this 
chimera of the ‘fatality-free automobile’, Culver frames cars (autonomous 

Fig. 5.5  Actual and simulated contact events involving pedestrians or cyclists. 
(Source: Schwall et al., 2020)
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or otherwise) as offering forms of ‘vehicular violence’ (Culver, 2018, 
p. 149):

In the calculus of mobility violence, vulnerable users and motorists present 
strikingly different packages of threats and vulnerabilities, such that a col-
lision between a motorist and a vulnerable road user can often mean death 
to the latter while leaving the former physically unharmed. (Culver, 
2018, p. 149)

‘Unpredictable’ pedestrians figure so prominently in autonomous 
vehicle research because they literally stand in the way of autonomous 
vehicle success and the fantasy of ‘fatality-free automobility’.

On an operational level, the generation of these simulated ‘what if ’ 
events is a way of learning through the kinds of failures in which likely 
errors are anticipated, extrapolated from current states, averted, and sub-
sequently continued within a virtual environment. As Aradau and Blanke 
(2021, p. 1) write: errors are ‘now inherent to vernacular modes of knowl-
edge and mundane practices of human-machine interaction’. The simula-
tions involve a number of stages after the ‘sliding doors’ moment between 
the actual trajectory not taken by the Waymo Driver after the point at 
which a human operator is alerted (and the Waymo Driver ‘dis-engages’) 
and the simulated trajectory (or ‘post-disengagement simulation’ [Schwall 
et al., 2020, p. 3]) subsequently generated.

I understand these events as ‘quasi-virtual’ because of their real-world 
triggers, using actually existing agents. In this, they perhaps complicate 
the discussion Marres (2020, p. 5) has regarding Karin Knorr-Cetina’s 
(2009) idea of ‘synthetic situations’. As Schwall et al. (2020, p. 2, empha-
sis added) write: ‘[c]ounterfactual disengagement simulations can be sig-
nificantly more realistic than simulations that are created entirely 
synthetically because they use the actual behavior of the autonomous 
vehicle and other agents up to the point of disengagement’. In this, ‘actual 
behaviour’ is used as a baseline or a ‘data ground truth’ (Amoore, 2020, 
p.  137), for counterfactual calculation. While Schwall et  al. (2020) 
understand synthetic as ‘non-actual’, Knorr-Cetina (2009, p.  66) 
considers it as a kind of augmented, mediated, reality enabled by ‘scopic’ 
systems (Knorr-Cetina, 2009, p. 64).
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Here a difference may rest on the idea of ‘entire’ synthesis, as opposed 
to ‘partial’ synthesis. Understanding them as quasi-virtual avoids such a 
complication altogether, drawing instead on the Deleuzian notion of vir-
tuality as a trajectory or path towards actualization (Deleuze, 1981; 
Shields, 2002). Sprenger (2020), in a similar vein, considers such work as 
dependent on generating ‘virtual probabilities’ (Sprenger, 2020, p. 619), 
as the ‘microdecisions that underpin autonomous technologies are both 
an element and effect of the … virtualization of an environment into 
probabilistic models’ (Sprenger, 2020, p. 621).

Generating these simulations requires a number of sequential steps. 
The first involves simulating vehicle motion (offline, on the same software 
as present in-vehicle) in which the vehicle’s ‘pre-disengage position, atti-
tude, velocity, and acceleration along with the autonomous vehicle’s 
recorded sensor observations’ (Schwall et al., 2020, p. 3) are used. For the 
data used in the report itself, these simulations were carried out on a 
2019 version of the software, rather than any current version (avoiding, 
therefore, using a version that had already benefited from learning from 
these incidents in the first place).

After this motion data is simulated, ‘a check is performed to determine 
if the simulated positions of the autonomous vehicle overlap at any point 
with the recorded positions of other agents’ (Schwall et al., 2020, p. 4). 
In effect, Waymo is implementing a version of occupancy calculations 
detailed by Pek et al. (2020), ensuring that the simulated scenario would 
not have resulted in a ‘potential collision’ (Schwall et  al., 2020, p. 4). 
Although, again, ‘potential’ is important to highlight here because of the 
various possible path trajectories and positions these other simulated 
agents might have taken, and been in. What is interesting here is that 
Waymo uses a jaywalking scenario to illustrate this process (akin to the 
Uber ATG crash, and just like Pek et al., 2020 discuss). In their vulner-
ability, jaywalkers are decidedly powerful.

At this point the question of modelling other users becomes impor-
tant, because of how ‘the counterfactual behaviour of the autonomous 
vehicle may have elicited a different response from other nearby road-
way users’ (Schwall et al., 2020, p. 4). As the authors write, the model-
ling of other user responses is difficult, not least because of the range of 
possible responses (and reaction times) drivers have to specific stimuli, 
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such as a vehicle pulling out of a junction. To deal with this difficulty 
the authors have resorted to simplicity: ‘the results reported in this paper 
are based on deterministic models that generate a single response to a 
given input’ (Schwall et al., 2020, p. 4). That is, they forgo what they 
call ‘probabilistic counterfactual outcomes’ (Schwall et al., 2020, p. 4) 
that better account for the range of reactions, because of the complexity 
of doing so. This narrowing naturally constrains the number of possible 
contact events that can be generated from any one input, ensuring the 
Waymo Driver appears safer than it might be. This  ‘decisional deter-
minism’ (Sprenger, 2021, p. 170) limits the range of possible outcomes, 
considered more favourable than any approach that generates multiple, 
possible results. The more possible outcomes, the greater possible risk 
for Waymo.

�Waymo Case: 2020–2023

Three years later, after a purported one million miles of ‘rider-only’ (RO) 
operations, Waymo released another safety update (Victor et al., 2023). 
Twenty contact events were recorded across a period from September 
2020—the final month covered in the first release—to January 2023, the 
month in which the company hit their one million milestone of ‘rider-
only’ (autonomous) operations (Fig.  5.6). The data is derived from 
Waymo’s two operational areas (Phoenix, Arizona, and San Francisco) 
and two operational platforms (Chrysler Pacifica and Jaguar I-Pace) 
(Victor et al., 2023).

The report does not detail any counterfactual simulation work under-
taken during this period—unlike in the original. As a result, all 20 con-
tact events are actual incidents that occurred. The yearly breakdown of 
these actual contact events is: 1 in 2020 (September to December, only), 
6  in 2021, 11  in 2022, and 2  in 2023 (January only). Twelve contact 
events involved the fourth generation of Waymo vehicles operating in 
Phoenix, six involved the fifth generation in Phoenix, and two involved 
the fifth generation of Waymo vehicles operating in San Francisco (Victor 
et al., 2023).
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Fig. 5.6  An infographic of Waymo reaching one million ‘rider-only’ miles. 
(Source: Waymo., 2023)

Using a calculation of injury risk referred to as the probability of maxi-
mum Abbreviated Injury Scale of 2 or greater (p(MAIS2+)), the contact 
events are assessed for their severity. As the report suggests, ‘examples of 
AIS2 level injuries are concussions with no or brief loss of conscience, 
fractures to the sternum, and 2 or few rib fractures’ (Victor et al., 2023, 
p. 8). Thus, the p(MAIS2+) percentage likelihood for each contact event 
represents the chance of each incident resulting in such injuries to occu-
pants within the vehicle. Only one such incident recorded a figure above 
2%—the first contact event recorded in September 2020 in Phoenix. A 
further eight contact events recorded a figure between 1% and 2%, and a 
final 11 contact events were between 0% and 1%. Much like other aspects 
of the new report, as I will detail below, the inclusion of this injury scale 
can be considered an enhancement of efforts in the 2020 report (Schwall 
et al., 2020) to classify collisions according to an approved ISO severity 
scale (ISO 26262), used by the US National Highway Traffic Safety 
Administration (NHTSA).
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�Categorizing Conflicts, Apportioning Blame

Contact event risk is strictly based on a calculation of possibility of inju-
ries to vehicle occupants. Arguably, this is not the aspect of such opera-
tions that is particularly in dispute. Indeed, the automotive industry at 
large—precisely the argument here—largely has no problem with maxi-
mizing the safety of the occupants of their own vehicles. The problem—
one raised in both the Uber ATG case and the case of Cruise in San 
Francisco (see Chap. 8)—is that the minimal risk likelihood is not, and 
indeed never, extended to other, ordinarily more vulnerable, road users.

This is arguably another example of autonomous vehicle firms such as 
Waymo attempting, and failing, to demonstrate their vehicles bear the 
weight of their own decision-making.

The question that must also be asked—in lieu of mention of any simu-
lated contact events—is whether the idea of the deferral of decision-
making (the ‘non-decision’) is still applicable. As I detailed previously, the 
deferral of decision-making is about suspending and ultimately desiring to 
manage the otherwise doubtful meaning of the autonomous vehicle crash. 
The generation of simulated contact events (and the subsequent report-
ing of such) is one technique—but not the only technique—for doing so. 
Here this discursive management work might involve different tech-
niques to achieve these end discursive goals, in which the meaning of 
such crash events is managed, suspended, and deferred. Indeed that, 
principally, the work being undertaken here is concerned namely with 
demonstrating the safety of particular, different kinds of autonomous 
vehicles, in different settings, under different conditions.

One of the additional ways in which this work is carried out, or at least 
reported on, in the 2023 report, is the development of what the authors 
refer to as a ‘conflict typology’ (Victor et al., 2023). Building on their 
2020 effort, Waymo now details 16 such conflict ‘types’, where a conflict 
typology ‘describes the conflict partners, role (initiator or responder), and 
perspectives of each actor involved in a conflict’ (Victor et  al., 2023, 
p. 28). In this, ‘conflict’ can be understood as the underlying basis for 
possible, future contact events, with any such actual contact event able to 
be categorized according to 1 of these 16 conflict types. Each conflict 
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type therefore concerns the state and trajectory of either the principle 
(‘ego’) vehicle in any given situation and/or other implicated road users 
such as pedestrians (Fig. 5.7).

These include previously defined types like ‘Single Vehicle (SV)’, now 
described as ‘all actions (or lack thereof ) where the ego vehicle is traveling 
in a trafficway’ subsequently experiencing ‘an in-trafficway interaction 
without a conflict partner (e.g. a rollover event) or an off-trafficway inter-
action (e.g. a road departure)’ (Victor et al., 2023, p. 28), and ‘Intersection 
Turn Into Path (ITIP)’ (previously only referred to as an ‘angled’ colli-
sion), involving ‘interactions that occur as a result of one of the actors 

Fig. 5.7  Waymo’s ‘conflict typology’. (Source: Victor et al., 2023)
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moving on to a trafficway via a turning maneuver into the path of another 
actor that is operating in the trafficway being turned into’ (Victor et al., 
2023, p. 28). In these and all other cases, there are varying degrees of 
action, interaction, and lack of action involved that variously implicate 
both the ego vehicle and other road users.

What this typology of ‘conflict groups’ serves to do is to construct a 
comprehensive operational ontology or grammar of action (Agre, 1994) 
through which path trajectories can be simulated. Whilst Waymo docu-
mented their conflict classification work in the 2020 report (Schwall 
et al., 2020), this was clearly a less sophisticated effort, with fewer conflict 
categories, and no accompanying typological figures. In developing this 
more sophisticated grammar, Waymo seeks to suspend and manage the 
outcome of both real and synthetic contact events, offering justifiable, 
plausible, arguments for why other vehicles—rather than the Waymo 
vehicle—were to blame for each such event.

The Waymo engineers subsequently discuss patterns of contact events 
discoverable in the data. Whilst these are not mutually exclusive, as they 
suggest, four conflict groups were found to be more common than the 
others: (Other Agent) Backing (BACK), Front to Rear (F2R), Contact 
with Objects in the Roadway (SV), and Opposite Direction Lateral 
Incursion (ODLI).

Other Agent Backing involves other vehicles backing into, or hitting, 
a Waymo vehicle. Eight out of twenty contact events in the data pertain 
to this conflict group, where ‘in all backing contacts the Waymo vehicle 
was stationary at the time of impact’ (Victor et al., 2023, p. 14). In these 
cases, it’s inferred that the other drivers were responsible for the accident 
rather than the Waymo vehicle. In Front to Rear incidents, other vehicles 
were responsible for striking the Waymo vehicle from behind. Six contact 
events were considered F2R incidents, with the Waymo vehicle in each 
case ‘either stationary or moving slowly at the time of impact’ (Victor 
et  al., 2023, p.  14). Once again, it’s assumed the Waymo vehicle was 
blameless.

Interestingly, a further five incidents involved the Waymo vehicle hit-
ting an object. All these incidents were regarded by Waymo as involving 
only ‘non-fixed objects with low mass’ (Victor et al., 2023, p. 14), includ-
ing ‘a construction pylon, shopping cart, swinging gate, plastic folding 
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sign, and an unoccupied miniature motorcycle’ (Victor et  al., 2023, 
p. 14). This rather humorous assortment of items comprises some of the 
items in the infinite ‘prop stash’ (Hind, 2019, p. 412) such vehicles have 
had—but rarely been able—to contend with, as other chapters consider.

Whilst the final common category, Opposite Direction Lateral 
Incursion, might be considered serious—essentially when another road 
user crashes into the vehicle from the opposite direction—this particular 
incident only involved a garbage truck driven at low speed. Occurring 
whilst ‘negotiating a narrow passageway’ (Victor et al., 2023, p. 15), the 
report makes explicit that despite being in the ODLI category, it bears 
little resemblance to ‘common … police-reported collisions that feature 
drivers drifting over the lane line while travelling at speed’ (Victor et al., 
2023, p. 15).

Waymo has gone to great lengths to apportion blame to all other road 
users for the noted contact events. The desired effect is to convey to the 
public that Waymo vehicles are safe, responsible, and never the cause of 
ordinary road accidents. By comparison, as the data is designed to dem-
onstrate, human road users are ordinarily to blame for a suite of inci-
dents, from harmless bumps to airbag-deployed crashes. The data is also 
designed to show a broad direction of travel, from the 4% p(MAIS2+) 
registered in the first incident in September 2020 to the 0% p(MAIS2+) 
figure in the last incident in February 2023.

How might we summarize these insights? Put simply: only other peo-
ple, and other objects, are to blame. Whilst Waymo seems to understand 
this as a way to make everyone (and everything) else responsible for inci-
dents their vehicles are involved in, it also reveals a fundamental truth of 
autonomous vehicles: the struggle to deal with the ‘swarming social real-
ity’ (Hind, 2019, p. 412) of the road is real. The detailed typology of 
conflict types is intended to aid in the practical analysis of such incidents, 
enabling a more precise model for apportioning responsibility, of manag-
ing the response to contact events that have happened. The unintended 
effect of such is to offer even more granular understandings of how 
unprepared Waymo vehicles are for navigating complex environments—
from passenger vehicles backing out of parking spots, to non-fixed, low 
mass objects like swinging gates and unoccupied miniature motorcycles. 
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That most of the contact events are not ‘serious’ on any industry-approved 
scale, does not absolve Waymo of responsibility.

On the contrary, it only offers a greater truth: Waymo vehicles, as 
understood through the public release of such data, are unable to cope 
with the everydayness of everyday environments—the normal interac-
tions usually encountered by normal drivers in normal situations. Yet, a 
large part of the reason why none of these incidents are deemed serious 
or complex, is that as seen before, Waymo operators take control before 
such incidents occur, seeking to subsequently model them in software 
instead. Waymo vehicles have not been involved in serious incidents 
because Waymo operators prevent them from happening in the first 
place. What remains are the background bumps and scrapes of everyday 
interactions.

Yet, through this insistent categorization of actual contact events, 
Waymo is unable, or unwilling, to apportion any type of blame to their 
own vehicles. Not a single (minor) contact event in the 20 documented 
incidents is understood by Waymo to have been caused by one of their 
vehicles. In a world where bumps and scrapes are normal, responsibility 
and blame are usually offered around, divided up amongst road users and 
the universe at large. Yet, in Waymo’s world, Waymo is never to blame.

�Deferred Decisions

To further understand the significance of this demonstration work, I 
want to draw both on Louise Amoore’s idea of the ‘weight of algorithms’ 
(Amoore, 2020, p. 163) and her concept of ‘algorithmic doubt’ (Amoore, 
2020, p.  147). Regarding algorithmic ‘weight’—that algorithmic deci-
sions must bear the weight, or burden, of what is being decided—it seems 
sensible to suggest that Uber ATG’s software did not or could not bear 
such weight, discounting and devaluing other road users such as Herzberg 
(remember she was classified in a category literally referred to as ‘Other’). 
Pek et al. (2020) specifically attempt to find a fail-safe standard so deci-
sions made by autonomous vehicles do indeed bear the weight of the 
decisions they make.

  S. Hind



151

Waymo—in releasing the data on contact events—is attempting to 
demonstrate how its own vehicles bear the weight of the decisions it makes 
in multiple ways: through use of a standardized injury severity scale, 
through the granular categorization of different types of contact events, 
through the narrative description of common conflict groups, and most 
significantly, through the calculation of counterfactual simulations. In 
this, Waymo talk of ‘putting different weights on collisions’ (Victor et al., 
2023, p. 10), in order to ‘encourage the reader to consider the nature of 
each event and the contributions each party made to that event’ (Victor 
et al., 2023, p. 10). As I’ve argued above, however, this weight is never in 
fact borne on Waymo themselves.

On the notion of algorithmic ‘doubt’ I want to diverge a little from 
Amoore’s argument in which she suggests, in reference to machine learn-
ing, that ‘at the instant of the actualization of an output signal, the mul-
tiplicity of potentials is rendered as one, and the moment of decision is 
placed beyond doubt’ (Amoore, 2020, p.  137). While she goes on to 
discuss how ‘doubt’ is or isn’t incorporated into ML processes—she says 
that decisions regarding whether an entity is or isn’t a cat simply ‘embod-
ies the truth telling of … ground truth data of what a cat can be’ (Amoore, 
2020, p. 137) rather than in any factual sense what a cat is—I want to 
return to the question of actualization. In the way Amoore considers it, 
the moment of the decision is the point at which all contingencies stop, 
and the ‘vast multiplicity of possible pathways’ (Amoore, 2020, p. 137) is 
narrowed down to, and consolidated into, a ‘single output’ (Amoore, 
2020, p. 137). But as I’ve hopefully drawn out from this chapter, this 
narrowing of possible paths doesn’t really stop there. There is of course 
still a discrete, decision-made moment, but rather than drawing a close to 
proceedings it merely opens up another vast set of possible paths, the 
‘sliding doors’ moment, or what Erin McElroy (2021, p. n.p.) refers to as 
the ‘flourishing’ of algorithmic trees and ‘forging’ of multiple branching 
points, that yields the possibility for a host of simulated contact events to 
be, or not be, generated—even with the use of the deterministic models 
I’ve just referred to.

I understand these decisions as deferred decisions in which the out-
come of these decisions is not—and never—finalized but always already 
forms the possible starting point for subsequent simulations, being 
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pushed along a chain of calculations. As Sprenger (2021, p. 165) has sug-
gested, in relation to autonomous vehicles: ‘a decision is never absolute – 
it always implies an alternative’. However, here such deferred decisions 
can still be distinguished from confirmatory decisions or decisions as rec-
ommendations more typical in situations where the results of an algorith-
mic decision are presented to a human, say, a border officer or local 
government employee. Whilst the making of decisions might imply 
openness, options, and available choices, it is clear in the case of confir-
matory decisions, there is a considerable lack of choice or at least a sub-
stantial weighting to desired, ‘recommended’ decisions supported by 
black-boxed algorithmic calculations. What Sprenger (2021, p.  170) 
refers to as a ‘decisional determinism’ is variously, and unequally, at play 
across these instances.

In the Waymo case, these simulations are brought to bear again on the 
software itself. The endlessly deferred ‘non-decisive decisions’ that charac-
terize the counterfactual simulations—perhaps, non-decisions—simply 
serve to defer their own meaning if not execution, per se. Not only are 
they simulated, that is that they didn’t happen, but they only ever serve as 
inputs for future decisions. In the case of the rider-only operations data, 
rather than being deferred per se, Waymo decides to place the decision-
making of their own vehicles beyond doubt, even if decidedly doubtful. 
Here, doubt serves as a manageable, tangible object thrown about by 
Waymo in order to apportion blame. Accordingly, the Waymo vehicle is 
portrayed as a hapless victim, subject to the mistakes and errors of fallible 
decision-makers all around them.

In this, doubt is always ‘suspended’ or carried with the data, with the 
decision never, ultimately, being made. As Amoore (2020, p. 139) writes 
in regard to a neural network algorithm, they are doubtful ‘not only in 
the sense that it supplies a contingent probability for an absolute deci-
sion, but moreover that it actively generates thresholds of normality and 
abnormality’. Here, in contrast, both computational process and decision 
are weighted and balanced, with doubt carried along both, rather than 
allayed. In short, it is through the simulation and classification of contact 
events Waymo is able to suspend, and importantly to manage, their 
(doubtful) meaning, marshalling the way in which Waymo vehicles are 
considered safe and careful users of the road. Arguably, this management 
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of meaning through the calculation of counterfactuals can be considered 
as an example of Enlightenment thinking, in which an unknown phe-
nomenon is mastered, ‘not so much by eliminating it but by controlling 
it’ (Bates, 2002, p. 10 quoted in Aradau & Blanke, 2021, p. 4, authors’ 
emphasis). This demonstrates, thusly, the role counterfactuals play in 
managing the perception of autonomous vehicles in the public realm; 
one of many ‘problematizations of error’ (Aradau & Blanke, 2021, p. 2) 
that now circulate in relation to machine learning and autonomous 
systems.

�Conclusion

In Waymo’s world, Waymo is never to blame. In this chapter I have con-
sidered how Waymo uses a series of techniques, built around computer 
simulations, to manage possible, and actual, crashes involving their own 
autonomous vehicles. Through an analysis of two public reports released 
by Waymo in 2020 and 2023, derived from autonomous vehicle data, I 
have argued that Waymo seeks to suspend or defer the meaning of these 
crashes, euphemistically referred to as ‘contact events’. In the first instance, 
Waymo used computer simulations to model what might have happened 
after a human operator takes control during a test drive, where a contact 
event was imminent. In modelling the outcomes Waymo is ultimately 
able to control what might have happened, avoiding both actual harm to 
road users and reputational harm to the company. By establishing a nar-
rower set of parameters in such simulations, Waymo is able to limit the 
range of outcomes deemed possible.

In the second instance, Waymo has developed a comprehensive set of 
categories to classify actual contact events involving their autonomous 
vehicles during so-called rider-only operations. By classifying each event 
according to an exhaustive typology of ‘conflict groups’, coupled with 
assigning industry-standard injury scores to each incident, Waymo seeks 
to apportion blame away from Waymo onto other road users and objects. 
In short, once again, to manage the meaning of crashes or incidents their 
vehicles have been involved in.
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In releasing these reports, I understand Waymo as attempting to dem-
onstrate that their autonomous vehicles are not only safe but bear the 
‘weight’ of their own decision-making (Amoore, 2020). Yet, through this 
simulation and classification work, I argue that Waymo instead generates 
deferred decisions—non-decisive decisions that simply serve to defer their 
own outcomes. In so doing, they defer the meaning that such decisions 
are ultimately designed to hold, using algorithmic doubt as a tool with 
which to apportion blame away from Waymo, away from their vehicles, 
and onto anyone—or anything—else.

Every part of this operation—from the setting of path trajectory vari-
ables to the discussion of conflict patterns—is designed to demonstrate 
that Waymo is different: different from Uber ATG, different from other 
human drivers, and different from any contemporary autonomous vehi-
cle operator. In establishing this difference, predicated on Waymo dem-
onstrating their higher safety standards in conducting and evaluating 
their autonomous vehicle operations, Waymo asserts its superiority. 
Much like a casino, in Waymo’s world, Waymo always wins.
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6
Securing Decisions: Sovereignty 

and Semiconductors

This chapter offers a different perspective on autonomous driving. As I 
established in the introduction, this book is neither about the automotive 
industry nor the car, per se. To restate those arguments, car manufactur-
ers have not, broadly considered, been interested in developing autono-
mous vehicles but in designing new vehicle models with assistive features, 
such as advanced driver-assistance systems (ADAS). Such decisions are, I 
argue, driven by historic, valued partnerships between automotive manu-
facturers and trusted suppliers. Whilst this has not prevented car manu-
facturers from supporting autonomous vehicle projects—Ford and 
Volkswagen funded Argo AI, Cruise is a subsidiary of GM, Jaguar pro-
vides vehicles for Waymo—the relationships between them have been 
fraught, contentious, and not all long-lasting. This chapter is therefore 
the exception—in more ways than one—charting various efforts to 
‘secure’ the material, and territorial, future of automobility.

It is divided into two sections. The first section focuses on software and 
the sovereign capacity of autonomous vehicles to authorize the making of 
decisions. Engendering what Frank Pasquale (2017) calls ‘functional sov-
ereignty’, I argue that autonomous vehicles—through their operational, 
auto-nomos, nature—constitute novel sovereign actors. The second sec-
tion focuses on hardware and the challenge of securing the future supply 
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of a prize technology: the semiconductor chip. This second section argues 
that the re-unification of Germany in 1990 created favourable conditions 
for German automotive manufacturers that are intended to continue to 
offer unique productive advantages in the future.

In this, the decision-making capacities of autonomous vehicles are 
necessarily reliant upon the development of manufacturing infrastructure 
to produce the global volume of semiconductor chips needed to scale. 
Historically, as this chapter will detail, Taiwan has emerged as a critical 
node in this global infrastructure. The reliance on Taiwan, and specifi-
cally one company—the Taiwan Semiconductor Manufacturing 
Company (TSMC)—for the fabrication of semiconductor chips, was 
painfully exposed during the global Covid-19 pandemic. As a result of 
this stated ‘chip crisis’ both the US and European Union (EU) announced 
landmark legislation—the CHIPS and Science Act (the US), the 
European Chips Act (EU)—to re-localize the fabrication of cutting-edge 
semiconductor chips. Such efforts are set to significantly re-shape the 
global production and supply of chips.

In both sections I understand the securing of decisions as exceptional: 
firstly, in relation to Giorgio Agamben’s notion of the ‘state of exception’ 
(Agamben, 2005) and the noted exceptionality of autonomous vehicle 
software through which their functional sovereignty is exercised. Then 
secondly, in relation to the exceptional circumstances of the re-unification 
of Germany, the concomitant rise of TSMC and the re-integration of the 
former German Democratic Republic (GDR) into the Federal Republic 
of Germany (FRG). These two forms of exceptionality, I argue, result in 
the specific ‘securitization’ of decisions and decision-making.

�Exceptional Software

As Gekker and Hind have written, ‘the “nomos” in autonomous sug-
gests the vehicle is a sovereign power’ (Gekker & Hind, 2019, p. 1428). 
‘Autonomous’ is derived both from the Greek for self or person (Autos) 
and from the Greek for ‘law’ or ‘custom’ (Nomos). Auto-nomos thus 
ordinarily refers to the power or ability to make decisions without 
appeal to a higher authority, like a sovereign actor such as a nation state 
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or monarch.1 Auto has also become both a formal (in German, Auto) 
and colloquial (US, ‘Auto’) term to refer to an automobile, a term ref-
erencing the motor car’s ‘self-moving’ ability, as opposed to being pulled 
by a horse. Car is likewise a truncation of ‘carriage’, as in ‘horse and 
carriage’.

A nominally autonomous vehicle thus has two senses of self: firstly, in 
that it is self-moving (auto-mobile) and secondly, in that it is self-
governing (auto-nomos). Of course, ordinary vehicles are described as 
being the former without being the latter, thus requiring a human to 
‘govern’ it and enable its self-movability. An auto-nomos vehicle might 
also be imagined to have the capacity to exercise authority over move-
ment but lack the actual ability to be auto-mobile (say, an autonomous 
carriage issuing commands to a horse pulling it). Yet, as this section 
unpacks, stating that a vehicle has the ability to make decisions auto-
nomously—that is without appeal to a higher sovereign actor—is some-
what problematic, much like the notion of an auto-mobile increasingly 
reliant upon cloud infrastructures and wireless connectivity to enable 
self-movement.

As Benjamin Bratton writes:

The implication is not that software is new and sovereignty is timeless, 
thereby leading one to ask how sovereignty now works through software, 
but rather that both are now mutually contingent and that the work of 
software at a global scale itself produces unfamiliar sorts of sovereignties. 
(Bratton, 2016, p. 20, emphasis added)

The definition of auto-nomos as outlined previously, as ‘the power or 
ability to make decisions without appeal to a higher authority’, is thus 
also ‘the power to suspend the regularity of the law’ (Bratton, 2016, 
p.  20), following Giorgio Agamben’s (Agamben, 2005) reading of the 
conservative German jurist Carl Schmitt. Here, nomos is understood as 
‘a making of a territorial order through the execution of a territorial claim 
and physical occupation that precedes it’ (Bratton, 2016, p. 25). Nomos 
is seen by Schmitt as demonstrating a particular geopolitical dimension, 

1 Throughout this chapter I sometimes use the formulation ‘auto-nomos’ to foreground these 
etymologies.
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depending on who or what is executing a territorial claim. The European 
nomos, thus, is seen differently from a US nomos in which territorial 
claims and physical occupation of space occur, and have occurred, his-
torically differently. As Bratton contends, ‘today the continuing (if still 
incipient) emergence of planetary-scale computation may represent a 
similar break and a similar challenge to the political geographic order’ 
(Bratton, 2016, p. 26) as the partition of the New World or similar colo-
nial periods of history (i.e. the ‘Scramble for Africa’).

For Schmitt (1985 [1922]), a sovereign actor is ‘he who decides on the 
state of exception’ (quoted in Agamben, 2005, p. 1). As Agamben sug-
gests, such a sovereign actor is not somehow outside of or beyond the law, 
‘because the state of exception represents the inclusion and capture of a 
space that is neither outside or inside’ (Agamben, 2005, p. 35). Quoting 
from Schmitt (1985 [1922]), Agamben writes that the ‘sovereign stands 
outside [steht außerhalb] of the normally valid juridical order and yet 
belongs [gehört] to it, for it is he who is responsible for deciding whether 
the constitution can be suspended in toto’ (Agamben, 2005, p. 35). Thus, 
the sovereign actor decides whether normal order applies, or whether 
there are special conditions in which normal order has been expended, 
and exceptional rules apply.

This has implications, naturally, for how one considers decision-
making. Quoting Schmitt again, Agamben writes that ‘in suspending the 
norm, the state of exception “reveals [offenbart], in absolute purity, a spe-
cifically juridical formal element: the decision”’ (Agamben, 2005, p. 34). 
These decisions, thus, ‘show their autonomy’ (Agamben, 2005, p. 34) by 
having independent force in law. Quoting Schmitt that:

Just as in the normal situation the autonomous moment of decision is 
reduced to a minimum, so in the exceptional situation the norm is annulled 
[vernichtet]. And yet even the exceptional situation remains accessible to 
juridical knowledge, because both elements, the norm as well as the deci-
sion, remain within the framework of the juridical [im Rahmen des 
Juristischen]. (Agamben, 2005, p. 34)

The question is the extent to which the autonomous vehicle might be 
understood as exercising a continual possible state of exception that, as a 
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sovereign actor, it is capable of enacting at any given moment. What is 
crucial here is understanding the extent to which internally logical deci-
sions are executed in light of obvious, or apparent, normal legal transgres-
sions. For instance: if an autonomous vehicle were to repeatedly drive 
over a designated speed limit in order to avoid other potential risks calcu-
lated by the vehicle itself (but perhaps heretofore not calculated by, or 
enacted by, human drivers). Here, such legal transgressions are made jus-
tifiable based on the calculative efforts of the vehicle itself as a functional, 
machinic entity. Chapter 8, on the travails of Cruise in California, pro-
vides a concrete example of how such legal transgressions are made justifi-
able in the eye of the vehicle and vehicle operator.

Thus, if an autonomous vehicle generates what Bratton (2016) under-
stands as an ‘unfamiliar sort of sovereignty’, then what does this sover-
eignty look like, and how does it act? If, through Agamben’s reading of 
Schmitt, the (familiar, ordinary) sovereign actor is able to suspend nor-
mal legal states, acting neither wholly outside of nor inside the law, then 
how might an autonomous vehicle act differently?

One such approach to this question would be by understanding the 
autonomous vehicle as utilizing a different or ‘unfamiliar’ sense of the 
state of exception—a question of how autonomous vehicles make sense 
of the world. That, rather than making any kind of final, albeit temporary 
decision to decree a state of exception or not (in relation to a general 
theatre of action—e.g. an invasion or war, or torture), that the autono-
mous vehicle instead sets ongoing, operational thresholds at which excep-
tionally is reached or not. The difference here, perhaps, is that whilst 
exceptionality is determined in relation to the making of decisions (or 
not), the ‘state’ determinable is not a geographical nor territorial one 
within which juridical order applies, but an operational one pertaining to 
specific calculative actions or trajectories. This differs, ever so slightly, 
from Bratton’s understanding of ‘platform sovereignty’ as enabling the 
drawing of reversable ‘geographic lines of segmentation … [able to] 
divide physical space or separate layers in a larger machine’ (Bratton, 
2016, p. 21). In an understanding of autonomous vehicles as fully sover-
eign actors, the lines of segmentation are not necessarily geo-territorial 
nor layered but protocological lines (Galloway, 2004) along which deci-
sions flow, but also depart or diverge from one another, based on 

6  Securing Decisions: Sovereignty and Semiconductors 



164

calculative possibilities. Rather than a ‘geographic line’ (Bratton, 2016, 
p. 22), it is a navigational line, as the previous chapter would suppose.

For example, continuing with the speed limit case above, that an 
autonomous vehicle might establish thresholds of exceptionality for each 
calculative trajectory it generates in relation to a particular set of calcu-
lable risks. If such a vehicle decides that speeding away from a potential 
crash, resulting in it exceeding the speed limit, is preferable to staying 
within the limit but increasing the possibility of being involved in a crash, 
then the vehicle might be said to be operating with a sense of ‘operational 
exceptionality’. Whilst this form of exceptionality clearly has a spatial 
dimension, it is perhaps less significant that such a decision takes place in 
a certain space or not, and more significant that this exceptionality can 
essentially be ‘switched on’ or ‘switched off’ at any given moment, as 
thresholds are exceeded temporarily before the vehicle returns to a nor-
mal operating state, fully within the rules of the road.

The question of whether an autonomous vehicle is necessarily a truly 
sovereign actor—albeit in an ‘unfamiliar’ form, as Bratton suggests—is 
thus something only provable in relation to other possible sovereign 
actors, operating along more ordinarily sovereign lines. That is, whether 
an autonomous vehicle is ordinarily subject to the regulatory decision-
making of other sovereign actors such as law enforcement. It is this aspect 
I turn to next.

�Functional Requests

Law scholar Frank Pasquale writes of how ‘major digital firms’ are now 
‘market makers, able to exert regulatory control over the terms on which 
others can sell goods and services’ (Pasquale, 2017, p. n.p.). Rather than 
simply being participants in a marketplace ordinarily governed by 
national or supranational regulators, they increasingly ‘aspire to displace 
more government roles over time, replacing the logic of territorial sover-
eignty with functional sovereignty’ in which citizens are ‘subject to cor-
porate, rather than democratic, control’ (Pasquale, 2017, p. n.p.). In 
essence, as others have considered, that ‘big tech’ firms like Google 
(Alphabet) and Amazon are so powerful and have such power over the 
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markets they operate in, that they exert a kind of monopoly control his-
torically akin to state actors. Leigh Phillips and Michal Rozworski extend 
this argument to argue that such firms likewise organize internal activities 
(i.e. the tracking and distribution of goods) through forms of central 
planning, akin to socialist state economies (Phillips & Rozworski, 2019).

Yet, following Pasquale (2017), whilst big tech firms might appear to 
act like state actors, the way they exert their power is notably different. 
Rather than utilizing their de jure (or sometimes de facto) right to solely 
govern territory and populations based, ordinarily, within legally ratified 
demarcated spaces, such firms exert their sovereign power through their 
functioning as technological mediators, governing relations between 
workers and work, citizens and activities. As Pasquale continues:

For example: Who needs city housing regulators when AirBnB can use 
data-driven methods to effectively regulate room-letting, then house-
letting, and eventually urban planning generally? Why not let Amazon 
have its own jurisdiction or charter city, or establish special juridical proce-
dures for Foxconn? Some vanguardists of functional sovereignty believe 
online rating systems could replace [US] state occupational licensure – so 
rather than having government boards credential workers, a platform like 
LinkedIn could collect star ratings on them. (Pasquale, 2017, p. n.p.)

In each of these various cases, the firms mentioned (AirBnB, Amazon, 
Foxconn, LinkedIn) are touted as privatized deliverers of public services, 
whether through the municipal regulation of a city housing market or the 
verification of the right to work. However, in each case, this process isn’t 
simply a narration of the privatization of public services, but through the 
technological interests of each actor, that each service is provided func-
tionally differently. In this, AirBnB is able to effectively regulate a city 
housing market by setting the conditions and costs of listing/letting 
properties on its platform, or LinkedIn is able to officiate labour legality 
through its own ratings system. This sovereign power of big tech firms, 
then, is not ordinarily exerted by them through control over geographical 
territories but through their total control over technological systems 
designed, managed, and operated by them.
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In the case of autonomous vehicles, this functional sovereignty takes a 
similar form. In drawing attention to the privacy implications of allowing 
firms to singularly control, and manage access to, critical infrastructure, 
Gekker and Hind suggest that autonomous vehicles will likely ‘become 
novel mobile, functional, sovereign objects, through which all requests 
must flow, while government departments are relegated to secondary, yet 
likely “approved”, partners’ (Gekker & Hind, 2019, p.  1429). In this 
arrangement, the autonomous vehicle becomes the ‘default’ sovereign 
actor in any resultant claim or contestation, to which a government 
department or body (say, a highways agency or police force) must comply 
with, rather than vice versa. In many ways, this is already the case, with 
established big tech firms already acting as regulators for activity on their 
own platforms, by third parties (Van Loo, 2020; Hind & Seitz, 2024).

What is interesting in the case of autonomous vehicles, of course, is 
that the sovereign actor in question is not a platform, per se, but a mobile 
object ordinarily being powered by one. Whilst AirBnB’s functional sov-
ereignty is exercised through its listings platform and various associated 
mechanisms enforced when users list and request properties, and 
Amazon’s functional sovereignty is arguably exercised through sales ana-
lytics (as actor in, and operator of, Amazon ‘Marketplace’) or computa-
tional infrastructure (as owner of cloud services provider, AWS), an 
autonomous vehicle manufacturers’ functional sovereignty is exercised 
through their control over ML-driven decision-making. Here, public 
authorities do not have control over what decisions human drivers make, 
only remit over the adjudication, and enforcement, of the legality of such 
decision-making. If a human driver is caught speeding by a speed camera 
operated by a local authority, they are usually expected to have to justify 
(or appeal) their doing so. Whilst there are evidently ways of resisting or 
countering such administrative processes (extenuating circumstances, 
wrong car, different driver, etc.), the role of the administrator (the state, 
local authority) itself is not in question, nor is the process through which 
a decision itself is reached.

In the case of determining the identity and reason for an autonomous 
vehicle committing a driving infraction is, arguably, somewhat different. 
In such a case, following the argument outlined above, this would involve 
an administrator of the legislative process likely having to submit a 

  S. Hind



167

request to the vehicle operator in order to verify details of the infraction. 
Such a situation inverts the relationship between state actor and firm, 
turning the question of territorial sovereignty into one of functional sov-
ereignty. Potentially incriminating data and/or evidence collected by the 
vehicle, therefore, would be of great significance, in the way mobile 
phone data and/or app use often is already to law enforcement and insur-
ers (Hill, 2024).2 Accordingly, ‘the condition of this changing relation-
ship is that non-opt-out-able data captured through … infrastructure are 
enclosed by default, with access granted by agreement or discretion, and 
offered as a subsequent, selective service’, with political bodies assuming 
a new role as ‘mere service users’ (Gekker & Hind, 2019, p. 1429). The 
reason for the suspension of Cruise’s operations in California lay precisely 
in relation to the firm failing to provide relevant video footage of an inci-
dent involving one such vehicle (Korosec, 2023), as Chap. 8 details.

The ‘functional sovereignty’ (Pasquale, 2017) of the autonomous vehi-
cle is itself strengthened by a form of digital or technological sovereignty 
sought by nation states. In Brattonian terms, there is a soldering of the 
‘user layer’ and the ‘cloud layer’ (Bratton, 2016), as the auto-nomos vehi-
cle and the chip firms that nation states seek to entice, exercise their 
newly found sovereign power. It is this that I turn to next, as contempo-
rary ‘polycrisis’ strengthens the realizable autonomy of both.

�Familiar Sovereignty and Emerging Crises

The automobile as auto-nomos is also increasingly dependent on more 
familiar forms of territorial sovereignty and power. The EU’s desire to 
secure their own digital/technological sovereignty from both the US and 
China, as this section will demonstrate, is representative of the growing 
significance of digital technologies to economic development, as well as 
rising global political and economic tension and instability.

2 Elaine Herzberg was subject to various access requests by the National Transportation Safety 
Board (NTSB) for streaming services she subscribed to, including Hulu, with the NTSB naturally 
reliant upon both the data collecting activities and compliance of the firms in question.
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One way to understand this growing tension is through the notion of 
‘polycrisis’, as historian Adam Tooze has variously done in relation to the 
Covid-19 pandemic (Tooze, 2020), the Russian invasion of Ukraine 
(Tooze, 2022a), and the cost-of-living crisis (Tooze, 2022b). Polycrisis, as 
Tooze (2020) mentions, was a term often used by the then-European 
Commission President Jean-Claude Juncker. In a speech at the Annual 
General Meeting of the Hellenic Federation of Enterprises (SEV) in 
Athens, Greece, in 2016, Juncker said that that he had ‘often used the 
Greek word “polycrisis” to describe the current situation’ (Juncker, 2016, 
p. n.p.). At the time, the ‘various challenges’ Juncker highlighted ranged 
‘from the security threats in our neighbourhood and at home, to the refu-
gee crisis, and to the UK referendum’ (Juncker, 2016, p. n.p.). These vari-
ous challenges were not just simultaneous, Juncker said, but also ‘feed 
into each other, creating a sense of doubt and uncertainty in the minds of 
our people’ (Juncker, 2016, p. n.p.). Whilst Greece had a special place in 
this ongoing polycrisis, emerging as it did from the 2007 financial crisis, 
the EU itself (with Greece as a member state) was having to deal with this 
generalized, interconnected, ongoing sense of insecurity.

It is arguable whether the notion of polycrisis is at all new or special. 
Through the work of Antonio Gramsci, Milan Babic understands the 
crisis of the ‘international liberal order’ (ILO) since 2008 as occurring at 
three levels (global political-economic, state, societal), concerning the 
‘processuality’, ‘organicity’, and ‘morbidity’ of the crisis (Babic, 2020). 
Bruno Amable and co-authors have likewise considered overlapping 
political and systemic crises in France since the 1980s (Amable et  al., 
2012), whilst Cédric Durand contextualizes Adam Tooze’s (Tooze, 2018) 
study of the aftershocks of the 2007 financial crisis throughout the sub-
sequent decade ‘undergoing a process of “mutation and metastasis”, 
involving new political and geopolitical depths’ to this day (Durand, 
2019, p. n.p.). In each case, there is varied weight on the interlocking 
nature of crises as they manifest in different economic and societal arenas, 
both intrinsic and extrinsic to their operation. Moreover, that the Western 
capitalist model has been in some kind of continued, contorting, crisis 
(or crises) since 2007, failing to deal with its root causes for the past 
15 years.
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One polycrisis response has emerged out of the confluence of the 
Covid-19 pandemic, the Russian invasion of Ukraine and global infla-
tionary pressure: deglobalization. Here, deglobalization has been touted 
as a reaction to various ‘exogenic shocks’ manifesting from outside know-
able political and economic spheres, much like a global pandemic. At 
various moments between 2020 and 2021, in response to the spread of 
Covid-19, most if not all nation states enacted some form of interna-
tional travel ban or restriction, limiting arrivals into countries. Coupled 
with production shutdowns manifested by safe distancing protocols and 
localized lockdowns (especially in Shanghai, China) (Reuters, 2021), the 
unfurling of an interconnected political, social, and economic crisis atop 
of a manifest health crisis became evidently more possible. Adam Tooze 
(2022b, p. n.p.) counts seven ‘macroscopic risks’ including the ongoing 
mutation of Covid-19 variants, and the risk of economic stagflation, 
nuclear escalation, and the climate crisis.

Reacting to the pandemic and specific aspects of the resulting crisis I 
will consider later, the EU began to formulate a very particular ‘techno-
protectionist’ policy direction. This is different from a broadly historical 
‘techno-liberalist’ approach in the US and ‘techno-authoritarianism’ seen 
in China—each a distinct ‘techno-nationalist’ strategy (Rikap & Lundvall, 
2021, p. 2) in itself—such that any response to polycrisis has a very dis-
tinct effect on those developing, producing, supplying, assembling, sell-
ing, and using such technology.

The background to this developmental path which, I argue, determines 
the extent to which the future of autonomous driving is ‘secured’ or not, 
is that polycrisis is fracturing the European political system to the extent 
that it is creating the conditions for a more interventionist EU (Lavery, 
2024). As political scientists Zeitlin et al. (2019) explore, contemporary 
polycrisis is resulting in a so-called polycleavage leaving the EU in what 
they call a ‘politics trap’ (Zeitlin et al., 2019, p. 967), in which member 
states’ own political manoeuvring prevents higher-level (i.e. suprana-
tional/EU-level) policy-making, sometimes explicitly using EU policy to 
‘mobilize’ national audiences (Zeitlin et al., 2019, p. 968) in opposition 
to the EU itself (Brexit, etc.).

Polycrisis as a particular manifestation of crises offers opportunities to 
political and economic leaders to act in ‘exceptional’ ways. Within the 
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EU such crises present opportunities both for greater integration between 
member states and greater fragmentation. In recent times, as Zeitlin 
et al. write:

The old functionalist adage that ‘integration advances through crises’ 
appears to be simultaneously confirmed and rejected: while institutional 
integration points in the direction predicted by neofunctionalists, the 
dynamics of political fragmentation have accelerated, as postfunctionalists 
would expect. (Zeitlin et al., 2019, p. 964)

The Russian invasion of Ukraine in 2022, for instance, has resulted in 
a closer relationship between NATO member states, including the rapid 
accession of Sweden and Finland into the military alliance itself (NATO, 
2022). Yet, in contrast, with the resultant aftershocks to the global energy 
market, some EU member states such as Germany have been faced with 
greater political fragmentation and disagreement, at a regional and 
national levels. This fallout has significantly affected the ruling Social 
Democratic Party (SPD) who came to power in late 2021, despite claims 
to a Zeitenwende or historic ‘turning point’ in German fiscal and military 
policy, following approval of €100bn defence funding (Financial 
Times, 2023).

In this, polycrisis is not inherently destabilizing, with polycleavages 
arguably resulting in greater ‘social stability, since they distribute political 
divisions and grievances over a larger number of actors and policies’ 
(Zeitlin et  al., 2019, p. 966), potentially diffusing political opposition 
and limiting fragmentation. Maintaining the kind of poly-centric cen-
trism witnessed with the EU, therefore, might be compared favourably 
to, for instance, the ‘inherent instability of the Weimar Republic or the 
Austrian First Republic’ (Zeitlin et  al., 2019, p. 966) characterized by 
marked political poles both on the left and the right. Polycrisis thus might 
be seen merely as an ordinary, rather than extraordinary, working envi-
ronment, with equal tension between fracture and integration cancelling 
each other out. Germany perhaps is the most concrete contemporary 
example of such that despite clear fissures, its federalized system is 
designed precisely to dilute and neuter internal discord.
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However, both the Covid-19 pandemic and the Russian invasion of 
Ukraine have precipitated immediate and significant economic crises 
deeply affecting both previously secure Northern core states, in the way 
neither the Eurozone crisis (Northern states as creditors, Southern as 
debtors) nor refugee crisis did (arguably political rather than economic), 
as a result of key member states’ reliance upon non-EU economies. 
Germany, for instance, has been almost uniquely reliant upon Russian 
gas since its decision to close nuclear power plants in 2011 (Associated 
Press, 2011) and phase out coal-burning power stations by 2030 (Wacket, 
2021). In recent years, Germany has also become hugely reliant—much 
like the global economy—on exporting goods to China. The People’s 
Republic of China has been Germany’s biggest trading partner since 
2016 (Destatis, 2022a), exporting over €103billion worth of goods in 
2021 (Destatis, 2022b). Automobiles and automotive parts represent 
15.3% of Germany’s export total in 2021 (Destatis, 2022c), much of 
which is exported to China. Shutdowns and production restrictions both 
in Germany and China during the Covid-19 pandemic thus created the 
conditions for the ongoing polycrisis, coupled with rising energy 
insecurity.

As Zeitlin et al. write, the ‘specific rule set and consensus-based politi-
cal system of the EU’ (Zeitlin et al., 2019, p. 966) mean that crises and 
polycrisis can stymie political responses, unravelling instability across the 
bloc. Indeed, that the distinct macro-regions within the EU that Zeitlin 
et al. define as ‘North-Western, South-Eastern and Central-Eastern’ are 
‘in turn … affected very differently by different components of the poly-
crisis’ (Zeitlin et al., 2019, p. 968). Germany, with its famous manufac-
turing Mittelstand central to its economy, has also suffered more acutely 
than the likes of Sweden or the Netherlands, fellow North-Western mem-
ber states. Central-Eastern member states such as the Czech Republic and 
Slovakia—significantly integrated into Germany’s manufacturing supply 
chains as junior, supply side, partners, have suffered because of the 
arrangement. As journalist Marco D’Eramo has written, ‘Germany has 
sought to construct a series of mutually interdependent economies which 
now essentially amount to a single economic system’ (D’Eramo, 2022, p. 
n.p.) with the aforementioned Eastern member states of the Czech 
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Republic and Slovakia ‘seats of the automobile industry’ (D’Eramo, 
2022, p. n.p.).

In response to the effects of a globally derived polycrisis, therefore, 
regional blocs such as the EU as well the US are seeking to develop 
increasingly independent economic ‘stacks’, able to ride out or wholly 
prevent various crises, and avoid supply chain, security, and material 
extraction issues.

In this next section I examine how the growing use of semiconductor 
chips in the automotive industry has created the conditions for one such 
crisis, the 2022 chip crisis.

�Automotive ‘Chipification’

The semiconductor chip crisis significantly affected the automotive 
industry because of the 50-year ‘chipification’ of automobiles (Forelle, 
2022). As Forelle writes, ‘chipification is radically reshaping such pro-
cesses as resource allocation, labor flows, and cultural practices around 
car manufacture, use, repair, and modification’ (Forelle, 2022, p.  1). 
Whilst automobiles have contained semiconductor chips since the 1960s, 
the platformization of cars (Hind & Gekker, 2022; Hind et al., 2022) has 
led to a significant increase in the number of chips per vehicle. As a New 
York Times article suggests, a ‘modern car can easily have more than 3,000 
chips’ (Ewing & Boudette, 2021, p. n.p.), controlling everything from 
fuel intake to electric windows.

The Taiwan Semiconductor Manufacturing Company (TSMC), the 
world’s leading chip fabricator, considers that the acceleration of the 
‘adoption of electric vehicles (EVs), advanced driver-assistance systems 
(ADAS) and smart cockpit/infotainment systems, along with new electri-
cal/electric (E/E) architecture’ (TSMC, 2022, p. 18) will drive ‘increased 
demand for AP/MCU/ASIC processors, in-car networking, sensors, and 
power management ICs [integrated circuits], thus continuously increas-
ing the silicon content per car’ (TSMC, 2022, p. 18).

Forelle (2022) understands chipification from three perspectives: 
global supply chains, labour, and car cultures. In the first instance, the 
rise of semiconductor chips in automobiles has put greater focus on the 
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global production and sourcing of not only finished chips but raw mate-
rials integral to the production of the chips themselves. Semiconductor 
chips have historically been dependent upon the sourcing of silicon and 
germanium, ‘obvious examples of discoveries in chemistry that proved to 
be essential for computer culture’ (Parikka, 2015, p.  36), as well as, 
increasingly, car culture. The production of the alloy silicon germanium 
in the 1980s by researchers at IBM led to significant increases in chip 
efficiency and performance, as well as cost savings, compared to silicon-
based chips alone (IBM, 2022). As Parikka further writes:

Transistor-based information technology would not be thinkable without 
the various meticulous insights into the material characteristics and differ-
ences between germanium and silicon – or the energetic regimes – whether 
that involves the consideration of current clouds (as in server farms) or the 
attempts to manage power consumption inside computer architectures. 
(Parikka, 2015, p. 57)

Sourcing raw material for, and manufacturing, semiconductor chips 
requires huge amounts of energy. Whilst silicon itself is abundant on 
earth, it still requires an extensive process to extract it from where it is 
found, like quartz rock. As journalist Douglas Heaven has explained:

Rocks extracted from the ground with machines and explosives are put 
into a crusher, which spits out quartz gravel. This then goes to a processing 
plant, where the quartz is ground down to a fine sand. Water and chemicals 
are added to separate the silicon from other minerals. The silicon goes 
through a final milling before being bagged up and sent as a powder to a 
refinery. (Heaven, 2019, p. n.p.)

Once the silicon is reduced to a powder, it is sent to chip fabrication 
facilities commonly referred to as ‘fabs’ or ‘foundries’ where:

The [silicon] material is melted in a furnace at 1,400°C and formed into 
cylindrical ingots. These are then sliced into discs called wafers, like chop-
ping up a cucumber. Finally, several dozen rectangular circuits – the chips 
themselves – are printed onto each wafer in factories … From here, chips 
make their way to every corner of the planet. (Heaven, 2019, p. n.p.)
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Only once quartz rock has been mined, silicon has been separated 
from other minerals, then milled, melted, reformed, sliced, printed, and 
shipped, do semiconductor chips finally make their way to the car manu-
facturer assembly lines, usually via key, ‘tier one’, suppliers like Bosch 
tasked with integrating them into vehicle modules like infotainment sys-
tems. For this to happen, car manufacturers have historically been reliant 
upon global semiconductor chip supply chains.

As Bratton writes, ‘there is no planetary-scale computation without a 
planet, and no computational infrastructure without the transformation 
of matter into energy and energy into information’ (Bratton, 2016, 
p. 75). Chipification, thus, has taken the automotive industry down a 
path that intensifies planetary-scale computation, increases automotive 
manufacturers’ reliance upon semiconductor chips, and multiplies man-
ufacturers’ exposure to geopolitical shocks and crises. What is perhaps 
most intriguing about such a situation is that car manufacturers are 
increasingly pressured to execute a double movement precipitated by 
chipification.

�Hard Software, Soft Hardware

On the one hand, manufacturers are seeking to develop slicker, inte-
grated, ‘platformized’ software systems to ‘datafy’ the driving experience 
(Hind, 2021), driven by wider innovations in the tech industry (Hind 
et al., 2022). German automotive manufacturer Volkswagen, especially 
keen to innovate in this field, have suffered considerable issues, with own-
ers of vehicles from their ID electric models, reporting ‘problems with 
infotainment screens, range calculations, buggy smartphone connections, 
charging, and other features that are far more seamless on other compa-
nies’ cars’ (George, 2022, p. n.p.). Whilst these problems manifest at the 
interface for the driver, they begin with the chips themselves, through 
which, as a Volkswagen spokesperson suggests, ‘software will become the 
new differentiator’ (George, 2022, p. n.p.). For car companies, this means 
crossing into new semiconductor chip markets able to secure the kinds of 
chips required to power infotainment systems and next-generation 
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dashboards, markets dominated by mobile device manufacturers like 
Apple, Samsung, and Huawei.

For Volkswagen’s software arm, Cariad, this also requires the ‘future-
proofing’ of hardware, capable of hosting an ‘exceptionally powerful and 
scalable computing platform’ over the long term (Cariad, 2023, p. n.p.). 
One such aspect of Cariad’s stated approach is the ‘decoupling of soft-
ware and hardware’ (Cariad, 2023, p. n.p.), such that Volkswagen can 
account for the different innovation and iteration cycles between each. 
Another aspect focuses on the components themselves, grouping and 
limiting their overall number to reduce complexity. Whilst Cariad is 
referring to vehicle operations, it also patently applies to Volkswagen’s 
own supply chains: reducing component complexity means fewer chips 
and a more streamlined supply chain. Yet, with glitchy innovations at 
Volkswagen being rolled back, such as capacitive steering wheel controls 
being switched for physical buttons (Gitlin, 2022), it is clear that car 
manufacturers are struggling with both software and hardware at all scales 
(Carr & Welch, 2024).

�Chip Production

TSMC is one of the world’s largest chip manufacturers, responsible for 
supplying semiconductor chips to the likes of AMD, Apple, and Nvidia. 
Indeed, Taiwan is a leader in the production of semiconductors, followed 
by South Korea, Singapore, and China. The EU, in comparison, pos-
sesses less than a 10% share of global chip manufacturing facilities.

TSMC was founded in 1987 by Morris Chang, a former senior execu-
tive at Texas Instruments (TI), a Dallas, Texas-based technology firm 
involved in the fabrication of semiconductor chips. Whilst born in 
Ningbo, China, Chang received his PhD from Stanford before moving to 
Texas Instruments. By the mid-1980s Taiwan—long a critical location in 
the assembly of semiconductor chips—realized it needed to develop its 
own fabrication base, in part, because of China’s entry into the global 
chip assembly market (Miller, 2022). Moving up the supply chain was 
seen as the only way to avoid direct competition with the emerging super-
power. In 1985, Taiwan’s economic minister Kwoh-ting Li convinced 
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Chang to set up TSMC, with the Taiwanese government providing 48% 
of the initial capital, ‘stipulating only that Chang find a foreign chip firm 
to provide advanced production technology’ (Miller, 2022, p.  167). 
Despite TI and Intel rejecting their advances, Dutch semiconductor firm 
Philips committed $58million to ‘transfer its production technology, and 
license intellectual property in exchange for a 27.5% stake in TSMC’ 
(Miller, 2022, p. 167).

Since 1985 TSMC has ‘grown into a giant with an effective strangle-
hold on the global chip supply chain’ (Hille & Sevastopulo, 2022, p. 
n.p.) such that it effectively serves as a ‘critical security guarantee’ (Hille 
& Sevastopulo, 2022, p. n.p.) in the face of possible aggression from 
China, constituting a so-called silicon shield (Hille & Sevastopulo, 2022, 
p. n.p.) for the country. Indeed, crucial to understand are the ‘deep ties’ 
(Miller, 2022, p. 167) TSMC specifically has with the US chip industry, 
long constituting a ‘symbiosis’ that has ‘benefitted Taiwan and Silicon 
Valley’ (Miller, 2022, p. 168). Many of TSMC’s hires came from the US 
and even from TI specifically, whilst ‘throughout much of the 1990s, half 
of TSMC’s sales were to American companies’ (Miller, 2022, p. 168). In 
2022, 68% of TSMC’s $75.88billion consolidated net revenue came 
from US-based customers (TSMC, 2022, p. 18). According to their own 
figures TSMC holds a 30% global market share in the ‘foundry’ (i.e. chip 
fabrication facility) segment of the semiconductor chip industry in 2022, 
up from 26% in 2021 (TSMC, 2022).

Many leading semiconductor companies like Qualcomm, Nvidia, and 
AMD are ‘fabless’, outsourcing fabrication to third parties, such as 
TSMC. This means that even fewer companies are responsible for pro-
ducing the semiconductor chips required for everything from washing 
machines to video games consoles. Volkswagen, for example, rely on the 
Bavarian semiconductor manufacturer Infineon, to supply them with 
chips. Their new electric ID.4 model, central to their new electric vehicle 
strategy following the diesel emissions scandal in 2015, contains 50 such 
Infineon chips, from power semiconductors to microcontrollers (Fine, 
2021). Other European chip companies include Bosch (also Germany), 
STMicroelectronics (France/Italy), and NXP (Netherlands). The auto-
motive sector is considered by the likes of TSMC and others as a distinct 
chip market segment itself, alongside smartphones, high-performance 

  S. Hind



177

computing (PCs, tablets, games consoles, etc.), Internet of Things, and 
‘digital consumer electronics’ (TVs, set-top boxes, etc.) (TSMC, 2022, 
p. n.p.).

Whilst contemporary vehicles require different types of semiconductor 
chips, none need a ‘wafer capacity’ (Kleinhans, 2021, p. 9) of 10 nano-
metres (nm) or below—the current ‘cutting-edge’ node size of semicon-
ductor chips. Chips at 10  nm and now 7  nm are ordinarily being 
fabricated for flagship mobile devices, such as Apple iPhones or iPads. 
Apple’s iPhone XS A12 Bionic system on a chip (SoC), launched in 2018, 
was the first such mass market device to use 7 nm nodes, both faster (by 
15%) and more power efficient (by 40%) than a previous edition of the 
iPhone X (2017) (Shankland, 2018). What this means, of course, is that 
it is major mobile device manufacturers rather than car manufacturers 
who are driving advanced wafer fabrication. As the German thinkthank 
Stiftung Neue Verantwortung (SNV)3 write:

Node shrinkage or ‘More Moore Scaling’ (more transistors per square mil-
limeter with better performance, less power consumption and lower costs) 
is especially important for logic semiconductors in the consumer market, 
such as processors in smartphones and laptops. At the same time, this mar-
ket segment generates the high volumes that make the enormous upfront 
investments in chip design and manufacturing economically viable: For 
example, Apple’s iPhone sales totaled US$65.6 billion in 4Q 2020 alone. 
With that amount of quarterly sales, Apple can afford to invest billions in 
its own chip design and contract with TSMC to manufacture the chips. 
Because of these economies of scale, the most advanced chips in terms of 
‘PPAC’ (power, performance, area, cost) are found in consumer electron-
ics. (Kleinhans, 2021, p. 8)

The production of semiconductor chips is complex, hugely expensive, 
and globally distributed, like many electronics industries (Yeung, 2022). 
US tech firms like Apple rely on semiconductors manufactured in Taiwan, 
but TSMC do not design the chips themselves, Apple does. As Chris 
Miller (2022, p. xxiv) illustrates:

3 In English, New Responsibility Foundation.
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A typical chip might be designed with blueprints from the Japanese-owned, 
UK-based company called Arm, by a team of engineers in California and 
Israel, using design software from the United States. When a design is com-
plete, it’s sent to a facility in Taiwan, which buys ultra-pure silicon wafers 
and specialized gases from Japan. The design is carved into silicon using 
some of the world’s most precise machinery…produced primarily by five 
companies, one Dutch, one Japanese, and three Californian…Then the 
chip is packaged and tested, often in Southeast Asia, before being sent to 
China for assembly into a phone or computer.

Yet, this wasn’t always the case. The rise of fabless chip firms is con-
comitant with the rise of TSMC:

Before TSMC, a couple of small companies, mostly based in Silicon Valley, 
had tried building businesses around chip design, avoiding the cost of 
building their own fabs by outsourcing the manufacturing…Not having to 
build fabs dramatically reduced startup costs, but counting on competitors 
to manufacture chips was always a risky business model. (Miller, 
2022, p. 168)

Chris Miller likens this development to the invention of the Gutenberg 
Press in fifteenth-century Germany, with fabless chip firms embodying a 
‘democratization of authorship’ (Miller, 2022, p. 168) in the broad abil-
ity for such firms to design their own chips with underlying technology. 
Yet, coupled to this was the concentration, consolidation, and centraliza-
tion of chip fabrication itself, thanks to the capital-intensive nature of the 
manufacturing process. Yeung (2022) characterizes this as a three-fold 
development, combining a ‘geographical shift in wafer fabrication toward 
far greater concentration in East Asia’ (Yeung, 2022, p.  129) with an 
‘industrial-organizational shift from IDM [Integrated Device 
Manufacturer] firms worldwide to foundry service providers mostly 
based in East Asia’ (Yeung, 2022, p. 129) and an ‘end-market shift … 
toward rapidly growing ICT segments’ (Yeung, 2022, p. 129) such as the 
automotive industry.

Together with the famously complex supply chain of automotive man-
ufacturers, and semiconductor chip production becomes one fragile, sus-
ceptible manufacturing process bolted onto another. ‘Unlike oil’ as Miller 
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continues, ‘production of computing power depends fundamentally on a 
series of choke points: tools, chemicals, and software that often are pro-
duced by a handful of companies – and sometimes only by one’ (Miller, 
2022, p. xxv) such as TSMC, or ASML, the Dutch chip machine firm 
referenced above by Miller, or Japan’s SCREEN, relied on for chemical 
cleaning systems (Ting-Fang & Li, 2022).

The situation is similar higher up the supply chain too, where the 
extraction of raw materials is no simpler and cost-effective than building 
complex machinery. As Ting-Fang and Li write, ‘follow the supply chain 
upstream, and further chokepoints emerge with regard to the fluoropoly-
mers from which [chip] components are made’ (Ting-Fang & Li, 2022, 
p. n.p.). Only a small number of fluoropolymer material producers exist, 
and some materials like PFA ‘require extensive knowhow to process’ with 
‘no competitors on the horizon’ (Ting-Fang & Li, 2022, p. n.p.) besides 
a US firm (Chemours) and a Japanese company (Daikin Industries) to 
make them.

Higher still, and fluoropolymers are processed from a mineral called 
fluorspar or fluorite, ‘often labelled as a “semi-rare earth”’ mineral (Ting-
Fang & Li, 2022, p. n.p.) whose production is dominated by China 
(60%). Whilst other producers like Mexico (10.8%), Mongolia (8.2%), 
and South Africa (4.5%) can also be relied on, the semiconductor indus-
try is one amongst many that rely on the processing of fluorspar, eventu-
ally used as a resin or coating for the valves, pumps, tubes, pipes, and 
containers integral to chipmaking equipment and cleaning systems 
(Ting-Fang & Li, 2022). In other words, it is easier to list the compo-
nents that are readily available than those that aren’t, in the chip manu-
facturing process.

Under ordinary operating conditions the fragile semiconductor supply 
chain just about holds together. Under extraordinary conditions every-
thing, as the last few years have shown, falls apart. This has resulted in a 
suite of historically unparalleled efforts by major nations (the US, China) 
and supranational blocs (EU) to shore up the semiconductor supply 
chain, and to prevent future blockages in the manufacture of chip-reliant 
consumer electronics. I document these efforts to ‘engineer’ the chip cri-
sis, with a specific focus on the EU, in the next section.

6  Securing Decisions: Sovereignty and Semiconductors 



180

�(Engineering the) Chip Crisis

Without high-quality semiconductor chips, the computational capacity 
required for vehicles to process image and sensor data and execute 
ML-driven processes is impossible. With the Covid-19 pandemic, this 
vulnerability intensified, with supply chain issues from key suppliers 
resulting in a global shortage of chips, and a slowdown in the production 
of vehicles. A resultant scramble to increase fabrication capacity in the 
US and the EU, however, is perhaps unlikely to offer any solutions. SNV 
have suggested that the historic lack of investment in ‘cutting-edge’ semi-
conductor fabs has left the EU with weakened demand (Kleinhans, 2021).

Connectedly, they ask why fabless US firms (i.e. Qualcomm, AMD) 
would choose production facilities based in the EU over established 
foundries in Taiwan or South Korea. Lastly, they argue that ‘skyrocketing’ 
(Kleinhans, 2021, p.  9) investment costs (US$20 billion/fab), R&D 
‘intensiveness’ (Kleinhans, 2021, p. 9), and the need for near total pro-
duction capacity utilization (90%+) have led to many firms exiting the 
semiconductor market altogether. Only ‘Samsung in South Korea and 
TSMC in Taiwan’, they suggest, are equipped to deliver ‘cutting-edge 
fabs’ (Kleinhans, 2021, p. 2).

Two relevant observations can made regarding the above. Firstly, that 
car manufacturers do not possess the capital to make similar such invest-
ments, although, naturally, big tech firms do. This is in part because most 
car manufacturers are currently investing their precious capital in the 
electrification of drivetrains, shifting away from internal combustion 
engines. Within the EU, this effort has been driven by legislation man-
dating a ban on petrol and diesel vehicles from 2035 (European 
Parliament, 2022). Such a relatively hard deadline has required manufac-
turers to dedicate time and resources to investing in a largely entirely new 
supply chain and assembly process, both to produce an electric motor 
instead of a combustion engine and to manufacture a vehicle most suited 
to being propelled by the former over the latter. No internal combustion 
engine means no exhaust system or fuel intake system, but it has also 
meant new problems to resolve, most of which have been connected to 
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the production and use of batteries. With this, direct investments in chip 
infrastructure appear rare, despite obvious benefits to car manufacturers.

Secondly, that despite the exhaustive computational processing 
requirements of sensor-equipped, ML-driven autonomous vehicles 
(Hind, 2023), node shrinkage is not as big a consideration as it is for 
manufacturers of mobile devices. Whilst car manufacturers have long 
been attentive to the weight of the vehicles they produce, aiming to save 
it at every stage of the production and assembly process, automakers 
aren’t under any considerable pressure to reduce the size of their vehicles. 
On the contrary, cars have never been bigger. Compact SUVs outsold all 
other types in Europe in 2021, accounting for about 20% of all those 
sold, with SUVs holding a market share of over 45% in total (Statista, 
2022). More, smaller, transistors on every chip are beneficial to all semi-
conductor customers, but car manufacturers have a multitude of other 
operational considerations equally worth their time.

Nevertheless, the semiconductor chip shortage did affect car manufac-
turers, as mentioned above—despite not requiring the same types of 
chips as found in flagship mobile devices. As SNV contend, the crisis was 
largely the result of three interconnected aspects: ‘overly pessimistic’ 
(Kleinhans, 2021, p. 18) market recovery forecasts by car manufacturers, 
the prevalence of just-in-time production methods throughout the auto-
motive industry (and associated low inventory levels), and ‘simultane-
ously strong demand for consumer electronics’ (Kleinhans, 2021, p. 18) 
during lockdowns and stay-at-home orders. As SNV further state, chip 
fabrication ordinarily takes four to six months, and so any submitted 
order by fabless automotive suppliers such as Bosch or Denso would 
necessarily entail a wait. Only 5% of TSMC’s net revenue in 2022 was 
generated from automotive customers, compared to 41% from high-
performance computing and 39% from smartphones (TSMC, 2022), 
meaning car companies were at the back of the queue for their chips. In 
short, the stop/start nature of the global economy during the long-tail of 
the pandemic has exposed the vulnerability of multiple taken-for-granted 
aspects of the way automotive firms operate.

Whilst the unprecedented demand for consumer electronics such as 
video games consoles and exercise bikes might appear unique to a global 
pandemic, as McKinsey analysis suggests, there remains considerable 
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overlap between chips required for such consumer devices and contem-
porary vehicles (Burkacky et  al., 2021). Such an overlap, rather than 
receding, will only continue to grow. As they summarize, cutting-edge 
nodes (28 nm or smaller) possess a low overlap with respect to 5G (logic, 
field programmable gate arrays, application-specific integrated circuits) 
and IoT edge computing (main processing units, memory). But regard-
ing trailing edge nodes (28 nm or larger), there is a high overlap with 
respect to electrification (discretes, power management, power supply 
units) and medium overlap with 5G (radio-frequency switches, duplex-
ers, antenna) and IoT edge computing (sensors, microcontrollers, ana-
logue communication).

In this, automotive firms are competing alongside other manufacturers 
for chip production space in an already high-demand arena (Yoon, 2023). 
As McKinsey conclude, ‘chip capacity won’t catch up with demand in the 
short term … primarily because of the continued increases in volume and 
sophistication levels of the chips needed to power … advanced driver-
assistance systems and autonomous driving’ (Burkacky et  al., 2021, p. 
n.p.). Longer term, as I’ve tried to outline in this chapter, ‘the auto indus-
try will need to rethink the way it structures contracts for semiconductor-
related sourcing’ (Burkacky et al., 2021, p. n.p.). In short, that it might 
have to reconsider, ‘at least in part’ (Burkacky et al., 2021, p. n.p.) some 
near sacred and fundamental parts of the contemporary industry, such as 
just-in-time production and low inventories.

State and supranational level commitments to funding the construc-
tion of fabs, in both the EU and the US, in order to decrease reliance on 
East Asian manufacturers, are a consequence of how important semicon-
ductor chips are to national economies and especially to key industries 
such as the automotive industry. A physical lack of chips threatens to 
throttle the ambitions of car manufacturers looking to turn their models 
into sophisticated, chip-dependent, sensing devices. Beyond questions of 
technical viability, perceptive accuracy, legal safety, and public accep-
tance, securing the continued production of semiconductor chips is nec-
essarily vital to the future of autonomous driving.
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�European Chips Act: (East) 
German Exceptionalism

This has involved the EU relaxing state aid rules in order to boost the 
capacity of semiconductor production across member states, even if ‘con-
nected’ vehicles don’t necessarily require the most cutting-edge chips 
needed for smartphones and tablets. EU state aid rules, laid down in the 
1957 Treaty of Rome, prevent EU member states from providing finan-
cial incentives to firms or sectors in order to gain competitive advantages 
(Davies, 2013). The European Chips Act, proposed in February 2022 
intended to relax otherwise strictly mandated and ‘cherished’ (Davies, 
2023, p. n.p.) state aid rules, to stimulate the production of semiconduc-
tor chip fabs within the EU (European Commission 2023a). Such an 
unprecedented decision suggests that the European Commission recog-
nizes the significant disadvantage the EU will likely (continue to) have in 
relation to, namely, East Asia, in the future digital economy.

One way of understanding such a proposal is through the notion of 
exception, as Will Davies (2013) does. The relaxation of state aid rules for 
the production of chip fabs suggests that this issue is so critical that usual 
rules should not apply. Indeed, it is arguably the first time that the EU 
has invoked a relaxation of such rules in order to defend its own ‘techno-
logical sovereignty’ (Rikap & Lundvall, 2021, p. 156), suggesting that 
securing the future ongoing production of semiconductor chips is central 
to the economic security of the whole EU bloc. As Scott Lavery writes, 
this constitutes ‘a decisive break from the past’ (Lavery, 2024, p. n.p.) 
where ‘in the 1990s and 2000s, Washington and Brussels viewed the 
development of the semiconductor industry as an example of globaliza-
tion working as intended’ (Lavery, 2024, p. n.p.).

In invoking exception as a special circumstance, then, one must reason 
that the situation the EU finds itself in is a notably exceptional moment 
or ‘crisis’. These supply chain issues, in part affected by the global 
Covid-19 pandemic, have severely affected the future viability of autono-
mous vehicles. The argument I thus make in this chapter is that such 
intersecting crises (or polycrisis) offer an external threat to the possibility 
of autonomous driving, as a parallel to ‘internal’ threats offered by the 
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lack of technical progress on automation, object-recognition, and motion 
planning.

One such exception to EU state aid rules applies to the former East 
Germany, incorporated into the Federal Republic of Germany since 1990 
(Davies, 2013). Article 107 (2)(c) of the Treaty on the Functioning of the 
European Union (TFEU) states that ‘aid granted to the economy of cer-
tain areas of the Federal Republic of Germany affected by the division of 
Germany, in so far as such aid is required in order to compensate for the 
economic disadvantages caused by that division’ is considered ‘compati-
ble with the internal [EU] market and thus regarded as an exemption’ 
(European Commission, 2015, p. 1, emphasis added).

This is interesting for two reasons. Firstly, of course, that this historic 
exemption can be considered a plausible reason for why (West) German 
automotive manufacturers have opened facilities in the former East over 
the last 30 years, in addition to taking advantage of the collapse of the 
Soviet Union in opening facilities in the Czech Republic and Slovakia. 
Here, German automakers have been able to both offshore and ‘inshore’ 
car assembly over the same time period, benefitting from state aid rule 
exceptions and the neoliberalization of former Soviet satellite states 
(Pavlínek & Janák, 2007; Pavlínek, 2008).

Then, secondly, that this can also be seen as an additional underlying 
factor in the decision for battery suppliers and semiconductor firms to 
open new facilities in the former Eastern states of Brandenburg and 
Saxony-Anhalt. That is, in addition to commitments made by the EU in 
the European Chips Act. Accordingly, the re-unification of Germany in 
1990 continues to affect the future development of semiconductor chips 
and the automotive industry in 2024 and beyond, making Eastern 
Germany in particular an attractive place to open chip fabs and battery 
production facilities, as well as whole vehicle assembly plants. Intel chief 
Pat Gelsinger, for instance, on announcing the construction of a new 
chip fab facility near Magdeburg, Saxony-Anhalt described it as an ‘ideal 
place’ (Tagesschau, 2022, p. n.p.). It is this situation that has previously 
been challenged as unfair, for instance, by Europe of Freedom and Direct 
Democracy (EFDD), the Eurosceptic group in the European Parliament 
(European Commission, 2015).
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As Davies continues, examples of exemptions of state aid include ‘to 
promote execution of an important project’ or ‘to remedy a serious dis-
turbance in the economy’ (Davies, 2013, p. 44), conditions outlined in 
the European Chips Act, sparked by the chip crisis. Here, certain ‘positive 
externalities’ that serve as possible state aid exemptions include ‘high-
end’ research and development (R&D) (Davies, 2013, p. 48), such as 
chip fabs. Due to their incomparable significance for the future economic 
(technological) sovereignty of the EU, chip fabs represent ‘a particular 
type of object that resists easy calculation via market-based techniques of 
valuation’ (Davies, 2013, p. 48). In other words, that semiconductor chip 
fabs matter so much to the future of innumerable sectors within the EU 
(consumer electronics, automotive industry, agricultural sector, etc.) that 
they cannot either be dealt with solely by the EU market nor can be val-
ued accurately enough through or by it.

As the European Commission’s ‘State Aid Action Plan’ outlined, it was 
committed to analysing instances of ‘market failure’ (European 
Commission, 2005, p. 6), where state aid rules might be permitted. The 
question, thus, is precisely what the trigger for the European Chips Act 
and the conditional relaxation of state aid rules was, in respect to the 
production of semiconductor chips. Was it that the market as composed 
was failing to provide customers (car companies, drivers) with well-
priced, adequate quality, or easy to acquire products? Or, on the produc-
tion side, that the market as composed wasn’t stimulating enough 
competition because, for instance, of the high investment costs associated 
with semiconductor investment and R&D? Or, on a more expressly 
political level, that this was unduly increasing reliance of EU businesses 
on East Asian semiconductor firms, such as TSMC and Samsung?

There is an explicit reference to Article 107 (3)(c) of the TFEU, on 
allowing the European Commission to ‘approve State aid to facilitate the 
development of certain economic activities, if the positive effects of 
such … outweigh its potential negative impact on trade and competition’ 
(European Commission, 2023a, p. 3). In particular, that it must offer a 
so-called incentive effect, be ‘necessary’ as well as demonstrably ‘appropri-
ate’ and ‘proportionate’ (European Commission, 2023a, p. 3) as decided 
by the European Commission itself. In support of their proposal, the 
European Commission state that one of the principal conditions would 
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be that such facilities would have to be ‘first-of a kind’ within the EU, 
without any ‘equivalent facility’ existing within member states at present 
(European Commission, 2023a, p. 3).

The conclusion, therefore, regarding the announced Intel facility in 
Magdeburg—despite the fact the Act had not yet been implemented—
would be that the facility would expect to pass this, and any related tests, 
ordered by the European Commission. This was arguably a somewhat 
strange position for Intel, Germany, and the European Commission, 
with Intel undoubtedly receiving assurances that their investment in 
Germany would not contravene state aid rules in this instance, until the 
European Chips Act was enacted.4 The consequence of such also being 
that once a ‘one-of a kind’ facility was announced, presumably, no other 
further facilities like it could be built with state aid, posing questions 
about how precise a ‘uniqueness test’ in respect to chip fabs would, or 
could, be.

�Conclusion

This chapter has sought to understand how autonomous vehicles ‘secure’ 
decisions in two ways. Firstly, as ‘auto-nomos’ vehicles, they execute deci-
sions like a sovereign actor. Yet, rather than exclusively controlling and 
exercising authority over a sovereign territory, the autonomous vehicle 
acts by exclusively controlling and exercising authority over calculative 
decisions made whilst driving. Following the work of Bratton (2016), 
Agamben (2005), and Schmitt (1985 [1922]), sovereignty can be under-
stood through an actor’s ability to suspend the normal state of operation, 
in favour of a ‘state of exception’, in which the actor is neither necessarily 
outside of or beyond the law, nor wholly inside it either. This ability to 
decide when the normal rules apply is the essence of the power of a sov-
ereign actor.

Through the setting of operational thresholds—some of which might 
exceed legal norms in order to avoid other possible riskier situations 

4 The European Chips Act eventually entered into force on September 21, 2023 (European 
Commission, 2023b).
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encountered by the vehicle—the autonomous vehicle has the possibility 
of deciding when and how an operational state of exception applies. In 
this, the autonomous vehicle has the capacity to switch between ‘normal’ 
and ‘exceptional’ modes at will, thanks to the protocological (Galloway, 
2004) form its decision-making architecture takes.

Yet, in tune with the messy, unresolved, relationship autonomous vehi-
cles are beginning to engender with other political entities, there are some 
rather more familiar forms of sovereign action being carried out within 
this sphere, also. Thus, secondly, the chapter has sought to unpack the 
effect that emergent political-economic crises have had on automotive 
supply chains, offering a different sense of ‘securing’ decisions, rooted in 
establishing or maintaining reliable supply chains of important techno-
logical components and systems essential for the delivery of autonomous 
driving as a future phenomenon. Here, such compound crises manifest as 
an entangled ‘polycrisis’ (Tooze, 2022c) amounting to a kind of extant, 
rolling, tumultuous environment in which actors within the automotive 
industry and the emerging autonomous vehicle industry can only navi-
gate, rather than definitively solve. In times of polycrisis, there are no 
single ‘fixes’.

Through an analysis of the ‘chipification’ (Forelle, 2022) of automobil-
ity and the recent semiconductor ‘chip crisis’, the chapter examined how 
the latter has been ‘engineered’ by key actors such as chip firms and 
nation states, to achieve a certain level of supply chain independence. 
These economic decisions are representative of broader efforts by the EU 
to cultivate a form of ‘technological sovereignty’ (Rikap & Lundvall, 
2021), intending to de-couple supply chains from reliance on other ter-
ritories such as East Asia. As the final section of the chapter contends, the 
form such technological sovereignty has taken with the EU has been 
dependent upon the historical peculiarities of key states within it, such as 
the exceptional status of the Eastern German states since the re-unification 
of Germany in 1990. With the exceptional features of the German auto-
motive industry in mind, the future world of autonomous vehicles within 
the EU will likely follow a more ‘techno-protectionist’ path, offering sig-
nificant challenges to the US, China, and global models of free trade.
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7
Relaxing Decisions: Making Driving Chill

This chapter considers the rise of an open-source project called ‘Comma’. 
Based in San Diego, US, and founded by George Hotz, the first person 
to hack an Apple iPhone, Comma has been considered a threat to both 
big tech dreams of autonomous driving and automotive industry visions 
of assisted driving. The chapter explores how driving as an emotive, affec-
tive, bodily, and cultural experience is considered, by Hotz and Comma 
supporters, to be under threat by big tech visions of automation. Comma’s 
offer of an aftermarket, ‘bolt-on’ advanced driver-assistance system 
(ADAS), based on a smartphone-style device, compatible with over 200 
existing vehicle brands and models (Comma, 2022), is thus designed to 
offer the possibility of a limited form of ‘autonomous’ driving, whilst 
allowing—so their argument goes—customers to retain in control.

In this I explore how Comma is about ‘making driving chill’, as their 
tagline contends. Many of their avid customers and supporters suggest 
on online discussion boards that they desire to achieve what they call ‘that 
openpilot vibe’, as offered by the company’s ML-driven platform, open-
pilot. Put simply, Comma can be understood as a San Diego version of 
what Barbrook and Cameron (1996) called the ‘Californian ideology’, a 
contemporary manifestation of a belief that crystallized on the west coast 
of the US during the 1980s and 1990s that ‘computers somehow seemed 
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poised to bring to life the countercultural dream of empowered individu-
alism, collaborative community, and spiritual communion’ (Turner, 
2006, p. 2).

To experience the joy of retrofitting their vehicles with a Comma 
device, users participate in a range of connected activities, implicitly 
accepting, and often explicitly defending, their ‘datafied’ driving experi-
ence (Hind, 2021), in order to contribute to the improvement of the 
performance of openpilot. Such activities involve performing various 
‘hacks’ to their vehicles to improve the capabilities of the device itself, 
routinely discussing and sharing tips on a public—but company-
moderated—Discord channel. This avid online user community is argu-
ably unique within the automotive industry, only rivalled by the fierce 
support Tesla drivers have for their own vehicles, and the company’s Full 
Self-Driving System (FSD). Where Comma differs, as this chapter 
intends to show, is in their support for open-source ethics, commitment 
to the ‘everyday’ driving experience, and a future of autonomous driving 
where individual drivers are nominally in control.

The chapter begins with detailing the ‘empowered individualism’ 
embodied by Comma, before introducing what I call Comma’s ‘culture 
of testing’. Through an analysis of the Comma online community, I con-
sider four test phenomena indicative of the ‘spiritual communion’ felt by 
Comma users: the calibration of Comma devices, the reporting and 
tracking of device bugs, the posting of ‘vibes’, and the cultivation of 
shared experiences.

�The Californian Ideology 
(Empowered Individualism)

In 1996 Richard Barbrook and Andy Cameron published a polemic on 
the rise of the ‘virtual class’ (Barbrook & Cameron, 1996), constituting 
their now famous critique of the ‘Californian ideology’. A mix of 1960s 
counterculture and a kind of electronic libertarianism, the Californian 
ideology was Barbrook and Cameron’s term for the epistemological foun-
dations for an emerging class of ‘technophiliacs’ (Barbrook & Cameron, 
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1996, p. 48). Through a shared understanding of the liberating force of 
new kinds of digital technology—the desktop computer, the internet—
these technophiliacs would come to constitute the driving political 
dynamic of Silicon Valley from the 1980s onwards. ‘In this version of the 
Californian Ideology’, as Barbrook and Cameron (1996, p. 53) wrote, 
‘each member of the “virtual class” is promised the opportunity to become 
a successful hi-tech entrepreneur’ (Barbrook & Cameron, 1996, p. 53). 
New ‘information technologies’ beginning to find a mass market in the 
mid-1990s were, according to proponents, able to ‘empower the indi-
vidual, enhance personal freedom, and radically reduce the power of the 
nation-state’ (Barbrook & Cameron, 1996, p. 53).

It is this discourse of empowerment that Philip Agre (1995) laid out 
comprehensively, considering not only how new kinds of information 
technologies were being championed by an emergent virtual class, in 
opposition to the state, but how they were manifesting changes in corpo-
rate work cultures, too. Whilst Agre acknowledges that the notion of 
empowerment does not wholly emerge from 1960s countercultural ideas 
around subjectivity and personal agency, he nonetheless suggests that 
empowerment ‘be understood as a general trend towards the outward 
and downward delegation of decision-making authority in organizations’ 
(Agre, 1995, p. 172). In other words, that individual empowerment was 
emerging as a discourse within the workplace, substantially re-organizing 
the relationship between ordinary worker and management, resulting in 
greater ‘operational control’ (Agre, 1995, p. 172) of each workers’ own 
set of tasks and responsibilities being handed over to workers from man-
agement. In such a case, at least in theory, each individual worker would 
be granted greater autonomy in their day-to-day work, largely free from 
overbearing managers—either assigned to work on jobs of their own 
choosing or free to work towards set objectives in any way they (either 
alone or in teams) saw fit.

Agre’s contribution to this debate around worker empowerment was 
that ‘decentralized computer technology’ (Agre, 1995, p. 177)—essen-
tially the desktop computer—was increasingly key to how individual 
empowerment was being engendered on the ground, in workplaces. Even 
more significantly, Agre came to understand this empowerment discourse 
as part of a bi-directional process he called the ‘empowerment and 
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measurement regime’ (Agre, 1995, p. 176), a relationship that Agre sug-
gested was rarely considered as part of a ‘single, coherent system’ in pre-
vailing business literature (Agre, 1995, p.  176). For Agre, the 
‘empowerment’ of the desktop computer (and all its later accoutre-
ments—email, etc.) was only ever made possible by an accompanying 
process of employee monitoring and accounting. In other words, man-
agement weren’t either freely giving away their own agency, nor had nec-
essarily been wrestled out of it by the overwhelming social power of the 
virtual class, but were happily providing it on the basis of some kind of 
return. Employees would be free to make their own ‘localized’ decisions, 
for instance, on how to organize work tasks directed towards a set objec-
tive, but in granting this kind of (computerized) agency, workers would 
have to give up a form of workplace privacy in the shape of ongoing 
performance management. The empowerment and measurement regime, 
as Agre thus understood it, would be an ‘advanced form of … synthesis, 
comprised of one theme drawn from the tradition of corporatism and 
autonomy – empowerment – and another theme drawn from the tradi-
tion of rationalization and control – measurement’ (Agre, 1995, p. 180). 
Decentralized computer technologies, of a new information variety, were 
becoming fundamental to the entrenchment, and proliferation, of the 
regime itself.

�Comma as Open-Source Project 
(Collaborative Community)

As Luis Alvarez León has written, the rise of Comma invites a ‘fuller 
political economic examination of self-driving car data’ (Alvarez León, 
2019, p. 13), in which ‘the double-edged sword of empowering users to 
access and interpret their own vehicle data, while creating a market for it, 
exemplifies one of the defining tensions of digital capitalism’ (Alvarez 
León, 2019, p. 13). In Comma, open-source ethics—of free access, the 
right to share software, the right to modify software—routinely come 
under scrutiny, as the company uses them as the foundation of both its 
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general business model and the operational foundation of the ‘end-to-
end’ data-driven, machine learning approach to autonomous driving.

In this, Comma offers an interesting account of how open-source eth-
ics are used to give credence and social capital to a disruptive tech prod-
uct, considered by Hotz as an entire new consumer electronic device class 
(Hotz, 2021). Part of the allure to many Comma users is the possibility 
to assume the role of an active beta tester—an external, public participant 
in the development of the Comma device and openpilot software. This is 
the result both of Comma’s consistent marketing around the aforemen-
tioned mantra, ‘make driving chill’, but also a result of legal restrictions 
imposed on Comma in 2016, by the US National Highway and Traffic 
Safety Administration (NHTSA), following the release, and subsequent 
cancellation, of their original device, the Comma One (Etherington, 
2016). As a result, all Comma products are sold as developmental devices 
meant for beta testing only. Although in practice, Comma devices are 
freely available to purchase, it has bred a significant, active, committed, 
user community attracted by the freedom it affords users to retrofit their 
vehicles with autonomous driving-like qualities.

As a result of the above and other aspects to which this chapter will 
explore, Comma can be considered an adaptation, or more appropriately, 
a mutation of the idea of participatory algorithmic authorship, similar to, 
and reliant on, other platforms such as Github which operate as a ‘form 
of distributed and iterative writing in which multiple developers contrib-
ute to the rewriting and editing of software’ (Amoore, 2020, p. 97). In 
the case of Comma, this involves users actively generating driving data 
used to improve the capabilities of the underlying openpilot software, 
which drives the device and ultimately, the vehicle itself. The difference, 
perhaps, between Comma and other contemporary examples of data-
driven platforms, or platforms utilizing active user ‘use data’, is that this 
is considered a virtue of the product, rather than a reluctant feature, or 
necessary evil—a belief that users have ‘full(er) customizable power 
within, and critically, of, the vehicle’ (Hind, 2021, p. 2, authors’ empha-
sis) as augmented through their Comma device.

Although different in many other ways, one might interpret the enthu-
siastic Comma user community as comparable with, or divergent from, 
various other contemporary ‘pioneer communities’ (Hepp, 2019) such as 
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the quantified self (QS) movement, the maker movement, and hacking 
communities more broadly. Here, instead of sensing devices being used 
by individuals to track bodily movements and health (as in the QS move-
ment), a Comma device is used by individuals to track their vehicular 
movements and health, as extensions of the self, and a constituent of the 
‘embodied driver-car’ (Dant, 2004, p. 71), by way of feeding such data 
into an automated pipeline designed to improve, refine, and further 
modulate, the novel experience of driving an autonomous vehicle. Hepp 
(2019) understands such groups as part of the global spread of ‘cybernetic 
counterculture’ (Turner, 2006) emergent from the west coast of the US 
from the 1960s onwards, discursively rendered as the Californian ideol-
ogy by Barbrook and Cameron. Here, such movements are indebted to 
the ‘pioneering’ practices of new tech communities, taking on a globally 
mutated form far beyond San Francisco or California itself. What estab-
lishes such contemporary communities as continuations of formational 
movements is their commitment to what Hepp (2019) identifies as four 
key principles: their self-styled belief to be ‘forerunners’, their role as 
‘intermediaries’ between different domains and spheres, their engage-
ment in ‘experimental practices’, and their designing, building, and test-
ing of ‘visions of possible future scenarios’ (Hepp, 2019, pp. 32–33).

Put in political-economic terms, Comma can be seen as the strange 
mutation of relations between two camps. On one side, what Barbrook 
and Cameron (1996) refer to as the ‘virtual class’, embodying the 
Californian ideology, or what McKenzie Wark (2004, 2015) has vari-
ously referred to as the ‘vectorialist class’: a class that owns neither prop-
erty nor the means of production, ‘but instead owns the vector along 
which information is gathered and used’ (Wark, 2019, p. 2).1 This virtual 
or vectorialist class is directly in conflict with the so-called hacker class 
(Wark, 2004), and ‘as the vectorialist class consolidates its monopoly on 
the means of realizing the value of intellectual property, it confronts the 
hacker class more and more as a class antagonist’ (Wark, 2004, p. 8). This 
‘subordinate class’ (Wark, 2015, p. n.p.) of workers, the hackers, are 

1 The connection between these two terms, virtual and vectorial, is their respective Deleuzian 
qualities.

  S. Hind



199

principally tasked with ‘the production of new information’, as Wark 
(2015, p. n.p.) suggests:

The production of new information as information is based on a technical 
separation of the flow of information from its material substrate such that 
while information still has no existence outside of a material substrate, its 
relation to that substrate becomes abstract. The potential of this develop-
ment is then constrained and channeled via elaborations of the private 
property form. (Wark, 2015, p. n.p.)

In other words, it is the hacker class who are involved in the generation 
of (new) information that becomes the lifeblood of the vectorialist class 
through processes of information ‘capture’ (Agre, 1994), to which they 
must abide by. As Wark pithily writes, ‘information wants to be free but 
is everywhere in chains’ (Wark, 2015, p. n.p.), much like the hacker class 
itself, forever bound to the empowerment-measurement regime.

Further, like Wark suggests, ‘the production of intellectual property 
like the production of anything, requires cooperation and collaboration’ 
(Wark, 2015, p. n.p.), the kind of cooperation and collaboration facili-
tated by open-source ethics, and the curation and ongoing mobilization 
of a user community able, ultimately, to deliver intellectual property in 
the form of a proprietary device. Wark (2015) characterizes this coopera-
tive/collaborative work as ‘in-sourcing’, where out-sourcing ‘sends a 
worker’s job overseas to another worker’, in-sourcing ‘assign’s the hacker’s 
job to anyone who will perform the task for free’ (Wark, 2015, p. n.p.). 
As will be expanded on later in this chapter, there are plenty of willing 
people who will indeed do this for Comma, for free. That they do so 
freely and willingly shows just how powerful the vectorialist class have 
become today and to which those driving the Comma project belong.

Thus, Comma might be understood as fostering a form of ‘cynical 
technical practice’ (Hind & Seitz, 2024), as open-source ethics have been 
co-opted by, and folded into, Comma’s commercial enterprise. Through 
this cynical co-optation, an active user community has been cultivated 
that displays many of the same characteristics of other existing open-
source projects without a commercial dimension. Here, I use the term 
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cynical technical practice as a response to Phil Agre’s articulation of ‘criti-
cal technical practice’ (Agre, 1997).

Likewise, on a practical level, Comma devices act ‘parasitically’ upon 
drivers and their vehicles, much like other commercial ADAS (Hind & 
Gekker, 2024), offering a form of empowerment in exchange for data 
aggregation (Agre, 1994, 1995). In other words, Comma is not only a 
contemporary example of the Californian ideology in action but of Agre’s 
empowerment and measurement regime. As subsequent sections will 
detail, that through the ‘inversion’ of the firm (Parker et al., 2017), and 
the externalization of product research and development (R&D), it can 
be seen as fascinating case of the externalization of the empowerment and 
measurement regime, such that it is not only ‘internal’ employees subject 
to these intertwined forces but ‘external’ users, developers, and other 
interested parties.

�Antagonists: Coneheads 
and Consumer Reports

One of the central tenets of the Comma project is broad antagonism 
towards two camps. Firstly, to big tech-driven autonomous driving, 
which it sees both on a technical level as overcomplicating the design of 
the perceptual components of autonomous vehicles and on an experien-
tial level, as ruining the sacred agency of the car owner. Secondly, to 
automotive manufacturers, which it considers both as resistant to DIY 
automotive cultures and a laggard with respect to designing cheap, effec-
tive, driver-assistance devices. Put differently, Comma desires to disrupt 
both big tech and automotive industries at large. In this section I want to 
work through each of these antagonisms in turn, as they provide a good 
sense of the raison d’être of the Comma project itself.

In July 2021 Comma CEO George Hotz hosted the company’s first 
‘COMMA_CON’ event, a product launch of their new ADAS device, 
the Comma Three, ‘akin to Facebook’s F8 or Google’s I/O’ (Hind & 
Seitz, 2024, p. 38). ‘If Tesla’s the iOS [of self-driving cars], we’re going to 
be the Android’, Hotz announced (Hotz, 2021). Continuing the 
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comparison with Elon Musk’s electric vehicle company, Hotz claimed, 
‘we like to say the Tesla slogan is: “look at this crazy feature”’ (Hotz, 
2021), a marked difference to Comma’s ‘make driving chill’. Hotz goes 
on to ask the attendees—largely a collection of committed Comma users 
and owners—‘what does it mean to be “good”?’ (Hotz, 2021). ‘What 
makes a system good isn’t the crazy things that it can do’, Hotz continues, 
‘but it’s the things that it can do over and over again, repeatedly and well. 
That’s what chill means to me’ (Hotz, 2021). In this statement of the 
Comma project’s guiding principle and ethos, Hotz makes repeated refer-
ence to Tesla’s FSD ‘Autopilot’ feature. Far from autonomous, Autopilot 
is best understood as a rival ADAS, able to deliver automated assistance 
to drivers in a specific range of situations, such as exiting a motorway 
(Tesla, 2023). As Hotz considers, any fancy demonstration of an ADAS 
performing more experimental manoeuvres (‘crazy things’) in a more 
anxiety-inducing manner is less important than executing certain 
manoeuvres that render the driving experience relaxing.

The notional figure of this first technical antagonism is the so-called 
cone guy or conehead, a figure that Hotz frames as the epitome of the 
wrong-headed approach to the automation of driving led by tech firms 
and the likes of Tesla (Fig. 7.1).2 Moving on from his critique of Tesla, 

2 Despite being global electric vehicle manufacturer with a market cap of $767 billion (as of August 
2023), I prefer to place Tesla alongside other big tech firms, rather than competing automotive 
manufacturers, because of their software-first approach to automobility, amongst other reasons.

Fig. 7.1  The ‘computer vision lesson not learned’ and the figure of the ‘cone 
guy’. (Source: Hotz, 2021)

7  Relaxing Decisions: Making Driving Chill 



202

Hotz asks whether ‘these people [can] think a little higher up in the 
abstraction space?’ (Hotz, 2021) when it comes to delivering automation. 
In this, Hotz considers what he calls ‘the computer vision lesson not 
learned’ (Hotz, 2021): that the task of object-recognition and prediction 
is not the same as the task of driving itself. For Hotz, ‘it’s unclear how you 
go from prediction to driving’ (Hotz, 2021), and focusing on the for-
mer—as computer vision researchers do—still leaves them ill-equipped 
to solve the task of self-driving:

Why is this lesson still not learned, and why are these companies still hiring 
cone guys?! You’ve got to get into the taxonomy of cones. You have small 
cones, you have large cones. What does it mean if a cone is “smushed”? 
What about the big cones like this [gestures]. The thing outside? Is that a 
cone?! You gotta hire a cone guy for that, right! So the lesson’s really, err, not 
learned.’ (Hotz, 2021)

Thus, the ‘cone guy’ encapsulates what Hotz considers as the wrong 
approach to delivering autonomous driving: an express focus on catego-
rizing objects and of simply building up an ever-larger, ever-more com-
plex ‘prop stash’ (Hind, 2019, p. 412; Madrigal, 2017) of objects liable to 
be encountered by an autonomous vehicle. While Hotz doesn’t explicitly 
mention an autonomous vehicle company, it’s clear he’s talking about 
Waymo, and other firms (at the time, Uber ATG), who take a taxonomi-
cal approach to automation, as Chap. 5 contended.

The second antagonist is the automotive manufacturer, as rendered 
through the lens of consumer rankings. Referring to a consumer report, 
Hotz ‘mentions how Comma beat all 18 competitors’ (Hind & Seitz, 
2024, p. 39) in a comparison between the ADAS capabilities of automo-
tive manufacturers, including Tesla’s Autopilot, Mercedes-Benz’ Driver 
Assistance, and Volvo’s Pilot Assist (Consumer Reports, 2020). Here 
Hotz is critical of such manufacturers—many of whom were openly hos-
tile towards Comma—defiantly stating that ‘we did ship a Comma 2, 
and it did embarrass the car industry’ (Hotz, 2021). Understood as tech-
nological laggards, unable to complete with Comma, Hotz sees 
automotive manufacturers as largely uninterested—or unable—to deliver 
high-performing driver assistance. Their opposition to Comma on the 
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basis of safety regulations, in respect to Consumer Reports (2020) rank-
ings noted by Hotz, appears unjustified in light of the overall ratings.

These antagonisms can be seen as evidence of ‘intra-ruling class con-
flict’ (Wark, 2015, p. n.p.) evident in the autonomous driving domain, 
each drawing a slightly different set of relations to the subordinated 
hacker classes. In Wark’s analysis of such conflicts between landlords and 
capitalists in the work of David Ricardo, ‘the more of the surplus land-
lords can capture in the form of rent, the less there is for capitalists to 
capture in the form of profit’ (Wark, 2015, p. n.p.). In this formulation, 
the landlord class is the passive operator, the ‘octopus’ or parasite extract-
ing wealth merely off the work of others. By contrast, the capitalist must 
work to re-invest acquired profits or risk losing out altogether to other 
more committed members of the capitalist class. For Comma, their status 
in a comparable intra-class battle is one tied most closely to the vectorial-
ist class Wark speaks of, neither linked to rents nor profits, land nor 
industry, but control over the flow of information and a subordinate class 
who generate and channel it: the hacker class. In this specific form, one is 
tempted to put a different, even more appropriate name to it: the 
Comma class.

�Comma Culture or the Comma Class 
(Spiritual Communion)

The Comma community is central to the project itself: how it is orga-
nized, what it prioritized, how devices are tested, and how users foster a 
sense of belonging with like-minded people. At the centre of the Comma 
community is Discord: an online message board-style platform. 
Communities on Discord are organized through ‘servers’ on which users 
gain access to the communities they desire, with server hosts able to set 
up different ‘channels’ ordinarily corresponding to different topics. On 
the ‘Comma.ai community’ server, first launched in July 2020, users are 
presented with eight different channels, including categories to help users 
orientate themselves (Onboarding), discuss general Comma-related 
issues (General), provide feedback on the Comma user experience 
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(Feedback), and participate in vehicle model-specific conversations 
(Vehicle-specific). A fairly stringent set of community rules dictate the 
type and location of posts that should be made by users, driven by a guid-
ing ethos: the ‘comma.ai community is centered around openpilot and 
improving the driving experience’ (VirtuallyChris, 2020), and a reminder 
that ‘if the company wins we all win’ (VirtuallyChris, 2020). Any users 
who see things differently are kindly asked to ‘leave this private discord’ 
(VirtuallyChris, 2020).

By autumn 2023, the Comma Discord channel had 30,770 members, 
up from 26,448 in spring 2022. On entering the channel one afternoon 
in late summer, 3163 members were currently online. One person who 
counts himself amongst the active userbase is George Hotz himself, who 
routinely posts updates of Comma projects, as well as responding to—
and calling out—users with specific gripes or issues with Comma or 
Comma products. Whilst much of the conversation taking place on the 
Discord server is typical of online fora, displaying all the characteristic 
style and tone of online message boards, it is home to an extremely active 
user base committed to ‘improving the driving experience’, as the pinned 
post in the Onboarding channel suggests, passionately dedicated to ‘mak-
ing driving chill’ and ‘chasing that openpilot vibe’ in reference to the 
thrill users get from using Comma’s openpilot software.

Before breaking down these aspects of what I call Comma’s culture of 
testing, it is worth situating it within a broader context of user testing and 
the testing of digital technologies. Firstly, Comma can be seen as an 
example of the far longer history of DIY tech culture, typified by the free 
and open-source (FOSS) movement. In such cases, users are encouraged 
to gain and share skills relating to the upkeep of different technologies 
and devices, driven by collective opposition to proprietary systems and 
hardware, and digital rights management (DRM)-style approaches to 
digital content and software (Stallman, 2015; Tkacz, 2015). Comma 
users—despite the ‘cynical’ nature of the operation—certainly align with 
a version of these traditions, albeit refracted through Comma company 
ethics. As such, Comma seems to ‘echo the utopians of the 1990s’ (Turner, 
2006, p. 33), framing the project as reimagining ‘the rebirth in hardware 
and software of a single, “free” culture … outside the mainstream’ (Turner, 
2006, p. 33), as well as overtly antagonistic towards it.
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Secondly, Comma’s culture of testing can be seen as an example of the 
‘inverted firm’ (Parker et al., 2017) in which companies outsource R&D 
to external parties, such as developers. In this case, whilst this outsourc-
ing is not exactly wholesale (Comma does still have an internal develop-
ment team), they nevertheless rely on an active, knowledgeable user base 
to inform internal teams on emerging technical issues or bugs—some-
thing I will discuss in more detail later. The Comma user community is 
not only involved in testing Comma devices but also scoping future com-
patibility possibilities (i.e. with new car models), and even modifying and 
‘forking’ them for enhanced performance. Of further interest is that the 
practice of inverting the firm in such a manner, and of outsourcing cer-
tain aspects of R&D to users, is novel to automotive manufacturers 
themselves. Here, automotive manufacturers have historically preferred 
to outsource certain kinds of R&D to trusted suppliers, under the watch-
ful eye of Original Equipment Manufacturers (OEMs), ordinarily dictat-
ing the work performed by such suppliers (Hind et al., 2022; Pavlínek & 
Janák, 2007).

In contrast, this externalization of testing, research, and product devel-
opment is seen as a key operating principle of digital platforms, and their 
fostering of external relations between the firm and wider developer ‘eco-
systems’ (van der Vlist, 2022; van der Vlist et al., 2022). Even more spe-
cifically, some firms within the domain of autonomous driving (Waymo, 
Argo AI) have designed particular mechanisms, such as the hosting of 
(external) annual ‘challenges’, to contribute to the (internal) develop-
ment of autonomous vehicle systems (Hind et al., 2024).

But what exactly is constitutive of ‘Comma culture’ or the ‘Comma 
class’? I want to address this question in four parts, proceeding with the 
kind of necessary ‘operational’ approach I outline in the introduction to 
the book. In short: Comma’s culture of testing—whilst very much a 
standalone feature of the community itself—is nonetheless routinely 
mobilized in the service of ‘making driving chill’ and achieving, for users, 
a so-called openpilot vibe. These test phenomena concern four connected 
practices: the calibration of devices, the tracking/reporting of bugs, the 
posting of vibes, and, ultimately, the cultivation of shared experiences.
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�Test Phenomenon I: Calibrating Devices

Comma devices are typically referred to as ‘devkits’3—the result of a spe-
cial order from the NHTSA banning the original release (Etherington, 
2016). All future versions of the device (Comma Two, Comma Three) 
have been shipped as devkits, with every version of the openpilot software 
denoting their beta status, e.g. 0.9.2, 0.9.3, 0.9.4 (see Fig. 7.2). At pres-
ent the device is sold freely—but with significant disclaimers regarding 
their developmental status and therefore inherent risk in use. Offering 
Automated Lane Centering (ALC) and Adaptive Cruise Control (ACC), 
Comma devices afford both ‘latitudinal’ and ‘longitudinal’ automated 
control, meaning that ‘openpilot can accelerate, brake automatically for 
other vehicles, and steer to follow the road/lane’ (Comma, 2023a, p. n.p.).

Ensuring the devices work correctly involves calibration. Their status 
as devkits only emphasizes the need for them to be set up for local condi-
tions. The principal component of this localization process concerns the 
mounting of the device on the inside of a vehicle windscreen. If mounted 
improperly, the owner risks the Comma device being unable to sense the 

3 Short for ‘development kit’.

Fig. 7.2  Latest release notes for Comma openpilot. (Source: Comma, 2023a)
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road accurately, and amongst other things, determine the speed and angle 
the vehicle assumes.

Yet, mounting a Comma device isn’t necessarily straightforward. One 
user encountered on the Comma Discord provides help in multiple 
forms: a short step-by-step written guide with pictures on the blogging 
site Medium, and a link to a YouTube video narrating the same calibra-
tion process (Fig. 7.3). The narrated video is typical of the Comma com-
munity: a user sits in their vehicle, ostensibly parked in a home garage 
with a typical array of garage items in the background (washing basket, 
boxes, shelves). In the foreground, a mounted Comma device (screen 
on), another mobile device (screen off), and the vehicle’s entertainment 
system visible below. In the mid-ground the most important object in 
this calibration process: a tape measure repurposed as a DIY ‘plumb bob’ 
used to measure the centre of the vehicle windscreen. In the photos 
posted in the guide, the reader sees behind the scenes: a metal chain 
ensuring the tape measure hangs straight, and two plastic water bottles 
placed on the vehicle hood, cleverly used to extend the plumb line 
towards the windscreen (Fig. 7.4).

Nothing about this calibration process screams ideal test conditions, 
but everything—the repurposed plumb bob, the garage packed with 

Fig. 7.3  Calibration, Comma community style. (Source: Eyezenheim, 2022b)
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Fig. 7.4  Calibration, behind the scenes. (Source: Eyezenheim, 2022a)

miscellaneous objects, the water bottles; but also the Medium post and 
the narrated YouTube video—typifies the Comma approach to calibra-
tion. Here, the localization process is turned almost hyper-local, execut-
able with an array of ordinary objects close to hand—both general and 
everyday in type (tape measure, plastic water bottle), but necessarily 
taken from that most specific and unique of places: the domestic garage.
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Earlier, I made reference to the so-called prop stashes used to test 
autonomous vehicle’s ability to perceive miscellaneous road objects. Here 
another prop stash is also present but in a slightly different form. The 
domestic garage figures as an even lower-tech prop stash of sorts, integral 
in ensuring the perceptive capabilities of the Comma device are properly 
determined by their users. Whilst they have no role here in actually ‘test-
ing’ these capabilities, they play a significant part in calibrating them for 
such testing out on the road itself. Whilst these miscellaneous objects are 
positioned in front of the device, theoretically subject to its gaze, they do 
not find themselves incorporated into it. Neither object—the tape mea-
sure or the water bottles—is subject to machinic object-recognition. The 
tape measure might assume a different purpose, shifting from measure-
ment device to an instrument used to determine a vertical datum, but at 
no point does it do so as a prop to be sensed or categorized, but as a tool 
for subsequent real-world ‘props’ to be sensed. The water bottles might be 
elevated to the status of a calibration instrument rather than a humble 
vessel, but still avoid being subject to the calculative impulses of an 
ML model.

�Test Phenomenon II: Reporting/Tracking Bugs

Once the individual has calibrated their device and put it to use, they 
might well encounter subsequent issues that need addressing. Some of 
these issues might be resolved quicker with help from others, including 
the Comma team themselves. Some might be shared problems—in which 
case, alerting others would help determine their prevalence. As such, 
Comma has a dedicated process for ‘reporting bugs’ involving users rais-
ing ‘tickets’ on a dedicated Github page, and offering a ‘Feedback’ chan-
nel on their Discord server for users to share feedback on different aspects 
of the Comma experience, from driving routes (#driving-feedback) and 
driver monitoring (#driver-monitoring-feedback), to openpilot (#nav-
feedback) and the device’s connected features and subscription service 
(#connect-feedback).

Despite this, users are typically discouraged from reporting bugs alto-
gether—at least until they’ve done a few things. For issues with openpilot 
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and Comma devices, specifically, users have a six-point checklist. Firstly, 
they have to ensure the bug truly affects their Comma device—rather 
than their make or model of car. Secondly, if the bug relates to driver 
monitoring capabilities, users are re-directed to the feedback channels. 
Thirdly, users must be running the latest version of the openpilot soft-
ware. Fourth, they must be using officially supported hardware. Fifth, 
they must have checked the bug doesn’t exist already (to which they 
should check the ‘bug tracker’ if so). Then, finally, they must ensure they 
are running the ‘stock’ version of openpilot (Comma, 2023b). Only then 
are users given the green light to report a fresh, new bug. If such a spiri-
tual communion exists between Comma users, it’s through the diligent 
adherence to bug reporting that it is affirmed (Figs. 7.5 and 7.6).

One user demonstrates this process in action, asking ‘is Comma aware 
of the steering issue in [version] 8.13?’ before detailing a hairy moment 
the user experienced: ‘while talking a turn with openpilot engaged, the 
steering wheel swings to max turning radius and locks there flashing the 
“take control immediately” message’. To support their claim, the user 
ends by stating ‘I thought it was something I did last night until someone 
mentioned it on Reddit this morning’. On posting their message to the 
#openpilot-experience channel, another user intervenes to remind the 
poster of the correct protocol: ‘Comma does not actively monitor Reddit 

Fig. 7.5  Bug report. (Source: Comma, 2023b)
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Fig. 7.6  Bug tracker. (Source: Comma, 2023c)

or Discord for bugs and issues. Best is to submit a bug report on their 
GitHub to grab their attention’. No ordinary member, the other user 
holds a number of roles that validate their intervention, according to 
their Discord profile: openpilot contributor, Hyundai/Kia/Genesis mod-
erator, dev (developer), car tester, and fork maintainer.

Upon acknowledging the clarification from the esteemed user, the user 
with the worrying steering problem mentions they first ‘wanted to know 
if it was a known issue’ before raising a ticket. Sure enough, a short while 
later, the user shares their bug report—‘steering bug during turns’—
logged on the requisite GitHub page.

What follows is a fascinating account of how the bug is resolved. As 
the user describes in more detail than their original post:

During a right turn on my commute on 2/22 5:10-ish pm with open pilot 
[sic] engaged, the car’s steering wheel flipped from about 75 degrees to 105 
degrees and locked there. The screen flashed orange to take control. I dis-
engaged OP [openpilot] (I think, it happened fast) reset the driving line 
until the lane turned straight and re-engaged cruise. I initially thought it 
was a one off issue until someone described the exact same problem on the 
Comma subreddit this morning.
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To make absolutely sure, the user posts both a video and a route of the 
incident occurring, taken from Comma Connect.4 On the same day, a 
Comma employee responds, posting a graph of the user’s driving data 
from the incident, showing the angle of the steering wheel, alongside a 
graph representing steering torque and a final graph showing engagement 
of openpilot. Through comparison of these graphs, the Comma employee 
deduces the user started to take control of the steering wheel when it was 
at a 40-degree angle—initiating an override of openpilot as the driver 
proceeds to take the turn. Asking the user to verify where precisely the 
incident occurred on the graphs posted (‘you can select the section by 
dragging on the timeline, then copy the URL in your address bar’) with-
out subsequent reply, the Comma employee offers what is to be their final 
observation: ‘the take control alert was caused by an internal angle limit 
in your car, Hyundai limits you to ~90 degrees and usually won’t steer 
past that’.

Three graphs seem to confirm the interpretation: steering angle is 
recorded as 94.5 degrees, a steer warning activates at exactly the same 
moment, and cruise control is enabled (i.e. cancelled) at the same time 
also (Figs. 7.7 and 7.8). Whilst the original user appears to go missing, 
the Comma employee seems to have cracked the case, and the ticket is 
closed two days after the original report—one of over 2000 tickets that 
have reached some kind of resolution. Far from unique, this example is 
the perfect encapsulation of collaborative ethos of the Comma project—
a combination of different levels of users (‘ordinary’ community mem-
bers, openpilot contributors), a dedicated online community platform 
for asking questions (Discord), a seemingly parallel community on 
another (Reddit), a standardized process for logging specific issues (bug 
report), a platform on which such issues are assessed (GitHub), and 
another platform that allows both reporter and resolver to visually evalu-
ate associated driving data and, ideally, identify or fix the issue itself 
(Comma Connect). If, once again, such a spiritual communion exists 
between Comma users, then it is through this interconnection of proto-
cols and platforms that it is sustained.

4 Comma’s online device data platform.
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Fig. 7.7  Steering bug data. (Source: GitHub, 2022)

�Test Phenomenon III: Posting Vibes

Yet, this is a community that rarely is ever strictly engaged in ‘technical 
work’. Amidst the calibration of devices, the raising of tickets, and the 
interpretation of driving data, users film, edit, and—most importantly—
post content of themselves using their Comma devices. Here the sharing 
of such media is not somehow outside of or beyond such necessary work 
but part-and-parcel of being a member of the Comma community. 
‘Posting vibes’ is just as non-negotiable as any other activity within the 
community, equally as vital to the spiritual communion as anything else. 
Sharing one’s use of the device is—alongside using it—necessarily part of 
the fun, integral to ‘making driving chill’.

One user typifies this, having posted over 900 videos to their YouTube 
channel dedicated to sharing their openpilot experiences. Many of the 
videos are cross-posted on relevant Discord channels, some of which can 
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Fig. 7.8  Steering angle limit detected. (Source: GitHub, 2022)

be described as technical videos designed to assist other users with cali-
brating and fixing their devices. However, many arguably serve a different 
purpose, providing subscribers (they have over 700 on YouTube) and 
other users and viewers with a sense of how driving with openpilot feels. 
Most videos are descriptively titled, denoting the vehicle and route taken 
of the user. But some are styled as ASMR videos, those designed, argu-
ably, to offer heightened sensory responses for viewers (Lopez, 2018).5 
Others make use of Comma’s oft-repeated tagline, ‘make driving chill’, 
and ‘that openpilot vibe’ of driving non-handed. In these latter videos 
there are no step-by-step ‘how to’ guides. Nor do they offer narration to 
the viewer on what is happening in the videos.

Some videos elevate the viewing experience to a higher sensory level 
with breezy instrumental music playing over the top—illustrative of the 
‘lo-fi’ genre that has become the backdrop to online content in recent 

5 ASMR stands for ‘autonomous sensory meridian response’, now denoting a popular video genre 
purportedly designed to stimulate a desirable sensory reaction.
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years (Alemoru, 2018; Zaraczynski, 2020). Indeed, such videos can easily 
be seen as extensions of the ‘slow TV’ genre that has spread through lin-
ear programming and non-linear online content centring base pleasures 
around rhythm and routine—as a stated antidote to the chaos of modern 
life. For Comma users, ‘making driving chill’ is an optimal, desirable, 
ideally embodied experience—the videos go some way to showcasing, if 
not altogether tempting, that experience in lieu of actively experiencing it.

One such video is indicative: just over four minutes long, comprising 
of a Comma-aided ‘hands-free’ drive along a US highway. The video 
maintains a fixed position in front of the driver, looking out at eye level 
through the windscreen, onto the road ahead. Only the driver’s left hand 
is visible, placed calmly on their knee. The Comma device is clearly in 
shot, positioned to the top right of the left-hand side steering wheel, 
mounted on the plastic dashboard of the Honda. From passing road signs 
the viewer is able to deduce the location of the video: heading away from 
San Francisco, making their way up the California coastline on the 
Interstate 80 (I-80).

What elevates the video is the choice of music soundtracking this oth-
erwise archetypal example of a snippet of slow TV: the song ‘Dreams’, by 
Fleetwood Mac. In October 2020, TikTok user Nathan Apodaca 
uploaded a video of himself longboarding down a highway in the US 
state of Idaho after his car had broken down (Apodaca, 2020). Sipping 
from a cranberry juice carton in his left hand, Apodaca is seen miming to 
a song: Dreams (2004 remaster) by Fleetwood Mac. Over 92m views, 
14m likes, and 710,000 shares later, the video conveyed a sense of bliss—
at a moment (during the COVID-19 pandemic) when few were carefree 
(Beaumont-Thomas, 2020). As the New York Times reported, Apodaca 
remarked that it was ‘just a video … that everyone felt a vibe with’, happy 
he could just ‘chill the world out for a minute’ (Morales, 2020).

The Comma video, then, is an obvious attempt to emulate the carefree 
bliss of Apodaca’s video. That both take place on US highways/freeways 
is arguably no coincidence. Whilst Apodaca might be using one to escape 
his vehicular problems—and by extension, his own worries and stresses—
the driver in the other video is using their Comma device to escape theirs. 
In both, the ordinary motor vehicle is depicted as the problem: for 
Apodaca using public donations following the viral video to ‘spend on 
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vehicle repairs and upgrades’ (Beaumont-Thomas, 2020, p. n.p.). For the 
Comma driver, the monotony and boredom of the regular highway com-
mute. The solution for Apodaca turned out to be a ‘cranberry red Nissan 
pickup’ (Morales, 2020, p. n.p.) donated by Ocean Spray (sensing an 
obvious PR opportunity). For the unnamed Honda driver on the I-80, 
the Comma device offered an emulation of that Apodaca-cum-Fleetwood 
Mac vibe.

�Test Phenomenon IV: Cultivating Shared Experiences

Ultimately, after this calibration work, bug reporting/tracking, and vibe 
posting, Comma users are in it for one thing, without which they wouldn’t 
be part of the community at all. Owning a Comma device is about culti-
vating shared experiences, a utopian, personalized existence. In short, 
about making driving chill, matching comfort with style, control with 
release. The calibration of Comma devices, the fine-tuning of them 
through the sharing and reporting of bugs and errors, and the posting of 
driving content are all in service of cultivating and then amplifying that 
affective, shared experience of ‘driving’ a car autonomously. Generating 
an affective ‘autonomous’ experience whilst retaining personalized power 
and control is a marked difference from any experience offered either by 
established car manufacturers or big tech companies. At least, that is, in 
the eyes of Comma and their avid community of users.

The perfect embodiment of this aesthetic is the #openpilot-experience 
channel on the Comma Discord server: ‘a place for posting openpilot 
videos and experiences’, as the last section demonstrated. In addition, 
however, besides this invocation to post is the added detail that ‘slow 
mode is on’ to encourage ‘high quality posts’ from users. Discord describes 
slow mode as ‘the most convenient way to make your channel chill out’, 
limiting ‘the number of messages a user is able to send in a channel based 
on a timed cooldown’ (Discord, 2021, p. n.p.). Once again, the notion of 
‘chill’—posting, doing, acting—circulates, imploring users in this spe-
cific channel to think and post differently. Whilst the Comma experience 
is generally oriented towards making driving chill, with other Discord 
channels built to service this end goal, these other channels are not 
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expressly ‘chill’ in themselves—quite the opposite. The #openpilot-
experience channel thereby offers a subsequent deepening, or doubling, 
of the ‘chill vibes’ that otherwise are meant to pervade whilst driving. 
Alongside ‘make driving chill’ stands ‘make posting about driving 
chill’, too.

Another way of understanding this deepening/doubling of the chill 
experience is that the desired driving experience here is matched by a 
desired user experience (UX) of the Discord channel. Combined, these 
constitute an overall, desired customer experience to which both Comma 
device and Discord channel are in service of. As Pine II and Gilmore 
(2011, p. 23, authors’ emphasis) contend, ‘manufacturers … must explic-
itly design their goods to enhance the user’s experience – essentially expe-
rientializing the goods – even when customers pursue less-adventurous 
activities’. Here, the manufacturer must always pay acute attention to the 
use and use context of the goods/service they’ve designed, in order to 
craft and cultivate the experience of using them. Indeed, Pine II and 
Gilmore (2011, p. 23, authors’ emphasis) suggest that ‘automakers do 
this when they focus on enhancing the driving experience’, perhaps the 
most obvious case of needing to attend to the experience of product 
usage, ‘but they must also focus on other non-driving experiences that 
occur in cars too’ (Pine II & Gilmore, 2011, p. 23).

For Comma—not a car manufacturer, of course—this is also defini-
tively obvious. There is, evidently, a looping or feedback mechanism at 
play with Comma, connecting the use of a Comma device (the driving 
experience) to the discursive representation of using the Comma device 
(the posting experience). Whilst the driving experience—using a Comma 
device to drive autonomously—is ordinarily the end goal, the #openpilot-
experience channel crystallizes and supports it, offering the opportunity 
for users to share a collective user experience.

As many have considered, the experience of ‘comfort’ plays a contin-
ued role in selling and sustaining private car consumption (Kent, 2015; 
Sheller, 2004), ordinarily accompanied by the feeling of ‘action’ and 
‘effortlessness’ (Kent, 2015, p. 735) whilst driving a car. More specifically, 
as Sheller writes:

7  Relaxing Decisions: Making Driving Chill 



218

Car consumption is never simply about rational economic choices, but is 
as much about aesthetic, emotional and sensory responses to driving, as 
well as patterns of kinship, sociability, habitation and work. (Sheller, 
2004, p. 222)

Thus,

We can ask how feelings for, of and within cars occur as embodied sensi-
bilities that are socially and culturally embedded in familial and sociable 
practices of car use, and the circulations and displacements performed by 
cars, roads and drivers. (Sheller, 2004, p. 222)

For Comma users, these ideas of the ‘sensory responses to driving’ and 
‘patterns of kinship’ and sociability are decidedly true. This looping of 
driving experience with posting experience is necessarily attuned to these 
affective connections. However, Comma users do not simply strive for 
the same kind of experience as other car drivers. Enabling a distinction 
between other car drivers and themselves is integral to this ‘unique’ 
Comma experience—and what subsequently binds the community. This 
is built firstly on a belief that car drivers in general necessarily yearn for 
the kinds of comfort, effortlessness, and freedom typically sold to them 
by car manufacturers—but which cannot be delivered by actually partici-
pating in the act(s) of driving itself. Nor, of course, can this feeling be 
cultivated by the likes of Google/Alphabet and other big tech autono-
mous vehicle firms who force drivers to cede total control of ‘their’ vehi-
cles to the machine.

Thus, what binds the Comma community, as hinted at previously, is 
the ‘spiritual communion’ achieved through testing, tweaking, and hack-
ing their Comma devices and—by extension—their beloved automo-
biles. In so doing, they chase a level of comfort, effortlessness, control, 
and freedom originally promised by car manufacturers, for which all 
other drivers yearn but cannot attain. In ‘hacking’ the driving experience, 
Comma users believe they have elevated themselves onto another plane 
of existence, embodying an otherwise elusive future of driving few others 
have ever experienced.
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�Conclusion

In light of everything, Comma is an anomaly. Neither an automotive 
manufacturer nor a big tech firm, nor funded by either, Comma is already 
somewhat different from the competition. Neither committed to build-
ing an autonomous vehicle system nor a typical ADAS, it instead is com-
mitted to a project somewhere in between. Neither able to leverage huge 
computational resources nor established engineering know-how, Comma 
has still managed to launch a standalone ADAS nominally able to satisfy 
the autonomous driving urges of avid customers.

Amongst all these anomalies—however significant—what marks 
Comma as unique is their dogged commitment to the Californian ideol-
ogy (Barbrook & Cameron, 1996), that special brand of electronic liber-
tarianism once the preserve of nearly all Californian tech firms. What this 
chapter has sought to do, then, is document this ideology in action: the 
spirit of which flows through manifold aspects of their operation. The 
protagonists are all of them, Hotz of course, but many more collectively. 
The antagonists are multiple too: consumer electronics critics, Waymo, 
Tesla, the NHTSA, and, naturally, the cone guys. Precious few other 
operators within this space marshal support quite like Comma, and fewer 
still mobilize such a long line of enemies in order to further their own 
cause. The spiritual communion of the Comma class is strong, perhaps 
unbreakable.

The reason why Comma is such a fascinating case study of the devel-
opment of autonomous driving is because it surfaces an undeniable truth 
that neither automotive manufacturer nor big tech firm can answer. 
Drivers—many more than either of them realizes—want automation but 
on their own terms. Car manufacturers, fighting for new revenue streams, 
and constantly battling to lower costs, increasingly cannot provide what 
their customers ultimately desire. Big tech firms, hypnotized by the 
dream of monopoly control, have little interest in catering to real or 
imagined drivers who themselves yearn for ultimate control of how, and 
whether, to automate their own beloved vehicle.

Making sense of Comma’s ‘culture of testing’ has been a route to 
understanding this curious phenomenon. From the calibration of 
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Comma devices to the reporting of bugs, and from the posting of ‘vibes’ 
to the cultivation of shared experiences, the project itself occupies a full 
gamut of explanations for why the Comma project nominally works, 
drawing people into a mix of technical, social, and aesthetic dimensions.

Chasing what users call ‘that openpilot vibe’, responding to the call to 
‘make driving chill’, Comma is fuelled by a forgotten energy at the heart 
of the Californian tech industry, jettisoned perhaps when Google dropped 
its unofficial ‘don’t be evil’ motto (Conger, 2018). This chapter has not 
intended to call for a return to such an ethic, nor for a renewed commit-
ment to electronic libertarianism, but to recognize and examine how the 
Californian ideology has found a kind of afterlife, living on amongst the 
ruins of platform capitalism. Far from diametrically opposed to the latter, 
however, the Comma project has nonetheless found a way to position 
itself against it, in part, through a somewhat cynical use of technical and 
cultural critique (Hind & Seitz, 2024). They may not be the future of 
autonomous driving, but they have certainly altered the present 
search for it.
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8
Resisting Decisions: Coneheads 

in California

This chapter considers growing resistance to the decision-making capa-
bilities of autonomous vehicles. In this chapter I consider how different 
groups have responded to the emergence of autonomous vehicles: politi-
cally, organisationally, and socially. Up until recently, relatively few con-
certed, collective efforts to resist the automation of vehicles have occurred. 
The question is why?

Much of the opposition to date has been limited to ethical or moral 
debates about sensing and the (mis)recognition of other road users or the 
(largely erroneous) utilitarian principles considered to underpin autono-
mous vehicle decision-making (Ganesh, 2017). Artistic and cybersecurity 
interventions have likewise centred on the disruption of their machine 
vision capabilities, posing equally hypothetical but decidedly problem-
atic, perceptual challenges for autonomous vehicles and associated 
systems.

These examples notwithstanding, there has been scant public opposi-
tion to autonomous vehicles. Indeed, that whilst similar efforts have been 
witnessed in other fields where, for example, sensing and (mis)recogni-
tion, or utilitarian decisions have yielded unfair or unjust outcomes—say, 
in respect to algorithmic border control or housing benefit decisions—
these have not crossed over into the automotive domain. One question 
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this chapter tentatively probes is why a ‘counter-mapping’ of the spaces 
of autonomous driving, as Luis Alvarez León (2019) calls for, has not 
happened en masse to date.

The main body of the chapter, however, focuses on one particular bat-
tle around autonomous vehicles that has been waging since 2022, in the 
city of San Francisco, US. Long a ‘public laboratory’ for tech experimen-
tation, two robotaxi firms, or autonomous vehicle passenger service 
(AVPS) operators, applied for permission to run limitless services: Cruise 
and Google/Alphabet’s autonomous vehicle division, Waymo.1 This 
chapter chronicles the story of application, opposition, contentious 
approval, and subsequent suspension of operations of the former, Cruise. 
In particular, it narrates the involvement of various municipal bodies 
responsible both for approving permission and opposing operations: the 
California Department of Motor Vehicles (DMV), the California Public 
Utilities Commission (CPUC), and the San Francisco County 
Transportation Authority (SFCTA).

The second part of the chapter introduces a new element into the pic-
ture: an anti-AVPS protest group by the name of Safe Street Rebel (SSR). 
Formed during the pandemic, to campaign for ‘car-free spaces, transit 
equity, and the end of car dominance’ (Safe Street Rebel, 2023a, p. n.p.) 
in the San Francisco area, SSR launched a specific anti-autonomous vehi-
cle action in the midst of the regulatory fight. Targeting Cruise and 
Waymo vehicle’s machine vision capabilities, citizens were encouraged to 
make use of the most humble of road phenomena: the traffic cone. Placed 
gently on the hood of a stationary autonomous vehicle—usually in the 
dead of night—the traffic cone would render the vehicles paralyzed, 
unable to proceed until the object had been removed. Dubbed the ‘Week 
of Cone’, the action constituted a landmark moment in the recent his-
tory of AVPS: the first on-street, public form of playful resistance to their 
existence. Both aspects—regulatory resistance and playful resistance—typ-
ify new moments in the development of autonomous vehicles, rendering 
the future of AVPS—and autonomous vehicles, more generally—less cer-
tain than ever.

1 Throughout this chapter I will generally refer to these as ‘operators’.
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�Putting Bodies on the Line?

In attempting to answer the question ‘why have we witnessed few efforts 
to counter the automation of vehicles?’, I want to return to 2013. As 
media theorist Douglas Rushkoff writes, ‘one December morning in 
2013, residents of San Francisco’s Mission District laid their bodies in 
front of a vehicle to prevent its passage’ (Rushkoff, 2016, p. 1). The vehi-
cle in question had a specific purpose, and ‘although acts of public protest 
are not unusual in California, this one had an unlikely target: the Google 
buses used to ferry employees from their homes in the city to the com-
pany’s campus in Mountain View, thirty miles away’ (Rushkoff, 
2016, p. 1).

As Rushkoff continues he establishes a greater connection between 
those protesting the buses shuttling employees to Google’s HQ and those 
sitting on the bus itself. Local residents were angered by the effect Google 
was having on their neighbourhoods, namely in respect to sky-rocketing 
housing costs, and employees were burnt out from the demands their 
employers were making of them. For local residents and activists, laying 
down in front of the Google shuttle buses, as well as latterly throwing 
rocks at them in Oakland, was determined to be an easy, and effective, 
way of resisting Google’s growing power.

Rushkoff understands this act of resistance not as a battle ‘between San 
Francisco residents and Google employees’ (Rushkoff, 2016, p. 3) nor 
between ‘the 99 percent and the 1 percent’ (Rushkoff, 2016, p. 3) as such 
conflict was typically styled following Occupy Wall Street in 2011. 
Instead, Rushkoff understands such as a battle between ‘everyone’ and a 
‘program that promotes growth above all else’ (Rushkoff, 2016, p.  3, 
authors’ emphasis).

Whilst the term ‘platform capitalism’ isn’t used by Rushkoff (2016), 
Nick Srnicek’s book on the phenomenon was released in the same year 
(Srnicek, 2016), and much of Rushkoff’s analysis is based on a critique of 
platforms. As he contends:

We optimized our platforms not for people or even value but growth. So 
instead of getting more free time, we ended up getting less. Instead of get-
ting more varieties of human expression and interaction, we pushed for 
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more market-friendly predictability and automation. Technologies were 
prized most for their ability to extract value from people in terms of ‘eyeball 
hours’ and the data that could be derived from them. As a result, we have 
ended up in an always-on digital landscape, constantly pinged by updates 
and enduring a state of perpetual emergency interruption  – what I call 
‘present shock’ – previously known only to 911 operators and air traffic 
controllers. (Rushkoff, 2016, p. 6)

Thus, the protests against the Google buses can be understood as a 
protest against platform capitalism’s business model, principally based, at 
the time, on data extraction. What’s interesting is that this analysis still 
largely holds, even if the contours of the debate have shifted somewhat, 
more expressly, onto the role of machine learning (ML) and digital labour 
supporting ‘automation’.

Many of the aspects of the protests against the Google buses translate 
into plausible opposition to contemporary autonomous vehicle tests, 
many of which have taken place on public roads, in various forms, over 
the last seven years. Indeed, Cruise’s faltering robotaxi tests have been 
taking place in the exact same city, San Francisco, that saw the original 
Google bus protests in 2013, since 2015 (Marshall, 2022). Yet, until 
recently, there have been few protests, no laying of bodies down in front 
of them, and certainly no rock-throwing. Whilst this could be seen as an 
evolution of protest tactics, coming to the conclusion that Rushkoff does 
that maybe the residents of San Francisco’s Mission District have more in 
common with Google employees than they realized, it is also plausibly an 
acknowledgement of how testing in the wild by big tech firms is unnerv-
ingly common. So familiar that any form of public resistance might 
appear futile.

The lack of public resistance to autonomous vehicle tests is all the more 
intriguing for the fact that there have been artistic and cybersecurity-
based efforts to disrupt the machine vision of autonomous driving in 
recent years. James Bridle’s ‘Autonomous Trap 001’ installation (2017) is 
one such example, where the artist placed a nominally ‘autonomous’ car 
within a rudimentary ‘trap’ consisting of two sets of white chalk mark-
ings: one inner solid line and one outer dashed line. As Bridle explains:
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What you’re looking at is a salt circle, a traditional form of protection – 
from within or without – in magical practice. In this case it’s being used to 
arrest an autonomous vehicle – a self-driving car, which relies on machine 
vision and processing to guide it. By quickly deploying the expected form 
of road markings – in this case, a No Entry glyph, we can confuse the car’s 
vision system into believing it’s surrounded by no entry points, and entrap 
it. (Mufson, 2017, p. n.p.)

Drawing on the more mystical, or spiritual, elements of movement 
and vision, Bridle’s project hinted at the possible ways in which autono-
mous vehicles might be challenged or opposed. Ben Nassi, an Israeli 
researcher and former Google employee, similarly developed a range of 
projects investigating plausible cybersecurity threats to autonomous vehi-
cles. These have included the prospect of so-called phantom attacks using 
roadside digital billboards, and ‘camera spoofing attacks’ using projectors 
to trick driver-assist devices into responding to speed limit signs (Nassi 
et al., 2020, 2021).

As Nassi et al. (2020) explain, phantom attacks can be considered a 
‘perceptual challenge’ (Nassi et al., 2020, p. 3) for two reasons. Firstly, in 
that they exploit a so-called validity gap (Nassi et al., 2020, p. 3) that 
leaves the autonomous vehicle unable to independently verify what is 
being sensed. If one aspect of an integrated sensing system detects an 
object, regardless of what other parts of the system may say, the vehicle is 
minded to take a ‘better safe than sorry’ approach (Nassi et  al., 2020, 
p. 3) and treat the object as if it was real. Secondly, in that they take 
advantage of the way ML models detect objects. In this, as Bunz (2019) 
explains, image-based ML models do not derive meaning (i.e. recognize 
objects) through understanding the content of images (as humans might) 
but through a calculation of image properties, such as edges and textures. 
As Nassi et al. (2020, p. 3) state, ‘most object detection algorithms are 
essentially feature matchers, meaning that they classify objects with high 
confidence if parts of the object (e.g. geometry, edges, textures) are simi-
lar to … training examples’. If phantom objects match the same geomet-
ric, edge-based, and textural properties the image-based models have 
been trained on, the chances are the system will treat them as real objects.
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In the camera spoofing attacks, Nassi et  al. (2021) use a similar 
approach to the above, this time limiting their efforts to using a projector 
to spoof road sign images. Here, whilst they suggest that attacks of a simi-
lar kind can be performed using ‘adversarial’ methods designed to ‘trick … 
deep learning classifiers’ (Nassi et al., 2021, p. 1), their approach is both 
simpler and more effective. Rather than generating entire phantom 
objects, in this instance Nassi et al. (2021) specifically project different 
kinds of road signs to be picked up by a specific advanced driver-assistance 
system (ADAS), the Mobileye 630 PRO.  Through various tests, they 
determine that the system was insensitive to the colour of the road signs, 
but both the size and shape of the fake signs didn’t attract the attention 
of the ADAS. Regarding the most critical aspect of their experiment, the 
speed represented, Nassi et al. (2021) concluded the system responded to 
an array of numbers, including ‘speed values … not used in the real 
world’ (Nassi et al., 2021, p. 3). In short, that if cyber-attackers were to 
attack a Mobileye 630 PRO equipped vehicle, they could do so by care-
fully mimicking the style of real road signs and adding any speed value 
they wanted.

On a different level, Simon Weckert’s ‘Google Maps Hack’ project in 
2020 used ‘99 second hand smartphones … transported in a handcart to 
generate virtual traffic jams in Google Maps’ (Weckert, 2020). Social 
navigation app Waze has long been responsible for increasing traffic 
through residential neighbourhoods, thanks to its algorithmic route-
calculation (Littman, 2019), and hackers have previously caused traffic 
jams in Moscow by mass-ordering taxis to the same location, using the 
Yandex platform in 2022 (Roth, 2022). All these examples use a variety 
of mobile devices, mobile data, mobile apps, mobile navigation, and 
mobile ride-hailing services, to disrupt the otherwise ordinary flow of 
vehicles through urban environments. Thus, rather than needing to phys-
ically lay down in front of the vehicles, each of these cases shows the ease 
at which a digital form of disruption can affect the movement of vehicles, 
whether directly (as in the case of Yandex) or indirectly (as in the case of 
Weckert and Waze). In effect, through the ‘spoofing’ of actual requests 
and the appearance of user ‘demand’. That some public autonomous 
vehicle tests are tests of autonomous ride-hailing services suggests that 
there is at least some scope for similar such actions.
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One obvious reason for the relative lack of resistance to autonomous 
vehicles is that they are difficult to spot in the wild, geographically lim-
ited in scope to particular countries (the US) or particular cities/regions 
(San Francisco, Arizona). Yet, I would argue that these are reasons specifi-
cally for concerted, collective action, with the ability to likewise build up 
capacity and ‘test out’ the feasibility of disruptive action. Autonomous 
vehicle tests, therefore, are similarly tests of/for disruptive action against 
such tests, establishing the viability, effectiveness, and support for such 
actions before being able to scale up and out, much like the operators of 
the vehicle tests themselves are undoubtedly evaluating: ‘first San 
Francisco, then the world’ being the motto for all Silicon Valley enter-
prises before them.

These three examples suggest a possible trajectory for anti-autonomous 
vehicle protests that centre either on disrupting their machine vision 
capabilities (or lack thereof ) or the services upon which they rely. In the 
rest of this chapter, I will consider the most significant anti-autonomous 
vehicle event to date that combines both aspects: opposition to the roll-
out of AVPS in San Francisco. Focusing on Cruise, the next section con-
siders the legislative battles around the approval of AVPS permits in the 
city. Strongly opposed by municipal bodies such as the SFCTA, Cruise 
finally received approval to operate restriction-less robotaxi services—
until disaster struck. In the midst of this regulatory fight, a new—and 
decidedly novel—anti-autonomous vehicle activist group sprung up, 
demonstrating the ease with which such vehicles could be stopped in 
their tracks, all with the help of the humble traffic cone. The subsequent 
section therefore discusses the growing cultural resistance to autonomous 
vehicles, for which the action in San Francisco provides a likely, playful 
blueprint.

�Regulatory Resistance

In December 2022, following a period of restricted testing, the California 
DMV granted Cruise permission to run unrestricted passenger services 
of their autonomous vehicles within San Francisco (Cano, 2022). Cruise 
CEO Kyle Vogt regarded it as an important step in expanding their oper-
ations to the whole city, 24 hours a day, 7 days a week (Vogt, 2022). 
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Despite this, the decision was not a formality, with CPUC in charge of 
making the final resolution, as they were when approving Cruise’s initial 
application for ‘Phase 1’ of their AVPS deployment programme in June 
2022 (CPUC, 2022). Approvals from both the DMV and CPUC are 
required to operate AVPS in San Francisco (CPUC, 2021), bodies sepa-
rately responsible for automotive regulation and public utility provision 
across the state of California.

In making their application to CPUC Cruise were expected to submit 
a so-called advice letter (Cruise, 2022), an ‘informal request to furnish 
service’ (CPUC, 2019, p. n.p.) and further charge passengers, by expand-
ing availability across San Francisco.2 In Cruise’s case, their application 
was ‘suspended for further staff review’ (CPUC, 2023a) until May 15, 
2023. According to the relevant legislation, anyone can ‘file a protest or 
respond to an advice letter within 20 days of the date of filing of the 
advice letter’ (CPUC, 2019, p. n.p.). Subsequently, and along with 44 
other persons, the SFCTA submitted a response (SFCTA, 2023).

In contrast to organizations supporting the application, such as the 
San Francisco Chamber of Commerce and a tech industry body called 
the ‘Chamber of Progress’, the SFCTA opposed the unrestricted expan-
sion of Cruise’s operations in the city. The SFCTA, responsible for trans-
port planning across the whole San Francisco County area, considered 
the broad expansion of Cruise’s operations as ‘unreasonable in light of the 
Cruise AV [autonomous vehicle] performance record’ (SFCTA, 2023, 
p.  3), noting principles or areas Cruise were failing to adhere to, 
namely  regarding incrementalism, transparency, and reporting metrics. 
These constitute the central features of the SFCTA’s opposition to Cruise, 
largely resting on a stated desire to ‘collect new data to support incremen-
tal expansion evaluation’ (SFCTA, 2023, p. 4).

2 CPUC operate a tiered system, in which service providers either request amendments to existing 
permits that do not affect rate changes (Tier 1), affect rate changes or introduce new services (Tier 
2), or constitute substantial changes requiring approval by the commission (Tier 3) (CPUC, 2019). 
Cruise’s initial application, as per CPUC guidance on autonomous vehicle deployment programme 
approvals (CPUC, 2021), required the submission of a Tier 3 advice letter. Cruise’s subsequent 
amendment, thus, only mandated a Tier 2 advice letter be submitted, as they were ‘only’ requesting 
an expansion to already-permitted AVPS. Interestingly, during the initial application process, 
Cruise had unsuccessfully lobbied the CPUC to remove the requirement for autonomous vehicle 
operators to submit a Tier 2 advice letter if they desired to alter the geographical extent of their 
operations (CPUC, 2022).
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�Incrementalism

SFCTA’s main concern in the advice letter is that the approval process 
should adhere to the principle of ‘incrementalism’. In other words, that 
Cruise (and any others) should pass operational performance milestones 
and thresholds before being allowed to expand their operations. As they 
note in the letter, ‘a series of limited deployments with incremental 
expansions – rather than unlimited authorizations – offer the best path 
toward public confidence in driving automation and industry success in 
San Francisco and beyond’ (SFCTA, 2023, p. 4).

Notably, the SFCTA is happy enough for Cruise and other operators 
to test their vehicles. What the SFCTA requested instead is that operators 
abide by an overarching developmental principle (incrementalism) seem-
ingly at odds with an approach favoured by Cruise and others. Most 
notably, the disruptive, anti-regulatory, ‘move fast and break things’ ethos 
that resulted in the cessation of Uber ATG’s testing programme in Tempe, 
Arizona, and other locations, after the death of Elaine Herzberg 
(Hind, 2022a).

As a key constituent of this incrementalist approach, the SFCTA 
requested that ‘new driverless readiness data collection should be required’ 
(SFCTA, 2023, p. 4), offering the SFCTA and relevant parties the ability 
to scrutinize operations at each stage. The SFCTA deemed this data criti-
cal to be able to support an evaluation of operations under their jurisdic-
tion, noting that CPUC currently mandate operators in San Francisco to 
report nine kinds of operation data on a quarterly basis (CPUC, 2023b). 
These include total miles travelled by each vehicle per passenger service, 
vehicle trip miles, vehicle wait time, vehicle occupancy, and four require-
ments related to Wheelchair Accessible Vehicle (WAV) requests (CPUC, 
2023b). Both Cruise and Waymo ‘claimed confidentiality for certain 
portions of its reports’ (CPUC, 2023b, p. n.p.) in each of the three quar-
terly reports for the city’s deployment programme, since it began in 
February 2022.3

Whilst the SFCTA acknowledged that so-called deployment data is 
‘broader in scope [than pilot programme data], contains detailed trip 

3 These were March to May, June to August, and September to November.
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level information, and includes information on vehicle charging and 
public safety incidents’ (SFCTA, 2023, p. 17), CPUC receives no data at 
all on a critical feature: planned or unplanned stops that obstruct road 
lanes. Unplanned stops are especially important, as they constitute the 
kinds of incidents that prevent evidence of obvious performance limita-
tions. These have also drawn the most public scrutiny and have been 
subject to multiple press reports (Marshall, 2022; Vincent, 2022), ques-
tioning the extent to which Cruise vehicles specifically are ready for 
expansion, what the SFCTA call ‘unlimited authorization’. 
Documentation, and scrutiny, of unplanned stops is integral to this stated 
incremental approach—without which neither CPUC nor the SFCTA 
have any sense of how common unplanned (or indeed planned) stops are. 
In the SFCTA’s own words, they say that:

To assess how unexpected and unplanned stops obstructing travel lanes 
impact the transportation network it is critical to know the location and 
duration of each unplanned stop. San Francisco also recommends using a 
metric that assesses the rate at which these unplanned stops occur. Given 
the importance of transit in meeting state climate and equity goals, special 
consideration should be given to obstructions impacting transit opera-
tions. (SFCTA, 2023, p. 18)

The SFCTA provide details of what these unexpected and unplanned 
stops by Cruise vehicles have looked like across the city, ranging from 
claims of ‘erratic driving’ noted by callers to 911 and the making of eva-
sive manoeuvres by other drivers around blockages ‘caused by a disabled 
AV’ (SFCTA, 2023, p. 7). As further noted, these incidents ranged in 
length from minutes to hours, with 15% of reported cases involving mul-
tiple Cruise vehicles clustered in specific locations, providing a veritable 
assault course for other drivers, public transport providers, and emer-
gency responders (SFCTA, 2023).

In light of these claims, how is the SFCTA confident in making their 
demand for an incremental developmental approach? The answer is that, 
following Alvarez León (2019), they committed to provisionally ‘counter-
map’ the spaces of autonomous driving by collating and mapping 
unplanned stop incidents across San Francisco over a seven-month period 

  S. Hind



235

(SFCTA, 2023). This provisional counter-mapping—executed in a rather 
ad-hoc manner—offers an insight into a form of regulatory radicalism 
offered by a public body such as the SFCTA, willing to provide robust 
evidence of the present unsuitability of autonomous vehicles for unlim-
ited authorized passenger services on public streets.

What is fascinating is that a public transportation body such as SFCTA 
has engaged in a counter-mapping process typically executed by non-
state actors (Peluso, 1995). In the absence of non-state actors wishing to 
organize against the disruptive tendencies of operators such as Cruise, a 
public transportation authority used its comparative power to do the 
same. In a more critical vein, the SFCTA has not sought to oppose Cruise 
from using San Francisco as a testbed tout court, only to demand opera-
tors follow an incremental, evidence-based approach, that does not seek 
to subject citizens to an increased risk of danger from operations, day and 
night, all across a city of over 800,000 people.

�Transparency

The second concern is that operators should commit to greater levels of 
transparency. According to the SFCTA, both Cruise and Waymo have 
‘sought confidential treatment of basic operational data about AV driv-
ing’ having ‘submitted reports to [CPUC] in redacted form’ (SFCTA, 
2023, p.  3). Publicly available from a designated online repository 
(CPUC, 2023b), the reports submitted by Cruise make for indicative 
reading. In a file marked ‘AV Trips Part 0_REDACTED’ corresponding 
to all passenger trips made by Cruise vehicles from September 1 to 
November 30, 2022, all 3352 rows (i.e. 3352 trips) show multiple 
redacted columns. These include columns specifying trip start date and 
time, the census tract code of the trip requester, the zip code of the trip 
requester, dates and times of when the trip was accepted by Cruise, three 
columns corresponding to vehicle miles travelled during and between 
trips, and related data on passenger drop-off points and times. In all, 17 
columns are labelled as redacted. The only recorded fields of value include 
trip fulfilment data, trip cancellation data, and passenger total data.
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As the SFCTA remark, vehicle miles travelled (VMT) data, currently 
recorded in three forms through the quarterly reporting mechanism, 
‘would provide context for rates of unexpected and unplanned AV stops 
obstructing travel lanes’ (SFCTA, 2023, p. 19). Yet, as they add, ‘Cruise 
has redacted data showing VMT of its deployment operations and even 
high level location information’ (SFCTA, 2023, p.  19) such as census 
tract and zip code level data of vehicle requesters and passenger drop-off 
points. In other words, Cruise’s redaction of such operational data is, 
in  the SFCTA’s opinion, a barrier to an incremental approach to the 
deployment of AVPS in San Francisco, preventing CPUC and other 
interested parties—including members of the public—from scrutinizing 
the volume of Cruise vehicles that have initiated unexpected or unplanned 
stops during their permitted operation.

The SFCTA make two demands. Firstly, that operators submit data on 
a monthly rather than quarterly basis, making it easier for CPUC to 
make responsive decisions regarding operator readiness. Then secondly, 
that permit applications should include the submission of the following 
information to allow for evaluation:

•	 All driverless vehicle miles travelled (VMT) for each permit;
•	 Location and duration of unplanned AV stops (including minimal risk 

condition) (MRC) and vehicle retrieval events (VRE) obstructing 
travel lanes by vehicle and underlying permit; and

•	 Passenger pick-up stops by location, distance from curb, and dwell 
time for all passenger stops (SFCTA, 2023, p. 19)

Whilst, as noted above, VMT data is currently requested, this is only 
on a quarterly basis, and Cruise regard this as commercially sensitive 
data, subsequently redacting all VMT data. MRC is a state autonomous 
vehicles enter when seeking to reduce risk from collision or another inci-
dent, without handing control over to a human operator. Unplanned 
stops initiated by Cruise will have been the result of specific vehicles or 
indeed clusters of vehicles as per the reports, entering an MRC state, to 
minimize the risk of contact with other road users.

If such vehicles cannot be remotely re-activated or the incident resolved 
from a distance, a vehicle retrieval event (VRE) will be initiated, in order 
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to return the vehicle to its operational base. Specific passenger pick-up 
locations, distance from curb, and dwell time for passenger stops are all 
critical datapoints for a public transportation authority like the SFCTA, 
mandated to provide safe and secure transportation services for the pub-
lic at large. Requesting such information on a monthly basis should, the 
SFCTA argue, be the basis of a permit approval process which, at the 
moment, is not mandated by CPUC.

As the SFCTA plainly state, ‘although the metrics may reflect on per-
mittee performance in ways that applicants find uncomfortable, none of 
these data fields call for information that can be legitimately described as 
protected trade secrets’ (SFCTA, 2023, p. 19), a claim currently made by 
Cruise and Waymo. Indeed, as they assert, CPUC ‘should require appli-
cants to submit this data in public form without opportunity for claims 
of confidential treatment’ (SFCTA, 2023, p. 19)—a claim that prevents 
an incremental approach to deployment and increases the risk to fellow 
road users where in operation.

Luis Alvarez León establishes ‘three separate possible avenues for 
counter-mapping’ (Alvarez León, 2019, p. 6) the spaces of autonomous 
driving, concerning legislation, design, and hacking. The SFCTA’s 
response to Cruise arguably incorporates aspects of all three. Firstly, most 
obviously, they are engaging in the formal, legal process through which 
permits are granted, registering an official protest to an expansion of 
Cruise’s operating licence, through their response to Cruise’s advice letter. 
Much like the final resolution issued by CPUC in response to Cruise’s 
initial application (CPUC, 2022), the commission would be expected to 
evaluate the protests and responses submitted by interested parties in 
making their final decision. Secondly—in order to combat closed tech-
nological architectures and security threats—the SFCTA explicitly call 
for Cruise to release operational data records relating to their operations. 
Whilst the SFCTA are not engaged in, nor advocate, for the hacking of 
Cruise vehicles, their call for greater transparency and openness of a wide 
gamut of data produced by them opens the possibility for such a project, 
whether this involves direct hacking or an indirect form of monitoring in 
order to record critical data on unplanned stops and similar incidents 
involving Cruise vehicles.
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The SFCTA—alongside other transportation agencies like the Los 
Angeles Department of Transportation (LADOT) who registered similar 
concerns—are expressly, as well as indirectly, counter-mapping the spaces 
of autonomous driving. In short, that it can be said to be offering forms 
of regulatory resistance to the unrestricted expansion of AVPS operations. 
Here, a form of precautionary development in the guise of ‘technological 
incrementalism’ fundamentally underpins the counter-strategy, in con-
trast to the insistent ‘move fast and break things’ logic offered by big tech 
firms generally and Cruise more specifically. That such a strategy is offered 
by a municipal agency—and rejected by the firms that would be subject 
to it—rather than an activist group or collective is striking. It suggests 
that in the face of the power of big tech—especially in the US and within 
Silicon Valley itself—public transportation authorities with a broad remit 
to maintain public transport accessibility and reliability offer a form of 
resistance that mimics (to some extent) how activist groups protest the 
state itself. Or, at the very least, that they offer a kind of legislative basis 
on which activist groups—say, those protesting the expansion of AVPS 
operations—might offer more radical resistance, echoing earlier efforts to 
resist Google’s growth in the early 2010s.

�Reporting Metrics I: Readiness

Interestingly, the SFCTA use the evidence gathered through the counter-
mapping exercise to inform a second part of their incremental approach: 
the use of a ‘readiness metric’ to assess the readiness of operators for per-
mit approval (SFCTA, 2023). In this, the SFCTA make an important 
distinction between ‘impact metrics’ and ‘readiness metrics’ (SFCTA, 
2023, p. 18). The former, as they suggest, offer a way of evaluating the 
evolving, anticipated impact of operations. Such impact metrics might 
reasonably involve the collection of data on the ‘occupancy of AVPS trips, 
deadheading miles, and their related congestion and energy effects’ 
(SFCTA, 2023, p. 18).4 In other words, these metrics allow CPUC to 
assess the popularity of such services (occupancy), the immediate impact 

4 Deadheading miles are those clocked up by vehicles between passenger journeys and return trips 
to a Cruise logistical base for maintenance or repair.
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of such services on local transportation (deadheading miles), and the 
ongoing, cumulative effect of running operations (congestion, energy).

However, the kinds of readiness metrics desired by the SFCTA operate 
slightly differently, being less concerned with accumulated impact. Here, 
the SFCTA are interested in the actual operation of the vehicles in ques-
tion: where they’re going and what they’re doing at any one time. More 
pointedly, the SFCTA want to know how often vehicles are engaging in 
unplanned stops. Firstly, as discussed in the previous section, this would 
require operators to collect and share such data with CPUC as part of the 
permit approval process. However, in a ‘raw’ form such data is of negli-
gible (or at least lower) value to the authorities, likely unable to deter-
mine how significant a total number of unplanned stops is per passenger 
vehicle, or where the unplanned stops took place.

Thus, to make use of such data, the SFCTA propose a series of readi-
ness metrics it recommends CPUC adopt. These include ‘unplanned AV 
stops obstructing travel lanes in relation to driverless vehicle miles trav-
eled’, and ‘total lane minutes of obstruction from driverless failures 
obstructing travel lanes in relation to driverless VMT’ (SFCTA, 2023, 
p. 18). In other words, the SFCTA want to require Cruise and Waymo to 
make it easier to evaluate how often their vehicles are breaking down. 
Whilst the first metric offers a way to compare how frequently such ser-
vices are making unplanned stops, the second metric offers a comparative 
figure for how serious the resulting obstruction is. Both, when used 
together, would enable CPUC to properly evaluate—following SFCTA’s 
argument—the ‘readiness’ of such vehicles for ongoing operations in San 
Francisco. Indeed, following their demand for developmental incremen-
talism, such readiness metrics would offer the possibility of granting 
Cruise, Waymo, and any other operators enhanced permit conditions 
based on a rising threshold of operability. If these firms were able to 
improve the operational statistics on unplanned stops and/or unplanned 
duration, they could be granted permission to operate their vehicles in 
additional geographical areas and in less restrictive temporal windows.
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�Reporting Metrics II: Minimal Risk Condition

As the SFCTA highlight, unplanned stops—the empirical object at the 
centre of their opposition—are a more complicated phenomenon than 
they would at first appear to be. This is because, as they suggest, stops can 
be ‘unplanned’ for different reasons.

One such reason is MRC, an operational state entered if a vehicle 
experiences a technical fault or failure. Entering an MRC is designed to 
ensure the risk to both passengers and other road users is minimized. In 
this, an MRC is considered an important ‘failure mitigation strategy’ 
(SAE International, 2021, p.  10) for autonomous vehicle developers. 
Except, of course, that entering an MRC state can be considered an 
unplanned stop for the purposes of AVPS operations, preventing them 
from carrying paying customers. It is likely that a substantial number of 
the unplanned stops made by Cruise vehicles reported in the SFCTA’s 
letter were the result of vehicles entering an MRC state after being unable 
to perform a ‘dynamic driving task’ (DDT) and unable to hand over to 
an in-vehicle operator (Fig. 8.1).

In addition, the SFCTA also wish to understand a further element of 
unplanned stops: not only where vehicles have entered an MRC state but 
also where they have resulted in human operators, or ‘field staff’ (SFCTA, 
2023, p. 7) being called out to (re)move the vehicle itself. VREs consti-
tute an escalation of an MRC, where a vehicle cannot move 

Fig. 8.1  Minimal risk condition. (Source: SAE International, 2021)

  S. Hind



241

autonomously, nor be (re)moved by a remote operator. In such instances, 
an employee is typically dispatched to retrieve it—necessarily extricating 
it from the situation and removing it as an obstacle. Naturally, VREs are 
embarrassing for operators, where retrieval by a human is considered a 
last resort when both autonomous and (human) remote control have 
failed. Like before, permittees might find the sharing of such data uncom-
fortable—although are hardly trade secrets—with events routinely wit-
nessed by fellow road users, uploaded to social media, or reported by 
local news outlets, as the SFCTA’s letter evidences.

A more straightforward category of unplanned stops also exists: the 
so-called contact event. Used by Waymo to refer to a range of incidents 
where contact between an autonomous vehicle and another road user is 
made, as detailed in Chap. 5, these incidents comprise the bulk of 
unplanned stops. Although the peculiar ‘mass strandings’ evidenced by 
the SFCTA are unlikely to be considered contact events, two subse-
quently reported incidents were: a near-miss collision between one Cruise 
vehicle and a public bus, after the former had strayed into a bus lane; and 
an incident where a Cruise vehicle had driven onto a light rail track, 
blocking a right of way (SFCTA, 2023, pp. 12–15). In both incidents the 
vehicle had not entered an MRC state, and neither required a VRE. As 
the SFCTA deduced, both incidents likely constitute violations of the 
California Vehicle Code (CVC), including stopping in a transit lane 
(CVC 22500) and not yielding to another vehicle at a right of way (CVC 
21800) (SFCTA, 2023, pp. 11, 14).

Evidently, by recommending operators share data on unplanned stops 
and obstructions across three categories—MRCs, VREs, contact events—
as a condition of permit approval, the SFCTA propose a robust, ostensi-
bly workable, route to public AVPS operations. Without such provisions, 
as the SFCTA patiently argue, greater interruption to the daily lives of 
San Franciscans is inevitable. Without a commitment to an incremental 
approach, Cruise and Waymo (quite literally) have a licence to continue 
operating on whatever terms they wish—much to the wider detriment of 
public transportation and public life in the city.
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�Whither Resistance?

Despite the efforts of the SFCTA, on April 25, 2023, CEO Kyle Vogt 
announced that Cruise had been given permission to operate 24 hours a 
day, 7 days a week, across the whole of San Francisco (Vogt, 2023a). 
Although Vogt didn’t expressly mention it, the announcement was the 
result of a draft resolution published by CPUC approving authorization 
for Cruise’s expanded operations (CPUC, 2023c). What Vogt also didn’t 
mention was that the resolution itself was still in draft form, yet to be 
ratified and adopted by CPUC. Only after this process—subject to a 
30-day review period and a 20-day comment period—would Cruise be 
granted a permit to extend operations.

Vogt clearly regarded the moment as significant: ‘operating robotaxis 
in SF [San Francisco] has become a litmus test for business viability. If it 
can work here, there’s little doubt it can work just about everywhere’ 
(Vogt, 2023b, p. n.p.). Becoming the first company to run relatively 
unrestricted operations across a major city, with few spatial, temporal, or 
operational limits, would indeed be momentous. No company in the 
recent, feverish history of commercial autonomous driving has managed 
such a feat. Cruise provisionally receiving regulatory approval was some-
thing more celebrated rivals, including Waymo and Uber ATG, had not 
yet managed.

Yet, the significance of Vogt’s statement hinged not on Cruise’s success-
ful navigation of regulatory requirements. Instead, it was the explicit 
extrapolation offered by Vogt: ‘if it can work here’—in San Francisco—
‘there’s little doubt it can work just about anywhere’. Vogt’s logic relies on 
two implicit truths (a) that San Francisco is the ideal laboratory to test 
the ‘business viability’ of AVPS operations and (b) that by extension, that 
all other cities—whether in the US or elsewhere—are a mere regulatory, 
social, cultural, and commercial extension of San Francisco. Rather than 
a city of exceptional exception, San Francisco is an ordinary blueprint for 
AVPS operations the world over: a ‘mundane’ model (Hind, 2022b, 
p. 470) of commercial success.

The draft resolution composed by CPUC is worth considering in 
detail. It notes that in launching their AVPS ‘deployment programme’ in 
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2021, CPUC has endeavoured to deliver four aims: protect passenger 
safety, expand the benefits of autonomous vehicles to all Californians, 
improve transportation options for all, and reduce greenhouse gas emis-
sions (CPUC, 2023c). CPUC regards the deployment programme, thus, 
as a route to achieving at least some aspects of all four of these aims, 
monitoring permit holders such as Cruise in progressing towards these 
goals. Central to receiving a permit approval on the deployment pro-
gramme was a submission by applicants of a ‘Passenger Safety Plan’ (PSP), 
submitted by Cruise in December 2022 following their application to 
expand operations (Cruise, 2022). Comprising of eight general points, 
any PSP requires applicants to describe how they would minimize safety 
risks to passengers using their services. After protests and responses were 
recorded, regarding PSP items, Cruise responded, providing additional 
measures on 12 specific points of their PSP (Cruise, 2023a), including 
issues raised by the SFCTA and others in response to the original advice 
letter submitted by Cruise (2022).

A number of these additional measures focus on expanding the control 
passengers would have of various functions within the Cruise vehicle dur-
ing a ride, including ‘the ability to have the AV honk and/or extend wait 
time’ (Cruise, 2023a, p.  7). In addition, passengers would be able to 
review a series of safety messages prior to the trip, displayed both on the 
in-vehicle touchscreens and the Cruise mobile app (Cruise, 2022, 
pp. 13–15). Here, much of the adapted PSP focuses both on the ‘passen-
ger experience’ as well as passenger safety. What these additional mea-
sures offer, therefore, is a series of protocols for instilling and governing 
appropriate user behaviour before, during, and after, a journey in a Cruise 
vehicle (Fig. 8.2).

Yet, much of the SFCTA’s critique of Cruise operations, as detailed 
before, rest on issues of wider safety of public transportation users not 
comprehensively covered by Cruise in their response. In this, Cruise sim-
ply repeat that their vehicles are ‘designed to operate at crossings with 
cable cars, streetcars, or light rail vehicles’ (Cruise, 2022, 24), not that 
these vehicles have failed to do so on a number of reported occasions. 
That ‘Cruise has designed a thoughtful, integrated system of automated 
monitoring and response to passenger feedback to appropriately detect 
and respond to unsafe scenarios outside the vehicle’ (Cruise, 2022, p. 46) 
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Fig. 8.2  Cruise’s ‘in-app contextual cues’. (Source: Cruise, 2022)

isn’t supported with evidence of such a system, ‘thoughtful’ or otherwise. 
In the draft resolution, CPUC simply write that they are ‘encouraged by 
the safety record in passenger services to date’ (CPUC, 2023c, p. 11), 
noting just ‘5 collisions under its Driverless Deployment permit since 
receiving its permit in June 2022, none of which resulted in injuries’ 
(CPUC, 2023c, p. 11).

Aside from passenger experience/safety and the wider operation of 
Cruise services, the draft resolution also refers to the SFCTA’s explicit call 
for an incremental approach. This recommendation formed the founda-
tion of SFCTA’s reply to Cruise’s original advice letter, in which they note 
Cruise’s non-compliance with permit requirements to make operational 
data related to trips publicly available.

�San Francisco Strikes Back

Barely five weeks later, thanks to another draft resolution issued by 
CPUC, Waymo were also on the cusp of joining Cruise. This time, the 
SFCTA joined forces with two other San Francisco bodies: the San 
Francisco Municipal Transportation Agency (SFMTA) and the San 
Francisco Planning Department, publishing an official comment on the 
Waymo draft resolution (San Francisco, 2023). Here, in a repeat of the 
argument made by the SFCTA in the Cruise case, the trio of San Francisco 
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bodies stated that ‘it is unreasonable for the Commission [CPUC] to 
approve Cruise and/or Waymo Advice Letters before adopting expanded 
reporting requirements and minimum performance standards’ (San 
Francisco, 2023, p. 5). Whilst the commissioner in charge of the case had 
recently announced new reporting requirements, the San Francisco bod-
ies argued that approving operations in advance of receiving performance 
data was ‘inconsistent with the Commission’s power and duty to protect 
not only passenger safety but the safety of the general public’ (San 
Francisco, 2023, p. 5).

Here, as with Cruise, the bodies reiterated SFCTA’s incrementalist 
position, buttressed by evidence of a ‘significant increase in both Waymo 
Reported Incidents and the cumulative effect of Cruise and Waymo 
Reported Incidents’ (San Francisco, 2023, p.  5). Uniting behind this 
common position, the San Francisco bodies argued CPUC had got things 
the wrong way round. Why allow Cruise and Waymo to operate tout 
court, when the mounting evidence suggests a litany of related hazards 
and concerns?

Along with the united front against the operators, the trio directly 
targeted CPUC itself. Despite attempts by the latter to deflect responsi-
bility onto the California DMV—the body responsible for issuing driv-
ing licences in the state—the three argue that CPUC ‘has both jurisdiction 
and a duty to address the hazards raised’ (San Francisco, 2023, p.  8). 
Indeed, that CPUC ‘should not rely on DMV acquiescence as a basis for 
[their own] inaction’ (San Francisco, 2023, p. 8). Put succinctly, whilst 
the DMV’s approval of Waymo’s operational design domain (ODD) ‘sets 
a ceiling on potential Waymo driverless commercial deployment; it does 
not set a floor’ (San Francisco, 2023, p. 8). In other words, in the eyes of 
the trio, it was up to CPUC to establish a foundation for AVPS operators 
in line with their ‘broad mandate to protect public safety’ (San Francisco, 
2023, p. 8). Leaving such decisions in the hands of another body would 
be an abdication of responsibility.

Beyond the incidents logged by the SFCTA and others, a series of 
more absurd incidents were noted by the trio. Such incidents included 
‘intrusions into marked construction zones in which City employees are 
working in and under city streets’ (San Francisco, 2023, p. 11) where, for 
example, on January 13,, 2023, ‘a Waymo driverless car drove into the 
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middle of a construction site and stopped right before rolling into an 
open trench where San Francisco city employees were working’ (San 
Francisco, 2023, p. 11). Further incursions ‘into crime scenes and scenes 
with downed power lines and other hazards marked with caution tape’ 
(San Francisco, 2023, p. 11) provide evidence that Waymo vehicles are 
less able to comprehend temporary changes to the driving environment 
whether they be roadworks, crime scenes, or other unplanned events.

Rather than improving, the San Francisco bodies argued the situation 
was getting worse. Whilst January 2023 saw five reported incidents 
involving Waymo vehicles (19 Cruise incidents), February saw a further 
10 (19 Cruise). In March 2023, 34 incidents involving Waymo vehicles 
were reported (59 Cruise), before another 30 in April (57 Cruise) (San 
Francisco, 2023, p. 14). Aside from any analysis of operator performance, 
the figures represented something else altogether different. Faced with 
growing awareness of how Cruise and Waymo were running such services 
in San Francisco, there appeared to be an emergent resistance movement, 
ultimately constituting—in collective on-the-ground reporting and 
engagement with the permit approval process—a form of opposition to 
the disruptive intentions of AVPS operators. Here, an emergent counter-
cartography of autonomous driving was finally taking shape through dis-
putes over the public release (and redaction) of operational data, official 
responses by affected bodies with a public mandate, and the forceful 
defence of technological incrementalism.

�Playful Resistance: Coneheads II

I began this chapter by wondering why protests against autonomous 
vehicles hadn’t yet occurred—not least in San Francisco, a city that 
famously protested shuttle buses ferrying tech workers to the campuses of 
Google and others, as Douglas Rushkoff (2016) considered. In July 2023 
that all changed. Enter an activist group called Safe Street Rebel (SSR) 
aiming to ‘end car dominance and save the planet one direct action at a 
time’ (Safe Street Rebel, 2023b, p. n.p.). Whilst not new—they’d formed 
in opposition to the re-opening of a stretch of San Francisco’s Great 
Highway in 2021 (Truong, 2023)—they decided to launch of campaign 
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against Cruise and Waymo, in anticipation of the delayed CPUC deci-
sion to expand operations across San Francisco on July 13 (Truong & 
Mojadad, 2023). The group decided to call their campaign the ‘Week of 
Cone’, in which anonymous members of the group, upon spotting Cruise 
vehicles conducting trips across the city, were placing—and willing oth-
ers to place—ubiquitous orange traffic cones on the hoods of the vehicles 
(Safe Street Rebel, 2023c). Upon doing so, the vehicles appeared bam-
boozled, hazard lights flashing, seemingly ‘paralyzed’ (Zipper, 2023, p. 
n.p.), unable to move without a Cruise engineer manually resetting the 
vehicle system and removing the offending traffic cone. In the fight 
against AVPS operators, San Francisco seemingly had a new weapon, 
deployable not in fraught CPUC permit hearings but on the streets, ordi-
narily under the cover of darkness, when activists were less likely to be 
seen (or caught) interfering.

Such activity can be seen as part of a broader global movement against 
car dependency in recent years, from activists like Extinction Rebellion 
and Just Stop Oil in the UK and Letze Generation in Germany, all of 
whom have routinely staged road blockades in the name of the climate 
crisis (Zelden-O’Neill, 2022; Booth, 2023; Stole, 2023), to the Tyre 
Extinguishers, another activist group working under the cover of dark-
ness to deflate the tyres of SUVs in cities across the world (Gayle, 2022). 
SSR’s incorporation of anti-AVPS protests in San Francisco into general 
opposition to car dependency and the climate crisis was arguably novel. 
As such, it represented a watershed moment long in the making, both in 
relation to the wider vehicle-facilitated climate crisis, but also connected 
back to the tech bus protests in San Francisco in 2013. In short, it’s a 
moment in which a more radical counter-mapping of the spaces of 
autonomous driving has finally occurred (Alvarez León, 2019).

It is worth expanding a little on what the action entails. As the com-
posite image shows (Fig. 8.3), SSR posted an explainer video on TikTok 
on how to ‘cone’ an autonomous vehicle (Safe Street Rebel, 2023b). The 
video itself, just over a minute long, comprises three acts: identifying the 
problem of AVPS operators in San Francisco, demonstrating the action 
intended to stop them, and specifying the aim to permanently ban (or at 
least limit) operators in the city. The video considers the argument by 
Cruise and Waymo that ‘their cars will reduce traffic and collisions’ before 
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Fig. 8.3  Frames from Safe Street Rebel’s TikTok video of how to ‘cone’ an auton-
omous vehicle. (Source: Safe Street Rebel, 2023c)
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arguing they actually ‘block busses, emergency vehicles, and everyday 
traffic’, an issue widely reported (Marshall, 2022; Vincent, 2022), whilst 
‘partnering with police to record everyone all the time without anyone’s 
consent’. The latter, a story confirmed in a leaked San Francisco Police 
Department (SFPD) training document (Gordon, 2022), is similar to 
the backdoor access provided to police departments by Ring doorbell 
video devices (Belanger, 2022), echoing broader concerns about the 
‘functional sovereignty’ (Pasquale, 2017) of autonomous vehicles (Gekker 
& Hind, 2019). ‘Most importantly’, the video continues, autonomous 
vehicles ‘require streets that are designed for cars, not people or transit’, 
echoing SSR’s general opposition to car dependency in San Francisco and 
across the US.

Then the video turns to the main event: how to ‘do something about 
it’. First, it instructs viewers to find a humble, ubiquitous, traffic cone 
(‘they’re everywhere’). Then, upon locating an autonomous vehicle, ‘gen-
tly place it on the car’s hood’—making sure ‘the car is empty’ before 
doing so. Upon placing the cone—as seen in the video—both Cruise and 
Waymo vehicles automatically come to a halt, activating their orange 
hazard lights in the process. The placing of the cone by a disembodied 
arm emerging first from the left of the frame, then POV-style from the 
bottom, adds a decidable air of humour to the sequence (Fig. 8.4). In the 
final act viewers are informed of the upcoming CPUC hearing on July 

Fig. 8.4  ‘Find a cone (they’re everywhere), then gently place it on the car’s hood’. 
(Source: Safe Street Rebel, 2023c)
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13, in which they are encouraged to offer public comment.5 Under the 
text outlining the details, the video cycles through a series of instances of 
Cruise vehicles (and in one case, two at the same time) being brought to 
a halt with a traffic cone. The video ends with a final message: ‘this week, 
tell these companies what you think with a cone’.

The action brings to mind the playful forms of direct action witnessed 
across the world in the modern era, from the Situationists in the 1960s, 
to the anti-capitalist group the ‘Wombles’ in the early 2000s, and Eclectic 
Electric Collective/Tools for Action in the 2010s. Playful forms of protest 
have always involved the use—and mis-use—of everyday objects, from 
maps to inflatables (Hind, 2015), routinely deployed to disrupt everyday 
actions and movements (Hind, 2016). These so-called disobedient objects 
(Flood & Grindon, 2014) form the repertoire, and the arsenal, of activist 
groups the world over, deployable against various enemies from police 
forces and right-wing groups, to—now of 2023—autonomous vehicles. 
That an anonymous activist group is issuing a call to social media users to 
participate in, and proliferate the action, is only novel in respect to the 
primary platform used (TikTok), as different forms of social media from 
Indymedia to Blackberry Messenger to the ‘anti-kettling app’ Sukey 
(Kingsley, 2011; Hind, 2015, 2016) have long been used to disseminate 
protest-related information and calls to action.

The traffic cone has always been the strange, inanimate foe of the 
autonomous vehicle. Following Alexis Madrigal’s report on Waymo’s pri-
vate Californian test facility (Madrigal, 2017), it was questioned whether 
its vehicles had a trustable value system (Hind, 2019). Noting the ‘prop 
stash’ Waymo used to test the object-recognition capabilities of their 
vehicles, I specifically asked ‘what has the right to enter the sacred prop 
stash? What deserves to be classifiable and therefore recognizable?’ (Hind, 
2019, p. 412). From dummies to fake plants, and from skateboards to 
traffic cones, Waymo was already testing the ability of their vehicles to 
sense, and react to, any number of miscellaneous items, each with their 
own specific qualities within a given driving environment. I subsequently 
considered the likely consequences of mis-valuing such objects—not of 
failing to recognize them wholesale, but wrongly categorizing them 

5 The hearing was subsequently delayed until August 10.
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according to a miscalculation of their assumed form or scrutinized 
actions. Whilst I suggested that the ‘fisherman’s problem’ (Crampton, 
2002; Olsson, 2002) posed issues about the ability for such vehicles to 
understand the ‘swarming social reality … to be found far beyond the 
(sub)urban confines of California’ (Hind, 2019, p. 412), it wasn’t imme-
diately clear they would also be barely unable to comprehend the ‘swarm-
ing social reality’—traffic cones and all—of an 8 km2 downtown area of 
San Francisco.

What the cone-based actions show is, less the ability of autonomous 
vehicles to ‘sense’ or ‘comprehend’ such a social reality and more its 
inability to compete in it. As the death of Elaine Herzberg also showed, 
autonomous vehicles might well have the capability to make sense of 
neatly defined and demarcated objects acting as they should, but far less 
of an ability to comprehend, and react to, other things acting together. For 
Herzberg, her ‘issue’ (simply her reality) was choosing to walk her bicycle 
rather than ride it, meaning both human (with a ‘strange’ object beside 
her) and object (with person interacting with it ‘abnormally’) had had 
their intrinsic qualities modified somewhat, making something in excess 
of themselves, as everything tends to do when acting, and inter-acting, in 
the social world at large. That the humble traffic cone might find itself 
being re-appropriated, taken out of context, gifted agency, finally at long 
last animated, was patently too much for an autonomous vehicle and, 
indeed, its makers, to handle. With no ability to fight back the humble 
traffic cone and its instigators won—at least, that is, for a fleeting moment.

�Decision: Approved

After a six-hour hearing, despite the best efforts of activists and oppo-
nents, CPUC voted to approve Waymo and Cruise’s requests to expand 
operations across the whole of San Francisco, without restrictions 
(CPUC, 2023d, 2023e, 2023f ). It subsequently became the first time, 
anywhere in the world, that AVPS operators have been permitted free 
from geographical or temporal conditions. San Franciscans tired of being 
‘guinea pigs’ in a city frequently used as a ‘tech-bro playground’ as resi-
dents have contended (Bindman, 2023, p. n.p.), now had to prepare 
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themselves for being round-the-clock ‘test subjects’ (Bindman, 2023, p. 
n.p.). That CPUC commissioner John Reynolds led the votes in favour 
of approval did not escape notice by observers. Reynolds, as widely 
reported (Hawkins, 2023a; Thadani & Merrill, 2023), was a former gen-
eral counsel of Cruise’s parent company, GM, who had ‘recused’ himself 
from previous votes.

Drawing on Noortje Marres (2020), the public testing of Cruise and 
Waymo vehicles has forcefully moved from one (limited, experimenta-
tional) mode of testing into another (unlimited, experimental). Here, 
there is no pretence or deployment of technological incrementalism nor 
evidence-based, precautionary expansion, but a concerted effort (by 
Cruise and Waymo) to force San Francisco, and San Franciscans, to live 
with autonomous vehicles. Here, Marres’ notion of ‘co-existence’ (Marres, 
2020, p. 549)—a commitment and challenge to which the street trials of 
autonomous vehicles she studies centred on—appears quaint in this con-
text. There is, in short, no ‘learn[ing] to get along’ (Marres, 2020, p. 549). 
Indeed, forcing residents and fellow road users to ‘get along’ with the 
vehicles whether they like it or not, becomes a stark and cynically moti-
vated attack on—rather than a more benign test of—social life (Marres & 
Stark, 2020), and the social road (Marres, 2020) itself. As Marres and 
Stark write, a general shift in the ‘sites and the logics of testing’ (Marres 
& Stark, 2020, p. 433) has been led by the specific software development 
cultures fostered by, and in, big tech firms, where the ‘social environment 
is itself the object of testing’ (Marres & Stark, 2020, p. 433). That this 
approach has been followed by Google/Alphabet-owned Waymo is no 
surprise, but its emulation by GM-owned Cruise demonstrates the spread 
of such a culture into new domains such as the automotive industry, typi-
cally governed by very different hardware-based, precautionary safety 
approaches to automation and control. Whilst ‘platform automobility’ 
(Hind & Gekker, 2024; Hind et  al., 2022) is typically understood 
through a political-economic lens, constituting a rearrangement of 
production-based processes and operations according to a platform logic, 
it becomes more obvious here how this platformization constitutes and 
solidifies a new, forceful, logic of ‘testing’ too—not simply stretching the 
limits of acceptable test conditions and procedures but actively destroy-
ing them.
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�CPUC Giveth, California DMV Taketh Away

In another twist to the story and after a recent hit-and-run incident 
implicating a Cruise vehicle (Hawkins, 2023b), on October 24, 2023, 
the California DMV suspended Cruise’s operations (California DMV, 
2023). After two and a half months of unrestricted trips throughout San 
Francisco, with customers able to call on Cruise 24/7, the company’s 
operations became subject to an indefinite suspension. In response, 
Cruise took the decision to ‘proactively pause driverless operations across 
all of their fleets’ (Cruise, 2023b, p. n.p.) not only in San Francisco but 
also in Austin, Texas, and Phoenix, Arizona.

Cruise’s suspension was based on their contravention of four regula-
tory points: (a) that a manufacturer’s vehicles are not safe for public oper-
ation, (b) that a manufacturer has misrepresented information pertaining 
to the safety of their vehicles, (c) through act or omission that the manu-
facturer’s operations post an unreasonable risk to the public, and (d) that 
the DMV has the right to suspend or revoke licences due to unsafe prac-
tices engaged in by manufacturers (California DMV, 2023). As Kirsten 
Korosec understood, the suspension of Cruise’s permit was specifically 
the result of Cruise failing to submit video footage of the aftermath of the 
hit-and-run incident (Korosec, 2023), obstructing efforts to investigate 
it. In short, the California DMV were no longer convinced of Cruise’s 
ability to run safe operations in San Francisco. Ironically, this failure to 
submit a form of operational data was precisely the concern put forward 
by the SFCTA, SFMTA, and the San Francisco Planning Department 
when calling for an incremental approach.

Interestingly, of course, it was not the California DMV who were 
responsible, in the first instance, for issuing Cruise with their permit for 
operating without restriction, on October 24, 2023. Rather, it was 
CPUC. With a degree of overlapping jurisdiction over the operation of 
such services—CPUC responsible for public service provision (i.e. ‘pas-
senger services’) and the California DMV for motor vehicle safety (i.e. 
autonomous vehicles)—both, in principle, have had a stake in how 
Cruise operates in San Francisco. The hit-and-run incident that impli-
cated a Cruise vehicle was, it seems, the straw that broke the camel’s 
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back—the last in a long line of incidents involving Cruise vehicles since 
being given permission by CPUC to run 24/7 operations in August. On 
November 20, 2023, Cruise CEO, Kyle Vogt, resigned—bringing an end 
to his 10-year mission to automate driving as the head of the company 
(Korosec & Bellan, 2023).

�Conclusion

This chapter has narrated the ongoing story of the rollout of AVPS opera-
tions in San Francisco. With many twists and turns, the story is unlikely 
far from over. Indeed, it may be only just beginning, spreading across the 
US, far beyond the confines of the famous tech laboratory of San 
Francisco (Marshall, 2024). For Cruise, at least the Cruise helmed by 
CEO Kyle Vogt, the dream appears much further away now than at any 
point in their short history. Their direct rival in San Francisco, Waymo, 
stumbles on.

Yet, I began by going back to 2013—still in San Francisco—to con-
sider the impact of the first backlash against big tech. Here, throwing 
rocks at company buses ferrying engineers from the suburbs to out-of-
town tech campuses caught on (Rushkoff, 2016), crystallizing opposition 
to the emergent power of Google and others. In the years since, localized 
resistance to the global might of tech firms fell away, undoubtedly con-
nected to the revelations from Edward Snowden and others into state 
forms of digital surveillance—in which telecommunications firms were 
complicit (Greenwald, 2013). The implications were of global signifi-
cance—for those living in the suburbs as San Francisco as much as those 
living anywhere else. Throwing rocks—or anything else—at buses seemed 
futile but also misplaced.

Over the course of this period, however, as the development and test-
ing of autonomous vehicles has proceeded, different forms of resistance 
and opposition have bubbled under the surface. Throughout 2023 it 
bubbled under the surface no longer, first witnessed as a form of persis-
tent regulatory resistance offered by the SFCTA and then, for the first 
time, as an eruption of broader cultural and playful resistance in the shape 
of an anti-car activist group called Safe Street Rebel. Crystallizing in the 
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aftermath of the Covid-19 pandemic, residents of San Francisco once 
again saw reason to tackle the physical manifestations of big tech power.

What was fascinating is that, this time, it didn’t need a rock. Instead, a 
humble traffic cone—a weirdly troublesome object for the autonomous 
vehicle—placed gently on the car’s hood. Executed under the cover of 
darkness, over in a moment, each action constituted a spanner in the 
works, a bug in the machine, a likely ticket for the engineer, and a nui-
sance for Cruise and Waymo alike.

In between were the kinds of regulatory battles big tech firms are more 
than willing, and capable, of fighting (Hind & Seitz, 2024). Finding full-
bodied opposition in the form of public transport authorities, like the 
SFCTA and, ultimately, state departments like the California DMV, was 
matched, to some degree, by the somewhat agreeable nature of the regu-
lator themselves, CPUC. All the usual tricks were pulled out, from regu-
latory lobbying efforts to the cynical mobilization of minority users, 
while operators steadfastly refused to comply with data transparency 
requirements, non-compliance with which was meant, in theory at least, 
to disbar them from operating. In their hurry to launch, they eschewed 
an incrementalist approach that might have offered an eventual, sustain-
able, agreeable route to operation—but big tech firms and those who 
seek to emulate them, still, despite protestations, like to ‘move fast and 
break things’ (Levy, 2014).

Whether this is the shape of things to come is yet to be seen. But what 
is obvious is that coordinated opposition to eventual rollout of autono-
mous vehicles—namely in the form of AVPS operations—is here. The 
counter-mapping of autonomous driving has begun in earnest. How long 
it needs to continue for, appears—at this moment—to be an open 
question.

Returning to the opening chapter, I stated that the book was about the 
phenomenon of autonomous driving—not what is involved from a 
strictly ‘technical’ perspective but where the dream of automating driving 
had led us in recent years. The quest to automate driving has indeed—as 
the chapters in the book have hopefully shown—been complex, costly, 
and contentious. From the mapping of ODDs and the simulation of 
vehicle trajectories to the rise of open-source driver-assistance devices and 
anti-autonomous vehicle protests, the journey has not been smooth. As 
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this final chapter suggests, the dream might even have run out of road 
altogether.

Driving metaphors aside, the most enduring of all relevant meta-
phors—of the AI ‘pipeline’—is the one I have used to structure the book 
throughout. I have done so in order to help make sense of the ‘technical 
work’ being performed at all stages of the autonomous vehicle develop-
ment process. In so doing, I have sought to focus on the different kinds 
of decisions necessarily made to grant autonomous vehicles their various 
perceptive capabilities. Through the lens of the decision, and how deci-
sions are mapped, sensed, trained, simulated, and secured, as well as 
‘relaxed’ and resisted, the book has intended to offer an analysis of what 
Luciana Parisi termed ‘technological decisionism’ (Parisi, 2017). In a 
world increasingly driven by a logic of technological decisionism, it does 
not matter that decisions are wrong, only that they are executed quickly, 
clearly, definitively, and authoritatively. The consequences of this techno-
logical decisionism, as I have hopefully demonstrated, are manifold and 
pervasive.

In the cases I have examined in the book—from the mapping of ODDs 
in Arizona, to the battles over AVPS permits in California—technologi-
cal decisionism seeks to override all other value systems and logics. 
Indeed, as these cases have illustrated, proponents have also sometime 
sought to actively destroy them. Despite this, state bodies seeking precau-
tionary approaches to the development of AVPS operations, libertarian 
projects desiring a hacker-ish vision of the automotive future, or activist 
groups taking to the streets to protest car culture have challenged the 
power—and vision—of big tech in different ways.

Yet, despite these manifest, and lively, forms of opposition to techno-
logical decisionism, the quest to automate driving has faced a more famil-
iar, consistent, foe throughout: the evident technical limits of machine 
learning and machine vision. As the chapters in this book have hopefully 
demonstrated, designing vehicles with the capability to see, move, and 
make decisions autonomous of humans has proved a significant, ongoing 
challenge. Those challenges have involved tackling a litany of technical, 
organizational, and logistical hurdles to deliver larger training datasets, 
more diverse training datasets, better annotated training datasets, more 
sensors, different assemblages of sensors, more powerful semiconductor 
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chips, optimized object-recognition techniques, broader simulation 
parameters, and expanded conflict typologies, amongst many others.

In the process, a great many innovations have emerged, deployed in a 
real-world domain for the first time. This book has sought to examine 
these developments—sometimes on their own terms, using the language 
of those involved, whilst sometimes deploying different analytical frames 
to make sense of their wider social, cultural, and political impact. 
Ultimately, however, in machine learning’s ‘quest for agency’, as Roberge 
and Castelle (2020, p. 13) have put it, such technical innovations have 
had to—and often failed to—bear responsibility. It is here where the 
dream of autonomous driving has turned into a nightmare of sorts, as the 
full pressure of what it means to autonomously make decisions, and to 
properly make sense of the world, begins to finally weigh heavy.
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